MACAM-MACAM TEKNIK MEMBILANG

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "MACAM-MACAM TEKNIK MEMBILANG"

Transkripsi

1 0

2 MACAM-MACAM TEKNIK MEMBILANG ATURAN PERKALIAN Beriut ii diberia sebuah dalil tetag peetua baya susua yag palig sederhaa dalam suatu permasalaha yag beraita dega peluag. Dalil 2.1: ATURAN PERKALIAN SECARA KHUSUS Jia suatu proses terdiri atas dua tahap, dega tahap pertama dilaua dalam 1 cara da masig-masig cara ii tahap edua dapat dilaua dalam 2 cara, maa proses itu eseluruhaya dapat dilaua dalam ( 1 x 2 ) cara. Sebuah proses mugi bisa terdiri atas lebih dari dua tahap, dega masig-masig tahap dapat terjadi dalam baya cara yag berhigga. Oleh area itu, atura peralia secara umum dibahas dalam Dalil 2.2. Dalil 2.2: ATURAN PERKALIAN SECARA UMUM Jia suatu proses terdiri atas tahap, tahap pertama dapat dilaua dalam 1 cara, dega masig-masig cara ii tahap edua dapat dilaua dalam 2 cara, dega masig-masig tahap ii tahap etiga dapat dilaua dalam 3 cara, da seterusya sampai tahap e- dapat dilaua dalam cara; maa proses itu eseluruhaya dapat dilaua dalam ( 1 x 2 x 3 x... x ) cara. PERMUTASI Defiisi 2.1: Permutasi adalah sebuah susua dari seumpula obje dega memperhatia urutaya. Peghituga baya susua atau cara berdasara permutasi bergatug pada baya obje yag ada, baya obje yag diambil, da macam permutasi. A. PERMUTASI TANPA PENGULANGAN 1

3 Dalil 2.3: SEMUA OBJEK DIAMBIL Jia ita mempuyai obje yag berbeda, maa baya permutasi yag dapat dibetu dari semua obje itu ada P =! cara. P =! Dibaca sebagai Permutasi obje dari obje sama dega fatorial. P bisa ditulis P(,). Dalil 2.4: SEBAGIAN OBJEK DIAMBIL Misala ita mempuyai obje yag berbeda. Jia obje diambil dari obje, maa baya permutasi yag mugi ada P = P(,) =! ( )! susua. P = P(,) =! ( )! dibaca sebagai Permutasi obje dari obje sama dega fatorial dibagi dega urag difatoriala. B. PERMUTASI DENGAN PENGULANGAN Dalil 2.5: OBJEK YANG SAMA Jia ita mempuyai obje, dega 1 adalah baya obje pertama yag sama, 2 adalah baya obje edua yag sama, 3 adalah baya obje etiga yag sama,..., adalah baya obje e- yag sama; maa baya permutasi yag dapat dibetu ada!.!!.! ! susua. C. PERMUTASI MELINGKAR Misala ita mempuyai sejumlah obje yag berbeda. Permutasi yag dapat dibetu dari sejumlah obje itu yag membetu sebuah ligara diamaa permutasi meligar. Oleh area itu, dalam peetua permutasi meligar diperlua ligaraligara yag bayaya bergatug pada permasalahaya. Dalam permutasi meligar yag perlu diperhatia adalah peetapa lebih dahulu salah satu objeya. Setelah ditetua satu permutasi, peetua permutasi laiya harus 2

4 memperhatia susua obje-obje dari permutasi sebelumya. Peghituga baya permutasi meligar yag dapat dibetu bergatug pada baya obje yag diguaaya. Peghituga baya permutasi meligar yag dapat dibetu secara umum bisa dilihat dalam Dalil 2.6. Dalil 2.6: PERMUTASI MELINGKAR SECARA UMUM Jia ita mempuyai obje yag berbeda, maa baya permutasi meligar yag dapat dibetu ada ( 1)! susua. SAMPEL YANG BERURUTAN Misalya sebuah ota berisi buah bola pigpog. Selajutya, ita megambil sebuah bola pigpog secara aca dari ota itu. Kemudia, ita megambil sebua bola pigpog lagi secara aca dari ota itu sesudah pegambila bola pigpog sebelumya. Demiia seterusya, ita megambil sebuah bola pigpog seperti itu sampai pegambila bola pigpog e-r. Pegambila bola pigpog seperti itu diataa pegambila sebuah sampel yag beruruta beruura r. Pegambila bola pigpog sesudah pegambila bola pigpog sebelumya dapat terjadi dalam dua asus, yaitu: 1. SAMPLING DENGAN PENGEMBALIAN Dalam hal ii, bola pigpog yag sudah terambil disimpa embali e dalam ota, sebelum bola pigpog beriutya diambil. Aibatya, baya bola pigpog yag ada di dalam ota tetap. Sehigga pegambila setiap bola pigpog dari dalam ota mempuyai cara. Dega demiia, ita mempuyai sampel beruruta yag berbeda beruura r dega pegembalia sebaya: x x x... x = r ada r ali buah. 3

5 2. SAMPLING TANPA PENGEMBALIAN Dalam hal ii, bola pigpog yag sudah terambil tida disimpa embali e dalam ota, sebelum bola pigpog beriutya diambil. Aibatya, baya bola pigpog yag ada di dalam ota berurag sesuai dega baya pegambila bola pigpogya. Artiya pegambila bola pigpog pertama ada cara, pegambila bola pigpog edua ada ( 1) cara, pegambila bola pigpog etiga ada ( 2) cara, da seterusya sampai pegambila bola pigpog e- ada [ (r 1)] cara.. Dega demiia, ita mempuyai sampel beruruta yag berbeda beruura r tapa pegembalia sebaya: ( 1)( 2)...[ ( r 1)]! ( r)! buah. KOMBINASI Defiisi 2.2: PENGERTIAN KOMBINASI Kombiasi adalah sebuah susua dari seumpula obje tapa memperhatia urutaya. Peghituga baya susua berdasara ombiasi bergatug pada baya obje yag ada da baya obje yag diambil utu membetu ombiasi. Hal ii bisa dilihat dalam Dalil 2.7 da Dalil 2.8. Dalil 2.7: SEMUA OBJEK DIBENTUK Jia ita mempuyai obje yag berbeda, maa baya ombiasi yag dapat dibetu dari semua obje itu ada satu cara. Dalil 2.8: SEBAGIAN OBJEK DIBENTUK Misalya ita mempuyai obje yag berbeda. Jia obje diambil dari obje, maa baya ombiasi yag mugi ada!!.( susua. )! 4

6 Simbol dibaca sebagai ombiasi dari, dega da masig-masig adalah bilaga bulat positif ( ). Simbol adag-adag ditulis C(,). Secara umum, jia baya obje yag ada buah da baya obje yag diambil dari ada buah, maa perumusa ombiasi di atas mejadi: C (, )!!.( )! Peghituga baya susua berdasara ombiasi bisa juga melalui seata gologa.hal ii bisa dilihat dalam Dalil 2.9. Dalil 2.9: SEKATAN GOLONGAN Misalya A yag berisi obje, dibagi mejadi r gologa, yaitu A 1,A 2,A 3,...,A r. A 1 berisi 1 obje, A 2 berisi 2 obje, A 3 berisi 3 obje, da seterusya sampai A r berisi r obje; da =... + r =. Maa baya seata gologa dari A yag berbeda ada!.! susua.!.!.....! r Dalam hal ii, pembagia seata gologa dari A edalam r gologa diyataa dalam betu (A 1,A 2,A 3,...,A r ). Perumusa ombiasi bisa ditulis dalam betu lai, yaitu: ( 1)( 2)...( (1)(2)(3)...( 1)( ) 1) 5

7 Jia ita memperhatia perumusa ombiasi di atas, maa baya aga pada pembilag maupu peyebut sama, yaitu buah. Dalam hal ii, aga pada pembilag dimulai dega da aga pada peyebut dimulai dega 1. Perumusa ombiasi adag-adag membutuha perhituga yag pajag, area perhitugaya megguaa bilaga besar. Oleh area itu, ita memerlua cara yag pratis dalam peghituga ombiasi ii. Beriut ii ita aa membahas sebuah sifat yag membahas cara tsb. Sifat 2.1: RUMUS KOMBINASI YANG PRAKTIS Permasalaha laiya yag masih beraita dega ombiasi adalah oefisie biomial. Berdasara hasil ilai oefisie di atas, maa secara umum ilai oefisie dari a -r b r dalam (a + b) adalah, yag meyataa baya cara utu memilih r buah b. r Nilai oefisie r dieal sebagai oefisie biomial. Secara umum, hasil peralia dari (a + b) dapat dilihat dalam Dalil Dalil 2.10: DALIL BINOMIAL ( a b) 0 a. b dega adalah bilaga bulat positif. 6

8 7

Gambar 3.1Single Channel Multiple Phase

Gambar 3.1Single Channel Multiple Phase BAB III MODEL ANTRIAN PADA PEMBUATAN SIM C. Sigle Chael Multiple Phase Sistem atria sigle chael multiple phase merupaa sistem atria dimaa pelagga yag tiba, dapat memasui sistem dega megatri di tempat yag

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 5

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 5 Mata Kuliah : Matematia Disrit Program Studi : Tei Iformatia Miggu e : 5 KOMBINATORIAL PENDAHULUAN Persoala ombiatori bua merupaa persoala baru dalam ehidupa yata. Baya persoala ombiatori sederhaa telah

Lebih terperinci

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu

Lebih terperinci

MODUL BARISAN DAN DERET

MODUL BARISAN DAN DERET MODUL BARISAN DAN DERET SEMESTER 2 Muhammad Zaial Abidi Persoal Blog http://meetabied.wordpress.com BAB I. PENDAHULUAN A. Desripsi Dalam modul ii, ada aa mempelajari pola bilaga, barisa, da deret diidetifiasi

Lebih terperinci

Peluang Suatu Kejadian, Kaidah Penjumlahan, Peluang Bersyarat, Kaidah Perkalian dan Kaidah Baiyes

Peluang Suatu Kejadian, Kaidah Penjumlahan, Peluang Bersyarat, Kaidah Perkalian dan Kaidah Baiyes eluag uatu Kejadia, Kaidah ejumlaha, eluag ersyarat, Kaidah eralia da Kaidah aiyes.eluag uatu Kejadia Defiisi : eluag suatu ejadia adalah jumlah peluag semua titi otoh dalam. Dega demiia : 0 (), ( ) =

Lebih terperinci

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain.

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain. BARIAN DAN DERET A. Barisa Barisa adalah uruta bilaga yag memilii atura tertetu. etiap bilaga pada barisa disebut suu barisa yag dipisaha dega lambag, (oma). Betu umum barisa:,, 3, 4,, dega: = suu pertama

Lebih terperinci

BAB III TAKSIRAN PROPORSI POPULASI JIKA TERJADI NONRESPON. Dalam bab ini akan dibahas penaksiran proporsi populasi jika terjadi

BAB III TAKSIRAN PROPORSI POPULASI JIKA TERJADI NONRESPON. Dalam bab ini akan dibahas penaksiran proporsi populasi jika terjadi BAB III TAKSIRA PROPORSI POPULASI JIKA TERJADI ORESPO Dalam bab ii aa dibaas peasira proporsi populasi jia terjadi orespo da dilaua allba sebaya t ali. Selai itu, juga aa dibaas peetua uura sampel yag

Lebih terperinci

Representasi sinyal dalam impuls

Representasi sinyal dalam impuls Represetasi siyal dalam impuls Represetasi siyal dalam impuls adalah siyal yag diyataa sebagai fugsi dari impuls atau sebagai umpula dari impuls-impuls. Sembarag siyal disret dapat diyataa sebagai pejumlaha

Lebih terperinci

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG)

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG) PEMBAHASAN SOAL OLIMPIADE SAINS NASIONAL SMP A. ISIAN SINGKAT SELEKSI TINGKAT PROPINSI TAHUN 011 BIDANG STUDI MATEMATIKA WAKTU : 150 MENIT 1. Jia x adalah jumlah 99 bilaga gajil terecil yag lebih besar

Lebih terperinci

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu

Lebih terperinci

BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE)

BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE) BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE) 5.1. Pembagit Radom Variate Disrit Suatu Radom Variate diartia sebagai ilai suatu radom variate yag mempuyai distribusi tertetu. Utu megambil

Lebih terperinci

BAB 6 NOTASI SIGMA, BARISAN DAN DERET

BAB 6 NOTASI SIGMA, BARISAN DAN DERET BAB 6 NOTASI SIGMA, BARISAN DAN DERET A RINGKASAN MATERI. Notasi Sigma Diberia suatu barisa bilaga, a, a,..., a. Lambag deret tersebut, yaitu: a = a + a +... + a a meyataa jumlah suu pertama barisa Sifat-sifat

Lebih terperinci

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C.

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C. BAB II LANDASAN TEORI Pada bab ii aa dibahas teori teori yag meduug metode upper level set sca statistics, atara lai peubah aca, distribusi gamma, fugsi gamma, fugsi lielihood, da uji rasio lielihood.

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang. B. Tujuan dan Sasaran. C. Ruang Lingkup

BAB I PENDAHULUAN. A. Latar Belakang. B. Tujuan dan Sasaran. C. Ruang Lingkup BAB I PENDAHULUAN A. Latar Belaag Kombiatoria mempuyai beberapa aspe, yaitu eumerasi, teori graf, da ofigurasi atau peyusua. Eumerasi membahas peghituga susua berbagai tipe. Sebagai cotoh: (i) meghitug

Lebih terperinci

Bab 16 Integral di Ruang-n

Bab 16 Integral di Ruang-n Catata Kuliah MA3 Kalulus Elemeter II Oi Neswa,Ph.D., Departeme Matematia-ITB Bab 6 Itegral di uag- Itegral Gada atas persegi pajag Itegral Berulag Itegral Gada atas Daerah sebarag Itegral Gada Koordiat

Lebih terperinci

BAHAN AJAR DIKLAT GURU MATEMATIKA

BAHAN AJAR DIKLAT GURU MATEMATIKA BAHAN AJAR DIKLAT GURU MATEMATIKA DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN 005 DAFTAR ISI Kata Pegatar.. i Daftar Isi...

Lebih terperinci

Perluasan Uji Kruskal Wallis untuk Data Multivariat

Perluasan Uji Kruskal Wallis untuk Data Multivariat Statistia, Vol. No., Mei Perluasa Uji Krusal Wallis utu Data Multivariat TETI SOFIA YANTI Program Studi Statistia, Uiversitas Islam Badug, Jl. Purawarma No. Badug. E-mail: buitet@yahoo.com ABSTAK Adaia

Lebih terperinci

Sifat-sifat Fungsi Karakteristik dari Sebaran Geometrik

Sifat-sifat Fungsi Karakteristik dari Sebaran Geometrik Sifat-sifat Fugsi Karateristi dari Sebara Geometri Dodi Deviato Jurusa Matematia, Faultas MIPA, Uiversitas Adalas Kamus Limau Mais, Padag 563, Sumatera Barat, Idoesia Abstra Fugsi arateristi dari suatu

Lebih terperinci

PELUANG. Drs. Marsudi Raharjo, M.Sc.Ed JENJANG LANJUT

PELUANG. Drs. Marsudi Raharjo, M.Sc.Ed JENJANG LANJUT DIKLAT INSTRUKTUR PENGEMBANG MATEMATIKA SMA JENJANG LANJUT PELUANG JENJANG LANJUT Drs Marsudi Raharjo, MScEd DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENINGKATAN MUTU PENDIDIK DAN TENAGA KEPENDIDIKAN

Lebih terperinci

Penulis: Penilai: Editor: Ilustrator: Dra. Puji Iryanti, M.Sc. Ed. Al. Krismanto, M.Sc. Sri Purnama Surya, S.Pd, M.Si. Fadjar N. Hidayat, S.Si.,M.Ed.

Penulis: Penilai: Editor: Ilustrator: Dra. Puji Iryanti, M.Sc. Ed. Al. Krismanto, M.Sc. Sri Purnama Surya, S.Pd, M.Si. Fadjar N. Hidayat, S.Si.,M.Ed. PAKET FASILITASI PEMBERDAYAAN KKG/MGMP MATEMATIKA Pembelajara Barisa, Deret Bilaga da Notasi Sigma di SMA Peulis: Dra. Puji Iryati, M.Sc. Ed. Peilai: Al. Krismato, M.Sc. Editor: Sri Purama Surya, S.Pd,

Lebih terperinci

MODUL BARISAN DAN DERET

MODUL BARISAN DAN DERET MODUL BARISAN DAN DERET KELAS XII. IPS SEMESTER I Oleh : Drs. Pudjul Prijoo ( http://vidyagata.wordpress.co ) SMA NEGERI 6 Jala Mayje Sugoo 58 Malag Telp./Fax : (034) 75036 E-Mail : sa6_alag@yahoo.co.id

Lebih terperinci

ARITMATIKA MODUL PEMBINAAN OLEH TIM PEMBINA OLIMPIADE KOMPUTER ILMU KOMPUTER UDAYANA (DISAJIKAN UNTUK PESERTA PEMBINAAN BIDANG KOMPUTER OSN 2009)

ARITMATIKA MODUL PEMBINAAN OLEH TIM PEMBINA OLIMPIADE KOMPUTER ILMU KOMPUTER UDAYANA (DISAJIKAN UNTUK PESERTA PEMBINAAN BIDANG KOMPUTER OSN 2009) ARITATIKA ODUL PEBINAAN OLEH TI PEBINA OLIPIADE KOPUTER ILU KOPUTER UDAYANA (DISAJIKAN UNTUK PESERTA PEBINAAN BIDANG KOPUTER OSN 009) PEERINTAH DAERAH PROPINSI BALI DINAS PENDIDIKAN PEUDA DAN OLAHRAGA

Lebih terperinci

PEMBUKTIAN SIFAT RUANG BANACH PADA D(K)

PEMBUKTIAN SIFAT RUANG BANACH PADA D(K) JMP : Volume 4 Nomor 1, Jui 2012, hal. 41-50 PEMBUKTIAN SIFAT RUANG BANACH PADA D(K) Malahayati Program Studi Matematia Faultas Sais da Teologi UIN Sua Kalijaga malahayati_01@yahoo.co.id ABSTRACT. I this

Lebih terperinci

BAB 2 LANDASAN TEORI. lebar pita sinyal tersebut. Pada kebanyakan aplikasi, termasuk kamera digital video dan

BAB 2 LANDASAN TEORI. lebar pita sinyal tersebut. Pada kebanyakan aplikasi, termasuk kamera digital video dan BAB LADASA TEORI Teorema Shao-yquist meyataa agar tida ada iformasi yag hilag etia pecuplia siyal, maa ecepata pecuplia harus miimal dua ali dari lebar pita siyal tersebut. Pada ebayaa apliasi, termasu

Lebih terperinci

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 1, No.2, September 2012

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 1, No.2, September 2012 IfiityJual Ilmiah Pogam Studi Matematia STKIP Siliwagi Badug, Vol, No., Septembe HIMPUNAN KOMPAK PADA RUANG METRIK Oleh : Cee Kustiawa Juusa Pedidia Matematia FPMIPA Uivesitas Pedidia Idoesia eeustiawa@yahoo.om

Lebih terperinci

Sinyal dan Sistem Waktu Diskrit ET 3005 Pengolahan Sinyal Waktu Diskrit EL 5155 Pengolahan Sinyal Waktu Diskrit

Sinyal dan Sistem Waktu Diskrit ET 3005 Pengolahan Sinyal Waktu Diskrit EL 5155 Pengolahan Sinyal Waktu Diskrit Siyal da Sistem Watu Disrit ET 35 Pegolaha Siyal Watu Disrit EL 5155 Pegolaha Siyal Watu Disrit Effria Yati Hamid 1 2 Siyal da Sistem Watu Disrit 2.1 Siyal Watu Disrit 2.1.1 Pegertia Siyal Watu Disrit

Lebih terperinci

MENGUJI KEMAKNAAN SAMPEL TUNGGAL

MENGUJI KEMAKNAAN SAMPEL TUNGGAL MENGUJI KEMAKNAAN SAMPEL TUNGGAL 1.1 Uji Biomial 1. Uji esesuaia Chi Kuadrat 1.3 Uji Kesesuaia K-S 1.4 Uji Ideedesi Chi Kuadrat 1.5 Uji Pasti Fisher UJI BINOMIAL Meruaa uji roorsi dalam suatu oulasi Poulasi

Lebih terperinci

3. Integral (3) (Integral Tentu)

3. Integral (3) (Integral Tentu) Darublic www.darublic.com. Itegral () (Itegral Tetu).. Luas Sebagai Suatu Itegral. Itegral Tetu Itegral tetu meruaa itegral ag batas-batas itegrasia jelas. Kose dasar dari itegral tertetu adalah luas bidag

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

x x x1 x x,..., 2 x, 1

x x x1 x x,..., 2 x, 1 0.4 Variasi Kaoi amel Da Korelasi Kaoi amel amel aca dari observasi ada masig-masig variabel dari ( + q) variabel (), () daat digabuga edalam (( + q) ) data matris,,..., dimaa (0-5) Adau vetor rata-rata

Lebih terperinci

BAB VIII KONSEP DASAR PROBABILITAS

BAB VIII KONSEP DASAR PROBABILITAS BAB VIII KONSEP DASAR PROBABILITAS 1.1. Pedahulua Dalam pertemua ii Ada aka mempelajari beberapa padaga tetag permutasi da kombiasi, fugsi da metode perhituga probabilitas, da meghitug probabilitas. Pada

Lebih terperinci

Konvolusi pada Distribusi dengan Support Kompak

Konvolusi pada Distribusi dengan Support Kompak Prosidig SI MaNIs (Semiar Nasioal Itegrasi Matematia da Nilai Islami) Vol1, No1, Juli 2017, Hal 453-457 p-issn: 2580-4596; e-issn: 2580-460X Halama 453 Kovolusi pada Distribusi dega Support Kompa Cythia

Lebih terperinci

Penggunaan Transformasi z

Penggunaan Transformasi z Pegguaa Trasformasi pada Aalisa Respo Freuesi Sistem FIR Oleh: Tri Budi Satoso E-mail:tribudi@eepis-its.eduits.edu Lab Siyal,, EEPIS-ITS ITS /3/6 osep pemiira domais of represetatio Domai- discrete time:

Lebih terperinci

Aproksimasi Terbaik dalam Ruang Metrik Konveks

Aproksimasi Terbaik dalam Ruang Metrik Konveks Aprosimasi Terbai dalam Ruag etri Koves Oleh : Suharsoo S Jurusa atematia FIPA Uiversitas Lampug Abstra asalah esistesi da etuggala aprosimasi terbai suatu titi dalam ruag berorm telah dipelajari oleh

Lebih terperinci

Model Antrian Multi Layanan

Model Antrian Multi Layanan Jural Gradie Vol. No. Juli : 8- Model Atria Multi Layaa Sisa Yosmar Jurusa Matematia, Faultas Matematia da Ilmu egetahua Alam, Uiversitas Begulu, Idoesia Diterima 9 April; Disetujui 8 Jui Abstra - Salah

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

MODUL 1.03 DINAMIKA PROSES. Oleh : Ir. Tatang Kusmara, M.Eng

MODUL 1.03 DINAMIKA PROSES. Oleh : Ir. Tatang Kusmara, M.Eng MODUL 1.03 DINMIK PROSES Ole : Ir. Tatag Kusmara, M.Eg LBORTORIUM OPERSI TEKNIK KIMI JURUSN TEKNIK KIMI UNIVERSITS SULTN GENG TIRTYS CILEGON BNTEN 2008 2 Modul 1.03 DINMIK PROSES I. Pedaulua Dalam bidag

Lebih terperinci

GRAFIKA

GRAFIKA 6 5 7 3 6 3 3 GRAFIKA 3 6 57 08 0 9 5 9 385 946 5 3 30 0 8 9 5 9 3 85 946 5 ANALISA REAL Utu uliah (pegatar) aalisa real yag dilegapi dega program MATLAB Dr. H.A. Parhusip G R A F I K A Peerbit Tisara

Lebih terperinci

Penerapan Algoritma Dijkstra dalam Pemilihan Trayek Bus Transjakarta

Penerapan Algoritma Dijkstra dalam Pemilihan Trayek Bus Transjakarta Peerapa Algoritma Dijstra dalam Pemiliha Traye Bus Trasjaarta Muhammad Yafi 504 Program Studi Tei Iformatia Seolah Tei Eletro da Iformatia Istitut Teologi Badug, Jl. Gaesha 0 Badug 40, Idoesia 504@std.stei.itb.ac.id

Lebih terperinci

UNIVERSITAS INDONESIA DISTRIBUSI BANYAK SINGGAH DARI SUATU RANDOM WALK DAN UJI KERANDOMAN SKRIPSI RANTI NUGRAHENI

UNIVERSITAS INDONESIA DISTRIBUSI BANYAK SINGGAH DARI SUATU RANDOM WALK DAN UJI KERANDOMAN SKRIPSI RANTI NUGRAHENI UNIVERSITAS INDONESIA DISTRIBUSI BANYAK SINGGAH DARI SUATU RANDOM WALK DAN UJI KERANDOMAN SKRIPSI RANTI NUGRAHENI 35475 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI SARJANA MATEMATIKA DEPOK

Lebih terperinci

PELUANG KEJADIAN. 3. Permutasi siklis adalah permutasi yang susunannya melingkar.

PELUANG KEJADIAN. 3. Permutasi siklis adalah permutasi yang susunannya melingkar. PELUANG KEJADIAN A. Atura Perkalia/Pegisia Tempat Jika kejadia pertama dapat terjadi dalam a cara berbeda, kejadia kedua dapat terjadi dalam b cara berbeda, kejadia ketiga dapat terjadi dalam c cara berbeda,

Lebih terperinci

Kombinatorial dan Peluang. Adri Priadana ilkomadri.com

Kombinatorial dan Peluang. Adri Priadana ilkomadri.com Kombiatorial da Peluag Adri Priadaa ilkomadri.com Pedahulua Sebuah kata-sadi (password) pajagya 6 sampai 8 karakter. Karakter boleh berupa huruf atau agka. Berapa bayak kemugkia kata-sadi yag dapat dibuat?

Lebih terperinci

BAB II TINJAUAN PUSTAKA. membahas distribusi normal dan distribusi normal baku, penaksir takbias μ dan σ,

BAB II TINJAUAN PUSTAKA. membahas distribusi normal dan distribusi normal baku, penaksir takbias μ dan σ, BAB II TINJAUAN PUSTAKA.1 Pedahulua Dalam peulisa materi poo dari sripsi ii diperlua beberapa teori-teori yag meduug, yag mejadi uraia poo pada bab ii. Uraia dimulai dega membahas distribusi ormal da distribusi

Lebih terperinci

Modul Kuliah statistika

Modul Kuliah statistika Modul Kuliah statistika Dose: Abdul Jamil, S.Kom., MM SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER MUHAMMADIYAH JAKARTA Bab 2 Populasi da Sampel 2.1 Populasi Populasi merupaka keseluruha pegamata

Lebih terperinci

SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA

SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA KELAS D(K) Malahayati Program Studi Matematia Faultas Sais da Teologi UIN Sua Kalijaga Yogyaarta e-mail: malahayati_01@yahoo.co.id ABSTRAK Himpua

Lebih terperinci

Metode Perhitungan Grafik Dalam Geolistrik Tahanan Jenis Bumi Dengan Derajat Pendekatan Satu

Metode Perhitungan Grafik Dalam Geolistrik Tahanan Jenis Bumi Dengan Derajat Pendekatan Satu Metode Perhituga Grafi.. P. Maurug Metode Perhituga Grafi Dalam Geolistri Tahaa Jeis Bumi Dega Derajat Pedeata Satu Posma Maurug Jurusa Fisia, FMIPA Uiversitas Lampug Jl. S. Brojoegoro No. Badar Lampug

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

BARISAN DAN DERET. Materi ke 1

BARISAN DAN DERET. Materi ke 1 BARISAN DAN DERET Materi ke 1 Pola Bilaga adalah? Susua bilaga yag disusu meurut atura tertetu. Cotoh : 1. Pola Bilaga Gajil 1, 3, 5,... 2. Pola Bilaga Geap 2, 4, 6,... PERHATIKAN SSNAN BILANGAN DI BAWAH

Lebih terperinci

Bab 6: Analisa Spektrum

Bab 6: Analisa Spektrum BAB Aalisa Spetrum Bab : Aalisa Spetrum Aalisa Spetrum Dega DFT Tujua Belajar Peserta dapat meghubuga DFT dega spetrum dari sial hasil samplig sial watu otiue. -poit DFT dari sial x adalah Xω ag diealuasi

Lebih terperinci

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 <

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 < II. TINJAUAN PUSTAKA 2.1 Keterbagia Secara umum apabila a bilaga bulat da b bilaga bulat positif, maka ada tepat satu bilaga bulat q da r sedemikia sehigga : = +, 0 < dalam hal ii b disebut hasil bagi

Lebih terperinci

Keywords: Convergen Series, Banach Space, Sequence space cs, Dual-α, Dual-

Keywords: Convergen Series, Banach Space, Sequence space cs, Dual-α, Dual- Jural MIPA FST UNDANA, Volume 2, Nomor, April 26 DUAL-, DUAL- DAN DUAL- DARI RUANG BARISAN CS Albert Kumaereg, Ariyato 2, Rapmaida 3,2,3 Jurusa Matematia, Faultas Sais da Tei Uiversitas Nusa Cedaa ABSTRACT

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

FUNCTIONALLY SMALL RIEMANN SUMS (FSRS) DAN ESSENTIALLY SMALL RIEMANN SUMS (ESRS) FUNGSI TERINTEGRAL HENSTOCKn. p )

FUNCTIONALLY SMALL RIEMANN SUMS (FSRS) DAN ESSENTIALLY SMALL RIEMANN SUMS (ESRS) FUNGSI TERINTEGRAL HENSTOCKn. p ) βeta -ISSN: 85-5893 e-issn: 54-458 Vol. 3 No. (Noember), Hal. 79-89 βeta DOI: htt://dx.doi.org/.44/betajtm.v9i.7 FUNCTIONALLY SMALL RIMANN SUMS (FSRS) DAN SSNTIALLY SMALL RIMANN SUMS (SRS) FUNGSI TRINTGRAL

Lebih terperinci

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL HENSTOCK- KURZWEIL SERENTAK DAN FUNGSI BERSIFAT LOCALLY SMALL RIEMANN SUMS (LSRS) DARI RUANG EUCLIDE

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL HENSTOCK- KURZWEIL SERENTAK DAN FUNGSI BERSIFAT LOCALLY SMALL RIEMANN SUMS (LSRS) DARI RUANG EUCLIDE Teorema Keovergea Fugsi Teritegral Hestoc(Aiswita) TORMA KKONVRGNAN FUNGSI TRINTGRAL HNSTOCK- KURZWIL SRNTAK DAN FUNGSI BRSIFAT LOCALLY SMALL RIMANN SUMS (LSRS) DARI RUANG UCLID K RUANG BARISAN Aiswita,

Lebih terperinci

PERBANDINGAN PENDEKATAN SEPARABLE PROGRAMMING DENGAN THE KUHN-TUCKER CONDITIONS DALAM PEMECAHAN MASALAH NONLINEAR

PERBANDINGAN PENDEKATAN SEPARABLE PROGRAMMING DENGAN THE KUHN-TUCKER CONDITIONS DALAM PEMECAHAN MASALAH NONLINEAR Jural Tei da Ilmu Komputer PERBANDINGAN PENDEKATAN SEPARABLE PROGRAMMING DENGAN THE KUHN-TUCKER CONDITIONS DALAM PEMECAHAN MASALAH NONLINEAR Budi Marpaug Faultas Tei da Ilmu Komputer Jurusa Tei Idustri

Lebih terperinci

ANALISIS KESALAHAN Deskripsi : Objektif : 6.1 Pendahuluan 6.2 Koefesien Kesalahan Statik

ANALISIS KESALAHAN Deskripsi : Objektif : 6.1 Pendahuluan 6.2 Koefesien Kesalahan Statik 96 VI ANALISIS ESALAHAN Desrisi : Bab ii memberia gambara tetag aalisis esalaha da eeaa ada sistem edali yag terdiri dari oefesie esalaha stati, oefesie esalaha diami da aalisis eeaa sistem Objetif : Memahami

Lebih terperinci

Jurnal MIPA 38 (1) (2015): Jurnal MIPA.

Jurnal MIPA 38 (1) (2015): Jurnal MIPA. Jural MIPA 38 () (5): 68-78 Jural MIPA http://ouraluesacid/u/idephp/jm APROKSIMASI ANUIAS HIDUP MENGGUNAKAN KOMBINASI EKSPONENSIAL LJ Siay S Gurito Guardi 3 Jurusa Matematia FMIPA Uiversitas Pattimura

Lebih terperinci

DISTRIBUSI KHUSUS YANG DIKENAL

DISTRIBUSI KHUSUS YANG DIKENAL 0 DISTRIBUSI KHUSUS YANG DIKENAL Kita sudah membahas fugsi peluag atau fugsi desitas, baik defiisiya maupu sifatya. Fugsi peluag atau fugsi desitas ii merupaka ciri dari sebuah distribusi, artiya fugsi

Lebih terperinci

Pendekatan Nilai Logaritma dan Inversnya Secara Manual

Pendekatan Nilai Logaritma dan Inversnya Secara Manual Pedekata Nilai Logaritma da Iversya Secara Maual Moh. Affaf Program Studi Pedidika Matematika, STKIP PGRI BANGKALAN affafs.theorem@yahoo.com Abstrak Pada pegaplikasiaya, bayak peggua yag meggatugka masalah

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI. mandiri jika tidak mengandung t secara eksplisit di dalamnya. (Kreyszig, 1983)

I PENDAHULUAN II LANDASAN TEORI. mandiri jika tidak mengandung t secara eksplisit di dalamnya. (Kreyszig, 1983) I PENDAHULUAN Latar Belaag Permasalaha ebiaa pemaea ia yag memberia eutuga masimum da berelauta (tida teradi epuaha dari populasi ia yag dipae) adalah hal yag sagat petig bagi idustri periaa Para ilmuwa

Lebih terperinci

UNIVERSITAS INDONESIA META-ANALISIS UNTUK RELIABILITAS SUATU ALAT UKUR BERDASARKAN KOEFISIEN ALPHA CRONBACH SKRIPSI JANUARINA ANGGRIANI

UNIVERSITAS INDONESIA META-ANALISIS UNTUK RELIABILITAS SUATU ALAT UKUR BERDASARKAN KOEFISIEN ALPHA CRONBACH SKRIPSI JANUARINA ANGGRIANI UNIVERSITAS INDONESIA META-ANALISIS UNTUK RELIABILITAS SUATU ALAT UKUR BERDASARKAN KOEFISIEN ALHA CRONBACH SKRISI JANUARINA ANGGRIANI 080655 FAKULTAS MATEMATIKA DAN ILMU ENGETAHUAN ALAM ROGRAM STUDI SARJANA

Lebih terperinci

Aplikasi Sistem Orthonormal Di Ruang Hilbert Pada Deret Fourier

Aplikasi Sistem Orthonormal Di Ruang Hilbert Pada Deret Fourier Apliasi Sistem Orthoormal Di Ruag Hilbert Pada Deret Fourier A 7 Fitriaa Yuli S. FMIPA UNY Abstra Ruag hilbert aa dibahas pada papper ii. Apliasi system orthoormal aa diaji da aa diapliasia pada ruahg

Lebih terperinci

BAB V ANALISA PEMECAHAN MASALAH

BAB V ANALISA PEMECAHAN MASALAH 89 BAB V ANALISA PEMECAHAN MASALAH Dalam upaya mearik kesimpula da megambil keputusa, diperluka asumsi-asumsi da perkiraa-perkiraa. Secara umum hipotesis statistik merupaka peryataa megeai distribusi probabilitas

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 BAB XII. SUKU BANYAK A = a Pegertia: f(x) = a x + a x + a x + + a x +a adalah suku bayak (poliom) dega : - a, a, a,.,a, a, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

1) Leptokurtik Merupakan distribusi yang memiliki puncak relatif tinggi

1) Leptokurtik Merupakan distribusi yang memiliki puncak relatif tinggi Statisti Desriptif Keruciga atau Kurtosis Pegertia Kurtosis Peguura urtosis (peruciga) sebuah distribusi teoritis adaalaya diamaam peguura eses (excess) dari sebuah distribusi Sebearya urtosis bisa diaggap

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi.

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi. Distribusi Samplig (Distribusi Pearika Sampel). Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

Mengkaji Perbedaan Diagonalisasi Matriks Atas Field dan Matriks Atas Ring Komutatif

Mengkaji Perbedaan Diagonalisasi Matriks Atas Field dan Matriks Atas Ring Komutatif Megaji Perbedaa Diagoalisasi Matris Atas Field da Matris Atas Rig Komutatif Teorema : Jia A adalah matris x maa eryataa eryataa beriut eivale satu sama lai : a A daat didiagoalisasi b A memuyai vetor eige

Lebih terperinci

b. peluang terjadinya peristiwa yang diperhatikan mendekati nol (p 0). c. perkalian n.p =, sehingga p = /n.

b. peluang terjadinya peristiwa yang diperhatikan mendekati nol (p 0). c. perkalian n.p =, sehingga p = /n. 0 DISTRIBUSI POISSO Distribusi Poisso ii diprolh dari distribusi biomial, apabila dalam distribusi biomial brlau syarat-syarat sbagai briut: a. baya pgulaga sprimya sagat bsar ( ). b. pluag trjadiya pristiwa

Lebih terperinci

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1 Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga

Lebih terperinci

WAKILAN DIAGRAMATIK UNTUK TEORI USIKAN DALAM MEKANIKA KUANTUM. M Farchani Rosyid Dwi Satya Palupi. Jurusan Fisika, FMIPA, UGM.

WAKILAN DIAGRAMATIK UNTUK TEORI USIKAN DALAM MEKANIKA KUANTUM. M Farchani Rosyid Dwi Satya Palupi. Jurusan Fisika, FMIPA, UGM. Prosidig Semiar Nasioal Peelitia, Pedidia, da Peerapa MIPA Faultas MIPA, Uiversitas Negeri Yogyaarta, 6 Mei 9 WAKILAN DIAGRAMATIK UNTUK TEORI USIKAN DALAM MEKANIKA KUANTUM M Farchai Rosyid Dwi Satya Palupi

Lebih terperinci

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,

Lebih terperinci

PROBLEM ELIMINASI CUT PADA LOGIKA LBB I nk

PROBLEM ELIMINASI CUT PADA LOGIKA LBB I nk Jural Mateatia, Vol. 10 No. 3, Deseber 007, ISSN 1410-8518 PROBLEM ELIMINASI CUT PADA LOGIKA LBB I Bayu Surarso Jurusa Mateetia FMIPA UNDIP Jl. Prof. H. Soedarto, SH Tebalag Searag 5075 Abstract. I the

Lebih terperinci

1.1 METODE PENGEMBANGAN PENDEKATAN RATA- RATA SAMPEL UNTUK PROGRAM STOKASTIK DUA TAHAP. Faridawaty Marpaung. Abstrak

1.1 METODE PENGEMBANGAN PENDEKATAN RATA- RATA SAMPEL UNTUK PROGRAM STOKASTIK DUA TAHAP. Faridawaty Marpaung. Abstrak METODE PEGEMBAGA PEDEKATA RATA- RATA SAMPEL UTUK PROGRAM STOKASTIK DUA TAHAP Faridawaty Marpaug Abstra Peelitia ii megemuaa metode pegembaga pedeata rata rata sampel utu program stoasti dua tahap. Metodologi

Lebih terperinci

EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI

EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI Oleh: Sutopo Jurusa Fisika FMIPA UM sutopo@fisika.um.ac.id Ditulis pada sekitar bula Maret 2011. Diuggah pada 3 Desember 2011 PROBLEM Gambar di bawah ii meyataka

Lebih terperinci

ALGORITMA PEMBANGKITAN MENGGUNAKAN POHON PEMBANGKIT

ALGORITMA PEMBANGKITAN MENGGUNAKAN POHON PEMBANGKIT ALGORITMA PEMBANGKITAN MENGGUNAKAN POHON PEMBANGKIT 1 Sulistyo Puspitodjati Djati Kerami 1 UNIVERSITAS GUNADARMA (sulistyo@staff.guadarma.ac.id) UNIVERSITAS GUNADARMA (djatir@ui.edu) ABSTRAK Pembagita

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Risio Operasioal.1.1 Defiisi Dewasa ii risio operasioal semai diaui sebagai salah satu fator uci yag perlu dielola da dicermati oleh para pelau usaha, hususya di bidag jasa euaga.

Lebih terperinci

Oleh: Yunissa Rara Fahreza Akuntansi Teknologi Sistem Informasi KOMBINATORIAL & PELUANG DISKRIT : PERMUTASI MATEMATIKA DISKRIT

Oleh: Yunissa Rara Fahreza Akuntansi Teknologi Sistem Informasi KOMBINATORIAL & PELUANG DISKRIT : PERMUTASI MATEMATIKA DISKRIT Oleh: Yuissa Rara Fahreza Akutasi Tekologi Sistem Iformasi KOMBINATORIAL & PELUANG DISKRIT : PERMUTASI MATEMATIKA DISKRIT ILUSTRASI 1 Misal ada 3 buah kelereg yag berbeda wara : merah (m), kuig (k) da

Lebih terperinci

STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS

STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS (Tati Octavia et al.) STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS Tati Octavia Dose Faultas

Lebih terperinci

BAB III HITUNG KEUANGAN

BAB III HITUNG KEUANGAN BAB III HITUNG KEUANGAN A. BUNGA TUNGGAL. ENGERTIAN BUNGA TUNGGAL Utu memahami pegertia buga, coba ita lihat cotoh beriut : Cotoh :. Tofa memijam modal pada sebuah Ba sebesar Rp.000.000,00. Setelah satu

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

9 Departemen Statistika FMIPA IPB

9 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351 9 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Pegatar Aalisis utuk Data Respo Kategorik Data respo kategorik Sebara

Lebih terperinci

III. METODOLOGI PENELITIAN. Menurut Sukardi, (2003:17) Metodologi penelitian adalah cara yang

III. METODOLOGI PENELITIAN. Menurut Sukardi, (2003:17) Metodologi penelitian adalah cara yang 5 III. METODOLOGI PENELITIAN A. Metode Peelitia Meurut Sukardi, (003:7) Metodologi peelitia adalah cara yag dilakuka secara sistematis megikuti atura-atura, direcaaka oleh para peeliti utuk memecahka permasalaha

Lebih terperinci

Projek. Contoh Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri. Perhatikan barisan bilangan 2, 4, 8, 16,

Projek. Contoh Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri. Perhatikan barisan bilangan 2, 4, 8, 16, Projek Himpulah miimal tiga masalah peerapa barisa da deret aritmatika dalam bidag fisika, tekologi iformasi, da masalah yata di sekitarmu. Ujilah berbagai kosep da atura barisa da deret aritmatika di

Lebih terperinci

Distribusi Sampling (Distribusi Penarikan Sampel)

Distribusi Sampling (Distribusi Penarikan Sampel) Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

Bab 5 Sinyal dan Sistem Waktu Diskrit. Oleh: Tri Budi Santoso Laboratorium Sinyal, EEPIS-ITS

Bab 5 Sinyal dan Sistem Waktu Diskrit. Oleh: Tri Budi Santoso Laboratorium Sinyal, EEPIS-ITS Bab 5 Siyal da Sistem Watu Disrit Oleh: Tri Budi Satoso Laboratorium Siyal, EEPIS-ITS Materi: Represetasi matemati pada siyal watu disrit, domai watu da freuesi pada suatu siyal watu disrit, trasformasi

Lebih terperinci

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.

Lebih terperinci

7. Perbaikan Kualitas Citra

7. Perbaikan Kualitas Citra 7. Perbaia Kualitas Citra Perbaia ualitas citra (image ehacemet) merupaa salah satu proses awal dalam pegolaha citra (image preprocessig). Perbaia ualitas diperlua area serigali citra yag diadia obe pembahasa

Lebih terperinci

3. Rangkaian Logika Kombinasional dan Sequensial 3.1. Rangkaian Logika Kombinasional Enkoder

3. Rangkaian Logika Kombinasional dan Sequensial 3.1. Rangkaian Logika Kombinasional Enkoder 3. Ragkaia Logika Kombiasioal da Sequesial Ragkaia Logika secara garis besar dibagi mejadi dua, yaitu ragkaia logika Kombiasioal da ragkaia logika Sequesial. Ragkaia logika Kombiasioal adalah ragkaia yag

Lebih terperinci

PRINSIP MAKSIMUM DAN MINIMUM FUNGSI PANHARMONIK

PRINSIP MAKSIMUM DAN MINIMUM FUNGSI PANHARMONIK PRINSIP MAKSIMUM DAN MINIMUM FUNGSI PANHARMONIK Oleh, Edag Cahya M.A. Jrsa Pedidia Matematia FPMIPA UPI Badg Jl. Dr. Setiabdi 9 Badg E-mail ecma@ds.math.itb.ac.id Abstra Tlisa ii mejelasa prisip masimm

Lebih terperinci

III. METODELOGI PENELITIAN. Metodelogi adalah sekumpulan prosedur yang terdokumentasi. dalam penelitian. Soekidjo Notoatmodjo, (2002:29)

III. METODELOGI PENELITIAN. Metodelogi adalah sekumpulan prosedur yang terdokumentasi. dalam penelitian. Soekidjo Notoatmodjo, (2002:29) III. METODELOGI PENELITIAN A. Metodelogi Peelitia Metodelogi adalah sekumpula prosedur yag terdokumetasi medefiisika siklus pemecaha masalah atau pegembagaya da meetuka bagaimaa sistem aka dibagu metodelogi

Lebih terperinci

BAB IX. STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik:

BAB IX. STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik: BAB IX. STATISTIKA Pegerta Statsta da Statst: Statsta adalah lmu pegetahua yag membahas metode-metode lmah tetag ara-ara pegumpula data, pegolaha, pegaalsa da peara esmpula. Statst adalah umpula data,

Lebih terperinci

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel)

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel) DISTRIBUSI SAMPLING (Distribusi Pearika Sampel) I. PENDAHULUAN Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi 6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0

Lebih terperinci

PREDIKSI SOAL ULANGAN AKHIR SEMESTER GENAP KELAS IX SMP NEGERI 196 JAKARTA. Jawab : Nilai dari. Jawab :.3.3 = 27

PREDIKSI SOAL ULANGAN AKHIR SEMESTER GENAP KELAS IX SMP NEGERI 196 JAKARTA. Jawab : Nilai dari. Jawab :.3.3 = 27 PREDIKSI SOAL ULANGAN AKHIR SEMESTER GENAP KELAS IX SMP NEGERI 9 JAKARTA No. Idikator Soal Prediksi Soal Peserta didik dapat meyataka betuk pecaha aljabar yag pembilag da peyebutya berpagkat egatif mejadi

Lebih terperinci

Aturan Pencacahan. Contoh: Berapa banyak kemungkinan jalur yang dapat dilalui dari Kota A ke Kota D?

Aturan Pencacahan. Contoh: Berapa banyak kemungkinan jalur yang dapat dilalui dari Kota A ke Kota D? Atura Pecacaha A. Atura Perkalia Jika terdapat k usur yag tersedia, dega: = bayak cara utuk meyusu usur pertama 2 = bayak cara utuk meyusu usur kedua setelah usur pertama tersusu 3 = bayak cara utuk meyusu

Lebih terperinci

PENJADWALAN JOBS PADA SINGLE MACHINE DENGAN MEMINIMUMKAN VARIANS WAKTU PENYELESAIAN JOBS (Studi Kasus di P.T. XYZ )

PENJADWALAN JOBS PADA SINGLE MACHINE DENGAN MEMINIMUMKAN VARIANS WAKTU PENYELESAIAN JOBS (Studi Kasus di P.T. XYZ ) (Fey Nilawati Kusuma et al.) PENJADWALAN JOBS PADA SINGLE MACHINE DENGAN MEMINIMUMKAN VARIANS WAKTU PENYELESAIAN JOBS (Studi Kasus di P.T. XYZ ) I Gede Agus Widyadaa I Nyoma Sutapa Dose Faultas Teologi

Lebih terperinci

III. METODELOGI PENELITIAN

III. METODELOGI PENELITIAN III. METODELOGI PENELITIAN A. Metode Peelitia Metode peelitia merupaka suatu cara tertetu yag diguaka utuk meeliti suatu permasalaha sehigga medapatka hasil atau tujua yag diigika, meurut Arikuto (998:73)

Lebih terperinci

STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik:

STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik: STATISTIKA Pegerta Statsta da Statst: Statsta adalah lmu pegetahua yag membahas metode-metode lmah tetag ara-ara pegumpula data, pegolaha, pegaalsa da peara esmpula. Statst adalah umpula data, blaga ataupu

Lebih terperinci

1. Integral (1) Pembahasan yang akan kita lakukan hanya mengenai bentuk persamaan diferensial seperti contoh yang pertama.

1. Integral (1) Pembahasan yang akan kita lakukan hanya mengenai bentuk persamaan diferensial seperti contoh yang pertama. Darublic www.darublic.com 1. Itegral (1) (Macam Itegral, Pedeata Numeri) Sudarato Sudirham Dalam bab sebeluma, ita memelajari salah satu bagia utama alulus, aitu alulus diferesial. Beriut ii ita aa membahas

Lebih terperinci