BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE)

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE)"

Transkripsi

1 BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE) 5.1. Pembagit Radom Variate Disrit Suatu Radom Variate diartia sebagai ilai suatu radom variate yag mempuyai distribusi tertetu. Utu megambil radom variate dari beberapa distribusi yag berbeda-beda fugsiya harus terlebih dahulu melalui distribusi cummulative distributio fuctio (CDF) dari suatu radom variabel. Pegambila radom variate melalui CDF dieal dega istilah Iverse Trasformatio Method (Metode trasformasi Ivers). Metode ii dapat diperguaa utu membagita radom variate bai dari data distribusi yag atual terjadi maupu melalui berbagai teori distribusi probabilitas. Jia fugsi distribusi itu adalah disrit maa prosedur yag diperlua utu membagita radom variate dari f() sbb: a. Plot f() cari CDF dari radom variate b. Pilih RGN dega rumus RNG dari omputer utu < RGN i < 1utu i = 1,,.. c. Tempata RN yag diperoleh pada f() ais da memotog fugsi disrit melalui garis horizotal d. Garis horizotal dari ais f() ii dapat memotog fugsi f() atau pada tempat yag tida bersambug pada f() e. Meurua garis dari titi potog pada fugsi f() yag disotiue itu pada sumbu sehigga diperoleh ilai dari adalah radom variate dari f() Cotoh : Dietahui suatu radom variate diyataa dega f() sbb: X = demad F() = P(X=) 1/8 1/4 1/ 1/16 1/16 Tetua berapa harga demad () terbai! Pemodela &Simulasi : Radom variate geerator 4

2 Peyelesaia : CDF fugsi Demad : X = demad F() = P(X=) 1/8 1/4 1/ 1/16 1/16 F() 1/8 3/8 7/8 15/16 16/16 Tabel di atas meujua apabila radom umber (RN) yag diamati dari omputer da emudia disusu dalam suatu tabel simulasi dari tabel disrit distribusi maa diperoleh : Tabel Simulasi dari Tabel Disrit Distribusi RNG Demad () F() Batas Nilai Hasil RN Komputer Dari tabel di atas diperoleh demad () yag terbai adalah. 5.. Pembagit Radom Variate Kotiu Membagita radom variate distribusi otiu dapat dicotoha melalui fugsi matematis. Cotoh fugsi matematis sbb : F( ) utu 1 utu yag laiya Fugsi distribusi/matematis di atas harus dijadia fugsi umulatif dega megitegralaya. f ( ) y f ( ) ydy y Pemodela &Simulasi : Radom variate geerator 5

3 Jia igi membagita radom variate utu ilai maa aa ditrasformasia mejadi : F() = R = X = R misal F() = R Misala a = 19; Z = 1357; C = 37; da m = 18, tetua X optimal dega RNG megguaa LCG. X X i RNG = R X = R 1,938,36,638,7955 3,875,9354 4,4765,693 5,96,9519 X 3,6793 3,6793 5,7359 Jadi RNG dega fugsi F() = X =R didapat X optimal =,7359 < X< Radom Variate Distribusi Desitas (Kepadata) Dietahui suatu fugsi desitas dega rumus: F( ) a(1 ) utu 1 utu yag laiya Kemudia di-itegrala utu medapata distribusi umulatif. f ( ) y f ( ) a ( y a(1 y) dy a ) a ( (1 y) dy Cari ilai utu fugsi desitas yaitu f() = 1 utu 1 a ( ) = 1 utu = 1 maa ) 1 a (1 ) 1 1 a (1 ) 1 1 a a 1 1 a 1 a Pemodela &Simulasi : Radom variate geerator 6

4 Jia a =, maa radom variabelya : F( ) R a( ) a R R 4 4R R i R =RNG X 1 =1 + 1-R X =1-1-R 1,938 1,9519,481,638 1,66,394 3,875 1,3536,6464 4,4765 1,735,765 5,96 1,363,6935 Cotoh simulasi pada permaia : Ada dua orag A da B, aa bertadig lempar mata uag. Jia yag yag mucul lebih baya gambar maa pertadiga aa dimeaga oleh A da sebaliya jia yag baya mucul adalah aga maa yag meag B. Mata uag yag diguaa mempuyai dua mua yag berarti esempata utu meag dari A da B adalah sama yaitu 5% : 5%. Tetua siapa yag meag jia dilaua sebaya 1 pelempara dega a=7; c=; Z =1357 da m = 17. Peyelesaia : X Gambar Aga F() = P() ½ ½ F() ½ =,5 /=,9999 Tag umber,-,5,51-,9999 Pemodela &Simulasi : Radom variate geerator 7

5 Utu a=7; c=; Z =1357 da m = 17 i Z RNG X 1 3,1765 gambar 4,353 gambar 3 11,647 aga 4 9,594 aga 5 1,759 aga 6 16,9411 aga 7 1,588 aga 8,1176 gambar 9 14,835 aga 1 13,7647 aga Dari tabel diatas gambar : aga = 3 : 7 maa pertadiga tersebut dimeaga oleh B Disret Radom Number Suatu asus adag-adag tida perlu mecari iterval yag tepat dari bilaga aca diatara dua bilaga probabilitas sehigga variabel aca yag dihasila ilai yag sama maa hal itu mugi dapat dilaua dega megguaa salah satu dari ilai 1,, 3,.., yaitu dega probabilitas P(=) = 1/, utu = 1,,..,. Dega model yag terdapat dalam betu tag umber simulatio CDF didapat ilaiilai dari dega rumus : Jia =, -1/ U / -1 U Dimaa : X = It (U) (1) X = bilaga aca It = iteger U= Radom Number = bilaga 1,,.., Pembagit variabel aca disrit ii sagat petig dalam simulasi yag diguaa utu berbagai persoala distribusi disrit yag belum dietahui. Cotoh : Dalam meghitug rata-rata igi memperiraa C i1 C( i) / Pemodela &Simulasi : Radom variate geerator 8

6 Dimaa = cuup besar da C(i) utu i = 1,,..,. Utu megatasi esulita dalam meguraia hal ii, maa dapat megguaa jia X adalah variabel aca yag uiform atas bilaga 1,,.., sehigga aa diperoleh variabel aca C() yag aa meghasila rata-rata sbb: C X i1 i1 C( i). P( I) C( i) / C Jia dibagita disret radom uiform variabel X i utu i = 1,,.., da radom umber µ i da X i = It ( µ i ) + 1 maa setiap dari radom variabel C(X i ) aa diperoleh rata-rata = C i1 C( i ) C...() utu X i = It ( µ i ) + 1 K = 1,,.., C = rata-rata dari C(i) Cotoh : Suatu betu simulasi dari pegambila radom umber omputer sebaya ali da dega medapata periraa dari e i1 1 / utu = 1 da = 5 Pertayaa : 1. Perhituga prosimasiya. Perhituga juga rata-rata utu RN 5 ali Peyelesaia : 1. Dietahui i = 1,,.., utu = 1 X i = It ( µ i ) + 1 Maa dapat dirumusa : 5 i1 5 ( ) /1 i /1 i y e i1 e 5 y i 1 y i y i e i /1 Pemodela &Simulasi : Radom variate geerator 9

7 Misala RNG utu = 5 sudah ada sbb : R1 =,5481; R =,5683; R3 =,4373; R4 =,85; R5 =,657, maa : i RNG=µ X i = It ( µ i ) + 1 Y i =e i/1 1, ,81,5683 7,137 3, ,6487 4,85 9,4595 5,657 8,55 y i = 1,1695 y 5 y i i1 1,1695 Rata-rata = Y = 1,1695/5 =,339 Cara e- : Y C 5 i1 e i /1 Y i1 e i / i Y e i / 1,3664,47 3,397 4,4919 5,4415 Y,3 1,81/5 =,3664 Ii berarti dari rata-rata pearia RNG aa diperoleh Y =,3 Pemodela &Simulasi : Radom variate geerator 3

8 Bila megguaa rumus () maa aa lagsug diperoleh : i Y i = e i/1 1 (,718) 1/1 = 1,15 1,14 3 1, , ,6487 Y c = e i/1 = 6,817 Ii meujua dega tida megguaa radom umber, diperoleh : y 5 y i i1 1,1695 Y c = e i/1 = 6,817 3,355 medeati (RN) =,3 dega pegambila radom umber yag cuup baya aa medeati pada etepata. Pemodela &Simulasi : Radom variate geerator 31

BAB VII RANDOM VARIATE DISTRIBUSI DISKRET

BAB VII RANDOM VARIATE DISTRIBUSI DISKRET BAB VII RANDOM VARIATE DISTRIBUSI DISKRET Diskret radom variabel dapat diguaka utuk berbagai radom umber yag diambil dalam betuk iteger. Pola kebutuha ivetori (persediaa) merupaka cotoh yag serig diguaka

Lebih terperinci

Representasi sinyal dalam impuls

Representasi sinyal dalam impuls Represetasi siyal dalam impuls Represetasi siyal dalam impuls adalah siyal yag diyataa sebagai fugsi dari impuls atau sebagai umpula dari impuls-impuls. Sembarag siyal disret dapat diyataa sebagai pejumlaha

Lebih terperinci

MACAM-MACAM TEKNIK MEMBILANG

MACAM-MACAM TEKNIK MEMBILANG 0 MACAM-MACAM TEKNIK MEMBILANG ATURAN PERKALIAN Beriut ii diberia sebuah dalil tetag peetua baya susua yag palig sederhaa dalam suatu permasalaha yag beraita dega peluag. Dalil 2.1: ATURAN PERKALIAN SECARA

Lebih terperinci

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG)

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG) PEMBAHASAN SOAL OLIMPIADE SAINS NASIONAL SMP A. ISIAN SINGKAT SELEKSI TINGKAT PROPINSI TAHUN 011 BIDANG STUDI MATEMATIKA WAKTU : 150 MENIT 1. Jia x adalah jumlah 99 bilaga gajil terecil yag lebih besar

Lebih terperinci

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C.

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C. BAB II LANDASAN TEORI Pada bab ii aa dibahas teori teori yag meduug metode upper level set sca statistics, atara lai peubah aca, distribusi gamma, fugsi gamma, fugsi lielihood, da uji rasio lielihood.

Lebih terperinci

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu

Lebih terperinci

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu

Lebih terperinci

Gambar 3.1Single Channel Multiple Phase

Gambar 3.1Single Channel Multiple Phase BAB III MODEL ANTRIAN PADA PEMBUATAN SIM C. Sigle Chael Multiple Phase Sistem atria sigle chael multiple phase merupaa sistem atria dimaa pelagga yag tiba, dapat memasui sistem dega megatri di tempat yag

Lebih terperinci

MODUL BARISAN DAN DERET

MODUL BARISAN DAN DERET MODUL BARISAN DAN DERET SEMESTER 2 Muhammad Zaial Abidi Persoal Blog http://meetabied.wordpress.com BAB I. PENDAHULUAN A. Desripsi Dalam modul ii, ada aa mempelajari pola bilaga, barisa, da deret diidetifiasi

Lebih terperinci

Bab 16 Integral di Ruang-n

Bab 16 Integral di Ruang-n Catata Kuliah MA3 Kalulus Elemeter II Oi Neswa,Ph.D., Departeme Matematia-ITB Bab 6 Itegral di uag- Itegral Gada atas persegi pajag Itegral Berulag Itegral Gada atas Daerah sebarag Itegral Gada Koordiat

Lebih terperinci

BAB III TAKSIRAN PROPORSI POPULASI JIKA TERJADI NONRESPON. Dalam bab ini akan dibahas penaksiran proporsi populasi jika terjadi

BAB III TAKSIRAN PROPORSI POPULASI JIKA TERJADI NONRESPON. Dalam bab ini akan dibahas penaksiran proporsi populasi jika terjadi BAB III TAKSIRA PROPORSI POPULASI JIKA TERJADI ORESPO Dalam bab ii aa dibaas peasira proporsi populasi jia terjadi orespo da dilaua allba sebaya t ali. Selai itu, juga aa dibaas peetua uura sampel yag

Lebih terperinci

Penggunaan Transformasi z

Penggunaan Transformasi z Pegguaa Trasformasi pada Aalisa Respo Freuesi Sistem FIR Oleh: Tri Budi Satoso E-mail:tribudi@eepis-its.eduits.edu Lab Siyal,, EEPIS-ITS ITS /3/6 osep pemiira domais of represetatio Domai- discrete time:

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Risio Operasioal.1.1 Defiisi Dewasa ii risio operasioal semai diaui sebagai salah satu fator uci yag perlu dielola da dicermati oleh para pelau usaha, hususya di bidag jasa euaga.

Lebih terperinci

MODUL 1.03 DINAMIKA PROSES. Oleh : Ir. Tatang Kusmara, M.Eng

MODUL 1.03 DINAMIKA PROSES. Oleh : Ir. Tatang Kusmara, M.Eng MODUL 1.03 DINMIK PROSES Ole : Ir. Tatag Kusmara, M.Eg LBORTORIUM OPERSI TEKNIK KIMI JURUSN TEKNIK KIMI UNIVERSITS SULTN GENG TIRTYS CILEGON BNTEN 2008 2 Modul 1.03 DINMIK PROSES I. Pedaulua Dalam bidag

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 5

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 5 Mata Kuliah : Matematia Disrit Program Studi : Tei Iformatia Miggu e : 5 KOMBINATORIAL PENDAHULUAN Persoala ombiatori bua merupaa persoala baru dalam ehidupa yata. Baya persoala ombiatori sederhaa telah

Lebih terperinci

3. Integral (3) (Integral Tentu)

3. Integral (3) (Integral Tentu) Darublic www.darublic.com. Itegral () (Itegral Tetu).. Luas Sebagai Suatu Itegral. Itegral Tetu Itegral tetu meruaa itegral ag batas-batas itegrasia jelas. Kose dasar dari itegral tertetu adalah luas bidag

Lebih terperinci

Peluang Suatu Kejadian, Kaidah Penjumlahan, Peluang Bersyarat, Kaidah Perkalian dan Kaidah Baiyes

Peluang Suatu Kejadian, Kaidah Penjumlahan, Peluang Bersyarat, Kaidah Perkalian dan Kaidah Baiyes eluag uatu Kejadia, Kaidah ejumlaha, eluag ersyarat, Kaidah eralia da Kaidah aiyes.eluag uatu Kejadia Defiisi : eluag suatu ejadia adalah jumlah peluag semua titi otoh dalam. Dega demiia : 0 (), ( ) =

Lebih terperinci

PERCOBAAN 4 VARIABEL ACAK DAN DISTRIBUSI PROBABILITASNYA

PERCOBAAN 4 VARIABEL ACAK DAN DISTRIBUSI PROBABILITASNYA PERCOBAAN 4 VARIABEL ACAK DAN DISTRIBUSI PROBABILITASNYA 4.. Tujua : Setelah melaksaaka praktikum ii mahasiswa diharapka mampu : Membedaka data berdasarka jeis variabelya Mapatka mea da varias dari distribusi

Lebih terperinci

Bab 5 Sinyal dan Sistem Waktu Diskrit. Oleh: Tri Budi Santoso Laboratorium Sinyal, EEPIS-ITS

Bab 5 Sinyal dan Sistem Waktu Diskrit. Oleh: Tri Budi Santoso Laboratorium Sinyal, EEPIS-ITS Bab 5 Siyal da Sistem Watu Disrit Oleh: Tri Budi Satoso Laboratorium Siyal, EEPIS-ITS Materi: Represetasi matemati pada siyal watu disrit, domai watu da freuesi pada suatu siyal watu disrit, trasformasi

Lebih terperinci

Bab 6: Analisa Spektrum

Bab 6: Analisa Spektrum BAB Aalisa Spetrum Bab : Aalisa Spetrum Aalisa Spetrum Dega DFT Tujua Belajar Peserta dapat meghubuga DFT dega spetrum dari sial hasil samplig sial watu otiue. -poit DFT dari sial x adalah Xω ag diealuasi

Lebih terperinci

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain.

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain. BARIAN DAN DERET A. Barisa Barisa adalah uruta bilaga yag memilii atura tertetu. etiap bilaga pada barisa disebut suu barisa yag dipisaha dega lambag, (oma). Betu umum barisa:,, 3, 4,, dega: = suu pertama

Lebih terperinci

Aplikasi Sistem Orthonormal Di Ruang Hilbert Pada Deret Fourier

Aplikasi Sistem Orthonormal Di Ruang Hilbert Pada Deret Fourier Apliasi Sistem Orthoormal Di Ruag Hilbert Pada Deret Fourier A 7 Fitriaa Yuli S. FMIPA UNY Abstra Ruag hilbert aa dibahas pada papper ii. Apliasi system orthoormal aa diaji da aa diapliasia pada ruahg

Lebih terperinci

Peubah Acak. Peubah Acak Diskrit dan Distribusi Peluang. Peubah Acak. Peubah Acak

Peubah Acak. Peubah Acak Diskrit dan Distribusi Peluang. Peubah Acak. Peubah Acak Peubah Acak Peubah Acak Diskrit da Distribusi Peluag Peubah Acak (Radom Variable): Sebuah keluara umerik yag merupaka hasil dari percobaa (eksperime) Utuk setiap aggota dari ruag sampel percobaa, peubah

Lebih terperinci

BAB 2 LANDASAN TEORI. lebar pita sinyal tersebut. Pada kebanyakan aplikasi, termasuk kamera digital video dan

BAB 2 LANDASAN TEORI. lebar pita sinyal tersebut. Pada kebanyakan aplikasi, termasuk kamera digital video dan BAB LADASA TEORI Teorema Shao-yquist meyataa agar tida ada iformasi yag hilag etia pecuplia siyal, maa ecepata pecuplia harus miimal dua ali dari lebar pita siyal tersebut. Pada ebayaa apliasi, termasu

Lebih terperinci

Sinyal dan Sistem Waktu Diskrit ET 3005 Pengolahan Sinyal Waktu Diskrit EL 5155 Pengolahan Sinyal Waktu Diskrit

Sinyal dan Sistem Waktu Diskrit ET 3005 Pengolahan Sinyal Waktu Diskrit EL 5155 Pengolahan Sinyal Waktu Diskrit Siyal da Sistem Watu Disrit ET 35 Pegolaha Siyal Watu Disrit EL 5155 Pegolaha Siyal Watu Disrit Effria Yati Hamid 1 2 Siyal da Sistem Watu Disrit 2.1 Siyal Watu Disrit 2.1.1 Pegertia Siyal Watu Disrit

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFERENSIAL LANE-EMDEN MENGGUNAKAN METODE TRANSFORMASI DIFERENSIAL

PENYELESAIAN PERSAMAAN DIFERENSIAL LANE-EMDEN MENGGUNAKAN METODE TRANSFORMASI DIFERENSIAL PENYELESAIAN PERSAMAAN DIFERENSIAL LANE-EMDEN MENGGUNAKAN METODE TRANSFORMASI DIFERENSIAL Ahma Sya roi, M Natsir, Eag Lily E-mail: Arolativa@yahoocom Mahasiswa Program S Matematia Dose Jurusa Matematia

Lebih terperinci

1) Leptokurtik Merupakan distribusi yang memiliki puncak relatif tinggi

1) Leptokurtik Merupakan distribusi yang memiliki puncak relatif tinggi Statisti Desriptif Keruciga atau Kurtosis Pegertia Kurtosis Peguura urtosis (peruciga) sebuah distribusi teoritis adaalaya diamaam peguura eses (excess) dari sebuah distribusi Sebearya urtosis bisa diaggap

Lebih terperinci

STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS

STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS (Tati Octavia et al.) STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS Tati Octavia Dose Faultas

Lebih terperinci

1 n MODUL 5. Peubah Acak Diskret Khusus

1 n MODUL 5. Peubah Acak Diskret Khusus ODUL 5 Peubah Acak Diskret Khusus Terdapat beberapa peubah acak diskret khusus yag serig mucul dalam aplikasi. Peubah Acak Seragam ( Uiform) Bila X suatu peubah acak diskret dimaa setiap eleme dari X mempuyai

Lebih terperinci

Pemilihan Kapasitas Dan Lokasi Optimal Kapasitor Paralel Pada Sistem Distribusi Daya Listrik

Pemilihan Kapasitas Dan Lokasi Optimal Kapasitor Paralel Pada Sistem Distribusi Daya Listrik ELECTRICIAN Jural Reayasa da Teologi Eletro 0 Pemiliha Kapasitas Da Loasi Optimal Paralel Pada Sistem Distribusi Daya Listri Osea Zebua Jurusa Tei Eletro, Faultas Tei, Uiversitas Lampug Jl. Prof. Sumatri

Lebih terperinci

BAHAN AJAR DIKLAT GURU MATEMATIKA

BAHAN AJAR DIKLAT GURU MATEMATIKA BAHAN AJAR DIKLAT GURU MATEMATIKA DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN 005 DAFTAR ISI Kata Pegatar.. i Daftar Isi...

Lebih terperinci

BAB II TINJAUAN PUSTAKA. membahas distribusi normal dan distribusi normal baku, penaksir takbias μ dan σ,

BAB II TINJAUAN PUSTAKA. membahas distribusi normal dan distribusi normal baku, penaksir takbias μ dan σ, BAB II TINJAUAN PUSTAKA.1 Pedahulua Dalam peulisa materi poo dari sripsi ii diperlua beberapa teori-teori yag meduug, yag mejadi uraia poo pada bab ii. Uraia dimulai dega membahas distribusi ormal da distribusi

Lebih terperinci

Perluasan Uji Kruskal Wallis untuk Data Multivariat

Perluasan Uji Kruskal Wallis untuk Data Multivariat Statistia, Vol. No., Mei Perluasa Uji Krusal Wallis utu Data Multivariat TETI SOFIA YANTI Program Studi Statistia, Uiversitas Islam Badug, Jl. Purawarma No. Badug. E-mail: buitet@yahoo.com ABSTAK Adaia

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakag Maajeme risiko merupaka salah satu eleme petig dalam mejalaka bisis perusahaa karea semaki berkembagya duia perusahaa serta meigkatya kompleksitas aktivitas perusahaa

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

BAB 6 NOTASI SIGMA, BARISAN DAN DERET

BAB 6 NOTASI SIGMA, BARISAN DAN DERET BAB 6 NOTASI SIGMA, BARISAN DAN DERET A RINGKASAN MATERI. Notasi Sigma Diberia suatu barisa bilaga, a, a,..., a. Lambag deret tersebut, yaitu: a = a + a +... + a a meyataa jumlah suu pertama barisa Sifat-sifat

Lebih terperinci

MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA

MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA TEOREMA LIMIT PUSAT DAN TERAPANNYA Telah dikeal bahwa X 1, X 2...X sampel radom dari distribusi ormal dega mea µ da variasi σ 2, maka x µ σ/ atau xi µ σ

Lebih terperinci

Bab 3 Metode Interpolasi

Bab 3 Metode Interpolasi Baha Kuliah 03 Bab 3 Metode Iterpolasi Pedahulua Iterpolasi serig diartika sebagai mecari ilai variabel tergatug tertetu, misalya y, pada ilai variabel bebas, misalya, diatara dua atau lebih ilai yag diketahui

Lebih terperinci

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 <

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 < II. TINJAUAN PUSTAKA 2.1 Keterbagia Secara umum apabila a bilaga bulat da b bilaga bulat positif, maka ada tepat satu bilaga bulat q da r sedemikia sehigga : = +, 0 < dalam hal ii b disebut hasil bagi

Lebih terperinci

Model Antrian Multi Layanan

Model Antrian Multi Layanan Jural Gradie Vol. No. Juli : 8- Model Atria Multi Layaa Sisa Yosmar Jurusa Matematia, Faultas Matematia da Ilmu egetahua Alam, Uiversitas Begulu, Idoesia Diterima 9 April; Disetujui 8 Jui Abstra - Salah

Lebih terperinci

Distribusi Peluang BERBAGAI MACAM DISTRIBUSI SAMPEL. Distribusi Peluang 5/6/2012

Distribusi Peluang BERBAGAI MACAM DISTRIBUSI SAMPEL. Distribusi Peluang 5/6/2012 5/6/0 Distribusi Peluag BERBAGAI MACAM DISTRIBUSI SAMPEL Distribusi peluag, P( x), adalah kumpula pasaga ilai-ilai variabel acak Cotoh: Jika dua buah koi dilempar bersamaa. Kejadia bayakya mucul agka.

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat

Lebih terperinci

UNIVERSITAS INDONESIA DISTRIBUSI BANYAK SINGGAH DARI SUATU RANDOM WALK DAN UJI KERANDOMAN SKRIPSI RANTI NUGRAHENI

UNIVERSITAS INDONESIA DISTRIBUSI BANYAK SINGGAH DARI SUATU RANDOM WALK DAN UJI KERANDOMAN SKRIPSI RANTI NUGRAHENI UNIVERSITAS INDONESIA DISTRIBUSI BANYAK SINGGAH DARI SUATU RANDOM WALK DAN UJI KERANDOMAN SKRIPSI RANTI NUGRAHENI 35475 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI SARJANA MATEMATIKA DEPOK

Lebih terperinci

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP Permasalaha dalam tugas akhir ii dibatasi haya pada peaksira besarya koefisie korelasi polychoric da tidak dilakuka peguia terhadap koefisie korelasi

Lebih terperinci

PEMBUKTIAN SIFAT RUANG BANACH PADA D(K)

PEMBUKTIAN SIFAT RUANG BANACH PADA D(K) JMP : Volume 4 Nomor 1, Jui 2012, hal. 41-50 PEMBUKTIAN SIFAT RUANG BANACH PADA D(K) Malahayati Program Studi Matematia Faultas Sais da Teologi UIN Sua Kalijaga malahayati_01@yahoo.co.id ABSTRACT. I this

Lebih terperinci

Metode Perhitungan Grafik Dalam Geolistrik Tahanan Jenis Bumi Dengan Derajat Pendekatan Satu

Metode Perhitungan Grafik Dalam Geolistrik Tahanan Jenis Bumi Dengan Derajat Pendekatan Satu Metode Perhituga Grafi.. P. Maurug Metode Perhituga Grafi Dalam Geolistri Tahaa Jeis Bumi Dega Derajat Pedeata Satu Posma Maurug Jurusa Fisia, FMIPA Uiversitas Lampug Jl. S. Brojoegoro No. Badar Lampug

Lebih terperinci

ESTIMASI DENSITAS KERNEL ADJUSTED: STUDI SIMULASI. Novita Eka Chandra Universitas Islam Darul Ulum Lamongan

ESTIMASI DENSITAS KERNEL ADJUSTED: STUDI SIMULASI. Novita Eka Chandra Universitas Islam Darul Ulum Lamongan JMP : Vol. 8 No., Des. 016, al. 33-40 ISSN 085-1456 ESTIMASI DENSITAS KERNEL ADJUSTED: STUDI SIMULASI Novita Eka Cadra Uiversitas Islam Darul Ulum Lamoga ovitaekacadra@gmail.com Masriai Mayuddi Uiversitas

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu

Lebih terperinci

PERTEMUAN 6-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK

PERTEMUAN 6-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK PERTEMUAN 6-MPC 2 PRAKTIK Oleh: Adhi Kuriawa SEKOLAH TINGGI ILMU STATISTIK PPS Cluster Samplig Misalka suatu daerah terdiri dari N cluster yag masig-masig cluster terdiri dari eleme. Dari populasi tersebut,

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 BAB XII. SUKU BANYAK A = a Pegertia: f(x) = a x + a x + a x + + a x +a adalah suku bayak (poliom) dega : - a, a, a,.,a, a, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

1.1 METODE PENGEMBANGAN PENDEKATAN RATA- RATA SAMPEL UNTUK PROGRAM STOKASTIK DUA TAHAP. Faridawaty Marpaung. Abstrak

1.1 METODE PENGEMBANGAN PENDEKATAN RATA- RATA SAMPEL UNTUK PROGRAM STOKASTIK DUA TAHAP. Faridawaty Marpaung. Abstrak METODE PEGEMBAGA PEDEKATA RATA- RATA SAMPEL UTUK PROGRAM STOKASTIK DUA TAHAP Faridawaty Marpaug Abstra Peelitia ii megemuaa metode pegembaga pedeata rata rata sampel utu program stoasti dua tahap. Metodologi

Lebih terperinci

Modul Kuliah statistika

Modul Kuliah statistika Modul Kuliah statistika Dose: Abdul Jamil, S.Kom., MM SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER MUHAMMADIYAH JAKARTA Bab 2 Populasi da Sampel 2.1 Populasi Populasi merupaka keseluruha pegamata

Lebih terperinci

Jurnal MIPA 38 (1) (2015): Jurnal MIPA.

Jurnal MIPA 38 (1) (2015): Jurnal MIPA. Jural MIPA 38 () (5): 68-78 Jural MIPA http://ouraluesacid/u/idephp/jm APROKSIMASI ANUIAS HIDUP MENGGUNAKAN KOMBINASI EKSPONENSIAL LJ Siay S Gurito Guardi 3 Jurusa Matematia FMIPA Uiversitas Pattimura

Lebih terperinci

MODUL BARISAN DAN DERET

MODUL BARISAN DAN DERET MODUL BARISAN DAN DERET KELAS XII. IPS SEMESTER I Oleh : Drs. Pudjul Prijoo ( http://vidyagata.wordpress.co ) SMA NEGERI 6 Jala Mayje Sugoo 58 Malag Telp./Fax : (034) 75036 E-Mail : sa6_alag@yahoo.co.id

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakag Salah satu pera da fugsi statistik dalam ilmu pegetahua adalah sebagai. alat aalisis da iterpretasi data kuatitatif ilmu pegetahua, sehigga didapatka suatu kesimpula

Lebih terperinci

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN KALKULUS Dra. D. L. Crispia Pardede DEA. SARMAG TEKNIK MESIN KALKULUS - SILABUS. Deret Fourier.. Fugsi Periodik.2. Fugsi Geap da Gajil.3. Deret Trigoometri.. Betuk umum Deret Fourier.. Kodisi Dirichlet.6.

Lebih terperinci

MODUL BEBERAPA MACAM SEBARAN TEORITIS BEBERAPA MACAM SEBARAN TEORITIS

MODUL BEBERAPA MACAM SEBARAN TEORITIS BEBERAPA MACAM SEBARAN TEORITIS MODUL 7 BEBERAPA MACAM SEBARAN TEORITIS Pedahulua Dibedaka sebara probabilitas yag diskrit dega sebara yag kotiyu Keduaya bukalah sebara yag berasal dari pegalama, melaika berasal dari pertimbaga-pertimbaga

Lebih terperinci

7. Perbaikan Kualitas Citra

7. Perbaikan Kualitas Citra 7. Perbaia Kualitas Citra Perbaia ualitas citra (image ehacemet) merupaa salah satu proses awal dalam pegolaha citra (image preprocessig). Perbaia ualitas diperlua area serigali citra yag diadia obe pembahasa

Lebih terperinci

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan Selag Kepercayaa (Cofidece Iterval) Pegatar Peduga titik (poit estimator) telah dibahas pada kuliah-kuliah sebelumya. Walau statistikawa telah berusaha memperoleh peduga titik yag baik, amu hampir bisa

Lebih terperinci

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 1, No.2, September 2012

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 1, No.2, September 2012 IfiityJual Ilmiah Pogam Studi Matematia STKIP Siliwagi Badug, Vol, No., Septembe HIMPUNAN KOMPAK PADA RUANG METRIK Oleh : Cee Kustiawa Juusa Pedidia Matematia FPMIPA Uivesitas Pedidia Idoesia eeustiawa@yahoo.om

Lebih terperinci

PERBANDINGAN PENDEKATAN SEPARABLE PROGRAMMING DENGAN THE KUHN-TUCKER CONDITIONS DALAM PEMECAHAN MASALAH NONLINEAR

PERBANDINGAN PENDEKATAN SEPARABLE PROGRAMMING DENGAN THE KUHN-TUCKER CONDITIONS DALAM PEMECAHAN MASALAH NONLINEAR Jural Tei da Ilmu Komputer PERBANDINGAN PENDEKATAN SEPARABLE PROGRAMMING DENGAN THE KUHN-TUCKER CONDITIONS DALAM PEMECAHAN MASALAH NONLINEAR Budi Marpaug Faultas Tei da Ilmu Komputer Jurusa Tei Idustri

Lebih terperinci

1. Integral (1) Pembahasan yang akan kita lakukan hanya mengenai bentuk persamaan diferensial seperti contoh yang pertama.

1. Integral (1) Pembahasan yang akan kita lakukan hanya mengenai bentuk persamaan diferensial seperti contoh yang pertama. Darublic www.darublic.com 1. Itegral (1) (Macam Itegral, Pedeata Numeri) Sudarato Sudirham Dalam bab sebeluma, ita memelajari salah satu bagia utama alulus, aitu alulus diferesial. Beriut ii ita aa membahas

Lebih terperinci

GRAFIKA

GRAFIKA 6 5 7 3 6 3 3 GRAFIKA 3 6 57 08 0 9 5 9 385 946 5 3 30 0 8 9 5 9 3 85 946 5 ANALISA REAL Utu uliah (pegatar) aalisa real yag dilegapi dega program MATLAB Dr. H.A. Parhusip G R A F I K A Peerbit Tisara

Lebih terperinci

Haryoso Wicaksono, S.Si., M.M., M.Kom. 8

Haryoso Wicaksono, S.Si., M.M., M.Kom. 8 Seragam (Uiform) [D1] : Fugsi probabilita Uiform utuk semua ilai. Dimaa merupaka bayakya 1 f ( ) obyek da diasumsika memiliki sifat yag sama. Biomial [D2] : Sifat percobaa Biomial : Percobaa dilakuka dalam

Lebih terperinci

Teorema Nilai Rata-rata

Teorema Nilai Rata-rata Nilai Kus Prihatoso April 27, 2012 Yogyakarta Nilai Suatu Fugsi Masih igatkah ada tetag ilai rata-rata dari sekmpula bilaga? Berapakah ilai rata-rata dari sebayak bilaga y 1, y 2,..., y? Nilai Suatu Fugsi

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1. Tempat da Watu Peelitia Peelitia megeai Kepuasa Kosume Restora Gampoeg Aceh, dilasaaa pada bula Mei 2011 higga Jui 2011. Restora Gampoeg Aceh, bertempat di Jl Pajajara, Batarjati,

Lebih terperinci

MODUL BEBERAPA MACAM SEBARAN TEORITIS

MODUL BEBERAPA MACAM SEBARAN TEORITIS BEBERAPA MACAM SEBARAN TEORITIS MODUL 7 BEBERAPA MACAM SEBARAN TEORITIS Pedahulua Dibedaka sebara probabilitas yag diskrit dega sebara yag kotiyu Keduaya bukalah sebara yag berasal dari pegalama, melaika

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakag Dalam keadaa dimaa meghadapi persoala program liier yag besar, maka aka berusaha utuk mecari peyelesaia optimal dega megguaka algoritma komputasi, seperti algoritma

Lebih terperinci

BAB VIII KONSEP DASAR PROBABILITAS

BAB VIII KONSEP DASAR PROBABILITAS BAB VIII KONSEP DASAR PROBABILITAS 1.1. Pedahulua Dalam pertemua ii Ada aka mempelajari beberapa padaga tetag permutasi da kombiasi, fugsi da metode perhituga probabilitas, da meghitug probabilitas. Pada

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

Konvolusi pada Distribusi dengan Support Kompak

Konvolusi pada Distribusi dengan Support Kompak Prosidig SI MaNIs (Semiar Nasioal Itegrasi Matematia da Nilai Islami) Vol1, No1, Juli 2017, Hal 453-457 p-issn: 2580-4596; e-issn: 2580-460X Halama 453 Kovolusi pada Distribusi dega Support Kompa Cythia

Lebih terperinci

PEMBAHASAN SALAH SATU PAKET SOAL UN MATEMATIKA SMA PROGRAM IPS TAHUN PELAJARAN 2012/2013

PEMBAHASAN SALAH SATU PAKET SOAL UN MATEMATIKA SMA PROGRAM IPS TAHUN PELAJARAN 2012/2013 http://asyikyabelajar.wordpress.com PEMBAHAAN ALAH ATU PAKET OAL UN MATEMATIKA MA PROGRAM IP TAHUN PELAJARAN 0/0. Igkara dari peryataa emua makhluk hidup memerluka air da oksige adalah... A. emua makhluk

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang. B. Tujuan dan Sasaran. C. Ruang Lingkup

BAB I PENDAHULUAN. A. Latar Belakang. B. Tujuan dan Sasaran. C. Ruang Lingkup BAB I PENDAHULUAN A. Latar Belaag Kombiatoria mempuyai beberapa aspe, yaitu eumerasi, teori graf, da ofigurasi atau peyusua. Eumerasi membahas peghituga susua berbagai tipe. Sebagai cotoh: (i) meghitug

Lebih terperinci

STATISTIKA: UKURAN PENYEBARAN DATA. Tujuan Pembelajaran

STATISTIKA: UKURAN PENYEBARAN DATA. Tujuan Pembelajaran KTSP & K-3 matemata K e l a s XI STATISTIKA: UKURAN PENYEBARAN DATA Tujua Pembelajara Setelah mempelajar mater, amu dharapa meml emampua berut.. Memaham defs uura peyebara data da jes-jesya.. Dapat meetua

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Statistika iferesi merupaka salah satu cabag statistika yag bergua utuk meaksir parameter. Peaksira dapat diartika sebagai dugaa atau perkiraa atas sesuatu yag aka terjadi

Lebih terperinci

9 Departemen Statistika FMIPA IPB

9 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351 9 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Pegatar Aalisis utuk Data Respo Kategorik Data respo kategorik Sebara

Lebih terperinci

MENGUJI KEMAKNAAN SAMPEL TUNGGAL

MENGUJI KEMAKNAAN SAMPEL TUNGGAL MENGUJI KEMAKNAAN SAMPEL TUNGGAL 1.1 Uji Biomial 1. Uji esesuaia Chi Kuadrat 1.3 Uji Kesesuaia K-S 1.4 Uji Ideedesi Chi Kuadrat 1.5 Uji Pasti Fisher UJI BINOMIAL Meruaa uji roorsi dalam suatu oulasi Poulasi

Lebih terperinci

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data IV METODE PENELITIAN 4.1 Lokasi da waktu Peelitia ii dilakuka di PD Pacet Segar milik Alm Bapak H. Mastur Fuad yag beralamat di Jala Raya Ciherag o 48 Kecamata Cipaas, Kabupate Ciajur, Propisi Jawa Barat.

Lebih terperinci

PENJADWALAN JOBS PADA SINGLE MACHINE DENGAN MEMINIMUMKAN VARIANS WAKTU PENYELESAIAN JOBS (Studi Kasus di P.T. XYZ )

PENJADWALAN JOBS PADA SINGLE MACHINE DENGAN MEMINIMUMKAN VARIANS WAKTU PENYELESAIAN JOBS (Studi Kasus di P.T. XYZ ) (Fey Nilawati Kusuma et al.) PENJADWALAN JOBS PADA SINGLE MACHINE DENGAN MEMINIMUMKAN VARIANS WAKTU PENYELESAIAN JOBS (Studi Kasus di P.T. XYZ ) I Gede Agus Widyadaa I Nyoma Sutapa Dose Faultas Teologi

Lebih terperinci

BAB 4: PELUANG DAN DISTRIBUSI NORMAL.

BAB 4: PELUANG DAN DISTRIBUSI NORMAL. BAB 4: PELUANG DAN DISTRIBUSI NORMAL. PELUANG Peluag atau yag biasa juga disebut dega istilah keugkia, probablilitas, atau kas eujukka suatu tigkat keugkia terjadiya suatu kejadia yag diyataka dala betuk

Lebih terperinci

BAB V ANALISA PEMECAHAN MASALAH

BAB V ANALISA PEMECAHAN MASALAH 89 BAB V ANALISA PEMECAHAN MASALAH Dalam upaya mearik kesimpula da megambil keputusa, diperluka asumsi-asumsi da perkiraa-perkiraa. Secara umum hipotesis statistik merupaka peryataa megeai distribusi probabilitas

Lebih terperinci

MANAJEMEN RISIKO INVESTASI

MANAJEMEN RISIKO INVESTASI MANAJEMEN RISIKO INVESTASI A. PENGERTIAN RISIKO Resiko adalah peyimpaga hasil yag diperoleh dari recaa hasil yag diharapka Besarya tigkat resiko yag dimasukka dalam peilaia ivestasi aka mempegaruhi besarya

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Defiisi Persamaa diferesial adalah persamaa yag melibatka variabelvariabel tak bebas da derivatif-derivatifya terhadap variabel-variabel bebas. Berikut ii adalah

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai PENGUJIAN HIPOTESIS Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai ilai-ilai parameter populasi,

Lebih terperinci

SEBARAN t dan SEBARAN F

SEBARAN t dan SEBARAN F SEBARAN t da SEBARAN F 1 Tabel uji t disebut juga tabel t studet. Sebara t pertama kali diperkealka oleh W.S. Gosset pada tahu 1908. Saat itu, Gosset bekerja pada perusahaa bir Irladia yag melarag peerbita

Lebih terperinci

PembangkitVariabelRandom

PembangkitVariabelRandom PembangkitVariabelandom Slide: Tri Harsono 1 1. Pembangkitvariabelrandom diskrit variabel random: adalah nilai suatu variabel random yg mempunyai distribusitertentuutkmengambilvariabelrandom dari beberapa

Lebih terperinci

KELUARGA EKSPONENSIAL Untuk Memenuhi Tugas Mata Kuliah Statistika Inferensial Dosen Pengampu: Nendra Mursetya Somasih Dwipa, M.Pd

KELUARGA EKSPONENSIAL Untuk Memenuhi Tugas Mata Kuliah Statistika Inferensial Dosen Pengampu: Nendra Mursetya Somasih Dwipa, M.Pd KELUARGA EKSPONENSIAL Utuk Memeuhi Tugas Mata Kuliah Statistika Iferesial Dose Pegampu: Nedra Mursetya Somasih Dwipa, M.Pd Disusu Oleh : V A4 Kelompok. Nuuk Rohaigsih (444009). Rochayati (444000) 3. Siam

Lebih terperinci

Modul 1 Modul 2 Modul 3 Modul 4 Modul 5 Modul 6

Modul 1 Modul 2 Modul 3 Modul 4 Modul 5 Modul 6 i B Tijaua Mata Kuliah uku Materi Pokok (BMP) Matematika Aktuaria ii disampaiika dalam sembila modul (pokok bahasa) yag diorgaisasika sebagai berikut. Modul 1. Probabilitas Modul 2. Teori Buga Modul 3.

Lebih terperinci

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,

Lebih terperinci

ANALISIS ALOKASI RUGI TRANSMISI DENGAN METODE Z-BUS

ANALISIS ALOKASI RUGI TRANSMISI DENGAN METODE Z-BUS ANALISIS ALOKASI RUGI TRANSMISI DENGAN METODE Z-BUS Firdaus Dose Jurusa edidia Tei Eletro FT UNM Abstra Sistem teaga listri telah berembag begitu pesat sehigga sistem ariga uga meela biaya rugirugi daya

Lebih terperinci

APROKSIMASI DISTRIBUSI WAKTU HIDUP YANG AKAN DATANG (Aproximations of the Future Lifetime Distribution)

APROKSIMASI DISTRIBUSI WAKTU HIDUP YANG AKAN DATANG (Aproximations of the Future Lifetime Distribution) Jural Bareeg Vol 5 No Hal 47 5 (2) APROKSIMASI DISRIBUSI WAKU HIDUP YANG AKAN DAANG (Aproimatios of te Future Lifetime Distributio) HOMAS PENURY RUDY WOLER MAAKUPAN 2 LEXY JANZEN SINAY 3 Guru Besar Jurusa

Lebih terperinci

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut:

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut: Statistik da Peluag A. Statistik Statistik adalah metode ilmiah yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis data, serta cara pegambila kesimpula berdasarka data-data tersebut. Data ialah

Lebih terperinci

MATEMATIKA EKONOMI 1 Deret. DOSEN Fitri Yulianti, SP, MSi.

MATEMATIKA EKONOMI 1 Deret. DOSEN Fitri Yulianti, SP, MSi. MATEMATIKA EKONOMI 1 Deret DOSEN Fitri Yuliati, SP, MSi. Deret Deret ialah ragkaia bilaga yag tersusu secara teratur da memeuhi kaidah-kaidah tertetu. Bilaga-bilaga yag merupaka usur da pembetuk sebuah

Lebih terperinci

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu:

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu: Peaksira Parameter Statistika dibagi mejadi dua yaitu:. Statistika Deskriftif 2. Statistik Iferesial Pearika kesimpula dapat dilakuka dega dua cara yaitu:. Peaksira Parameter 2. Pegujia Hipotesis Peaksira

Lebih terperinci

Pemodelan Matematis Beban Tersebar Sebagai Beban Terpusat pada Sistem Distribusi 20 kv untuk Studi Aliran Daya

Pemodelan Matematis Beban Tersebar Sebagai Beban Terpusat pada Sistem Distribusi 20 kv untuk Studi Aliran Daya Pemodela Matematis Beba Tersebar Sebagai Beba Terpusat pada Sistem Distribusi 0 V utu Studi Alira Daya I Made Giarsa da I Made Ari Nrartha Dose Jurusa Tei Eletro Faultas Tei Uiversitas Mataram Tel. +6-30-63616

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci