InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 1, No.2, September 2012

Ukuran: px
Mulai penontonan dengan halaman:

Download "InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 1, No.2, September 2012"

Transkripsi

1 IfiityJual Ilmiah Pogam Studi Matematia STKIP Siliwagi Badug, Vol, No., Septembe HIMPUNAN KOMPAK PADA RUANG METRIK Oleh : Cee Kustiawa Juusa Pedidia Matematia FPMIPA Uivesitas Pedidia Idoesia eeustiawa@yahoo.om ABSTRACT Maalah ii meyaia defiisi da teoema-teoema himpua ompa yag betuua utu meetua eompaa suatu himpua pada uag meti. Misala E adalah suatu himpua yag tida osog pada uag meti (X,d). Aa ditetua apaah E meupaa himpua ompa atau bua, yaitu dega megguaa defiisi ompa atau dega megguaa teoema-teoema megeai himpua ompa. Kata Kui : Ruag Meti, Peseitaa, Titi Limit, Iteval Besaag, Selimut Tebua, Himpua Tebua, Himpua Tetutup, da Himpua Tebatas. This pape pesets the defiitios ad theoems of ompat set whih aimed to detemie the ompatess of a set i a meti spae. Suppose E is a o-empty set i a meti spae (X, d). Be detemied whethe E is ompat set o ot, by usig the defiitio of a ompat set o use theoems o ompat sets. Keywods : Meti spaes, Neighbohood, Limit poit, Nested iteval, Ope oveig, Ope set, Closed set, ad Bouday set. Pedahulua Utu meetua eompaa suatu himpua telebih dahulu aa dibiaaa megeai defiisi uag meti, defiisi selimut tebua (o pe ove) utu suatu himpua, defiisi himpua ompa da teoema-teoema pada himpua ompa, ataa lai; Teoema Heie-Boel, Teoema Bolzao-Weiestass da teoema-teoema yag laiya yag behubuga dega himpua ompa. Defiisi Misala X himpua yag tida osog. Fugsi d : X x X R disebut fugsi meti (fugsi aa) ia utu setiap p, q X belau : (i) d(p,q) d(p,q) = p = q (ii) d(p,q) = d(q,p) (iii) d(p,q) d(p,) + d(,q), X. 38

2 IfiityJual Ilmiah Pogam Studi Matematia STKIP Siliwagi Badug, Vol, No., Septembe Himpua X dega fugsi meti d disebut uag meti da ditulis dega otasi (X,d). Cotoh Himpua R dega meti biasa d(x,y) = x - y, x,y R meupaa uag meti, sebab memeuhi etiga sifat meti pada Defiisi. Defiisi Selimut tebua himpua E pada uag meti (X,d) adalah eluaga himpua tebua { G } di X sehigga E G. Cotoh (a) (X,d) = (R,d) uag meti biasa, E = (-,), { } =, G N. N { G } N adalah selimut tebua utu E sebab E G (, ). (b) (X,d) = (R,d) uag meti biasa, F = (,), { } =, G N +. N { G } N adalah selimut tebua utu F sebab F G (, ). Defiisi 3 Himpua K dalam uag meti (X,d) diataa ompa ia setiap tebua utu K memuat selimut bagia behiggaya utu K. selimut Jadi himpua T dalam uag meti (X,d) diataa tida ompa ia ada selimut tebua utu T yag tida memuat selimut bagia behiggaya utu T. Cotoh (a) (X,d) = (R,d) uag meti biasa, himpua F = (,) tida ompa, sebab ada selimut tebua utu F yag tida memuat selimut bagia behiggaya, yaitu { } =, G N + N G,, N da F G. meupaa selimut tebua utu F tetapi (b) Sedaga H = [,] dega meti biasa meupaa himpua ompa sebab setiap selimut tebua utu H memuat selimut bagia behiggaya utu H. 39

3 IfiityJual Ilmiah Pogam Studi Matematia STKIP Siliwagi Badug, Vol, No., Septembe Utu lebih elasya silaha ambil bebeapa otoh selimut tebua utu H, tetapi itu bua meupaa buti. Teoema 4 Jia K himpua ompa dalam uag meti (X,d) maa K tetutup. Buti: Diambil p K sebaag, emudia utu setiap q K dibuat peseitaa V (p) da W (q) dega ai-ai d( p, q) maa V ( p) W ( q). Jadi W ( q) qk meupaa selimut tebua utu K. Kaea K ompa maa ada q, q,, q sehigga K W i( q i ). i Misala W W i( q i ) da V V i( p) maa W V dega W da i i V tebua. Aibatya K V da beati V K. Dega ata lai tedapat himpua tebua V yag memuat p dega sifat V K. Hal ii beati p titi iteio K. Kaea p K sebaag maa K tebua. Jadi K tetutup. Teoema 5 Himpua bagia tetutup dai himpua ompa adalah ompa. Atiya ia K ompa, B K da B tetutup maa B ompa. Buti: Diambil sebaag selimut tebua G utu B. Kaea B tetutup maa B tebua. Aibatya G B meupaa selimut tebua utu K. Kaea K ompa maa ada,,, sehigga K G i B. Dilai piha B K maa dipeoleh B G i i i. Hal ii beati B ompa. Aibat 6 Jia F himpua tetutup da K ompa maa F K ompa. 4

4 IfiityJual Ilmiah Pogam Studi Matematia STKIP Siliwagi Badug, Vol, No., Septembe Buti: Kaea K ompa maa bedasaa teoema 4, K tetutup. Dilai piha F tetutup maa F K tetutup. Aibatya F K himpua bagia tetutup dai himpua ompa K da bedasaa teoema 5, F K ompa. Teoema 7 Jia { K } eluaga himpua ompa pada uag meti (X,d) sehigga setiap eluaga bagia behiggaya mempuyai iisa ta osog maa K. Atiya ia K himpua ompa utu setiap da N, maa K. K i i utu setiap Buti: Diambil satu aggota eluaga tetetu sebaag misalya K. Kaea K ompa utu setiap maa K tetutup utu setiap. Misala K tebua utu setiap. Aa dipelihata K K. G maa G Adaia K K maa K K K G. Beati { G } meupaa selimut tebua utu K. Kaea K ompa maa ada,,, sehigga K G i K i K i ata lai K K i i i i i. Dega atau K K K K. Hal ii otadisi dega yag dietahui bahwa setiap eluaga bagia behigga mempuyai iisa ta osog. Dega demiia pegadaia salah da hauslah K K utu setiap. Kaea K sebaag maa K. 4

5 IfiityJual Ilmiah Pogam Studi Matematia STKIP Siliwagi Badug, Vol, No., Septembe Aibat 8 Jia { K } eluaga himpua ompa yag ta osog dega K K utu setiap N maa K. Buti: Dietahui K himpua ompa utu setiap. Kaea K m m K utu setiap N maa K K m da beati K. Bedasaa teoema 7 maa K. Teoema 9 Jia E himpua bagia ta behigga dalam himpua ompa K maa E mempuyai titi limit di K. Buti: Adaia E tida mempuyai titi limit di K. Jadi ia p K maa p bua titi limit dai E atau ada peseitaa N (p) sehigga N ( p) \ { p} E. Dega demiia setiap N (p) tadi haya memuat palig baya satu titi aggota E yaitu titi p sedii. Jadi N ( p) meupaa selimut tebua utu K da uga meupaa selimut pk tebua utu E sebab E K. Kaea K ompa maa tedapat p, p,, p sehigga K N ( pi ) da uga E N ( pi ). Padahal setiap N (p i ) haya i memuat palig baya satu aggota E da ii beati aggota E behigga. Hal ii otadisi dega yag dietahui bahwa E ta behigga. Dega demiia pegadaia salah da hauslah E mempuyai titi limit di K. i Teoema Jia {I } baisa iteval tetutup da tebatas di R sehigga I I + utu setiap N maa I. 4

6 IfiityJual Ilmiah Pogam Studi Matematia STKIP Siliwagi Badug, Vol, No., Septembe Buti: Misala I = [a, b ]. Kaea I I + utu setiap N maa a a b. Dega ata lai { a : N} tebatas e atas oleh b da beaibat { a : N} mempuyai supimum ataa sup { a : N }. Jadi a utu setiap N. () Selautya aa dituua b utu setiap N. Diambil sebaag N. Jia maa a a b da ia maa a b b. Jadi b batas atas { a : N }. Aibatya b da aea N sebaag maa b utu setiap N. () Dai pesamaa () da () dipeoleh a b utu setiap N atau [ a, b ] I atau I. Teoema Jia {I } baisa sel- tetutup da tebatas di R sehigga I I + utu setiap N maa I. Buti: dega bilaga bulat positif Misala I { x : x ( x, x,, x ), a x b,, }. Diambil I [ a, b] maa I tetutup da tebatas utu setiap, N. Kaea I I + utu setiap N maa I I (+) utu setiap N. Jadi {I } meupaa iteval besaag, tetutup da tebatas, da bedasaa teoema * * tedapat x sehigga a x b utu setiap,. Kemudia * * * * dibetu x ( x, x,, x ) maa x * I utu setiap N. Dega demiia I Teoema Setiap sel- selalu ompa. Buti: Diambil sebaag sel- misalya I yag memuat titi-titi x ( x, x,, x ) sehigga a x b,. Misal adalah paag diagoal dai sel I 43

7 IfiityJual Ilmiah Pogam Studi Matematia STKIP Siliwagi Badug, Vol, No., Septembe tesebut yaitu ( b a ). Jadi utu setiap x, y I belau x y. Adaia I tida ompa maa ada selimut tebua {G } utu I yag tida memuat selimut bagia behiggaya utu I. Diambil a b, maa iteval-iteval [a, ] da [,b ] membagi sel I meadi bagia da amaa setiap bagiaya itu dega Q i, i. Maa palig sediit ada satu Q i yag tida diselimuti oleh eluaga bagia behigga {G } da sebut Q i yag tida diselimuti tadi oleh I. Kemudia I dibagi lagi dega a megambil d,, maa diataaya ada yag tida diselimuti oleh {G } da amaa I. Jia poses diteusa maa dipeoleh (a) I I I (b) I tida dapat diselimuti oleh setiap eluaga bagia behigga {G } () Jia x, y maa x y utu setiap N sebab, I ia x, y I belau x y ia x, y I belau x y (diagoal I = diagoal I) ia x, y I belau x y (diagoal I = diagoal I ) ia x, y belau x y (diagoal I = diagoal I - ) I Dai (a) da bedasaa teoema maa tedapat x * utu setiap N da aea {G } selimut tebua utu I maa x * G utu suatu. Kaea G himpua tebua maa x * meupaa titi iteio G atiya tedapat bilaga > sehigga x * y utu setiap y G. Diambil yag uup besa sehigga maa bedasaa [] dipeoleh x y utu setiap x, y I. Dega ata lai I G utu setiap N da hal ii otadisi dega (b). Jadi pegadaia salah da hauslah I ompa. I Teoema 3 Jia E R maa peyataa beiut equivale (a) E tetutup da tebatas 44

8 IfiityJual Ilmiah Pogam Studi Matematia STKIP Siliwagi Badug, Vol, No., Septembe (b) E ompa () Setiap himpua bagia ta behigga pada E mempuyai titi limit di E. Buti: (a) (b) Kaea E tebatas maa E temuat dalam suatu sel I yag ompa (teoema ). Aibatya E meupaa himpua bagia tetutup dalam himpua ompa I da bedasaa teoema 5 maa E ompa. (b) () Misal F himpua bagia ta behigga didalam E yag ompa maa bedasaa teoema 9, F mempuyai titi limit di E. () (a) Dietahui setiap himpua bagia ta behigga dalam E mempuyai titi limit di E. Aa dipelihata E tetutup da tebatas. (i) E tebatas di R ia tedapat MR sehigga utu setiap x E da suatu y R belau x y M. Adaia E tida tebatas maa ada x E sehigga x utu setiap N da suatu y R. Dibetu S { x : x E, x, N} maa S E, S ta behigga da tida mempuyai titi limit di E. Hal ii otadisi dega yag dietahui bahwa setiap himpua bagia ta behigga dalam E mempuyai titi limit di E. Jadi pegadaia salah da hauslah E tebatas. (ii) Adaia E tida tetutup di R maa ada x R titi limit E dega x E. Diambil maa ada x E dega x x maa ada x E dega x x maa ada x E dega x x Dibetu himpua S x : x E, x x maa S himpua bagia ta behigga pada E da haya mempuyai satu titi limit yaitu x dega x E. Jadi S himpua bagia ta behigga pada E da tida mempuyai 45

9 IfiityJual Ilmiah Pogam Studi Matematia STKIP Siliwagi Badug, Vol, No., Septembe titi limit di E. Hal ii otadisi dega yag dietahui. Jadi pegadaia salah da hauslah E tetutup. Teoema 4 (Teoema Heie-Boel) E R ompa ia da haya ia E tetutup da tebatas. Buti: Syaat uup ( ) sudah dibutia pada teoema 3 (a) (b) Syaat pelu ( ) (i) Aa dipelihata E tetutup yaitu E megadug seluuh titi limitya. Misal p sebaag titi limit E maa utu setiap peseitaa N (p) belau N ( p) \ { p} E. Aibatya N ( p) E utu setiap bilaga >. Jadi tedapat qe da q N ( p) { x : x p } yag beaibat q p utu setiap > atau q = p E. Kaea p sebaag titi limit dai E maa E megadug seluuh titi limitya. Dega ata lai E tetutup. (ii) Aa dituua E tebatas yaitu setiap x x y M. Diambil x E E da suatu y R belau sebaag da emudia dibetu peseitaa N ( x) { y : y, x y } ( ) meupaa selimut tebua utu E. Kaea E ompa maa tedapat x, x,, x sehigga R maa eluaga N x E N ( xi ). Diambil M mas { x y : x, y N ( xi ), i,,, } i maa utu setiap x E beati E tebatas. da suatu y R belau x y M. Hal ii Teoema 5 (Teoema Bolzao-Weiestass) Setiap himpua ta behigga da tebatas di R mempuyai titi limit di R. Buti: Misal E himpua ta behigga da tebatas di R maa E temuat dalam suatu sel I yag ompa da bedasaa teoema 9, maa E mempuyai titi limit pada I dega I R. Jadi E mempuyai titi limit di R. Cotoh (a) Jia A = (, ] R, apaah A ompa? Jawab : 46

10 IfiityJual Ilmiah Pogam Studi Matematia STKIP Siliwagi Badug, Vol, No., Septembe A tida ompa sebab ada selimut tebua {G } utu A yag tida memuat selimut,, =,, bagia behiggaya utu A, yaitu G Jelas A G (, ) tetapi A G sebab G,. (b) Apaah F 3 Jawab :,,,, ompa? A, =,,, tetapi Himpua titi limit dai F adalah F ' { }. Jadi F megadug semua titi limitya da beati F tetutup. Dilai piha F uga tebatas oleh [, ] da bedasaa teoema 4 (teoema Heie Boel) maa F adalah ompa. Kesimpula Dega megguaa defiisi ompa ita dapat meetua apaah suatu himpua ompa atau tida, tetapi aa yag lebih mudah adalah dega megguaa teoema Heie-Boel yaitu suatu himpua E pada uag meti (X,d) adalah ompa ia da haya ia E tetutup da tebatas. Dega memeisa etetutupa da etebatasa suatu himpua maa ita dapat meetua eompaa suatu himpua. Dafta Pustaa Apostol, T.M. (974). Mathematial Aalysis (Seod Editio). Addiso-Wesley Publishig Compay, I. Philippies. Batle, R.G. (976). The Elemets Of Real Aalysis (Seod Editio). Joh Wiley & Sos, I. USA. Mues, J.R. (975). Topologi (A Fist Couse). Petie-Hall, I, Eglewood Cliffs, New Jesey. USA. Rudi, W. (976). Piiples of Mathematial Aalysis (Thid Editio). MGaw-Hill. Sigapoe. 47

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 2, No.1, Februari 2013

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 2, No.1, Februari 2013 IfiityJural Ilmiah Program Studi Matematika STKIP Siliwagi Badug, Vol 2, No.1, Februari 2013 KEKONTINUAN FUNGSI PADA RUANG METRIK Oleh: Cece Kustiawa Jurusa Pedidika Matematika FPMIPA UPI, cecekustiawa@yahoo.com

Lebih terperinci

MAKALAH TEOREMA BINOMIAL

MAKALAH TEOREMA BINOMIAL MAKALAH TEOREMA BINOMIAL Disusu utu memeuhi tugas mata uliah Matematia Disrit Dose Pegampu : Dr. Isaii Rosyida, S.Si, M.Si Rombel B Kelompo 2 1. Wihdati Martalya (0401516006) 2. Betha Kuria S. (0401516012)

Lebih terperinci

MASALAH DAN ALTERNATIF JAWABAN DALAM MATEMATIKA KOMBINATORIK. Masalah 1 Terdapat berapa carakah kita dapat memilih 2 baju dari 20 baju yang tersedia?

MASALAH DAN ALTERNATIF JAWABAN DALAM MATEMATIKA KOMBINATORIK. Masalah 1 Terdapat berapa carakah kita dapat memilih 2 baju dari 20 baju yang tersedia? Kartia Yuliati, SPd, MSi MASALAH DAN ALTERNATIF JAWABAN DALAM MATEMATIKA KOMBINATORIK Masalah Terdapat berapa caraah ita dapat memilih baju dari 0 baju yag tersedia? Cara Misala baju diberi omor dari sampai

Lebih terperinci

Ring Noetherian dan Ring Artinian

Ring Noetherian dan Ring Artinian Jual Saismat, Maet 2013, Halama 79-83 ISSN 2086-6755 htt://ojs.um.ac.id/idex.h/saismat Vol. II, No. I Rig Noetheia da Rig Atiia The Atiia Rig ad The Noetheia Rig Fitiai Juusa Matematia Seolah Tiggi Ilmu

Lebih terperinci

MACAM-MACAM TEKNIK MEMBILANG

MACAM-MACAM TEKNIK MEMBILANG 0 MACAM-MACAM TEKNIK MEMBILANG ATURAN PERKALIAN Beriut ii diberia sebuah dalil tetag peetua baya susua yag palig sederhaa dalam suatu permasalaha yag beraita dega peluag. Dalil 2.1: ATURAN PERKALIAN SECARA

Lebih terperinci

Pengantar Analisis Real

Pengantar Analisis Real Bacaa Waga KSA Pegata Aalisis Real Itoductio to eal aalysis Diumpula dai bebagai sumbe oleh: Abu Abdillah KOMUNITAS STUDI ALKWARIZMI UNAAHA 03 PERSEMBAHAN Utu baha bacaa waga KSA (Komuitas Studi Al Khwaizmi).

Lebih terperinci

TEOREMA CAYLEY-HAMILTON SEBAGAI SALAH SATU METODE DALAM PENGHITUNGAN FUNGSI MATRIKS

TEOREMA CAYLEY-HAMILTON SEBAGAI SALAH SATU METODE DALAM PENGHITUNGAN FUNGSI MATRIKS Jural Matematia Vol.6 No. November 6 [ 5 : ] TEOREMA CAYLEY-HAMILTON SEBAGAI SALAH SATU METODE DALAM PENGHITUNGAN FUNGSI MATRIKS Ooy Rohaei Jurusa Matematia, UNISBA, Jala Tamasari No, Badug,6, Idoesia

Lebih terperinci

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain.

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain. BARIAN DAN DERET A. Barisa Barisa adalah uruta bilaga yag memilii atura tertetu. etiap bilaga pada barisa disebut suu barisa yag dipisaha dega lambag, (oma). Betu umum barisa:,, 3, 4,, dega: = suu pertama

Lebih terperinci

SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN

SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN Dose Pegampu : Pof. D. Si Wahyui DISUSUN OLEH: Nama : Muh. Zaki Riyato Nim : 02/156792/PA/08944 Pogam Studi : Matematika JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN

Lebih terperinci

Gambar 3.1Single Channel Multiple Phase

Gambar 3.1Single Channel Multiple Phase BAB III MODEL ANTRIAN PADA PEMBUATAN SIM C. Sigle Chael Multiple Phase Sistem atria sigle chael multiple phase merupaa sistem atria dimaa pelagga yag tiba, dapat memasui sistem dega megatri di tempat yag

Lebih terperinci

Aproksimasi Terbaik dalam Ruang Metrik Konveks

Aproksimasi Terbaik dalam Ruang Metrik Konveks Aprosimasi Terbai dalam Ruag etri Koves Oleh : Suharsoo S Jurusa atematia FIPA Uiversitas Lampug Abstra asalah esistesi da etuggala aprosimasi terbai suatu titi dalam ruag berorm telah dipelajari oleh

Lebih terperinci

SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN (FIELD)

SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN (FIELD) SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN (FIELD) Muhamad Zaki Riyato NIM: 02/156792/PA/08944 E-mail: zaki@mail.ugm.ac.id http://zaki.math.web.id Dose Pembimbig: Pof. D. Si Wahyui Pedahulua Sebelum melagkah

Lebih terperinci

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu

Lebih terperinci

Sifat-sifat Fungsi Karakteristik dari Sebaran Geometrik

Sifat-sifat Fungsi Karakteristik dari Sebaran Geometrik Sifat-sifat Fugsi Karateristi dari Sebara Geometri Dodi Deviato Jurusa Matematia, Faultas MIPA, Uiversitas Adalas Kamus Limau Mais, Padag 563, Sumatera Barat, Idoesia Abstra Fugsi arateristi dari suatu

Lebih terperinci

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C.

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C. BAB II LANDASAN TEORI Pada bab ii aa dibahas teori teori yag meduug metode upper level set sca statistics, atara lai peubah aca, distribusi gamma, fugsi gamma, fugsi lielihood, da uji rasio lielihood.

Lebih terperinci

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu

Lebih terperinci

Aplikasi Sistem Orthonormal Di Ruang Hilbert Pada Deret Fourier

Aplikasi Sistem Orthonormal Di Ruang Hilbert Pada Deret Fourier Apliasi Sistem Orthoormal Di Ruag Hilbert Pada Deret Fourier A 7 Fitriaa Yuli S. FMIPA UNY Abstra Ruag hilbert aa dibahas pada papper ii. Apliasi system orthoormal aa diaji da aa diapliasia pada ruahg

Lebih terperinci

PEMBUKTIAN SIFAT RUANG BANACH PADA D(K)

PEMBUKTIAN SIFAT RUANG BANACH PADA D(K) JMP : Volume 4 Nomor 1, Jui 2012, hal. 41-50 PEMBUKTIAN SIFAT RUANG BANACH PADA D(K) Malahayati Program Studi Matematia Faultas Sais da Teologi UIN Sua Kalijaga malahayati_01@yahoo.co.id ABSTRACT. I this

Lebih terperinci

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL HENSTOCK- KURZWEIL SERENTAK DAN FUNGSI BERSIFAT LOCALLY SMALL RIEMANN SUMS (LSRS) DARI RUANG EUCLIDE

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL HENSTOCK- KURZWEIL SERENTAK DAN FUNGSI BERSIFAT LOCALLY SMALL RIEMANN SUMS (LSRS) DARI RUANG EUCLIDE Teorema Keovergea Fugsi Teritegral Hestoc(Aiswita) TORMA KKONVRGNAN FUNGSI TRINTGRAL HNSTOCK- KURZWIL SRNTAK DAN FUNGSI BRSIFAT LOCALLY SMALL RIMANN SUMS (LSRS) DARI RUANG UCLID K RUANG BARISAN Aiswita,

Lebih terperinci

MODUL BARISAN DAN DERET

MODUL BARISAN DAN DERET MODUL BARISAN DAN DERET SEMESTER 2 Muhammad Zaial Abidi Persoal Blog http://meetabied.wordpress.com BAB I. PENDAHULUAN A. Desripsi Dalam modul ii, ada aa mempelajari pola bilaga, barisa, da deret diidetifiasi

Lebih terperinci

Konvolusi pada Distribusi dengan Support Kompak

Konvolusi pada Distribusi dengan Support Kompak Prosidig SI MaNIs (Semiar Nasioal Itegrasi Matematia da Nilai Islami) Vol1, No1, Juli 2017, Hal 453-457 p-issn: 2580-4596; e-issn: 2580-460X Halama 453 Kovolusi pada Distribusi dega Support Kompa Cythia

Lebih terperinci

EKSISTENSI INVERS GRUP DARI MATRIKS BLOK. Mahasiswa Program S1 Matematika 2

EKSISTENSI INVERS GRUP DARI MATRIKS BLOK. Mahasiswa Program S1 Matematika 2 ESSTENS NVERS GRU DR TRS LO Riaa Wedya Rola ae usaii ahasiswa ogam S atematika Dose Juusa atematika Fakultas atematika da lmu egetahua lam ampus iawidya ekabau 89 doesia email: iaa_wedya@yahoocom STRCT

Lebih terperinci

Keywords: Convergen Series, Banach Space, Sequence space cs, Dual-α, Dual-

Keywords: Convergen Series, Banach Space, Sequence space cs, Dual-α, Dual- Jural MIPA FST UNDANA, Volume 2, Nomor, April 26 DUAL-, DUAL- DAN DUAL- DARI RUANG BARISAN CS Albert Kumaereg, Ariyato 2, Rapmaida 3,2,3 Jurusa Matematia, Faultas Sais da Tei Uiversitas Nusa Cedaa ABSTRACT

Lebih terperinci

SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA

SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA KELAS D(K) Malahayati Program Studi Matematia Faultas Sais da Teologi UIN Sua Kalijaga Yogyaarta e-mail: malahayati_01@yahoo.co.id ABSTRAK Himpua

Lebih terperinci

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa konsep dasar, istilah istilah dan definisi

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa konsep dasar, istilah istilah dan definisi II. TINJAUAN PUSTAKA Pada bab ii aka dibeika bebeapa kosep dasa, istilah istilah da defiisi yag eat kaitaya dega masalah yag haus dibahas yaitu megeai bayakya caa megkostuksi Dyck path dega pajag k upstokes

Lebih terperinci

Bab 16 Integral di Ruang-n

Bab 16 Integral di Ruang-n Catata Kuliah MA3 Kalulus Elemeter II Oi Neswa,Ph.D., Departeme Matematia-ITB Bab 6 Itegral di uag- Itegral Gada atas persegi pajag Itegral Berulag Itegral Gada atas Daerah sebarag Itegral Gada Koordiat

Lebih terperinci

Pemetaan Linear Yang Mengawetkan Invers Drazin Matriks Atas Lapangan

Pemetaan Linear Yang Mengawetkan Invers Drazin Matriks Atas Lapangan Pemetaa Liea Yag Megawetka Ives azi Matiks Atas Lapaga ibeika matiks x atas lapaga Sutopo Juusa Matematika Fakultas Matematika da Pegetahua Alam Uivesitas Gadjah Mada sutopo_mipa@ugm.ac.id Abstact F lapaga

Lebih terperinci

Peluang Suatu Kejadian, Kaidah Penjumlahan, Peluang Bersyarat, Kaidah Perkalian dan Kaidah Baiyes

Peluang Suatu Kejadian, Kaidah Penjumlahan, Peluang Bersyarat, Kaidah Perkalian dan Kaidah Baiyes eluag uatu Kejadia, Kaidah ejumlaha, eluag ersyarat, Kaidah eralia da Kaidah aiyes.eluag uatu Kejadia Defiisi : eluag suatu ejadia adalah jumlah peluag semua titi otoh dalam. Dega demiia : 0 (), ( ) =

Lebih terperinci

Mengkaji Perbedaan Diagonalisasi Matriks Atas Field dan Matriks Atas Ring Komutatif

Mengkaji Perbedaan Diagonalisasi Matriks Atas Field dan Matriks Atas Ring Komutatif Megaji Perbedaa Diagoalisasi Matris Atas Field da Matris Atas Rig Komutatif Teorema : Jia A adalah matris x maa eryataa eryataa beriut eivale satu sama lai : a A daat didiagoalisasi b A memuyai vetor eige

Lebih terperinci

FUNCTIONALLY SMALL RIEMANN SUMS (FSRS) DAN ESSENTIALLY SMALL RIEMANN SUMS (ESRS) FUNGSI TERINTEGRAL HENSTOCKn. p )

FUNCTIONALLY SMALL RIEMANN SUMS (FSRS) DAN ESSENTIALLY SMALL RIEMANN SUMS (ESRS) FUNGSI TERINTEGRAL HENSTOCKn. p ) βeta -ISSN: 85-5893 e-issn: 54-458 Vol. 3 No. (Noember), Hal. 79-89 βeta DOI: htt://dx.doi.org/.44/betajtm.v9i.7 FUNCTIONALLY SMALL RIMANN SUMS (FSRS) DAN SSNTIALLY SMALL RIMANN SUMS (SRS) FUNGSI TRINTGRAL

Lebih terperinci

4. KOMBINATORIKA ... S 1. S n S 2. Gambar 4.1

4. KOMBINATORIKA ... S 1. S n S 2. Gambar 4.1 4. KOMBINATORIKA 4. Atua Utuk Suatu Peistiwa Evet sesuatu yag tejadi. Jika peistiwa A dapat tejadi dalam m caa da peistiwa B dapat tejadi dalam N caa, maka tedapat (m, ) caa kedua peistiwa tejadi besama-sama.

Lebih terperinci

Menentukan Pembagi Bersama Terbesar dengan Algoritma

Menentukan Pembagi Bersama Terbesar dengan Algoritma Meetuka Pembagi Besama Tebesa dega Algoitma Macelius Hey M. (135108) Pogam Studi Tekik Ifomatika Sekolah Tekik Elekto da Ifomatika Istitut Tekologi Badug, Jl. Gaesha 10 Badug 4013, Idoesia 135108@std.stei.itb.ac.id

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 5

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 5 Mata Kuliah : Matematia Disrit Program Studi : Tei Iformatia Miggu e : 5 KOMBINATORIAL PENDAHULUAN Persoala ombiatori bua merupaa persoala baru dalam ehidupa yata. Baya persoala ombiatori sederhaa telah

Lebih terperinci

Representasi sinyal dalam impuls

Representasi sinyal dalam impuls Represetasi siyal dalam impuls Represetasi siyal dalam impuls adalah siyal yag diyataa sebagai fugsi dari impuls atau sebagai umpula dari impuls-impuls. Sembarag siyal disret dapat diyataa sebagai pejumlaha

Lebih terperinci

BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE)

BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE) BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE) 5.1. Pembagit Radom Variate Disrit Suatu Radom Variate diartia sebagai ilai suatu radom variate yag mempuyai distribusi tertetu. Utu megambil

Lebih terperinci

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 <

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 < II. TINJAUAN PUSTAKA 2.1 Keterbagia Secara umum apabila a bilaga bulat da b bilaga bulat positif, maka ada tepat satu bilaga bulat q da r sedemikia sehigga : = +, 0 < dalam hal ii b disebut hasil bagi

Lebih terperinci

GRAFIKA

GRAFIKA 6 5 7 3 6 3 3 GRAFIKA 3 6 57 08 0 9 5 9 385 946 5 3 30 0 8 9 5 9 3 85 946 5 ANALISA REAL Utu uliah (pegatar) aalisa real yag dilegapi dega program MATLAB Dr. H.A. Parhusip G R A F I K A Peerbit Tisara

Lebih terperinci

Deret Bolak-balik (Alternating Series) Deret bolak-balik adalah deret yang suku-sukunya berganti tanda. Sebagai contoh,

Deret Bolak-balik (Alternating Series) Deret bolak-balik adalah deret yang suku-sukunya berganti tanda. Sebagai contoh, Deet Bolak-balik Alteatig Seies Deet bolak-balik adalah deet yag suku-sukuya begati tada. Sebagai cotoh, + 4 + + + Deet bolak-balik beikut: = + a, dega a positif, kovege jika memeuhi dua syaat i. Setiap

Lebih terperinci

APLIKASI TRANSFORMASI SCHWARZ-CHRISTOFFEL PADA SUMBU X DI BIDANG-Z SKRIPSI. oleh: KURNIATI NIM

APLIKASI TRANSFORMASI SCHWARZ-CHRISTOFFEL PADA SUMBU X DI BIDANG-Z SKRIPSI. oleh: KURNIATI NIM APLIKASI TRANSFORMASI SCHWARZ-CHRISTOFFEL PADA SUMBU X DI BIDANG-Z SKRIPSI oleh: KURNIATI NIM. 6558 JURUSAN MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG

Lebih terperinci

BAHAN AJAR DIKLAT GURU MATEMATIKA

BAHAN AJAR DIKLAT GURU MATEMATIKA BAHAN AJAR DIKLAT GURU MATEMATIKA DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN 005 DAFTAR ISI Kata Pegatar.. i Daftar Isi...

Lebih terperinci

MENENTUKAN NILAI LIMIT BARISAN KONTRAKTIF DENGAN MENGGUNAKAN RELASI REKURSIF SKRIPSI. Oleh : Muhamad Nur Huda NIM :

MENENTUKAN NILAI LIMIT BARISAN KONTRAKTIF DENGAN MENGGUNAKAN RELASI REKURSIF SKRIPSI. Oleh : Muhamad Nur Huda NIM : MENENTUKAN NILAI LIMIT BARISAN KONTRAKTIF DENGAN MENGGUNAKAN RELASI REKURSIF SKRIPSI Oleh : Muhaad Nu Huda NIM : 05000 JURUSAN MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI (UIN) MALANG

Lebih terperinci

BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada

BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada 8 BAB III RUANG HAUSDORFF Pada bab ii aka dibahas megeai ruag Hausdorff, kekompaka pada ruag Hausdorff da ruag regular legkap. Pembahasa diawali dega medefiisika Ruag Hausdorff da beberapa sifatya kemudia

Lebih terperinci

PRINSIP MAKSIMUM DAN MINIMUM FUNGSI PANHARMONIK

PRINSIP MAKSIMUM DAN MINIMUM FUNGSI PANHARMONIK PRINSIP MAKSIMUM DAN MINIMUM FUNGSI PANHARMONIK Oleh, Edag Cahya M.A. Jrsa Pedidia Matematia FPMIPA UPI Badg Jl. Dr. Setiabdi 9 Badg E-mail ecma@ds.math.itb.ac.id Abstra Tlisa ii mejelasa prisip masimm

Lebih terperinci

SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL

SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL Riza Febri Yusma Sri Gemawati Asli Sirait *riza_febri@yahoo.com Mahasiswa Program S Matematika Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua Alam Uiveritas

Lebih terperinci

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG)

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG) PEMBAHASAN SOAL OLIMPIADE SAINS NASIONAL SMP A. ISIAN SINGKAT SELEKSI TINGKAT PROPINSI TAHUN 011 BIDANG STUDI MATEMATIKA WAKTU : 150 MENIT 1. Jia x adalah jumlah 99 bilaga gajil terecil yag lebih besar

Lebih terperinci

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR Dose Pegampu : Darmadi, S.Si, M.Pd Disusu : Kelas 5A / Kelompok 5 : Dia Dwi Rahayu (084. 06) Hefetamala (084. 4) Khoiril Haafi (084. 70) Liaatul Nihayah (084. 74)

Lebih terperinci

Teorema Berbasis Aksioma Separasi dalam Ruang Topologi

Teorema Berbasis Aksioma Separasi dalam Ruang Topologi Junal Matematika Integatif ISSN 1412-6184 Volume 11 No 2, Oktobe 2015, pp 85-96 Teoema Bebasis Aksioma Sepaasi dalam Ruang Topologi Albet Ch. Soewongsono, Aiyanto, Jafauddin Juusan Matematika Fakultas

Lebih terperinci

MASALAH DISTRIBUSI BOLA KE DALAM WADAH SEBAGAI FUNGSI ATAU KUMPULAN FUNGSI

MASALAH DISTRIBUSI BOLA KE DALAM WADAH SEBAGAI FUNGSI ATAU KUMPULAN FUNGSI Vol. 11, No. 1, 45-55, Juli 2014 MASALAH DISTRIBUSI BOLA KE DALAM WADAH SEBAGAI FUNGSI ATAU KUMPULAN FUNGSI Fauziah Baharuddi 1, Loey Haryato 2, Nurdi 3 Abstra Peulisa ii bertujua utu medapata perumusa

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

RUANG METRIK DENGAN SIFAT BOLA TERTUTUPNYA KOMPAK

RUANG METRIK DENGAN SIFAT BOLA TERTUTUPNYA KOMPAK Rahmawati Y. Ruag Metrik dega Sifat RUANG METRIK DENGAN SIFAT BOLA TERTUTUPNYA KOMPAK RAHMAWATI YULIYANI rahmawatiyuliyai @yahoo.co.id 08561299991 Program studi Tekik Iformatika, Fakultas Tekik, Matematika,

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

CATATAN KULIAH Pertemuan I: Pengenalan Matematika Ekonomi dan Bisnis

CATATAN KULIAH Pertemuan I: Pengenalan Matematika Ekonomi dan Bisnis CATATAN KULIAH Pertemua I: Pegeala Matematika Ekoomi da Bisis A. Sifat-sifat Matematika Ekoomi 1. Perbedaa Matematika vs. Nomamatematika Ekoomi Keutuga pedekata matematika dalam ilmu ekoomi Ketepata (Precise),

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI. mandiri jika tidak mengandung t secara eksplisit di dalamnya. (Kreyszig, 1983)

I PENDAHULUAN II LANDASAN TEORI. mandiri jika tidak mengandung t secara eksplisit di dalamnya. (Kreyszig, 1983) I PENDAHULUAN Latar Belaag Permasalaha ebiaa pemaea ia yag memberia eutuga masimum da berelauta (tida teradi epuaha dari populasi ia yag dipae) adalah hal yag sagat petig bagi idustri periaa Para ilmuwa

Lebih terperinci

Sistem Bilangan Kompleks (Bagian Ketiga)

Sistem Bilangan Kompleks (Bagian Ketiga) Sistem Bilaga Kompleks (Bagia Ketiga) Supama Jurusa Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemua Miggu III) Outlie 1 Akar Bilaga Kompleks 2 Akar

Lebih terperinci

KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH. Ariyanto* ABSTRACT

KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH. Ariyanto* ABSTRACT Aryato, Kaja Sfat Keompaa pada Ruag Baah KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH Aryato* ABSTRACT The propertes of ompatess Baah spaes ths paper s a geeralzato of a ompat uderstadg the system o the real

Lebih terperinci

BAB III TAKSIRAN PROPORSI POPULASI JIKA TERJADI NONRESPON. Dalam bab ini akan dibahas penaksiran proporsi populasi jika terjadi

BAB III TAKSIRAN PROPORSI POPULASI JIKA TERJADI NONRESPON. Dalam bab ini akan dibahas penaksiran proporsi populasi jika terjadi BAB III TAKSIRA PROPORSI POPULASI JIKA TERJADI ORESPO Dalam bab ii aa dibaas peasira proporsi populasi jia terjadi orespo da dilaua allba sebaya t ali. Selai itu, juga aa dibaas peetua uura sampel yag

Lebih terperinci

PERBANDINGAN PENAKSIR REGRESI LINIER SEDERHANA PADA SAMPLING BERPERINGKAT, SAMPLING EKSTRIM BERPERINGKAT DAN SAMPLING MEDIAN BERPERINGKAT

PERBANDINGAN PENAKSIR REGRESI LINIER SEDERHANA PADA SAMPLING BERPERINGKAT, SAMPLING EKSTRIM BERPERINGKAT DAN SAMPLING MEDIAN BERPERINGKAT PBANDINGAN PENAKSIR REGRESI LINI SEDHANA PADA SAMPLING BPINGKAT, SAMPLING EKSTRIM BPINGKAT DAN SAMPLING MEDIAN BPINGKAT E. W. Aitoag *, Haiso, R. Efedi Mahasiswi Pogam S Matematika Dose Juusa Matematika

Lebih terperinci

UNIVERSITAS GUNADARMA POLA, BARISAN DAN DERET BILANGAN BAHAN AJAR. Oleh : Muhammad Imron H. Modul Barisan dan Deret Hal. 1

UNIVERSITAS GUNADARMA POLA, BARISAN DAN DERET BILANGAN BAHAN AJAR. Oleh : Muhammad Imron H. Modul Barisan dan Deret Hal. 1 BAHAN AJAR POLA, BARISAN DAN DERET BILANGAN Oleh : Muhammad Imo H 0 Modul Baisa da Deet Hal. BARISAN DAN DERET A. POLA BILANGAN. Pegetia Baisa Bilaga Baisa bilaga adalah uuta bilaga-bilaga dega atua tetetu.

Lebih terperinci

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas II. TINJAUAN PUSTAKA 2.1 Ruag Vektor Defiisi 2.1.1 (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da (F,,. ) lapaga dega eleme idetitas 1. V disebut ruag vektor (vector space) atas F jika ada operasi

Lebih terperinci

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Fugsi Kompleks (Pertemua XXVII - XXX) Dr. AZ Jurusa Tekik Sipil Fakultas Tekik Uiversitas Brawijaya Pedahulua Persamaa x + 1 = 0 tidak memiliki akar dalam himpua bilaga real. Pertayaaya,

Lebih terperinci

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real:

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real: BARISAN TAK HINGGA Secara umum, suatu barisa dapat diyataka sebagai susua terurut dari bilaga-bilaga real: u 1, u 2, u 3, Barisa tak higga merupaka suatu fugsi dega domai berupa himpua bilaga bulat positif

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang Masalah

BAB I PENDAHULUAN. A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakag Masalah Struktur alabar adalah suatu himpua yag di dalamya didefiisika suatu operasi bier yag memeuhi aksioma-aksioma tertetu. Gelaggag ( Rig ) merupaka suatu struktur

Lebih terperinci

Karakterisasi Produk Tensor l ( Δ) l. Muslim Ansori

Karakterisasi Produk Tensor l ( Δ) l. Muslim Ansori Ruag Basa Sesh ( Δ ),< < da Bebeaa Pemasaaha Kaatesas Podu Teso ( Δ) ( Δ) Musm Aso Juusa Matemata, FMIPA, Uvestas Lamug J. Soemat Bodoegoo No. Bada Lamug 3545 E-ma: asomath@ahoo.com ABSTRACT I ths ae we

Lebih terperinci

Analisis regresi linear ganda bertujuan untuk mencari bentuk hubungan linear antara satu variabel terikat Y dan k variabel bebas X1, X2, X3,..., Xk.

Analisis regresi linear ganda bertujuan untuk mencari bentuk hubungan linear antara satu variabel terikat Y dan k variabel bebas X1, X2, X3,..., Xk. EGESI DAN KOELASI LINEA GANDA Aalisis egesi liea gada etujua utu mecai etu huuga liea ataa satu vaiael teiat da vaiael eas,, 3,...,. Meetua pesamaa egesi liea gada Pesamaa egesi pada da adalah Dega metode

Lebih terperinci

a = suku pertama (U 1 ) n = banyaknya suku b = beda/selisih = U 2 U 1 = U 3 U 2

a = suku pertama (U 1 ) n = banyaknya suku b = beda/selisih = U 2 U 1 = U 3 U 2 BARIAN DAN DERET A. Baisa Baisa adalah uuta bilaga yag memiliki atua tetetu. etiap bilaga pada baisa disebut suku baisa yag dipisahka dega lambag, (koma). Betuk umum baisa:,,,, dega: suku petama suku kedua

Lebih terperinci

Bab 2. Sistem Bilangan Real Aksioma Bilangan Real Misalkan adalah himpunan bilangan real, P himpunan bilangan positif dan fungsi + dan.

Bab 2. Sistem Bilangan Real Aksioma Bilangan Real Misalkan adalah himpunan bilangan real, P himpunan bilangan positif dan fungsi + dan. Bab Sistem Bilaga Real.. Aksioma Bilaga Real Misalka adalah himpua bilaga real, P himpua bilaga positif da fugsi + da. dari ke da asumsika memeuhi aksioma-aksioma berikut: Aksioma Lapaga Utuk semua bilaga

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 5 A II LANDASAN TEORI Pada bab aa dbahas bebeapa teo alaba le yag meduug dalam peuua Teo Peo-Fobeus pada ab III Teo-teo yag aa dbahas beupa subuag vaa, poyeto, des mats, deomposs coe-lpotet, seta om da

Lebih terperinci

BARISAN DAN DERET. a = suku pertama (U 1 ) n = banyaknya suku b = beda/selisih = U 2 U 1 = U 3 U 2

BARISAN DAN DERET. a = suku pertama (U 1 ) n = banyaknya suku b = beda/selisih = U 2 U 1 = U 3 U 2 www.plusido.wodpess.com BARIAN DAN DERET A. Baisa Baisa adalah uuta bilaga yag memiliki atua tetetu. etiap bilaga pada baisa disebut suku baisa yag dipisahka dega lambag, (koma). Betuk umum baisa:,,,,

Lebih terperinci

BAB 6 NOTASI SIGMA, BARISAN DAN DERET

BAB 6 NOTASI SIGMA, BARISAN DAN DERET BAB 6 NOTASI SIGMA, BARISAN DAN DERET A RINGKASAN MATERI. Notasi Sigma Diberia suatu barisa bilaga, a, a,..., a. Lambag deret tersebut, yaitu: a = a + a +... + a a meyataa jumlah suu pertama barisa Sifat-sifat

Lebih terperinci

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b.

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b. Didowload dari ririez.blog.us.ac.id HALAMAN 36 37 5. Dega defiisi limit barisa buktika limit berikut ii : a. lim = 0 lim 1 2 + 3 = 0 > 0 h 1 = 2 + 3 0 = 1 2 + 3 1 2 1 2 1 2 < jadi terbukti bahwa lim =

Lebih terperinci

Perluasan Uji Kruskal Wallis untuk Data Multivariat

Perluasan Uji Kruskal Wallis untuk Data Multivariat Statistia, Vol. No., Mei Perluasa Uji Krusal Wallis utu Data Multivariat TETI SOFIA YANTI Program Studi Statistia, Uiversitas Islam Badug, Jl. Purawarma No. Badug. E-mail: buitet@yahoo.com ABSTAK Adaia

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Itegral adalah salah satu kosep petig dalam Matematika yag dikemukaka pertama kali oleh Isac Newto da Gottfried Wilhelm Leibiz pada akhir abad ke-17. Selajutya

Lebih terperinci

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT Jural Matematika UNAND Vol. 4 No. 1 Hal. 12 22 ISSN : 2303 2910 c Jurusa Matematika FMIPA UNAND SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT ENIVA RAMADANI

Lebih terperinci

TEOREMA WEYL UNTUK OPERATOR HYPONORMAL

TEOREMA WEYL UNTUK OPERATOR HYPONORMAL Jural UJMC, Volume 3, Nomor, Hal. - 6 pissn : 460-3333 eissn : 579-907X TEOREMA WEYL UNTUK OPERATOR HYPONORMAL Guawa Uiversitas Muhammadiyah Purwokerto, gu.oge@gmail.com Abstract This paper aims at describig

Lebih terperinci

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0.

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0. PROGRAM STUDI PENDIDIKAN MATEMATIKA FKIP UNMUH PONOROGO SOAL UJIAN TENGAH SEMESTER GENAP TA 03/04 Mata Ujia : Aalisis Real Tipe Soal : REGULER Dose : Dr. Jula HERNADI Waktu : 90 meit Hari, Taggal : Selasa,

Lebih terperinci

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B.

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B. TUGAS ANALISIS REAL LANJUT NOVEMBER 207 () (a) Jika b > 0, B > 0, da a b < A, buktika ab < ba. Kemudia buktika B a b < a + A b + B < A B. (b) Buktika [ 2 (a + b)] 2 2 (a2 + b 2 ). Kemudia tujukka bahwa

Lebih terperinci

FUZZY QUANTIFICATION THEORY I UNTUK ANALISIS HUBUNGAN ANTARA PENILAIAN KINERJA DOSEN OLEH MAHASISWA, KEHADIRAN DOSEN, DAN NILAI KELULUSAN MAHASISWA

FUZZY QUANTIFICATION THEORY I UNTUK ANALISIS HUBUNGAN ANTARA PENILAIAN KINERJA DOSEN OLEH MAHASISWA, KEHADIRAN DOSEN, DAN NILAI KELULUSAN MAHASISWA edia Ifomatia, Vol., No., Jui 004, -0 ISSN: 0854-4743 FUZZY QUANTIFICATION THEORY I UNTUK ANAISIS HUBUNGAN ANTARA PENIAIAN KINERJA DOSEN OEH AHASISWA, KEHADIRAN DOSEN, DAN NIAI KEUUSAN AHASISWA Si Kusumadewi

Lebih terperinci

Suatu Kondisi Buka Pada Varieti Representasi dari Quiver. An Open Condition on Variety of Quiver Representation

Suatu Kondisi Buka Pada Varieti Representasi dari Quiver. An Open Condition on Variety of Quiver Representation Jual Matematia & Sais, Agustus 24, Vol 9 Nomo 2 Suatu Koisi Bua Paa Vaieti Repesetasi ai uive Damaji Kelompo Keilmua Aljaba Faultas Matematia a Ilmu Pegetahua Alam, Istitut Teologi Baug, Baug e-mail: amaji@stuetsitbaci

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2016/2017 3 Februari 2017 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg Batas

Lebih terperinci

PROSIDING ISSN:

PROSIDING ISSN: PROSIDING ISSN: 5-656 OPTIMISASI BERKENDALA MENGGUNAKAN METODE GRADIEN TERPROYEKSI Nida Sri Uami Uiversias Muhammadiyah Suraara idaruwiyai@gmailcom ABSTRAK Dalam ulisa ii dibahas eag meode gradie erproyesi

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia Himpua Suatu himpua atau gugus adalah merupaka sekumpula obyek. Pada umumya aggota dari gugus tersebut memiliki suatu sifat yag sama. Suatu himpua bagia atau aak gugus merupaka sekumpula obyek yag aggotaya

Lebih terperinci

SOLUSI PERSAMAAN DIFERENSIAL BOLTZMANN LINEAR. Agus Sugandha

SOLUSI PERSAMAAN DIFERENSIAL BOLTZMANN LINEAR. Agus Sugandha JMP : Volume Nomor 2, Oober 2009 SOUSI PERSAMAAN DIFERENSIA BOTZMANN INEAR Agus Sugadha Faulas Sais da Tei, Uiversias Jederal Soedirma Purwoero, Idoesia Email : agussugadha@ymail.com ABSTRACT. I his research,

Lebih terperinci

Sinyal dan Sistem Waktu Diskrit ET 3005 Pengolahan Sinyal Waktu Diskrit EL 5155 Pengolahan Sinyal Waktu Diskrit

Sinyal dan Sistem Waktu Diskrit ET 3005 Pengolahan Sinyal Waktu Diskrit EL 5155 Pengolahan Sinyal Waktu Diskrit Siyal da Sistem Watu Disrit ET 35 Pegolaha Siyal Watu Disrit EL 5155 Pegolaha Siyal Watu Disrit Effria Yati Hamid 1 2 Siyal da Sistem Watu Disrit 2.1 Siyal Watu Disrit 2.1.1 Pegertia Siyal Watu Disrit

Lebih terperinci

Kalkulus Rekayasa Hayati DERET

Kalkulus Rekayasa Hayati DERET Kalkulus Rekayasa Hayati DERET 1 Isi Bab Pedahulua Barisa tak-higga Deret tak-higga Deret Positif : Uji kekovergea Deret Gati Tada Deret Pagkat Deret Taylor da Maclauri 2 Kompetesi Dasar Setelah megikuti

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 6 No.1 Juni 2012: 9-16 KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC

Jurnal Matematika Murni dan Terapan Vol. 6 No.1 Juni 2012: 9-16 KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC Jural Matematika Muri da Teraa Vol. 6 No.1 Jui 01: 9-16 KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC Muhammad Ahsar Karim 1 Faisal Yui Yulida 3 [1,,3] PS Matematika FMIPA Uiversitas

Lebih terperinci

Penulis: Penilai: Editor: Ilustrator: Dra. Puji Iryanti, M.Sc. Ed. Al. Krismanto, M.Sc. Sri Purnama Surya, S.Pd, M.Si. Fadjar N. Hidayat, S.Si.,M.Ed.

Penulis: Penilai: Editor: Ilustrator: Dra. Puji Iryanti, M.Sc. Ed. Al. Krismanto, M.Sc. Sri Purnama Surya, S.Pd, M.Si. Fadjar N. Hidayat, S.Si.,M.Ed. PAKET FASILITASI PEMBERDAYAAN KKG/MGMP MATEMATIKA Pembelajara Barisa, Deret Bilaga da Notasi Sigma di SMA Peulis: Dra. Puji Iryati, M.Sc. Ed. Peilai: Al. Krismato, M.Sc. Editor: Sri Purama Surya, S.Pd,

Lebih terperinci

BAB III PENAKSIR DERET FOURIER. Dalam statistika, penaksir adalah sebuah statistik (fungsi dari data sampel

BAB III PENAKSIR DERET FOURIER. Dalam statistika, penaksir adalah sebuah statistik (fungsi dari data sampel BAB III PENAKSIR DERET FOURIER 3. Peaksi Dalam saisika, peaksi adalah sebuah saisik (fugsi dai daa sampel obsevasi) yag diguaka uuk meaksi paamee populasi yag idak dikeahui (esimad) aau fugsi yag memeaka

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakag Salah satu pera da fugsi statistik dalam ilmu pegetahua adalah sebagai. alat aalisis da iterpretasi data kuatitatif ilmu pegetahua, sehigga didapatka suatu kesimpula

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFERENSIAL LANE-EMDEN MENGGUNAKAN METODE TRANSFORMASI DIFERENSIAL

PENYELESAIAN PERSAMAAN DIFERENSIAL LANE-EMDEN MENGGUNAKAN METODE TRANSFORMASI DIFERENSIAL PENYELESAIAN PERSAMAAN DIFERENSIAL LANE-EMDEN MENGGUNAKAN METODE TRANSFORMASI DIFERENSIAL Ahma Sya roi, M Natsir, Eag Lily E-mail: Arolativa@yahoocom Mahasiswa Program S Matematia Dose Jurusa Matematia

Lebih terperinci

BARISAN, (1 p< ) Aniswita 1

BARISAN, (1 p< ) Aniswita 1 βeta -ISSN: 85-5893 e-issn: 54-458 Vol 6 No Mei 3 Hal 46-57 βeta3 TRMA NVRGNAN FUNGSI TRINTGRAL HNSTC- URZWIL SRNTA AN FUNGSI BRSIFAT LCALLY SMALL RIMANN SUMS LSRS ARI RUANG UCLI RUANG BARISAN < Aiswita

Lebih terperinci

BARISAN DAN DERET. Bentuk umum suku ke-n barisan aritmatika U n = a + (n 1)b dengan

BARISAN DAN DERET. Bentuk umum suku ke-n barisan aritmatika U n = a + (n 1)b dengan iap N Matematika BARIAN DAN DERET A. Baisa Baisa adalah uuta bilaga yag memiliki atua tetetu. etiap bilaga pada baisa disebut suku baisa yag dipisahka dega lambag, (koma). Betuk umum baisa:,,,, dega: suku

Lebih terperinci

Batas Bilangan Ajaib Pada Graph Caterpillar

Batas Bilangan Ajaib Pada Graph Caterpillar J. Math. ad Its Appl. ISSN: 189-605X Vol. 3, No., Nov 006, 49 56 Batas Bilaga Ajaib Pada Graph Caterpillar Chairul Imro Jurusa Matematika FMIPA ITS Surabaya imro-its@matematika.its.ac.id Abstrak Jika suatu

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat

Lebih terperinci

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi 6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0

Lebih terperinci

BAB VIII KONSEP DASAR PROBABILITAS

BAB VIII KONSEP DASAR PROBABILITAS BAB VIII KONSEP DASAR PROBABILITAS 1.1. Pedahulua Dalam pertemua ii Ada aka mempelajari beberapa padaga tetag permutasi da kombiasi, fugsi da metode perhituga probabilitas, da meghitug probabilitas. Pada

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 BAB XII. SUKU BANYAK A = a Pegertia: f(x) = a x + a x + a x + + a x +a adalah suku bayak (poliom) dega : - a, a, a,.,a, a, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci