Bab 5 Sinyal dan Sistem Waktu Diskrit. Oleh: Tri Budi Santoso Laboratorium Sinyal, EEPIS-ITS

Ukuran: px
Mulai penontonan dengan halaman:

Download "Bab 5 Sinyal dan Sistem Waktu Diskrit. Oleh: Tri Budi Santoso Laboratorium Sinyal, EEPIS-ITS"

Transkripsi

1 Bab 5 Siyal da Sistem Watu Disrit Oleh: Tri Budi Satoso Laboratorium Siyal, EEPIS-ITS

2 Materi: Represetasi matemati pada siyal watu disrit, domai watu da freuesi pada suatu siyal watu disrit, trasformasi pada siyal watu disrit Tujua: Siswa mampu meyelesaia osep dasar trasformasi Fourier Watu Disrit Siswa mampu membawa persoala dari osep siyal watu otiyu mejadi siyal watu disrit.

3 Sub Bab: 5.. Trasformasi Fourier Watu Kotiyu 5.. Discrete-Time Fourier Series DTFT 5.3. Discrete-Fourier Trasform DFT 5.4. Komputasi DFT 5.5. Komputasi Iverse DFT 5.6. Iterpretasi Hasil DFT 5.7. Hubuga DFT- Trasformasi Fourier

4 5.. Cotiues Time Fourier Trasform Siyal periodi watu otiyu ft dega periode T diyataa sebagai betu weighted sum pada comple epoetial: f jω t F e t utu semua ilai t dimaa: F oefisie-oefisie espasi F T T f t e jω tdt Ω freuesi fudametal Ω π/t

5 Lajuta. Persamaa dieal sebagai deret Fourier espoesial omple Dalam termiologi deret geometri serigali diyataa sebagai f t a cos Ω t + b Ω t a + si T a f t dt T F 3 a T T f tcos Ω dt F + F 4 b T f tsi Ωdt T F F j 5

6 5.. Discrete-Time Fourier Series DTFT Utu siyal periodi watu disrit dega periode. Kita eal freuesi digital ~ π. Espasiya diyataa dalam: X e jω 6 X e jω 7 Persamaa 6 da 7 dieal sebagai pasaga Discrete Fourier Series DFS Dalam hal ii ω freuesi fudametal π/samplig rate π/

7 Lajuta. Utu geap: Utu gajil: A B A A π π π cos si cos / / / / si cos B A A π π.8a.8b

8 Lajuta Utu Geap: A /,,..., cos utu A π /,,..., si utu B π /,,..., cos utu A π 9

9 5.3. Discrete-Fourier Trasform DFT Bisa diguaa utu siyal periodi da o periodi Dimaa ω π/ Betu Iversya: Dalam termiologi W e -jπ/ diyataa: e X jω e X jω W X W X

10 Sifat-Sifat DFT Secara umum sama dega sifat Trasformasi Fourier watu otiyu. Tetapi durasi utu dibatasi s/d -. Maa setelah -, aa berputar embali pada ilai. Dari beberapa sifat tsb, ita bahas 4 saja, yaitu: - Sifat Liearitas - Sifat Circular Traslatio - Sifat Peralia dega Espoesial - Sifat Circular Covolutio

11 a. Sifat Liearitas DFT[a ] a X, DFT[a ] a X Maa: DFT[a + a ] a DFT[ ] + a DFT[ ] a X + a X..

12 b. Sifat Circular Traslatio Pada asus traslasi liear - merupaa betu pergesera e aa. Tetapi pada asus siyal o-periodi s/d -, maa pergesera terbatas sampai dega -. Setelah itu embali e Modulo, maa betuya mejadi [,,, -, -] -mod [-,,, -3, -] - mod [-, - +,., - -] -mod [,,, -, -] DFT[-mod ]W m X 3

13 c. Sifat Peralia dega Espoesial Jia DFT[] X Maa DFT[W -l ] X-l mod..4

14 d. Sifat Circular Covolutio Kovolusi Liear: Kovolusi Circular: atau [ ] [ ] [ ] { } F F F e X e X F j j ω ω mod mod Dimaa -mod merupaa versi ter-reflesi da ter-traslasi geser pada.5

15 Cotoh : Sebuah operasi ovolusi circular dibetu dari dua ompoe,,, da,,,3. Dapata hasil ovolusi Gambar 5.. Cotoh asus ovolusi circular

16 Peyelesaia: Step :,,, -mod 4, 3,, y 6 4 Step 3:,,, -mod 4,,, y 4 Step :,,, -mod 4,, 3, y 6 7 Step 4:,,, 3-mod 4 3,,, y Step 5:,,, -mod 4, 3,, y5 6 4 Terjadi perulaga hasil.

17 Hasilya: y 4,7,4,9 y Gambar 5.. Hasil ovolusi circular { DFT [ ] DFT [ ]} IDFT.6

18 5.4. Computatio of DFT X + jumlaha { } { Re[ ] + Im[ ]} Re[ ] + Im[ ] j W j W j W Re ;,,..., [ ] [ ] Re W Im Re [ ] Im[ ] W [ ] [ ] Im W + Im peralia 7 [ ] [ ] Re W

19 5.5. Computatio of Iverse DFT X W ;,,...,.8

20 5.6. Iterpretatio of DFT Result versi disrit tersampel pad asiyal aalog a t Freuesi ide tapa satua Freuesi digital radiat ω π/ Freuesi ide tapa satua Ω π/t..9

21 Cotoh Dapata trasformasi Fourier dari siyal cosius yag memilii periode esa di dalam widow yag terdapat pada sampel. Tetapa seperti pada Gambar dibawah yag direpresetasia sebagai t 3cosπt, pada tt. Utu suatu ~ 99, da T,. t t Gambar 5.3. Cotoh siyal sius watu otiyu

22 Peyelesaia Didapata seue disrit sebagai 3cosπT 3cos.π utu,,.,99. Perlu dicatat bahwa merupaa siyal cosius sepajag dua periode. Gambar 5.4. Cotoh siyal sius watu disrit

23 Bagia real X R da imajier X I dapat dihitug dari persamaa. X e jω X 3cos,π cos ω j ω si Hasilya seperti pada gambar beriut

24 Bagia Real X R Ide Freq Digital rad/det m ω Freq Digital rad,π πm/ π Ω Freq Aalog rad/det π mπ π Gambar 5.5. Bagia real hasil trasformasi siyal sius

25 Bagia Imagier Semua berilai, atau medeati Gambar 5.6. Bagia imajier hasil trasformasi siyal sius

26 Keteraga Perhatia pada bagia Real, ada dua ilai mucul yaitu pada ide freuesi da Masig-masig dega ilai 3. Ii merepresetasia A/, dimaa: -A3 amplitudo - 3 jumlah sampel yag diguaa Karea strutur samplig, freuesi ide beraita secara tepat dega peuh pada gelombag cosius.

27 Cotoh 3 Gambara magitudo pada DFT 64 titi pada /3 si,π. Dega ilai,,,63 Gambar 5.7. Siyal sius disrit pada cotoh 3

28 Peyelesaia X X R + X I Magitudoya: X X X X X R R + Seperti terlihat pada gambar sebelumya, dega persamaa tersebut terjadi 6,4 gelombag sius. Jia gelombag sius tepat pada periode peuh, X aa memilii ilai A/, sehigga: A 3 64 Tetapi teryata hasilya sediit berbeda, yaitu ilai masimum terjadi pada 6, da berilai <. I I

29 6 Gambar 5.7. Hasil trasformasi fourier siyal sius disrit cotoh 3

30 5.7. Hubuga DFT-Fourier Trasform Trasformasi Fourier Discrete Fourier Trasform j j j e e e X ω ω ω,,..., / e X j π

31 Siyal Tersampel da Trasformasi Fourierya Gambar 5.8. Siyal persegi tersampel atas da hasil trasformasi Fourierya bawah

32 Zero Paddig 8 titi DFT dega tambaha 4 zero pada Hasil DFT Gambar 5.9. Siyal persegi dega 4 zero paddig atas da hasil trasformasi Fourierya bawah

33 6 titi DFT dega tambaha zero pada Hasil DFT Gambar 5.. Siyal persegi dega zero paddig atas da hasil trasformasi Fourierya bawah

34 64 titi DFT dega tambaha 6 zero pada Hasil DFT Gambar 5.. Siyal persegi dega 6 zero paddig atas da hasil trasformasi Fourierya bawah

35 Cotoh Lai DFT pada Siyal Sius /64*si*pi*/64 + /3*si*pi*5*/64 Gambar 5.. Siyal sius beragam freuesi atas da hasil trasformasi Fourierya bawah

36 Soal Latiha. Dapata betu trasformasi Fourier DFT-poit utu siyal watu disrit beriut ii: a [] ; ;,,...,9 c [] ; ; 4 4 [] ;,,..., 9 b d jπ 5 [ ] e ;,,,..., 9. Dapata betu ivers Trasformasi Fourier IDFT -poit utu siyal beriut ii: a X a [ ] ; ;,,...9 [ ] ;,,,..., 9 b X b c X c [] ; ; 3,7,,,4,5,6,8,9 [ ] cos / 5 ;,,,..., 9 d X d π

37 3. Sebuah siyal watu disrit diyataa dalam betu omple beriut ii j π / [] e ;,,,... Dapata betu trasformasi Fourier watu disrit DFT dari [] sebaya -titi 4. Sebuah siyal watu disrit tersusu dari fugsi siusioda: []cosπ/ Dapata betuya dalam domai freuesi -titi 5. Buatlah sebuah program visualisasi dega Matlab utu domai watu da domai freuesi utu siyal beriut ii: a [],,,,,,,,,,,,,, b [],,,,,,,,,,,,,,

38 6. Buat visualisasi siyal domai watu & freuesi siyal ii: a.,,,,,,,, b.,,,,,,,., 6 titi 3 titi c.,,,,,,,, d.,,,,,,,., 64 titi 8 titi 7. Buat visualisasi domai watu da domai freuesi utu siyal: a [] sicπ/ ; -3,-9,..-,,,..,9,3 b [ ] ; ; ; 3, 9,...,,,,...,9,3

BAB 2 LANDASAN TEORI. lebar pita sinyal tersebut. Pada kebanyakan aplikasi, termasuk kamera digital video dan

BAB 2 LANDASAN TEORI. lebar pita sinyal tersebut. Pada kebanyakan aplikasi, termasuk kamera digital video dan BAB LADASA TEORI Teorema Shao-yquist meyataa agar tida ada iformasi yag hilag etia pecuplia siyal, maa ecepata pecuplia harus miimal dua ali dari lebar pita siyal tersebut. Pada ebayaa apliasi, termasu

Lebih terperinci

SINYAL WAKTU Pengolahan Sinyal Digital Minggu II

SINYAL WAKTU Pengolahan Sinyal Digital Minggu II SINYAL WAKTU Pegolaha Siyal Digital Miggu II 24 Goodrich, Tamassia PENDAHULUAN Defiisi Siyal x(t) Fugsi dari variabel bebas yag memiliki ilai real/skalar yag meyampaika iformasi tetag keadaa atau ligkuga

Lebih terperinci

Deret Fourier. Modul 1 PENDAHULUAN

Deret Fourier. Modul 1 PENDAHULUAN Modul Deret Fourier Prof. Dr. Bambag Soedijoo P PENDAHULUAN ada modul ii dibahas masalah ekspasi deret Fourier Sius osius utuk suatu fugsi periodik ataupu yag diaggap periodik, da dibahas pula trasformasi

Lebih terperinci

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu

Lebih terperinci

BAB 6 NOTASI SIGMA, BARISAN DAN DERET

BAB 6 NOTASI SIGMA, BARISAN DAN DERET BAB 6 NOTASI SIGMA, BARISAN DAN DERET A RINGKASAN MATERI. Notasi Sigma Diberia suatu barisa bilaga, a, a,..., a. Lambag deret tersebut, yaitu: a = a + a +... + a a meyataa jumlah suu pertama barisa Sifat-sifat

Lebih terperinci

C (z m) = C + C (z m) + C (z m) +...

C (z m) = C + C (z m) + C (z m) +... 4.. DERET PANGKAT Deret pagkat dari (x-m) merupaka deret tak higga yag betuk umumya adalah : i= i i C (z m) = C + C (z m) + C (z m) +... ( 4- ) C, C,... = kostata disebut koefisie deret m = kostata disebut

Lebih terperinci

MACAM-MACAM TEKNIK MEMBILANG

MACAM-MACAM TEKNIK MEMBILANG 0 MACAM-MACAM TEKNIK MEMBILANG ATURAN PERKALIAN Beriut ii diberia sebuah dalil tetag peetua baya susua yag palig sederhaa dalam suatu permasalaha yag beraita dega peluag. Dalil 2.1: ATURAN PERKALIAN SECARA

Lebih terperinci

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari A ke B kita meuliska f : A

Lebih terperinci

BAHAN AJAR DIKLAT GURU MATEMATIKA

BAHAN AJAR DIKLAT GURU MATEMATIKA BAHAN AJAR DIKLAT GURU MATEMATIKA DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN 005 DAFTAR ISI Kata Pegatar.. i Daftar Isi...

Lebih terperinci

7. Perbaikan Kualitas Citra

7. Perbaikan Kualitas Citra 7. Perbaia Kualitas Citra Perbaia ualitas citra (image ehacemet) merupaa salah satu proses awal dalam pegolaha citra (image preprocessig). Perbaia ualitas diperlua area serigali citra yag diadia obe pembahasa

Lebih terperinci

3. Integral (3) (Integral Tentu)

3. Integral (3) (Integral Tentu) Darublic www.darublic.com. Itegral () (Itegral Tetu).. Luas Sebagai Suatu Itegral. Itegral Tetu Itegral tetu meruaa itegral ag batas-batas itegrasia jelas. Kose dasar dari itegral tertetu adalah luas bidag

Lebih terperinci

3. Integral (3) (Integral Tentu)

3. Integral (3) (Integral Tentu) Darublic Noember www.darublic.com. Itegral () (Itegral Tetu).. Luas Sebagai Suatu Itegral. Itegral Tetu Itegral tetu meruaa itegral ag batas-batas itegrasia jelas. Kose dasar dari itegral tertetu adalah

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu

Lebih terperinci

Peluang Suatu Kejadian, Kaidah Penjumlahan, Peluang Bersyarat, Kaidah Perkalian dan Kaidah Baiyes

Peluang Suatu Kejadian, Kaidah Penjumlahan, Peluang Bersyarat, Kaidah Perkalian dan Kaidah Baiyes eluag uatu Kejadia, Kaidah ejumlaha, eluag ersyarat, Kaidah eralia da Kaidah aiyes.eluag uatu Kejadia Defiisi : eluag suatu ejadia adalah jumlah peluag semua titi otoh dalam. Dega demiia : 0 (), ( ) =

Lebih terperinci

PENGHALUSAN DERAU PADA PENERIMAAN SINYAL VIDEO TELEVISI BERWARNA MENGGUNAKAN METODE WAVELET

PENGHALUSAN DERAU PADA PENERIMAAN SINYAL VIDEO TELEVISI BERWARNA MENGGUNAKAN METODE WAVELET PENGHALUSAN DERAU PADA PENERIMAAN SINYAL VIDEO TELEVISI BERWARNA MENGGUNAKAN METODE WAVELET Bledug Kusuma P. * Fathul Qodir *, Nurul Qhomariyah ** * Tei Eletro FT Uiversitas Muhammadiyah Yogyaarta Jala

Lebih terperinci

BAB 4 LIMIT FUNGSI Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah

BAB 4 LIMIT FUNGSI Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah BAB LIMIT FUNGSI Stadar Kompetesi Megguaka kosep it ugsi da turua ugsi dalam pemecaha masalah Kompetesi Dasar. Meghitug it ugsi aljabar sederhaa di suatu titik. Megguaka siat it ugsi utuk meghitug betuk

Lebih terperinci

Barisan Dan Deret Arimatika

Barisan Dan Deret Arimatika Barisa Da Deret Arimatika A. Barisa Aritmatika Niko etera memiliki sebuah peggaris ukura 0 cm. Ia megamati bilaga-bilaga pada peggarisya ii. Bilaga-bilaga tersebut beruruta 0, 1,, 3,, 0. etiap bilaga beruruta

Lebih terperinci

Solusi Numerik PDP. ( Metode Beda Hingga ) December 9, 2013. Solusi Numerik PDP

Solusi Numerik PDP. ( Metode Beda Hingga ) December 9, 2013. Solusi Numerik PDP ( Metode Beda Higga ) December 9, 2013 Sebuah persamaa differesial apabila didiskritisasi dega metode beda higga aka mejadi sebuah persamaa beda. Jika persamaa differesial parsial mempuyai solusi eksak

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 010 TIM OLIMPIADE MATEMATIKA INDONESIA 0 Prestasi itu diraih buka didapat!!! SOLUSI SOAL Bidag Matematika Disusu oleh : Eddy Hermato, ST Olimpiade Matematika Tk

Lebih terperinci

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1 BARISAN DAN DERET 05//06 Matematika Tekik BARISAN Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 05//06 Matematika Tekik Barisa Tak Higga Secara sederhaa, barisa merupaka

Lebih terperinci

theresiaveni.wordpress.com NAMA : KELAS :

theresiaveni.wordpress.com NAMA : KELAS : theresiaveiwordpresscom NAMA : KELAS : 1 theresiaveiwordpresscom BARISAN DAN DERET Barisa da deret dapat diguaka utuk memudahka peyelesaia perhituga, misalya buga bak, keaika produksi, da laba/rugi suatu

Lebih terperinci

Bab 7 Penyelesaian Persamaan Differensial

Bab 7 Penyelesaian Persamaan Differensial Bab 7 Peelesaia Persamaa Differesial Persamaa differesial merupaka persamaa ag meghubugka suatu besara dega perubahaa. Persamaa differesial diataka sebagai persamaa ag megadug suatu besara da differesiala

Lebih terperinci

BAB V. INTEGRAL. Lambang anti-turunan (integral tak-tentu) oleh Leibniz adalah... dx, sehingga

BAB V. INTEGRAL. Lambang anti-turunan (integral tak-tentu) oleh Leibniz adalah... dx, sehingga BAB V. INTEGRAL 5.. Ati Turua (Itegral Tak-tetu) Defiisi: F suatu ati-turua f pada selag I jika da haya jika D F() = f() pada I, yaki F () = f() utuk semua dalam I. (Jika suatu titik ujug I, F () haya

Lebih terperinci

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR Dose Pegampu : Darmadi, S.Si, M.Pd Disusu : Kelas 5A / Kelompok 5 : Dia Dwi Rahayu (084. 06) Hefetamala (084. 4) Khoiril Haafi (084. 70) Liaatul Nihayah (084. 74)

Lebih terperinci

MODUL BARISAN DAN DERET

MODUL BARISAN DAN DERET MODUL BARISAN DAN DERET KELAS XII. IPS SEMESTER I Oleh : Drs. Pudjul Prijoo ( http://vidyagata.wordpress.co ) SMA NEGERI 6 Jala Mayje Sugoo 58 Malag Telp./Fax : (034) 75036 E-Mail : sa6_alag@yahoo.co.id

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI. mandiri jika tidak mengandung t secara eksplisit di dalamnya. (Kreyszig, 1983)

I PENDAHULUAN II LANDASAN TEORI. mandiri jika tidak mengandung t secara eksplisit di dalamnya. (Kreyszig, 1983) I PENDAHULUAN Latar Belaag Permasalaha ebiaa pemaea ia yag memberia eutuga masimum da berelauta (tida teradi epuaha dari populasi ia yag dipae) adalah hal yag sagat petig bagi idustri periaa Para ilmuwa

Lebih terperinci

GRAFIKA

GRAFIKA 6 5 7 3 6 3 3 GRAFIKA 3 6 57 08 0 9 5 9 385 946 5 3 30 0 8 9 5 9 3 85 946 5 ANALISA REAL Utu uliah (pegatar) aalisa real yag dilegapi dega program MATLAB Dr. H.A. Parhusip G R A F I K A Peerbit Tisara

Lebih terperinci

Bab 8 Teknik Pengintegralan

Bab 8 Teknik Pengintegralan Catata Kuliah MA3 Kalkulus Elemeter II Oki Neswa,Ph.D., Departeme Matematika-ITB Bab 8 Tekik Pegitegrala Metoda Substitusi Itegral Fugsi Trigoometrik Substitusi Merasioalka Itegral Parsial Itegral Fugsi

Lebih terperinci

Cara Pengisian Pada File Excel

Cara Pengisian Pada File Excel Cara Pegisia Pada ile Excel Pada tabel realisasi da keuaga ias Pekerjaa Umum Bia Marga Propisi Jawa Timur ii terdiri dari beberapa kolom seperti dibawah ii: atker Tahu Bula Adapu cara pegisia dari masig-masig

Lebih terperinci

: XII (Dua Belas) Semua Program Studi. : Gisoesilo Abudi, S.Pd

: XII (Dua Belas) Semua Program Studi. : Gisoesilo Abudi, S.Pd R e f r e s h Program Diklat K e l a s M a t e r i Pegajar : M A T E M A T I K A : XII (Dua Belas) Semua Program Studi : S t a t i s t i k a : Gisoesilo Abudi, S.Pd Kajia Materi Peyampaia Data Diagram

Lebih terperinci

Perluasan Uji Kruskal Wallis untuk Data Multivariat

Perluasan Uji Kruskal Wallis untuk Data Multivariat Statistia, Vol. No., Mei Perluasa Uji Krusal Wallis utu Data Multivariat TETI SOFIA YANTI Program Studi Statistia, Uiversitas Islam Badug, Jl. Purawarma No. Badug. E-mail: buitet@yahoo.com ABSTAK Adaia

Lebih terperinci

PENGEDITAN DETIL KURVA DENGAN METODE CURVE ANALOGIES MENGGUNAKAN PUSTAKA KURVA MULTIRESOLUSI

PENGEDITAN DETIL KURVA DENGAN METODE CURVE ANALOGIES MENGGUNAKAN PUSTAKA KURVA MULTIRESOLUSI PENGEDITAN DETIL KURVA DENGAN METODE CURVE ANALOGIES MENGGUNAKAN PUSTAKA KURVA MULTIRESOLUSI Nai Suciati, Rizy Yuiar Hau Jurusa Tei Iformatia, Faultas Teologi Iformasi, Istitut Teologi Sepuluh Nopember

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakag Dalam keadaa dimaa meghadapi persoala program liier yag besar, maka aka berusaha utuk mecari peyelesaia optimal dega megguaka algoritma komputasi, seperti algoritma

Lebih terperinci

Gambar 1. Partisi P dari empat persegi panjang R = [a, b] x [c, d] adalah dua himpunan i i

Gambar 1. Partisi P dari empat persegi panjang R = [a, b] x [c, d] adalah dua himpunan i i INTEGAL LIPAT. Itegral Lipat Dua dalam Koordiat Kartesius Pada bagia ii, dipelajari itegral lipat dua dalam. Misalka diketahui dua iterval tertutup [a, b] da [c, d]. Hasil kali kartesius dari kedua iterval

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan Istitut Tekologi Sepuluh Nopember Surabaya Model Sistem dalam Persamaa Keadaa Pegatar Materi Cotoh Soal Rigkasa Latiha Pegatar Materi Cotoh Soal Rigkasa Istilah-istilah Dalam Persamaa Keadaa Aalisis Sistem

Lebih terperinci

5. KARAKTERISTIK RESPON

5. KARAKTERISTIK RESPON 5. ARATERISTI RESPON Adalah ciri-ciri khusus perilaku diamik (spesifikasi performasi) Taggapa (respo) output sistem yag mucul akibat diberikaya suatu siyal masuka tertetu yag khas betukya (disebut sebagai

Lebih terperinci

Barisan Aritmetika dan deret aritmetika

Barisan Aritmetika dan deret aritmetika BARISAN DAN DERET BILANGAN Peyusu: Atmii Dhoruri, MS Kode: Jejag: SMP T/P: / A. Kompetesi yag diharapka. Meetuka suku ke- barisa aritmatika da barisa geometri. Meetuka jumlah suku pertama deret aritmatika

Lebih terperinci

Sudaryatno Sudirham. Distribusi Energi Listrik

Sudaryatno Sudirham. Distribusi Energi Listrik Sudaryato Sudirham Distribusi Eergi Listrik ii BB 3 (dari BB 6 alisis Ragkaia Sistem Teaga) Pembebaa Noliier (alisis Di Kawasa Waktu) Peyediaa eergi elektrik pada umumya dilakuka dega megguaka sumber tegaga

Lebih terperinci

Dalam kehidupan sehari-hari terdapat banyak benda yang bergetar.

Dalam kehidupan sehari-hari terdapat banyak benda yang bergetar. Getara (Vibratio) Dalam kehidupa sehari-hari terdapat bayak beda yag bergetar. Sear gitar yag serig ada maika, Soud system, Garpu tala, Demikia juga rumah ada yag bergetar dasyat higga rusak ketika terjadi

Lebih terperinci

Respon Frekuensi pada FIR Filter. Oleh:Tri Budi Sanrtoso ITS

Respon Frekuensi pada FIR Filter. Oleh:Tri Budi Sanrtoso ITS Rpo Frui pada FIR Filtr Olh:Tri Budi Sartoo Lab Siyal,, EEPIS-ITS ITS 1 Rpo iuoida pada itm FIR Suatu itm FIR diyataa: y[ ] b x[ ] h[ ] x[ ] 0 0 (1 Siyal iput cara umum mrupaa btu ompl dirit x[ ] x[ A

Lebih terperinci

Penyelesaian Persamaan Non Linier

Penyelesaian Persamaan Non Linier Peyelesaia Persamaa No Liier Metode Iterasi Sederhaa Metode Newto Raphso Permasalaha Titik Kritis pada Newto Raphso Metode Secat Metode Numerik Iterasi/NewtoRaphso/Secat - Metode Iterasi Sederhaa- Metode

Lebih terperinci

PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA

PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA Cara Peyajia Data dega Tabel Distribusi Frekuesi Distribusi Frekuesi adalah data yag disusu dalam betuk kelompok baris berdasarka

Lebih terperinci

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu Secara umum persamaa rekursif liier tigkat-k bisa dituliska dalam betuk: dega C 0 0. C 0 x + C 1 x 1 + C 2 x 2 + + C k x k = b, Jika b = 0 maka persamaa rekursif tersebut diamaka persamaa rekursif liier

Lebih terperinci

ANALISIS ALOKASI RUGI TRANSMISI DENGAN METODE Z-BUS

ANALISIS ALOKASI RUGI TRANSMISI DENGAN METODE Z-BUS ANALISIS ALOKASI RUGI TRANSMISI DENGAN METODE Z-BUS Firdaus Dose Jurusa edidia Tei Eletro FT UNM Abstra Sistem teaga listri telah berembag begitu pesat sehigga sistem ariga uga meela biaya rugirugi daya

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang. B. Tujuan dan Sasaran. C. Ruang Lingkup

BAB I PENDAHULUAN. A. Latar Belakang. B. Tujuan dan Sasaran. C. Ruang Lingkup BAB I PENDAHULUAN A. Latar Belaag Kombiatoria mempuyai beberapa aspe, yaitu eumerasi, teori graf, da ofigurasi atau peyusua. Eumerasi membahas peghituga susua berbagai tipe. Sebagai cotoh: (i) meghitug

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

MENGUJI KEMAKNAAN SAMPEL TUNGGAL

MENGUJI KEMAKNAAN SAMPEL TUNGGAL MENGUJI KEMAKNAAN SAMPEL TUNGGAL 1.1 Uji Biomial 1. Uji esesuaia Chi Kuadrat 1.3 Uji Kesesuaia K-S 1.4 Uji Ideedesi Chi Kuadrat 1.5 Uji Pasti Fisher UJI BINOMIAL Meruaa uji roorsi dalam suatu oulasi Poulasi

Lebih terperinci

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas.

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas. 4 D E R E T Kosep deret merupaka kosep matematika yag cukup populer da aplikatif khusuya dalam kasus-kasus yag meyagkut perkembaga da pertumbuha suatu gejala tertetu. Apabila perkembaga atau pertumbuha

Lebih terperinci

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA BAB VI BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { },,,,, adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila,,,..,

Lebih terperinci

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand TEKIK SAMPLIG PCA SEDERHAA Hazmira Yozza Izzati Rahmi HG Jurusa Matematika FMIPA Uad Defiisi : Jika suatu cotoh berukura diambil dari suatu populasi berukura sedemikia rupa sehigga setiap kemugkia cotoh

Lebih terperinci

MODUL 7 TRANSFORMASI FOURIER DISKRIT

MODUL 7 TRANSFORMASI FOURIER DISKRIT MODUL 7 TRANSFORMASI FOURIER DISKRIT I. TUJUAN - Siswa mampu memahami konsep dasar transformasi sinyal awaktu diskrit dan mampu menyusun program simulasinya. II. TEORI DASAR Sebelum kita berbicara tentang

Lebih terperinci

PENYELESAIAN PERSAMAAN GELOMBANG DENGAN METODE D ALEMBERT

PENYELESAIAN PERSAMAAN GELOMBANG DENGAN METODE D ALEMBERT Buleti Ilmiah Math. Stat. da Terapaya (Bimaster) Volume 02, No. 1(2013), hal 1-6. PENYELESAIAN PERSAMAAN GELOMBANG DENGAN METODE D ALEMBERT Demag, Helmi, Evi Noviai INTISARI Permasalaha di bidag tekik

Lebih terperinci

PENJADWALAN JOBS PADA SINGLE MACHINE DENGAN MEMINIMUMKAN VARIANS WAKTU PENYELESAIAN JOBS (Studi Kasus di P.T. XYZ )

PENJADWALAN JOBS PADA SINGLE MACHINE DENGAN MEMINIMUMKAN VARIANS WAKTU PENYELESAIAN JOBS (Studi Kasus di P.T. XYZ ) (Fey Nilawati Kusuma et al.) PENJADWALAN JOBS PADA SINGLE MACHINE DENGAN MEMINIMUMKAN VARIANS WAKTU PENYELESAIAN JOBS (Studi Kasus di P.T. XYZ ) I Gede Agus Widyadaa I Nyoma Sutapa Dose Faultas Teologi

Lebih terperinci

Analisis Rangkaian Listrik Di Kawasan Waktu

Analisis Rangkaian Listrik Di Kawasan Waktu Sudaryao Sudirham Aalisis Ragkaia Lisrik Di Kawasa Waku 3- Sudaryao Sudirham, Aalisis Ragkaia Lisrik () BAB 3 Peryaaa Siyal da Spekrum Siyal Dega mempelajari lajua eag model siyal ii, kia aka memahami

Lebih terperinci

1. Integral (1) Pembahasan yang akan kita lakukan hanya mengenai bentuk persamaan diferensial seperti contoh yang pertama.

1. Integral (1) Pembahasan yang akan kita lakukan hanya mengenai bentuk persamaan diferensial seperti contoh yang pertama. Darublic www.darublic.com 1. Itegral (1) (Macam Itegral, Pedeata Numeri) Sudarato Sudirham Dalam bab sebeluma, ita memelajari salah satu bagia utama alulus, aitu alulus diferesial. Beriut ii ita aa membahas

Lebih terperinci

Kuliah 9 Filter Digital

Kuliah 9 Filter Digital TEKNIK PENGOLAHAN ISYARAT DIGITAL Kuliah 9 Filter Digital Idah Susilawati, S.T.,.Eg. Progra Studi Tei Eletro Progra Studi Tei Iforatia Faultas Tei da Ilu Koputer Uiversitas ercu Buaa Yogaarta 9 Kuliah

Lebih terperinci

MENENTUKAN PENYELESAIAN PERTIDAKSAMAAN DENGAN METODE TITIK PEMECAH. Warsito. Program Studi Matematika FMIPA Universitas Terbuka.

MENENTUKAN PENYELESAIAN PERTIDAKSAMAAN DENGAN METODE TITIK PEMECAH. Warsito. Program Studi Matematika FMIPA Universitas Terbuka. MENENTUKAN PENYELESAIAN PERTIDAKSAMAAN DENGAN METODE TITIK PEMECAH Warsito Progra Studi Mateatika FMIPA Uiversitas Terbuka warsito@ut.ac.id Abstrak Peyelesaia pertidaksaaa ( x- a, a Î R adalah x a (egguaka

Lebih terperinci

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015 RESPONSI STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 015 A. PENYAJIAN DAN PERINGKASAN DATA 1. PENYAJIAN DATA a. Sebutka tekik peyajia data utuk data kualitatif! Diagram kueh, diagram batag, distribusi

Lebih terperinci

BARISAN DAN DERET. Nurdinintya Athari (NDT)

BARISAN DAN DERET. Nurdinintya Athari (NDT) BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga

Lebih terperinci

Kestabilan Rangkaian Tertutup Waktu Kontinu Menggunakan Metode Transformasi Ke Bentuk Kanonik Terkendali

Kestabilan Rangkaian Tertutup Waktu Kontinu Menggunakan Metode Transformasi Ke Bentuk Kanonik Terkendali Jural Tekika ISSN : 285-859 Fakultas Tekik Uiversitas Islam Lamoga Volume No.2 Tahu 29 Kestabila Ragkaia Tertutup Waktu Kotiu Megguaka Metode Trasformasi Ke Betuk Kaoik Terkedali Suhariyato ) Dose Fakultas

Lebih terperinci

MEKANIKA TANAH DASAR DASAR DISTRIBUSI TEGANGAN DALAM TANAH

MEKANIKA TANAH DASAR DASAR DISTRIBUSI TEGANGAN DALAM TANAH MEKANIKA TANAH DASAR DASAR DISTRIBUSI TEGANGAN DALAM TANAH UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bitaro Sektor 7, Bitaro Jaa Tagerag Selata 154 PENDAHULUAN Megapa mempelajari kekuata taah? Keamaa

Lebih terperinci

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan Selag Kepercayaa (Cofidece Iterval) Pegatar Peduga titik (poit estimator) telah dibahas pada kuliah-kuliah sebelumya. Walau statistikawa telah berusaha memperoleh peduga titik yag baik, amu hampir bisa

Lebih terperinci

EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI

EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI Oleh: Sutopo Jurusa Fisika FMIPA UM sutopo@fisika.um.ac.id Ditulis pada sekitar bula Maret 2011. Diuggah pada 3 Desember 2011 PROBLEM Gambar di bawah ii meyataka

Lebih terperinci

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia Himpua Suatu himpua atau gugus adalah merupaka sekumpula obyek. Pada umumya aggota dari gugus tersebut memiliki suatu sifat yag sama. Suatu himpua bagia atau aak gugus merupaka sekumpula obyek yag aggotaya

Lebih terperinci

BARISAN FIBONACCI DAN BILANGAN PHI

BARISAN FIBONACCI DAN BILANGAN PHI BARISAN FIBONACCI DAN BILANGAN PHI Fiboacci Matematikawa terbesar pada abad pertegaha adalah Leoardo dari Pisa, Italia (80 0). Ia lebih dikeal dega ama Fibo-acci. Artiya, aak Boaccio. Meara Pisa yag terkeal

Lebih terperinci

UKURAN TENDENSI SENTRAL

UKURAN TENDENSI SENTRAL BAB 3 UKURAN TENDENSI SENTRAL Kompetesi Mampu mejelaska da megaalisis kosep dasar ukura tedesi setral. Idikator 1. Mejelaska da megaalisis mea.. Mejelaska da megaalisis media. 3. Mejelaska da megaalisis

Lebih terperinci

PENGANTAR MATEMATIKA DISKRIT

PENGANTAR MATEMATIKA DISKRIT PENGANTAR MATEMATIKA DISKRIT DIKTAT Oleh: Rippi Maya Eliva Sukma Cipta PROGRAM STUDI PENDIDIKAN MATEMATIKA UNIVERSITAS ISLAM NEGERI SUNAN GUNUNG DJATI BANDUNG 016 Kata Pegatar Diktat ii disusu sebagai

Lebih terperinci

Bab IV. Penderetan Fungsi Kompleks

Bab IV. Penderetan Fungsi Kompleks Bab IV Pedereta Fugsi Kompleks Sebagaimaa pada fugsi real, fugsi kompleks juga dapat dideretka pada daerah kovergesiya. Semua watak kajia kovergesi pada fugsi real berlaku pula pada fugsi kompleks. Secara

Lebih terperinci

STABILITAS LERENG runi_ runi asma _ ran asma t ran t ub.ac.id

STABILITAS LERENG runi_ runi asma _ ran asma t ran t ub.ac.id STABILITAS LERENG rui_asmarato@ub.ac.id ANALISA STABILITAS LERENG Dalam bayak kasus, para isiyur sipil/pegaira diharapka mampu membuat perhituga stabilitas lereg gua memeriksa keamaa suatu kodisi : Lereg

Lebih terperinci

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma Soal-Soal da Pembahasa Matematika Dasar SNMPTN 01 Taggal Ujia: 1 Jui 01 1. Jika a da b adalah bilaga bulat positip yag memeuhi a b 0-19, maka ilai a + b adalah... A. 3 C. 19 E. 3 B. 7 D. 1 BAB I Perpagkata

Lebih terperinci

BAGAN KENDALI G UNTUK PENGENDALIAN VARIABILITAS PROSES MULTIVARIAT (Studi Kasus pada data cuaca di kota Makassar pada tahun 2003 sampai tahun 2012)

BAGAN KENDALI G UNTUK PENGENDALIAN VARIABILITAS PROSES MULTIVARIAT (Studi Kasus pada data cuaca di kota Makassar pada tahun 2003 sampai tahun 2012) BAGAN KENDALI G UNTUK PENGENDALIAN VARIABILITAS PROSES MULTIVARIAT (Studi Kasus pada data cuaca di ota Maassar pada tahu 003 sampai tahu 0) PAISAL, H, HERDIANI, E.T. DAN SALEH, M 3 Jurusa Matematia, Faultas

Lebih terperinci

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0.

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0. PROGRAM STUDI PENDIDIKAN MATEMATIKA FKIP UNMUH PONOROGO SOAL UJIAN TENGAH SEMESTER GENAP TA 03/04 Mata Ujia : Aalisis Real Tipe Soal : REGULER Dose : Dr. Jula HERNADI Waktu : 90 meit Hari, Taggal : Selasa,

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 31-41, April 2004, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 31-41, April 2004, ISSN : Vol. 7. No. 1, 31-41, April 24, ISSN : 141-8518 Peetua Kestabila Sistem Kotrol Lup Tertutup Waktu Kotiu dega Metode Trasformasi ke Betuk Kaoik Terkotrol Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak

Lebih terperinci

Transformasi Fourier Sinyal Waktu Kontinyu. oleh: : Tri Budi Santoso DSP Group, EEPIS-ITS

Transformasi Fourier Sinyal Waktu Kontinyu. oleh: : Tri Budi Santoso DSP Group, EEPIS-ITS Siyal da Sism Trasformasi Fourir Siyal Waku Koiyu olh: : Tri Budi Saoso DSP Group, EEPIS-ITS ITS Tujua: - Siswa mampu mylsaika buk rprsasi alraif pada siyal da sism waku koiyu. - Siswa mjlaska kmbali pyusua

Lebih terperinci

Rancang Bangun Modul Portable Power Analyzer Untuk Menganalisa Harmonisa

Rancang Bangun Modul Portable Power Analyzer Untuk Menganalisa Harmonisa Racag Bagu Modul Portable Power Aalyzer Utuk Megaalisa Harmoisa Wahyu Hidayat ), Agus dra Guawa ), Eru Puspita ) Departmet of Electrical Egieerig, Faculty of Electroics Egieerig Polytechic stitut of Surabaya

Lebih terperinci

REGRESI DAN KORELASI SEDERHANA

REGRESI DAN KORELASI SEDERHANA REGRESI DAN KORELASI SEDERHANA Apa yag disebut Regresi? Korelasi? Aalisa regresi da korelasi sederhaa membahas tetag keterkaita atara sebuah variabel (variabel terikat/depede) dega (sebuah) variabel lai

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2010 TIM OLIMPIADE MATEMATIKA INDONESIA Waktu : 210 Menit

SELEKSI OLIMPIADE TINGKAT PROVINSI 2010 TIM OLIMPIADE MATEMATIKA INDONESIA Waktu : 210 Menit SELEKSI OLIMPIADE TINGKAT PROVINSI 00 TIM OLIMPIADE MATEMATIKA INDONESIA 0 Waktu : 0 Meit KEMENTERIAN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PEMBINAAN

Lebih terperinci

Proses Kelahiran dengan Imigrasi dan Kematian Password

Proses Kelahiran dengan Imigrasi dan Kematian Password Statistia, Vol. 6 No., 7 Mei 26 Proses Kelaira dega Imigrasi da Kematia Password Sri Mulyai Saro i, Neeg Suegsi da Gatot Riwi Setyato Jurusa Statistia FMIPA Upad ABSTRAK Dalam peelitia dibaas megeai sebua

Lebih terperinci

BAB IV PEMANDU-GELOMBANG OPTIK TERPADU

BAB IV PEMANDU-GELOMBANG OPTIK TERPADU BAB IV PEMANDU-GELOMBANG OPTIK TERPADU Tujua Istruksioal Umum Pada bab ii aka dibahas megeai pemadugelombag yag bayak diguaka utuk metrasfer cahaya di atara kompoe-kompoe jariga, megeai bermacam-macam

Lebih terperinci

STATISTIKA NON PARAMETRIK

STATISTIKA NON PARAMETRIK . PENDAHULUAN STATISTIKA NON PARAMETRIK Kelebiha Uji No Parametrik: - Perhituga sederhaa da cepat - Data dapat berupa data kualitatif (Nomial atau Ordial) - Distribusi data tidak harus Normal Kelemaha

Lebih terperinci

Kuliah 3.Ukuran Pemusatan Data

Kuliah 3.Ukuran Pemusatan Data Kuliah 3.Ukura Pemusata Data Mata Kuliah Statistika Dr. Ir. Rita Rostika MP. Prodi Perikaa Fakultas Perikaa da Ilmu Kelauta Uiversitas Padjadjara Cotet (1) modus Media Rata-rata Telada peerapa Cotet (2)

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat

Lebih terperinci

BAB I INDUKSI MATEMATIK. Beberapa Prinsip Induksi Matematik (PIM) yang perlu diketahui: 1. Sederhana 2. Yang dirampatkan (generalized) 3.

BAB I INDUKSI MATEMATIK. Beberapa Prinsip Induksi Matematik (PIM) yang perlu diketahui: 1. Sederhana 2. Yang dirampatkan (generalized) 3. BAB I INDUKSI MATEMATIK Iduksi matematik merupaka salah satu metode pembuktia yag baku di dalam matematika, yag meyataka kebeara dari suatu peryataa tetag semua bilaga asli atau kadag-kadag semua bilaga

Lebih terperinci

Pengantar Analisis Real

Pengantar Analisis Real Bacaa Waga KSA Pegata Aalisis Real Itoductio to eal aalysis Diumpula dai bebagai sumbe oleh: Abu Abdillah KOMUNITAS STUDI ALKWARIZMI UNAAHA 03 PERSEMBAHAN Utu baha bacaa waga KSA (Komuitas Studi Al Khwaizmi).

Lebih terperinci

Matematika Diskret (Kombinatorial - Permutasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs

Matematika Diskret (Kombinatorial - Permutasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs Matematika Diskret (Kombiatorial - Permutasi) Istruktur : Ferry Wahyu Wibowo, S.Si., M.Cs Pedahulua Sebuah sadi-lewat (password) pajagya 6 sampai 8 karakter. Karakter boleh berupa huruf atau agka. Berapa

Lebih terperinci

STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS

STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS (Tati Octavia et al.) STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS Tati Octavia Dose Faultas

Lebih terperinci

BAB 6: ESTIMASI PARAMETER (2)

BAB 6: ESTIMASI PARAMETER (2) Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara

Lebih terperinci

ARITMATIKA MODUL PEMBINAAN OLEH TIM PEMBINA OLIMPIADE KOMPUTER ILMU KOMPUTER UDAYANA (DISAJIKAN UNTUK PESERTA PEMBINAAN BIDANG KOMPUTER OSN 2009)

ARITMATIKA MODUL PEMBINAAN OLEH TIM PEMBINA OLIMPIADE KOMPUTER ILMU KOMPUTER UDAYANA (DISAJIKAN UNTUK PESERTA PEMBINAAN BIDANG KOMPUTER OSN 2009) ARITATIKA ODUL PEBINAAN OLEH TI PEBINA OLIPIADE KOPUTER ILU KOPUTER UDAYANA (DISAJIKAN UNTUK PESERTA PEBINAAN BIDANG KOPUTER OSN 009) PEERINTAH DAERAH PROPINSI BALI DINAS PENDIDIKAN PEUDA DAN OLAHRAGA

Lebih terperinci

Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya PENS. Probability and Random Process. Topik 10. Regresi

Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya PENS. Probability and Random Process. Topik 10. Regresi Program Pasca Sarjaa Terapa Politekik Elektroika Negeri Surabaya Probability ad Radom Process Topik 10. Regresi Prima Kristalia Jui 015 1 Outlie 1. Kosep Regresi Sederhaa. Persamaa Regresi Sederhaa 3.

Lebih terperinci

SEBARAN t dan SEBARAN F

SEBARAN t dan SEBARAN F SEBARAN t da SEBARAN F 1 Tabel uji t disebut juga tabel t studet. Sebara t pertama kali diperkealka oleh W.S. Gosset pada tahu 1908. Saat itu, Gosset bekerja pada perusahaa bir Irladia yag melarag peerbita

Lebih terperinci

REGRESI LINIER GANDA

REGRESI LINIER GANDA REGRESI LINIER GANDA Secara umum, data hasil pegamata Y bisa terjadi karea akibat variabelvariabel bebas,,, k. Aka ditetuka hubuga atara Y da,,, k sehigga didapat regresi Y atas,,, k amu masih meujukka

Lebih terperinci

PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK. Sutikno

PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK. Sutikno sutiko PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK Sutiko Program Studi Tekik Iformatika Fakultas Sais da Matematika UNDIP tik@udip.ac.id

Lebih terperinci

Metode Beda Hingga dan Teorema Newton untuk Menentukan Jumlah Deret. Finite Difference Method and Newton's Theorem to Determine the Sum of Series

Metode Beda Hingga dan Teorema Newton untuk Menentukan Jumlah Deret. Finite Difference Method and Newton's Theorem to Determine the Sum of Series Jural ILM DASAR, Vol, No, Juli : 9-98 9 Metode Beda Higga da Teorema Newto utuk Meetuka Jumlah Deret Fiite Differece Method ad Newto's Theorem to Determie the Sum of Series Tri Mulyai,*), Moh Hasa ), Slami

Lebih terperinci

APROKSIMASI DISTRIBUSI WAKTU HIDUP YANG AKAN DATANG (Aproximations of the Future Lifetime Distribution)

APROKSIMASI DISTRIBUSI WAKTU HIDUP YANG AKAN DATANG (Aproximations of the Future Lifetime Distribution) Jural Bareeg Vol 5 No Hal 47 5 (2) APROKSIMASI DISRIBUSI WAKU HIDUP YANG AKAN DAANG (Aproimatios of te Future Lifetime Distributio) HOMAS PENURY RUDY WOLER MAAKUPAN 2 LEXY JANZEN SINAY 3 Guru Besar Jurusa

Lebih terperinci

Pendiferensialan. Modul 1 PENDAHULUAN

Pendiferensialan. Modul 1 PENDAHULUAN Modul Pediferesiala Prof R Soematri D PENDAHULUAN alam modul ii dibahas fugsi berilai real yag didefiisika pada suatu iterval Defiisi derivatif suatu fugsi dimulai dega derivatif di suatu titik, kemudia

Lebih terperinci

= Keterkaitan langsung ke belakang sektor j = Unsur matriks koefisien teknik

= Keterkaitan langsung ke belakang sektor j = Unsur matriks koefisien teknik Aalisis Sektor Kuci Dimaa : KLBj aij = Keterkaita lagsug ke belakag sektor j = Usur matriks koefisie tekik (b). Keterkaita Ke Depa (Forward Ligkage) Forward ligkage meujukka peraa suatu sektor tertetu

Lebih terperinci

Nilai Eigen dan Vektor Eigen Matriks atas Aljabar Max-Plus Interval

Nilai Eigen dan Vektor Eigen Matriks atas Aljabar Max-Plus Interval Nilai Eige da Vetor Eige Matris atas Aljabar Max-Plus Iterval 2 M. Ady Rudhito, Sri Wahyui, 3 Ari Suparwato, ad 4 F. Susilo Mahasiswa S3 Mateatia FMIPA UGM da Staff Pegajar FKIP Uiversitas Saata Dhara

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci