Bab 6: Analisa Spektrum

Ukuran: px
Mulai penontonan dengan halaman:

Download "Bab 6: Analisa Spektrum"

Transkripsi

1 BAB Aalisa Spetrum Bab : Aalisa Spetrum Aalisa Spetrum Dega DFT Tujua Belajar Peserta dapat meghubuga DFT dega spetrum dari sial hasil samplig sial watu otiue. -poit DFT dari sial x adalah Xω ag diealuasi pada freuesi-freuesi ω π/ utu,,,- Cotoh : Sial dega durasi sepajag L diberia sebagai beriut :, L x laia Trasformasi Fourier dari sial ii adalah L L jωl jω jω e si ωl jω L X ω x e e e jω e si ω pi 9 7 pi/ Xomega 5 -pi/ pi/ pi pi/ pi omega -pi pi/ pi pi/ pi Gambar. : Karateristi magituda da fasa hasil trasformasi Fourier -poit DFT dari sial diatas adalah L jπl j πl e si πl X e jπl e si π jπ e L pi/ pi pi/ pi pi/ pi pi/ pi VI-

2 BAB Aalisa Spetrum pi/ pi pi/ pi - pi/ pi pi/ pi Gambar. : Magituda da fasa -poit DFT utu 5 da Tujua Belajar Peserta dapat melaua aalisa spetrum dega DFT, termasu osep widowig Utu meghitug spetrum sial, bai sial watu otiu maupu sial watu disrit, maa perlu dietahui besara sial setiap saat. amu, secara pratis, ita megamati sial haa dalam selag watu tertetu. Aibata, spetrum sial harus dideati megguaa sejumlah data ag berhigga. Misala,. x a t ati aliasig filter samplig x a L samples B F s B. Durasi x a t T o T dimaa T /F s emampua membedaa freuesi terbatas e F F s bila x a t lebih pajag dari T o, tetapi ita "memasa" diri megguaa blo sebesar L samples, maa guaa widow ω berdurasi L xˆ x ω L misal ω laia maa x ˆ berdurasi L, guaa pada DFT Misala x megadug freuesi tuggal ω x cos ω maa trasformasi Fourier x dapat diataa X ˆ ω [ ω ω + ω + ω ] VI-

3 BAB Aalisa Spetrum dimaa ω adalah trasformasi Fourier dari seue widow, dimaa utu rectagular widow si ωl / ω e si ω / jω l / ω Tujua Belajar Peserta megerti ero paddig da persamaa/perbedaa aibata dibadig dega meaia poit DFT. Xˆ dihitug megguaa DFT. Jia diigia meghitug -poits DFT dimaa > L maa dapat dilaua ero paddig, aitu dega meisipa sejumlah L xˆ }. Gambar dibawah memperlihata magituda spetrum buah ol pada seue { utu L5 da. Seperti terlihat pada gambar tersebut, spetrum ω Xˆ tida terloalisir pada satu freuesi tetapi meebar e seluruh rage freuesi. Jadi, daa dari sial x ag sebeluma terosetrasi pada satu freuesi searag tersebar e seluruh rage freuesi, atau disebut leaage. L, pi/ pi pi/ pi Tujua Belajar Peserta dapat meguragi ebocora spetrum spetral leaage idowig, selai meebaba esalaha estimasi spetrum sial area leaage, juga meguragi resolusi spetrum. Misala terdapat sial terdiri dari dua freuesi : x cosω + cosω dega megguaa widowig, maa xˆ ω x dimaa trasformasi Fouriera adalah : X ω ω ω + ω ω + ω + ω + ω + [ ] ω VI-

4 BAB Aalisa Spetrum Zero crossig ω terjadi pada ω π/l, bila ω -ω < π/l maa terjadi oerlap pada ω-ω da ω-ω, jia ω -ω π/l maa mucul lobe. Jadi emampua meresolusi garis spetrum ditetua oleh lebar mai-lobe dari widow. Cotoh : x cos.π + cos.π + cos.π Terdapat dua freuesi ag salig berdeata, aitu.π da.π. Kedua freuesi tida bisa dipisaha megguaa L5 da L5, edua freuesi baru terpisah megguaa L. Utu meguragi ebocora dapat diguaa widow w dega side-lobe ag redah ag beraibat mai-lobe melebar resolusi meigat. Bila spetrum widow relatif sempit dibadig Xω maa efe smoothig ecil, sebalia bila spetrum widow relatif lebar maa efe ω lebih domia sehigga harus dihidari. Cotoh : π aig idow cos L ω L otherwise ag diguaa pada sial seperti diatas. Perhatia gambar dibawah, megguaa aig widow. VI-

5 BAB Aalisa Spetrum Meghitug DFT Dega batua Filter Tujua Belajar 5 Peserta dapat meghitug DFT dega batua filter liier da diterapa dalam asus Goertel Algorithm utu DMTF. Algoritma Goertel memafaata sifat periodi sudut fasa { } sehigga perhituga DFT dapat diataa sebagai operasi liear filterig dega resoator pada ω π/ Karea, maa dapat diguaa sebagai fator pegali, sehigga X m x m m m m x m m bila x m h m h u m x m xm tuggu sampai m VI-5

6 BAB Aalisa Spetrum VI- X Ctt. x + - Utu meghidari bilaga omples aibat, buat omplex cojugate sehigga cos + π X x log bai utu M alues iput real cos + π sehigga cuup meghitug cos + π

Penggunaan Transformasi z

Penggunaan Transformasi z Pegguaa Trasformasi pada Aalisa Respo Freuesi Sistem FIR Oleh: Tri Budi Satoso E-mail:tribudi@eepis-its.eduits.edu Lab Siyal,, EEPIS-ITS ITS /3/6 osep pemiira domais of represetatio Domai- discrete time:

Lebih terperinci

Bab 5 Sinyal dan Sistem Waktu Diskrit. Oleh: Tri Budi Santoso Laboratorium Sinyal, EEPIS-ITS

Bab 5 Sinyal dan Sistem Waktu Diskrit. Oleh: Tri Budi Santoso Laboratorium Sinyal, EEPIS-ITS Bab 5 Siyal da Sistem Watu Disrit Oleh: Tri Budi Satoso Laboratorium Siyal, EEPIS-ITS Materi: Represetasi matemati pada siyal watu disrit, domai watu da freuesi pada suatu siyal watu disrit, trasformasi

Lebih terperinci

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu

Lebih terperinci

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu

Lebih terperinci

BAB 2 LANDASAN TEORI. lebar pita sinyal tersebut. Pada kebanyakan aplikasi, termasuk kamera digital video dan

BAB 2 LANDASAN TEORI. lebar pita sinyal tersebut. Pada kebanyakan aplikasi, termasuk kamera digital video dan BAB LADASA TEORI Teorema Shao-yquist meyataa agar tida ada iformasi yag hilag etia pecuplia siyal, maa ecepata pecuplia harus miimal dua ali dari lebar pita siyal tersebut. Pada ebayaa apliasi, termasu

Lebih terperinci

PENGOLAHAN SINYAL DIGITAL. Modul 5. Sistem Waktu Diskret dan Aplikasi TZ

PENGOLAHAN SINYAL DIGITAL. Modul 5. Sistem Waktu Diskret dan Aplikasi TZ PENGOLHN SINL DIGITL Modul 5. Sistem Watu Disret da pliasi TZ Cotet Overview Sistem Watu Disrit Sstem Properties Shift Ivariace, Kausalitas, Stabilitas diaita dega TZ Trasformasi sistem dari persamaa differece

Lebih terperinci

3. Integral (3) (Integral Tentu)

3. Integral (3) (Integral Tentu) Darublic www.darublic.com. Itegral () (Itegral Tetu).. Luas Sebagai Suatu Itegral. Itegral Tetu Itegral tetu meruaa itegral ag batas-batas itegrasia jelas. Kose dasar dari itegral tertetu adalah luas bidag

Lebih terperinci

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C.

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C. BAB II LANDASAN TEORI Pada bab ii aa dibahas teori teori yag meduug metode upper level set sca statistics, atara lai peubah aca, distribusi gamma, fugsi gamma, fugsi lielihood, da uji rasio lielihood.

Lebih terperinci

Representasi sinyal dalam impuls

Representasi sinyal dalam impuls Represetasi siyal dalam impuls Represetasi siyal dalam impuls adalah siyal yag diyataa sebagai fugsi dari impuls atau sebagai umpula dari impuls-impuls. Sembarag siyal disret dapat diyataa sebagai pejumlaha

Lebih terperinci

Gambar 3.1Single Channel Multiple Phase

Gambar 3.1Single Channel Multiple Phase BAB III MODEL ANTRIAN PADA PEMBUATAN SIM C. Sigle Chael Multiple Phase Sistem atria sigle chael multiple phase merupaa sistem atria dimaa pelagga yag tiba, dapat memasui sistem dega megatri di tempat yag

Lebih terperinci

BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE)

BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE) BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE) 5.1. Pembagit Radom Variate Disrit Suatu Radom Variate diartia sebagai ilai suatu radom variate yag mempuyai distribusi tertetu. Utu megambil

Lebih terperinci

Bab 16 Integral di Ruang-n

Bab 16 Integral di Ruang-n Catata Kuliah MA3 Kalulus Elemeter II Oi Neswa,Ph.D., Departeme Matematia-ITB Bab 6 Itegral di uag- Itegral Gada atas persegi pajag Itegral Berulag Itegral Gada atas Daerah sebarag Itegral Gada Koordiat

Lebih terperinci

1. Integral (1) Pembahasan yang akan kita lakukan hanya mengenai bentuk persamaan diferensial seperti contoh yang pertama.

1. Integral (1) Pembahasan yang akan kita lakukan hanya mengenai bentuk persamaan diferensial seperti contoh yang pertama. Darublic www.darublic.com 1. Itegral (1) (Macam Itegral, Pedeata Numeri) Sudarato Sudirham Dalam bab sebeluma, ita memelajari salah satu bagia utama alulus, aitu alulus diferesial. Beriut ii ita aa membahas

Lebih terperinci

MODUL BARISAN DAN DERET

MODUL BARISAN DAN DERET MODUL BARISAN DAN DERET SEMESTER 2 Muhammad Zaial Abidi Persoal Blog http://meetabied.wordpress.com BAB I. PENDAHULUAN A. Desripsi Dalam modul ii, ada aa mempelajari pola bilaga, barisa, da deret diidetifiasi

Lebih terperinci

MACAM-MACAM TEKNIK MEMBILANG

MACAM-MACAM TEKNIK MEMBILANG 0 MACAM-MACAM TEKNIK MEMBILANG ATURAN PERKALIAN Beriut ii diberia sebuah dalil tetag peetua baya susua yag palig sederhaa dalam suatu permasalaha yag beraita dega peluag. Dalil 2.1: ATURAN PERKALIAN SECARA

Lebih terperinci

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain.

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain. BARIAN DAN DERET A. Barisa Barisa adalah uruta bilaga yag memilii atura tertetu. etiap bilaga pada barisa disebut suu barisa yag dipisaha dega lambag, (oma). Betu umum barisa:,, 3, 4,, dega: = suu pertama

Lebih terperinci

BAB III TAKSIRAN PROPORSI POPULASI JIKA TERJADI NONRESPON. Dalam bab ini akan dibahas penaksiran proporsi populasi jika terjadi

BAB III TAKSIRAN PROPORSI POPULASI JIKA TERJADI NONRESPON. Dalam bab ini akan dibahas penaksiran proporsi populasi jika terjadi BAB III TAKSIRA PROPORSI POPULASI JIKA TERJADI ORESPO Dalam bab ii aa dibaas peasira proporsi populasi jia terjadi orespo da dilaua allba sebaya t ali. Selai itu, juga aa dibaas peetua uura sampel yag

Lebih terperinci

Bab 7 Penyelesaian Persamaan Differensial

Bab 7 Penyelesaian Persamaan Differensial Bab 7 Peelesaia Persamaa Differesial Persamaa differesial merupaka persamaa ag meghubugka suatu besara dega perubahaa. Persamaa differesial diataka sebagai persamaa ag megadug suatu besara da differesiala

Lebih terperinci

Aplikasi Sistem Orthonormal Di Ruang Hilbert Pada Deret Fourier

Aplikasi Sistem Orthonormal Di Ruang Hilbert Pada Deret Fourier Apliasi Sistem Orthoormal Di Ruag Hilbert Pada Deret Fourier A 7 Fitriaa Yuli S. FMIPA UNY Abstra Ruag hilbert aa dibahas pada papper ii. Apliasi system orthoormal aa diaji da aa diapliasia pada ruahg

Lebih terperinci

Perluasan Uji Kruskal Wallis untuk Data Multivariat

Perluasan Uji Kruskal Wallis untuk Data Multivariat Statistia, Vol. No., Mei Perluasa Uji Krusal Wallis utu Data Multivariat TETI SOFIA YANTI Program Studi Statistia, Uiversitas Islam Badug, Jl. Purawarma No. Badug. E-mail: buitet@yahoo.com ABSTAK Adaia

Lebih terperinci

Anova (analysis of varian)

Anova (analysis of varian) ova (aalysis of varia) Ui hipotesis perbedaa ilai rata-rata dari atau lebih elompo idepede Cotoh: daah perbedaa berat bayi lahir dari eluarga E tiggi dega E sedag atau E redah sumsi Ui ova: 1. ube diambil

Lebih terperinci

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG)

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG) PEMBAHASAN SOAL OLIMPIADE SAINS NASIONAL SMP A. ISIAN SINGKAT SELEKSI TINGKAT PROPINSI TAHUN 011 BIDANG STUDI MATEMATIKA WAKTU : 150 MENIT 1. Jia x adalah jumlah 99 bilaga gajil terecil yag lebih besar

Lebih terperinci

1) Leptokurtik Merupakan distribusi yang memiliki puncak relatif tinggi

1) Leptokurtik Merupakan distribusi yang memiliki puncak relatif tinggi Statisti Desriptif Keruciga atau Kurtosis Pegertia Kurtosis Peguura urtosis (peruciga) sebuah distribusi teoritis adaalaya diamaam peguura eses (excess) dari sebuah distribusi Sebearya urtosis bisa diaggap

Lebih terperinci

Bab 5: Discrete Fourier Transform dan FFT

Bab 5: Discrete Fourier Transform dan FFT BAB 5 Dicrt Fourir Traform da FFT Bab 5: Dicrt Fourir Traform da FFT Dicrt Fourir Traform DFT. Dfiii Tuua Blaar Prta dapat mdfiiia DFT, da mghitugya. Utu mlaua aalii frui dari iyal watu dirit maa prlu

Lebih terperinci

Kuliah 9 Filter Digital

Kuliah 9 Filter Digital TEKNIK PENGOLAHAN ISYARAT DIGITAL Kuliah 9 Filter Digital Idah Susilawati, S.T.,.Eg. Progra Studi Tei Eletro Progra Studi Tei Iforatia Faultas Tei da Ilu Koputer Uiversitas ercu Buaa Yogaarta 9 Kuliah

Lebih terperinci

METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM09

METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM09 METODE NUMERIK UNTUK SIMULASI Pemodela & Simulasi TM09 Metode Numerik ( Metode umerik dpt diklasiikasika mjd:. Metode satu-lagka atau sigle-step. Metode multistep Metode sigle-step Pada metode ii, utuk

Lebih terperinci

KOMPUTASI ALIRAN FLUIDA DINAMIK DENGAN CITRA DIGITAL DAN PIV (PARTICLE IMAGE VELOCIMETRY), KHUSUSNYA DALAM APLIKASI NUKLIR. Muhammad Arifin Sanusi *

KOMPUTASI ALIRAN FLUIDA DINAMIK DENGAN CITRA DIGITAL DAN PIV (PARTICLE IMAGE VELOCIMETRY), KHUSUSNYA DALAM APLIKASI NUKLIR. Muhammad Arifin Sanusi * KOMPUTASI ALIRA FLUIDA DIAMIK DEGA CITRA DIGITAL DA PIV PARTICLE IMAGE VELOCIMETRY KHUSUSYA DALAM APLIKASI UKLIR Muhammad Arifi Sausi * ABSTRAK KOMPUTASI ALIRA FLUIDA DIAMIK DEGA CITRA DIGITAL DA PIV PARTICLE

Lebih terperinci

PERBANDINGAN PENDEKATAN SEPARABLE PROGRAMMING DENGAN THE KUHN-TUCKER CONDITIONS DALAM PEMECAHAN MASALAH NONLINEAR

PERBANDINGAN PENDEKATAN SEPARABLE PROGRAMMING DENGAN THE KUHN-TUCKER CONDITIONS DALAM PEMECAHAN MASALAH NONLINEAR Jural Tei da Ilmu Komputer PERBANDINGAN PENDEKATAN SEPARABLE PROGRAMMING DENGAN THE KUHN-TUCKER CONDITIONS DALAM PEMECAHAN MASALAH NONLINEAR Budi Marpaug Faultas Tei da Ilmu Komputer Jurusa Tei Idustri

Lebih terperinci

Gerak Brown Fraksional dan Sifat-sifatnya

Gerak Brown Fraksional dan Sifat-sifatnya SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 06 S - 3 Gera Brow Frasioal da Sifat-sifatya Chataria Ey Murwaigtyas, Sri Haryatmi, Guardi 3, Herry P Suryawa 4,,3 Uiversitas Gadjah Mada,4 Uiversitas

Lebih terperinci

Mengkaji Perbedaan Diagonalisasi Matriks Atas Field dan Matriks Atas Ring Komutatif

Mengkaji Perbedaan Diagonalisasi Matriks Atas Field dan Matriks Atas Ring Komutatif Megaji Perbedaa Diagoalisasi Matris Atas Field da Matris Atas Rig Komutatif Teorema : Jia A adalah matris x maa eryataa eryataa beriut eivale satu sama lai : a A daat didiagoalisasi b A memuyai vetor eige

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT

METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT METODE NUMERIK TKM4104 Kuliah ke- DERET TAYLOR DAN ANALISIS GALAT DERET TAYLOR o Deret Taylor adalah alat yag utama utuk meuruka suatu metode umerik. o Deret Taylor bergua utuk meghampiri ugsi ke dalam

Lebih terperinci

METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM07

METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM07 METODE NUMERIK UNTUK SIMULASI Pemodela & Simulasi TM07 Metode Numerik ( Metode umerik dpt diklasiikasika mjd:. Metode satu-lagka atau sigle-step. Metode multistep Metode sigle-step Pd metode ii, utuk meetuka

Lebih terperinci

7. Perbaikan Kualitas Citra

7. Perbaikan Kualitas Citra 7. Perbaia Kualitas Citra Perbaia ualitas citra (image ehacemet) merupaa salah satu proses awal dalam pegolaha citra (image preprocessig). Perbaia ualitas diperlua area serigali citra yag diadia obe pembahasa

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Risio Operasioal.1.1 Defiisi Dewasa ii risio operasioal semai diaui sebagai salah satu fator uci yag perlu dielola da dicermati oleh para pelau usaha, hususya di bidag jasa euaga.

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2016/2017 3 Februari 2017 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg Batas

Lebih terperinci

Teorema Nilai Rata-rata

Teorema Nilai Rata-rata Nilai Kus Prihatoso April 27, 2012 Yogyakarta Nilai Suatu Fugsi Masih igatkah ada tetag ilai rata-rata dari sekmpula bilaga? Berapakah ilai rata-rata dari sebayak bilaga y 1, y 2,..., y? Nilai Suatu Fugsi

Lebih terperinci

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL)

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) Setiap peelitia selalu berkeaa dega sekelompok data. Yag dimaksud kelompok disii adalah: Satu orag mempuyai sekelompok data, atau sekelompok orag mempuyai satu

Lebih terperinci

Peluang Suatu Kejadian, Kaidah Penjumlahan, Peluang Bersyarat, Kaidah Perkalian dan Kaidah Baiyes

Peluang Suatu Kejadian, Kaidah Penjumlahan, Peluang Bersyarat, Kaidah Perkalian dan Kaidah Baiyes eluag uatu Kejadia, Kaidah ejumlaha, eluag ersyarat, Kaidah eralia da Kaidah aiyes.eluag uatu Kejadia Defiisi : eluag suatu ejadia adalah jumlah peluag semua titi otoh dalam. Dega demiia : 0 (), ( ) =

Lebih terperinci

Penyelesaian Persamaan Non Linier

Penyelesaian Persamaan Non Linier Peyelesaia Persamaa No Liier Metode Iterasi Sederhaa Metode Newto Raphso Permasalaha Titik Kritis pada Newto Raphso Metode Secat Metode Numerik Iterasi/NewtoRaphso/Secat - Metode Iterasi Sederhaa- Metode

Lebih terperinci

Sistem Bilangan Kompleks (Bagian Ketiga)

Sistem Bilangan Kompleks (Bagian Ketiga) Sistem Bilaga Kompleks (Bagia Ketiga) Supama Jurusa Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemua Miggu III) Outlie 1 Akar Bilaga Kompleks 2 Akar

Lebih terperinci

STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS

STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS (Tati Octavia et al.) STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS Tati Octavia Dose Faultas

Lebih terperinci

GRAFIKA

GRAFIKA 6 5 7 3 6 3 3 GRAFIKA 3 6 57 08 0 9 5 9 385 946 5 3 30 0 8 9 5 9 3 85 946 5 ANALISA REAL Utu uliah (pegatar) aalisa real yag dilegapi dega program MATLAB Dr. H.A. Parhusip G R A F I K A Peerbit Tisara

Lebih terperinci

PEMBUKTIAN SIFAT RUANG BANACH PADA D(K)

PEMBUKTIAN SIFAT RUANG BANACH PADA D(K) JMP : Volume 4 Nomor 1, Jui 2012, hal. 41-50 PEMBUKTIAN SIFAT RUANG BANACH PADA D(K) Malahayati Program Studi Matematia Faultas Sais da Teologi UIN Sua Kalijaga malahayati_01@yahoo.co.id ABSTRACT. I this

Lebih terperinci

BAB 6 NOTASI SIGMA, BARISAN DAN DERET

BAB 6 NOTASI SIGMA, BARISAN DAN DERET BAB 6 NOTASI SIGMA, BARISAN DAN DERET A RINGKASAN MATERI. Notasi Sigma Diberia suatu barisa bilaga, a, a,..., a. Lambag deret tersebut, yaitu: a = a + a +... + a a meyataa jumlah suu pertama barisa Sifat-sifat

Lebih terperinci

MODUL BARISAN DAN DERET

MODUL BARISAN DAN DERET MODUL BARISAN DAN DERET KELAS XII. IPS SEMESTER I Oleh : Drs. Pudjul Prijoo ( http://vidyagata.wordpress.co ) SMA NEGERI 6 Jala Mayje Sugoo 58 Malag Telp./Fax : (034) 75036 E-Mail : sa6_alag@yahoo.co.id

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci

Karakteristik Dinamik Elemen Sistem Pengukuran

Karakteristik Dinamik Elemen Sistem Pengukuran Karakteristik Diamik Eleme Sistem Pegukura Kompetesi, RP, Materi Kompetesi yag diharapka: Mahasiswa mampu merumuskaka karakteristik diamik eleme sistem pegukura Racaga Pembelajara: Miggu ke Kemampua Akhir

Lebih terperinci

PRINSIP MAKSIMUM DAN MINIMUM FUNGSI PANHARMONIK

PRINSIP MAKSIMUM DAN MINIMUM FUNGSI PANHARMONIK PRINSIP MAKSIMUM DAN MINIMUM FUNGSI PANHARMONIK Oleh, Edag Cahya M.A. Jrsa Pedidia Matematia FPMIPA UPI Badg Jl. Dr. Setiabdi 9 Badg E-mail ecma@ds.math.itb.ac.id Abstra Tlisa ii mejelasa prisip masimm

Lebih terperinci

Oleh: Bambang Widodo, SPd SMA Negeri 9 Yogyakarta

Oleh: Bambang Widodo, SPd SMA Negeri 9 Yogyakarta Oleh: Bambag Widodo, SPd SMA Negeri 9 Yogyakarta PETA KONSEP Prisip Superposisi Liier Sefase π π beda faseya : 0,2, 4,. beda litasa : 0,,2, 3,. terjadi iterferesi Kostruktif/ salig meguatka, amplitudo

Lebih terperinci

Metode Perhitungan Grafik Dalam Geolistrik Tahanan Jenis Bumi Dengan Derajat Pendekatan Satu

Metode Perhitungan Grafik Dalam Geolistrik Tahanan Jenis Bumi Dengan Derajat Pendekatan Satu Metode Perhituga Grafi.. P. Maurug Metode Perhituga Grafi Dalam Geolistri Tahaa Jeis Bumi Dega Derajat Pedeata Satu Posma Maurug Jurusa Fisia, FMIPA Uiversitas Lampug Jl. S. Brojoegoro No. Badar Lampug

Lebih terperinci

TEOREMA INTEGRAL CAUCHY. Drs. GIM TARIGAN Fakultas Matematika dan Ilmu Pengetahuan Alam Jurusan Matematika Universitas Sumatera Utara

TEOREMA INTEGRAL CAUCHY. Drs. GIM TARIGAN Fakultas Matematika dan Ilmu Pengetahuan Alam Jurusan Matematika Universitas Sumatera Utara TEOREMA INTEGRAL AUHY rs. GIM TARIGAN Faultas Matematia da Ilmu Pegetahua Alam Jurusa Matematia Uiversitas umatera Utara PENAHULUAN alam tulisa ii daat ita lihat bahwa teorema Gree daat membutia erbedaa

Lebih terperinci

MEKANIKA TANAH DASAR DASAR DISTRIBUSI TEGANGAN DALAM TANAH

MEKANIKA TANAH DASAR DASAR DISTRIBUSI TEGANGAN DALAM TANAH MEKANIKA TANAH DASAR DASAR DISTRIBUSI TEGANGAN DALAM TANAH UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bitaro Sektor 7, Bitaro Jaa Tagerag Selata 154 PENDAHULUAN Megapa mempelajari kekuata taah? Keamaa

Lebih terperinci

PENGHALUSAN DERAU PADA PENERIMAAN SINYAL VIDEO TELEVISI BERWARNA MENGGUNAKAN METODE WAVELET

PENGHALUSAN DERAU PADA PENERIMAAN SINYAL VIDEO TELEVISI BERWARNA MENGGUNAKAN METODE WAVELET PENGHALUSAN DERAU PADA PENERIMAAN SINYAL VIDEO TELEVISI BERWARNA MENGGUNAKAN METODE WAVELET Bledug Kusuma P. * Fathul Qodir *, Nurul Qhomariyah ** * Tei Eletro FT Uiversitas Muhammadiyah Yogyaarta Jala

Lebih terperinci

BAHAN AJAR DIKLAT GURU MATEMATIKA

BAHAN AJAR DIKLAT GURU MATEMATIKA BAHAN AJAR DIKLAT GURU MATEMATIKA DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN 005 DAFTAR ISI Kata Pegatar.. i Daftar Isi...

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakag Salah satu pera da fugsi statistik dalam ilmu pegetahua adalah sebagai. alat aalisis da iterpretasi data kuatitatif ilmu pegetahua, sehigga didapatka suatu kesimpula

Lebih terperinci

Probabilitas dan Statistika Korelasi dan Regresi. Adam Hendra Brata

Probabilitas dan Statistika Korelasi dan Regresi. Adam Hendra Brata Probabilitas da Statistika da Adam Hedra Brata Dua Peubah Acak dua perubah acah X da Y dega rata-rata da diberika oleh rumus : E(XY) - - - Sifat Sifat Sifat kovariasi utuk X da Y diskrit : f(, ) f(, )

Lebih terperinci

Model Antrian Multi Layanan

Model Antrian Multi Layanan Jural Gradie Vol. No. Juli : 8- Model Atria Multi Layaa Sisa Yosmar Jurusa Matematia, Faultas Matematia da Ilmu egetahua Alam, Uiversitas Begulu, Idoesia Diterima 9 April; Disetujui 8 Jui Abstra - Salah

Lebih terperinci

BAB II TINJAUAN PUSTAKA. membahas distribusi normal dan distribusi normal baku, penaksir takbias μ dan σ,

BAB II TINJAUAN PUSTAKA. membahas distribusi normal dan distribusi normal baku, penaksir takbias μ dan σ, BAB II TINJAUAN PUSTAKA.1 Pedahulua Dalam peulisa materi poo dari sripsi ii diperlua beberapa teori-teori yag meduug, yag mejadi uraia poo pada bab ii. Uraia dimulai dega membahas distribusi ormal da distribusi

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 5

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 5 Mata Kuliah : Matematia Disrit Program Studi : Tei Iformatia Miggu e : 5 KOMBINATORIAL PENDAHULUAN Persoala ombiatori bua merupaa persoala baru dalam ehidupa yata. Baya persoala ombiatori sederhaa telah

Lebih terperinci

Penulis: Penilai: Editor: Ilustrator: Dra. Puji Iryanti, M.Sc. Ed. Al. Krismanto, M.Sc. Sri Purnama Surya, S.Pd, M.Si. Fadjar N. Hidayat, S.Si.,M.Ed.

Penulis: Penilai: Editor: Ilustrator: Dra. Puji Iryanti, M.Sc. Ed. Al. Krismanto, M.Sc. Sri Purnama Surya, S.Pd, M.Si. Fadjar N. Hidayat, S.Si.,M.Ed. PAKET FASILITASI PEMBERDAYAAN KKG/MGMP MATEMATIKA Pembelajara Barisa, Deret Bilaga da Notasi Sigma di SMA Peulis: Dra. Puji Iryati, M.Sc. Ed. Peilai: Al. Krismato, M.Sc. Editor: Sri Purama Surya, S.Pd,

Lebih terperinci

BAB 2 LANDASAN TEORI. Statistika merupakan salah satu cabang penegtahuan yang paling banyak mendapatkan

BAB 2 LANDASAN TEORI. Statistika merupakan salah satu cabang penegtahuan yang paling banyak mendapatkan BAB LANDASAN TEORI. Pegertia Regresi Statistika merupaka salah satu cabag peegtahua yag palig bayak medapatka perhatia da dipelajari oleh ilmua dari hamper semua bidag ilmu peegtahua, terutama para peeliti

Lebih terperinci

KORELASI POLISERIAL UNTUK PENDUGAAN PARAMETER STRUCTURAL EQUATION MODELING

KORELASI POLISERIAL UNTUK PENDUGAAN PARAMETER STRUCTURAL EQUATION MODELING Kode Maalah M- KORELASI POLISERIAL UNTUK PENDUGAAN PARAMETER STRUCTURAL EQUATION MODELING SEM Oleh : Nur Rusliah Prof. Dr. Dra. Susati Liuwih, M.Stat Dra. Kartia Fitriasari, M.Si. ABSTRAK Structural Equatio

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

LAMPIRAN 1 PEMBENTUKAN FUNGSI PERIODIZER

LAMPIRAN 1 PEMBENTUKAN FUNGSI PERIODIZER LAMPIRAN LAMPIRAN PEMBENUKAN FUNGSI PERIODIZER Fugsi p c x x, merupaka fugsi garis lurus simetris dega variabel bebas x, mejadi fugsi dasar pembetuka gelombag sawtooth. Fugsi p c x ii yag aka disubstitusi

Lebih terperinci

RUANG BARISAN MUSIELAK-ORLICZ. Oleh: Encum Sumiaty dan Yedi Kurniadi

RUANG BARISAN MUSIELAK-ORLICZ. Oleh: Encum Sumiaty dan Yedi Kurniadi RUANG BARISAN USIELAK-ORLICZ Oleh: Ecu Suiat da Yedi Kuriadi Disapaia pada Seiar Nasioal ateatia ada taggal 8 Deseber 2008, di Jurusa edidia ateatia FIA UI JURUSAN ENDIDIKAN ATEATIKA FAKULTAS ENDIDIKAN

Lebih terperinci

Penerapan Algoritma Dijkstra dalam Pemilihan Trayek Bus Transjakarta

Penerapan Algoritma Dijkstra dalam Pemilihan Trayek Bus Transjakarta Peerapa Algoritma Dijstra dalam Pemiliha Traye Bus Trasjaarta Muhammad Yafi 504 Program Studi Tei Iformatia Seolah Tei Eletro da Iformatia Istitut Teologi Badug, Jl. Gaesha 0 Badug 40, Idoesia 504@std.stei.itb.ac.id

Lebih terperinci

BAB IV PERHITUNGAN HARGA PREMI BERDASARKAN FUNGSI PERMINTAAN PADA TITIK KESETIMBANGAN

BAB IV PERHITUNGAN HARGA PREMI BERDASARKAN FUNGSI PERMINTAAN PADA TITIK KESETIMBANGAN BAB IV PERHITUNGAN HARGA PREMI BERDASARKAN FUNGSI PERMINTAAN PADA TITIK KESETIMBANGAN Berdasaran asumsi batasan interval pada bab III, untu simulasi perhitungan harga premi pada titi esetimbangan, maa

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI. mandiri jika tidak mengandung t secara eksplisit di dalamnya. (Kreyszig, 1983)

I PENDAHULUAN II LANDASAN TEORI. mandiri jika tidak mengandung t secara eksplisit di dalamnya. (Kreyszig, 1983) I PENDAHULUAN Latar Belaag Permasalaha ebiaa pemaea ia yag memberia eutuga masimum da berelauta (tida teradi epuaha dari populasi ia yag dipae) adalah hal yag sagat petig bagi idustri periaa Para ilmuwa

Lebih terperinci

Aproksimasi Terbaik dalam Ruang Metrik Konveks

Aproksimasi Terbaik dalam Ruang Metrik Konveks Aprosimasi Terbai dalam Ruag etri Koves Oleh : Suharsoo S Jurusa atematia FIPA Uiversitas Lampug Abstra asalah esistesi da etuggala aprosimasi terbai suatu titi dalam ruag berorm telah dipelajari oleh

Lebih terperinci

BAB III MODEL KANAL WIRELESS

BAB III MODEL KANAL WIRELESS BAB III MODEL KANAL WIRELESS Pemahaman mengenai anal wireless merupaan bagian poo dari pemahaman tentang operasi, desain dan analisis dari setiap sistem wireless secara eseluruhan, seperti pada sistem

Lebih terperinci

Nilai Eigen dan Vektor Eigen Matriks atas Aljabar Max-Plus Interval

Nilai Eigen dan Vektor Eigen Matriks atas Aljabar Max-Plus Interval Nilai Eige da Vetor Eige Matris atas Aljabar Max-Plus Iterval 2 M. Ady Rudhito, Sri Wahyui, 3 Ari Suparwato, ad 4 F. Susilo Mahasiswa S3 Mateatia FMIPA UGM da Staff Pegajar FKIP Uiversitas Saata Dhara

Lebih terperinci

Oleh : H. BERNIK MASKUN

Oleh : H. BERNIK MASKUN (D.5) ANALISIS VARIANS UNTUK MENGUJI KEKUATAN LEKAT SEMEN ADHESIF PADA PERMUKAAN LOGAM KARENA EMPAT MACAM PERLAKUAN (Studi Esperime pada Bidag Ortodoti Kedotera Gigi) Oleh : H. BERNIK MASKUN ABSTRAK Pegujia

Lebih terperinci

Jurnal MIPA 38 (1) (2015): Jurnal MIPA.

Jurnal MIPA 38 (1) (2015): Jurnal MIPA. Jural MIPA 38 () (5): 68-78 Jural MIPA http://ouraluesacid/u/idephp/jm APROKSIMASI ANUIAS HIDUP MENGGUNAKAN KOMBINASI EKSPONENSIAL LJ Siay S Gurito Guardi 3 Jurusa Matematia FMIPA Uiversitas Pattimura

Lebih terperinci

MENGUJI KEMAKNAAN SAMPEL TUNGGAL

MENGUJI KEMAKNAAN SAMPEL TUNGGAL MENGUJI KEMAKNAAN SAMPEL TUNGGAL 1.1 Uji Biomial 1. Uji esesuaia Chi Kuadrat 1.3 Uji Kesesuaia K-S 1.4 Uji Ideedesi Chi Kuadrat 1.5 Uji Pasti Fisher UJI BINOMIAL Meruaa uji roorsi dalam suatu oulasi Poulasi

Lebih terperinci

Dasar Sistem Pengaturan - Transformasi Laplace. Transformasi Laplace bilateral atau dua sisi dari sinyal bernilai riil x(t) didefinisikan sebagai :

Dasar Sistem Pengaturan - Transformasi Laplace. Transformasi Laplace bilateral atau dua sisi dari sinyal bernilai riil x(t) didefinisikan sebagai : Defiisi Trasformasi Laplace Trasformasi Laplace Bilateral Trasformasi Laplace bilateral atau dua sisi dari siyal berilai riil x(t) didefiisika sebagai : X B x(t)e Operasi trasformasi Laplace bilateral

Lebih terperinci

PENGARUH KOMPOSISI PENGELUARAN PEMERINTAH DAN TINGKAT PAJAK TERHADAP PERTUMBUHAN EKONOMI DALAM MODEL NEOKLASIK AMELIA

PENGARUH KOMPOSISI PENGELUARAN PEMERINTAH DAN TINGKAT PAJAK TERHADAP PERTUMBUHAN EKONOMI DALAM MODEL NEOKLASIK AMELIA PENGARUH OMPOSISI PENGELUARAN PEMERINTAH DAN TINGAT PAJA TERHADAP PERTUMBUHAN EONOMI DALAM MODEL NEOLASI AMELIA DEPARTEMEN MATEMATIA FAULTAS MATEMATIA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN

Lebih terperinci

Mahasiswa mampu. kimiawi

Mahasiswa mampu. kimiawi Peta Kompetesi KU 6 7 8 16 5 15 3 4 13 14 9 10 11 12 2 1 Kompetesi Umum : Mahasiswaa dapat meerapa metode aalisis ualitatif da uatitatif No 1 2 Kompetesi Khusus Mahasiswa mampu mejelasa hubuga atara sifat

Lebih terperinci

BAB VI DERET TAYLOR DAN DERET LAURENT

BAB VI DERET TAYLOR DAN DERET LAURENT BAB VI DERET TAYLOR DAN DERET LAURENT. Deret Taylor Misal fugsi f() aalitik pada - < R ( ligkara dega pusat di da jari-jari R ). Maka utuk setiap titik pada ligkara itu, f() dapat diyataka sebagai : f

Lebih terperinci

Statistika Deskriptif Ukuran Pemusatan dan Ukuran Penyebaran

Statistika Deskriptif Ukuran Pemusatan dan Ukuran Penyebaran Statistika Deskriptif Ukura Pemusata da Ukura Peyebara Ukura Pemusata Data Rata-rata Hitug Rata-rata hitug data tuggal: = x 1 + x 2 + x 3 + + x atau =. (1 : rata-rata hitug data tuggal (baca x-bar : bayakya

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015 RESPONSI STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 015 A. PENYAJIAN DAN PERINGKASAN DATA 1. PENYAJIAN DATA a. Sebutka tekik peyajia data utuk data kualitatif! Diagram kueh, diagram batag, distribusi

Lebih terperinci

BAB 6: ESTIMASI PARAMETER (2)

BAB 6: ESTIMASI PARAMETER (2) Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara

Lebih terperinci

BAB IV PEMECAHAN MASALAH

BAB IV PEMECAHAN MASALAH BAB IV PEMECAHAN MASALAH 4.1 Metodologi Pemecaha Masalah Dalam ragka peigkata keakurata rekomedasi yag aka diberika kepada ivestor, maka dicoba diguaka Movig Average Mometum Oscillator (MAMO). MAMO ii

Lebih terperinci

PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA

PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA Cara Peyajia Data dega Tabel Distribusi Frekuesi Distribusi Frekuesi adalah data yag disusu dalam betuk kelompok baris berdasarka

Lebih terperinci

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu

Lebih terperinci

MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM

MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM MATEMATIKA BISNIS OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM BAB BARISAN DAN DERET A. BARISAN Barisa bilaga adalah susua bilaga yag diurutka meurut atura tertetu.betuk umum barisa bilaga a,

Lebih terperinci

HASIL DAN PEMBAHASAN. Performance Model. Real System. Mangukur Utilisasi CPU dan Penggunaan memori. Menghitung Utilisasi CPU dan Penggunaan memori

HASIL DAN PEMBAHASAN. Performance Model. Real System. Mangukur Utilisasi CPU dan Penggunaan memori. Menghitung Utilisasi CPU dan Penggunaan memori Real System Pegukura Magukur Utilisasi CPU da Pegguaa memori Diterima? Ya Performace Model Kalkulasi Meghitug Utilisasi CPU da Pegguaa memori Tidak Kalibrasi Model Gambar 3 Cara utuk melakuka validasi

Lebih terperinci

BAB II TINJAUAN LITERATUR. Pengendalian persediaan dapat dilakukan dalam berbagai cara, antara lain dengan

BAB II TINJAUAN LITERATUR. Pengendalian persediaan dapat dilakukan dalam berbagai cara, antara lain dengan BAB II TINJAUAN LITERATUR 2.1. Klasifikasi ABC Dalam Persediaa Pegedalia persediaa dapat dilakuka dalam berbagai cara, atara lai dega megguaka aalisis ilai persediaa. Dalam aalisis ii, persediaa dibedajka

Lebih terperinci

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL HENSTOCK- KURZWEIL SERENTAK DAN FUNGSI BERSIFAT LOCALLY SMALL RIEMANN SUMS (LSRS) DARI RUANG EUCLIDE

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL HENSTOCK- KURZWEIL SERENTAK DAN FUNGSI BERSIFAT LOCALLY SMALL RIEMANN SUMS (LSRS) DARI RUANG EUCLIDE Teorema Keovergea Fugsi Teritegral Hestoc(Aiswita) TORMA KKONVRGNAN FUNGSI TRINTGRAL HNSTOCK- KURZWIL SRNTAK DAN FUNGSI BRSIFAT LOCALLY SMALL RIMANN SUMS (LSRS) DARI RUANG UCLID K RUANG BARISAN Aiswita,

Lebih terperinci

Universitas Gadjah Mada Fakultas Teknik Departemen Teknik Sipil dan Lingkungan REGRESI DAN KORELASI. Statistika dan Probabilitas

Universitas Gadjah Mada Fakultas Teknik Departemen Teknik Sipil dan Lingkungan REGRESI DAN KORELASI. Statistika dan Probabilitas Uiversitas Gadjah Mada Fakultas Tekik Departeme Tekik Sipil da Ligkuga REGRESI DAN KORELASI Statistika da Probabilitas Kurva Regresi Mecari garis/kurva yag mewakili seragkaia titik data Ada dua cara utuk

Lebih terperinci

Pendekatan Teori Antrian : Kasus Nasabah Bank pada Pukul WIB di Bank BNI 46 Cabang Bengkulu

Pendekatan Teori Antrian : Kasus Nasabah Bank pada Pukul WIB di Bank BNI 46 Cabang Bengkulu Jural Gradie Vol. No. Juli 5 : 9-97 edeata Teori Atria : Kasus Nasabah Ba pada uul 8.-. WIB di Ba BNI 46 Cabag Begulu Fahri Faisal Jurusa Matematia, Faultas Matematia da Ilmu egetahua Alam, Uiversitas

Lebih terperinci

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA BAB VI BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { },,,,, adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila,,,..,

Lebih terperinci

Kestabilan Rangkaian Tertutup Waktu Kontinu Menggunakan Metode Transformasi Ke Bentuk Kanonik Terkendali

Kestabilan Rangkaian Tertutup Waktu Kontinu Menggunakan Metode Transformasi Ke Bentuk Kanonik Terkendali Jural Tekika ISSN : 285-859 Fakultas Tekik Uiversitas Islam Lamoga Volume No.2 Tahu 29 Kestabila Ragkaia Tertutup Waktu Kotiu Megguaka Metode Trasformasi Ke Betuk Kaoik Terkedali Suhariyato ) Dose Fakultas

Lebih terperinci

Ukuran Pemusatan. Pertemuan 3. Median. Quartil 5/2/2017. Modus

Ukuran Pemusatan. Pertemuan 3. Median. Quartil 5/2/2017. Modus 5//0 Ukura Pemusata Pertemua STATISTIKA DESKRIPTIF Statistik deskripti adalah pegolaha data utuk tujua medeskripsika atau memberika gambara terhadap obyek yag diteliti dega megguaka sampel atau populasi.

Lebih terperinci

Estimasi Prob. Density Function dengan EM

Estimasi Prob. Density Function dengan EM Estimasi rob. Desity Fuctio dega EM Sumber: -Forsyth & oce Chap. 7 -Stadford Visio & Modelig robability Desity Estimatio arametric Represetatios o-arametric Represetatios Miture Models age Metode estimasi

Lebih terperinci

BAB 4 LIMIT FUNGSI Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah

BAB 4 LIMIT FUNGSI Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah BAB LIMIT FUNGSI Stadar Kompetesi Megguaka kosep it ugsi da turua ugsi dalam pemecaha masalah Kompetesi Dasar. Meghitug it ugsi aljabar sederhaa di suatu titik. Megguaka siat it ugsi utuk meghitug betuk

Lebih terperinci

BAB V. INTEGRAL. Lambang anti-turunan (integral tak-tentu) oleh Leibniz adalah... dx, sehingga

BAB V. INTEGRAL. Lambang anti-turunan (integral tak-tentu) oleh Leibniz adalah... dx, sehingga BAB V. INTEGRAL 5.. Ati Turua (Itegral Tak-tetu) Defiisi: F suatu ati-turua f pada selag I jika da haya jika D F() = f() pada I, yaki F () = f() utuk semua dalam I. (Jika suatu titik ujug I, F () haya

Lebih terperinci