FUNCTIONALLY SMALL RIEMANN SUMS (FSRS) DAN ESSENTIALLY SMALL RIEMANN SUMS (ESRS) FUNGSI TERINTEGRAL HENSTOCKn. p )

Ukuran: px
Mulai penontonan dengan halaman:

Download "FUNCTIONALLY SMALL RIEMANN SUMS (FSRS) DAN ESSENTIALLY SMALL RIEMANN SUMS (ESRS) FUNGSI TERINTEGRAL HENSTOCKn. p )"

Transkripsi

1 βeta -ISSN: e-issn: Vol. 3 No. (Noember), Hal βeta DOI: htt://dx.doi.org/.44/betajtm.v9i.7 FUNCTIONALLY SMALL RIMANN SUMS (FSRS) DAN SSNTIALLY SMALL RIMANN SUMS (SRS) FUNGSI TRINTGRAL HNSTOCK KURZWIL DARI RUANG UCLID K RUANG BARISAN, ( <) Aiswita Abstract: I this aer we discuss Fuctioally Small Riema Sums (FSRS) roerties ed ssetially Small Riema Sums (SRS) roerties or Hestoc-Kurzweil itegrable uctios rom the uclidea saces ito the Sequeces sace,( ) Keywords: Hestoc itegrable uctios; uclidea saces; FSRS; SRS A. PNDAHULUAN Pada tahu 96, Hestoc da Kurzweil secara terisah megitlaa itegral Riema dega megubah ostata mejadi ugsi ositi da teryata itegral yag merea susu euivale. Oleh area itu itegral tersebut dieal dega itegral Hestoc-Kurzweil atau itegral Riema yag dierluas (Gordo, 994). Itegral ii medaat erhatia yag sagat besar dari ara eeliti, berbagai eelitia dilaua utu meggali siat-siat da aliasiya. Diatara siat tersebut adalah siat Fuctioally Small Riema Sums (FSRS) da ssetially Small Riema Sums (SRS). Pegertia FSRS utu ugsi berilai Real ada himua bilaga Real yag teritegral Hestoc diberia da dibuua oleh Lee (99). Kemudia tahu 995 Darmawijaya megembaga siat FSRS e SRS utu itegral Hestoc ada a, b. Idrati () megitlaaya utu ugsi berilai real ada ruag uclide berdimesi, emudia Suherma Seolah Tiggi Agama Islam Negeri Buittiggi Padag Sumatera Utara, Idoesia

2 Aiswita, FSRS da SRS Fugsi Teritegral Hestoc-Kurzweil... (3) megembagaya utu ugsi berilai vetor ada ruag uclide berdimesi. Berdasara uraia di atas aa diselidii aaah siat FSRS da SRS masih berlau utu ugsi yag teritegral Hestoc dari ruag uclide e ruag barisa, ( < ). Himua semua bilaga real diotasia dega. Utu bilaga asli, meyataa himua semua asaga atas bilaga real, yaitu =.... ( actor) = x x,..., x : x da i i. Utu titi x, erseitara (eighborhood) titi x dega jari- jari r>, diotasia dega B ( x, r) da dideiisia B ( x, r) = y : y da x y r. Utu ( < ), sehigga meruaa olesi semua barisa x = x atau ditulis, x. (Kreyszig, 978). = x W, x Perlu dierhatia bahwa ugsi barisa ugsi (,,3,...) sehigga x W : meruaa dega :, utu setia x = (x) utu setia x. Beriut diberia deiisi, siat dasar da siat lajut dari itegral Hestoc dari ruag uclide e ruag barisa, ( < ). Deiisi. Diberia ugsi volume ada da sel. Fugsi : diataa teritegral Hestoc ada, ditulis dega R,, jia terdaat a dega siat utu setia bilaga terdaat ugsi ositi ada sehigga utu setia artisi Perro -ie D D, x Di, xi : i,,..., r ada berlau a 8 βeta Vol. 3 No. (Noember)

3 Aiswita, FSRS da SRS Fugsi Teritegral Hestoc-Kurzweil... D ( x) ( a ( x i ) ( D ) a. a Selajutya ilai r i a yag dimasud di atas disebut ilai itegral- Hestoc ugsi ada di tulis dega a ( R) d. Deiisi. Diberia ugsi volume ada, i sel, da ugsi : utu setia, (=,,...). Barisa ugsi { } diataa teritegral- Hestoc sereta (Hestoc qui -itegrable) ada dega F sebagai rimitiya jia utu setia bilaga terdaat ugsi ositi ada sehigga utu setia artisi Perro - ie D D, x ada berlau D x D F,utu setia. Teorema 3. (Kriteria Cauchy) Diberia ugsi volume ada da sel. Fugsi R,, jia da haya jia utu setia bilaga terdaat ugsi ositi ada sehigga utu setia dua artisi D D, x da D D, x ada berlau D x) ( D ) D ( x) ( D ). ( Teorema 4. (Lemma Hestoc) Diberia ugsi volume ada da sel. Jia R,, dega F sebagai rimitiya, yaitu utu setia bilaga terdaat ugsi ositi ada sehigga D D, x ada berlau utu setia artisi Perro -ie D ( x) ( F( ), maa utu setia jumlah D. bagia dari D berlau ( x) ( F( ) Teorema 5. (Peluasa Harac) Diberia ugsi volume ada, sel, da ugsi :. Himua X meruaa himua tertutu di dalam da { i } meruaa barisa himua tertutu sederhaa yag tida salig tumag-tidih dega βeta Vol. 3 No. (Noember) 8

4 Aiswita, FSRS da SRS Fugsi Teritegral Hestoc-Kurzweil... i \ X. Jia R X,, i setia i dega da R,, ( R ) maa d i i R,, da ( R ) d ( R ) ( ) x d R X i i i, utu d. Aibat 6. (Siat Cauchy) Diberia ugsi volume ada, sel, da ugsi :. Barisa { i } meruaa barisa himua sederhaa yag tida salig tumag-tidih dega i i, dega oit) sel.. Jia R,, meyataa himua titi-dalam (iterior i, utu setia i dega R ( ) maa R,, da d i i ( R ) d i ( R ) i d B. PMBAHASAN Beriut dibahas deiisi ugsi dari ruag uclide e ruag barisa, ( < ) yag memilii siat FSRS da SRS serta beberaa teorema yag terait dega siat FSRS da SRS.. Fuctioally Small Riema Sums (FSRS) Pembahasa siat Fuctioally Small Riema Sums ada itegral Hestoc dihubuga dega ugsi o egati yag teritegral Lebesgue ada sel. Utu memudaha embahasa selajutya terlebih dahulu diberia Teorema 7 di bawah ii. Teorema 7. Diberia ugsi volume ada da sel. Jia ugsi teritegral Hestoc ada sel maa terdaat barisa 8 βeta Vol. 3 No. (Noember)

5 Aiswita, FSRS da SRS Fugsi Teritegral Hestoc-Kurzweil... himua tertutu, dega, da teritegral Lebesgue ada utu setia, (=,, ) Buti Fugsi F meyataa rimiti itegral Hestoc ugsi ada sel, maa F C da F ACG tertutu, dega, da F AC Hal ii beraibat F AC utu setia ' F BV utu setia. Lebih lajut dieroleh F x x. Berarti terdaat barisa himua utu setia., sehigga dieroleh hamir dimaa-maa ada utu setia. Jadi teritegral Lebesgue ada utu setia. Sebelum membahas lebih lajut, erlu dierhatia bahwa, ugsi sel,,... : teritegral Hestoc mutla ada sel jia ugsi da (mutlaya) teritegral Hestoc ada.,,... : Perlu juga diigat bahwa ugsi teritegral Lebesgue ada sel jia da haya jia ugsi teritegral Hestoc mutla ada sel. Selajutya diberia deiisi ugsi yag memuyai siat Fuctioally Small Riema Sums (FSRS) ada sel. Deiisi 8. Diberia ugsi volume ada, sel da ugsi : teruur-. Fugsi diataa memuyai siat Futioally Small Riema Sums (FSRS) terhada ada sel ditulis FSRS,, jia utu setia bilaga terdaat dega ugsi ta egati g teritegral Lebesgue ada da ugsi ositi ada dega siat utu setia artisi Perro -ie D D, x ada sel berlau x D D. x g x Teorema 9 dibawah ii memberia arateristi itegral Hestoc di dalam siat FSRS. βeta Vol. 3 No. (Noember) 83

6 Aiswita, FSRS da SRS Fugsi Teritegral Hestoc-Kurzweil... Teorema 9. Fugsi teritegral Hestoc ada sel haya jia ugsi bersiat FSRS ada sel. Buti: jia da (Syarat cuu) Fugsi bersiat FSRS ada sel maa utu setia bilaga terdaat ugsi ta egati g yag teritegral Lebesgue da ugsi ositi ada dega siat utu setia artisi Perro - D D, x ada sel berlau ie x D D. x g x 4 Kemudia dideiisia ugsi h x h x dega x, utu x gx, utu yag laiya Fugsi h teruur da terdomiasi oleh ugsi g ada sel. Dietahui g teritegral Lebesgue ada sel maa h juga teritegral Lebesgue ada sel. Aibatya, ugsi h teritegral Hestoc mutla ada sel, sehigga terdaat ugsi ositi ada sel dega siat utu setia artisi Perro -ie D dad ada berlau D h( x) ( D ) D h( x) ( D ). 4 Diambil ugsi ositi dega rumus x mi x, x sehigga utu sebarag dua artisi Perro - ie D da D ada sel berlau D h ( x) ( D ) D h( x) ( D ) x D D + x g x D + x g x x D 84 βeta Vol. 3 No. (Noember)

7 Aiswita, FSRS da SRS Fugsi Teritegral Hestoc-Kurzweil... D Berdasara riteria Cauchy. + x D D x D x g x x g x D h( x) ( D ) D h( x) ( D ). ugsi teritegral Hestoc ada sel (Syarat erlu) Dietahui ugsi teritegral Hestoc ada sel maa teruur ada sel. Meurut Teorema 7 terdaat barisa himua tertutu dega da ugsi teritegral Lebesgue ada utu setia. Selajutya dideiisia ugsi x x, utu setia x, utu yag laiya Utu setia, ugsi teritegral Hestoc ada sel sehigga utu setia bilaga terdaat bilaga ositi dega siat utu setia berlau R d R. d Di lai iha area utu setia, terdaat ugsi ositi ada sel dega siat utu setia artisi Perro -ie D ada berlau D ( x) ( R d. Fugsi teritegral Hestoc ada sel sehigga terdaat ugsi ositi ada sel dega siat utu setia artisi Perro -ie D ada berlau ( x) ( R d D. βeta Vol. 3 No. (Noember) 85

8 Aiswita, FSRS da SRS Fugsi Teritegral Hestoc-Kurzweil... Dideiisia ugsi oegati g dega x x g. Karea g oegati da teruur ada sel maa g teritegral Lebesgue ada sel. Selajutya diambil mi x x maa utu setia x, Partisi Perro -ie D ada berlau D x D D x D D x D x g x R d R x g x D d + ( x) ( R d + x D R D x g d gx D R 3. Dega demiia meurut Teorema 9 di atas terdaat adaya euivalesi atara ugsi yag teritegral Hestoc dega ugsi yag memuyai siat FSRS.. ssetially Small Riema Sums (SRS) Siat SRS meyataa bahwa ugsi teritegral Hestoc ada sel daat dideati dega ugsi teritegral Lebesgue ada sel. Siat ii memerlemah syarat ugsi teritegral Lebesgue di dalam siat FSRS yag meruaa ugsi ta egati. Deiisi. Diberia ugsi volume ada, sel da ugsi siat ssetially Small Riema Sums (SRS) terhada ada sel ditulis SRS,, jia utu setia bilaga terdaat : teruur- ada sel. Fugsi diataa memuyai dega ugsi teritegral Lebesgue g da ugsi ositi ada dega siat D D, x ada sel berlau utu setia artisi Perro -ie 86 βeta Vol. 3 No. (Noember)

9 Aiswita, FSRS da SRS Fugsi Teritegral Hestoc-Kurzweil... x D D. x g x Teorema dibawah ii memberia arateristi itegral Hestoc di dalam siat SRS. Teorema. Fugsi teritegral Hestoc ada sel jia da haya jia ugsi bersiat SRS ada sel. Buti: (Syarat Perlu) Dietahui teritegral Hestoc ada sel maa berdasara Teorema 9 bersiat FSRS ada sel dega ata lai utu setia bilaga terdaat ugsi ta egati g yag teritegral Lebesgue da ugsi ositi ada dega siat utu setia artisi D D, x ada sel berlau Perro -ie x D D. x g x Deiisia ugsi h dega rumus x, utu x g x hx, utu yag laiya Fugsi h teritegral Lebesgue ada sel, aibatya utu setia artisi D D, x ada sel berlau Perro -ie D x D D x D x h x x D D. x g x x h x Dega ata lai terbuti bersiat SRS ada sel. (Syarat cuu) Fugsi bersiat SRS ada sel berarti utu setia bilaga terdaat ugsi teritegral Lebesgue g da ugsi ositi ada dega siat utu setia artisi Perro ada sel berlau -ie D D, x βeta Vol. 3 No. (Noember) 87

10 Aiswita, FSRS da SRS Fugsi Teritegral Hestoc-Kurzweil... x x D D. g x Fugsi g teritegral Lebesgue ada sel maa terdaat ugsi ositi ada dega siat utu setia dua artisi Perro ada sel berlau D x D x. -ie D da D D Diambil ugsi ositi dega rumus x mi x x,, aibatya utu setia dua artisi Perro -ie D da D ada sel berlau D x D x D D D D x D + D x D x g x + x g x x D D x D D x g x x g x D gx D gx D D 3. Berdasara riteria Cauchy teritegral Hestoc ada sel. Dega demiia meurut Teorema di atas terdaat adaya euivalesi atara ugsi yag teritegral Hestoc dega ugsi yag memuyai siat SRS. C. SIMPULAN Berdasara embahasa di atas daat disimula bahwa siat FSRS da SRS masih berlau utu ugsi yag teritegral Hestoc dari ruag uclide e ruag barisa, ( <). Permasalaha-ermasalaha lai yag erlu diembaga atara lai ajia megeai teorema eovergea Small Riema Sums ugsi 88 βeta Vol. 3 No. (Noember)

11 Aiswita, FSRS da SRS Fugsi Teritegral Hestoc-Kurzweil... yag teritegral Hestoc dari ruag uclide e ruag Barisa,( < ) serta aliasiya ada disili ilmu lai. DAFTAR PUSTAKA Gordo, R. A. (994). The itegral o lebesque, dejoy, erro ad hestoc. USA : America Mathematical Society. Idrati, Ch. R. (). Itegral Hestoc-Kurzweil di dalam ruag euclide berdimesi-. Disertasi. Uiversitas Gadjah Mada, Idoesia Kreyszig,. (978). Itroductio uctioal aalysis with alicatio. Joh Wiley ad Sos Lee, P. Y. (989). Lazhou lectures o hestoc itegratio. Sigaore: Word Scietiic. Peer, W. F. (993). The Riema aroach to itegratio. New Yor: Cambridge Uiversity Press. Royde, H. L. (989). Real Aalysis, third editio. New Yor: Macmilla Publishig Comay. βeta Vol. 3 No. (Noember) 89

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL HENSTOCK- KURZWEIL SERENTAK DAN FUNGSI BERSIFAT LOCALLY SMALL RIEMANN SUMS (LSRS) DARI RUANG EUCLIDE

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL HENSTOCK- KURZWEIL SERENTAK DAN FUNGSI BERSIFAT LOCALLY SMALL RIEMANN SUMS (LSRS) DARI RUANG EUCLIDE Teorema Keovergea Fugsi Teritegral Hestoc(Aiswita) TORMA KKONVRGNAN FUNGSI TRINTGRAL HNSTOCK- KURZWIL SRNTAK DAN FUNGSI BRSIFAT LOCALLY SMALL RIMANN SUMS (LSRS) DARI RUANG UCLID K RUANG BARISAN Aiswita,

Lebih terperinci

BARISAN, (1 p< ) Aniswita 1

BARISAN, (1 p< ) Aniswita 1 βeta -ISSN: 85-5893 e-issn: 54-458 Vol 6 No Mei 3 Hal 46-57 βeta3 TRMA NVRGNAN FUNGSI TRINTGRAL HNSTC- URZWIL SRNTA AN FUNGSI BRSIFAT LCALLY SMALL RIMANN SUMS LSRS ARI RUANG UCLI RUANG BARISAN < Aiswita

Lebih terperinci

ESSENTIALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA [a,b] Jl. Prof. H. Soedarto, S.H. Semarang 50275

ESSENTIALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA [a,b] Jl. Prof. H. Soedarto, S.H. Semarang 50275 ESSENTILLY SMLL RIEMNN SUMS FUNGSI TERINTEGRL HENSTOCK-DUNFORD PD [ab] Solikhi Sumato Siti Khabibah 3 3 Jurusa Matematika FSM Uiversitas Dioegoro Jl Prof H Soedarto SH Semarag 575 solikhi@liveudiacid khabibah_ku@yahoocoid

Lebih terperinci

ESSENTIALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA [a,b]

ESSENTIALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA [a,b] ESSENTILLY SMLL RIEMNN SUMS FUNGSI TERINTEGRL HENSTOCK-UNFOR P [a,b] Solikhi, Sumato, Siti Khabibah 3,,3 Jurusa Matematika FSM Uiversitas ioegoro Jl Prof H Soedarto, SH Semarag 5075 solikhi@liveudiacid,

Lebih terperinci

Sifat-sifat Fungsi Karakteristik dari Sebaran Geometrik

Sifat-sifat Fungsi Karakteristik dari Sebaran Geometrik Sifat-sifat Fugsi Karateristi dari Sebara Geometri Dodi Deviato Jurusa Matematia, Faultas MIPA, Uiversitas Adalas Kamus Limau Mais, Padag 563, Sumatera Barat, Idoesia Abstra Fugsi arateristi dari suatu

Lebih terperinci

SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA

SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA KELAS D(K) Malahayati Program Studi Matematia Faultas Sais da Teologi UIN Sua Kalijaga Yogyaarta e-mail: malahayati_01@yahoo.co.id ABSTRAK Himpua

Lebih terperinci

PEMBUKTIAN SIFAT RUANG BANACH PADA D(K)

PEMBUKTIAN SIFAT RUANG BANACH PADA D(K) JMP : Volume 4 Nomor 1, Jui 2012, hal. 41-50 PEMBUKTIAN SIFAT RUANG BANACH PADA D(K) Malahayati Program Studi Matematia Faultas Sais da Teologi UIN Sua Kalijaga malahayati_01@yahoo.co.id ABSTRACT. I this

Lebih terperinci

SIFAT-SIFAT FUNGSI YANG TERINTEGRAL MCSHANE DALAM RUANG EUCLIDE BERDIMENSI N UNTUK FUNGSI-FUNGSI BERNILAI BANACH

SIFAT-SIFAT FUNGSI YANG TERINTEGRAL MCSHANE DALAM RUANG EUCLIDE BERDIMENSI N UNTUK FUNGSI-FUNGSI BERNILAI BANACH βeta p-issn: 2085-5893 / e-issn: 2541-0458 http://juralbeta.ac.id Vol. 5 No. 1 (Mei) 2012, Hal. 21-29 βeta 2012 SIFAT-SIFAT FUNGSI YANG TRINTGRAL MCSHAN DALAM RUANG UCLID BRDIMNSI N UNTUK FUNGSI-FUNGSI

Lebih terperinci

Keywords: Convergen Series, Banach Space, Sequence space cs, Dual-α, Dual-

Keywords: Convergen Series, Banach Space, Sequence space cs, Dual-α, Dual- Jural MIPA FST UNDANA, Volume 2, Nomor, April 26 DUAL-, DUAL- DAN DUAL- DARI RUANG BARISAN CS Albert Kumaereg, Ariyato 2, Rapmaida 3,2,3 Jurusa Matematia, Faultas Sais da Tei Uiversitas Nusa Cedaa ABSTRACT

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 6 No.1 Juni 2012: 9-16 KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC

Jurnal Matematika Murni dan Terapan Vol. 6 No.1 Juni 2012: 9-16 KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC Jural Matematika Muri da Teraa Vol. 6 No.1 Jui 01: 9-16 KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC Muhammad Ahsar Karim 1 Faisal Yui Yulida 3 [1,,3] PS Matematika FMIPA Uiversitas

Lebih terperinci

Functionally Small Riemann Sums Fungsi Terintegral Henstock-Dunford pada [a,b]

Functionally Small Riemann Sums Fungsi Terintegral Henstock-Dunford pada [a,b] Jural Sas da Matemata Vol (3): 58-63 () Fuctoally Small Rema Sums Fugs Tertegral Hestoc-uford ada [a,b] Solh, Sumato, St Khabbah 3,,3 Program Stud Matemata, FSM UNIP Jl Prof Soedarto, SH Semarag, 575 E-mal:

Lebih terperinci

RUANG BANACH PADA RUANG BARISAN, DAN

RUANG BANACH PADA RUANG BARISAN, DAN RUANG BANACH PADA RUANG BARISAN, DAN Wahidah Alwi* * Dose ada Jurusa Mateatia Faultas Sais da Teologi UIN Alauddi Maassar e-ail: wahidah.alwi79@gail.co Abstract: The ai object of the vectors are the vectors

Lebih terperinci

KONTRUKSI RUMUS NORMA ALTERNATIF UNTUK 1 ABSTRAK

KONTRUKSI RUMUS NORMA ALTERNATIF UNTUK 1 ABSTRAK KONTRUKSI RUMUS NORMA ALTERNATIF UNTUK RUANG FUNGSI L ([ 0,]) Wayuiati, Era Ariliai, Eridai ABSTRAK Rua usi L (X ) meruaa rua berorma utu Semua rua asil ali dalam adala rua berorma, tetai tida selalu berlau

Lebih terperinci

SOLUSI PERSAMAAN DIFERENSIAL BOLTZMANN LINEAR. Agus Sugandha

SOLUSI PERSAMAAN DIFERENSIAL BOLTZMANN LINEAR. Agus Sugandha JMP : Volume Nomor 2, Oober 2009 SOUSI PERSAMAAN DIFERENSIA BOTZMANN INEAR Agus Sugadha Faulas Sais da Tei, Uiversias Jederal Soedirma Purwoero, Idoesia Email : agussugadha@ymail.com ABSTRACT. I his research,

Lebih terperinci

LOCALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA RUANG n EUCLIDE

LOCALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA RUANG n EUCLIDE LOLLY SMLL RIMNN SUMS FUNGSI TRINTGRL HNSTOK-UNFOR P RUNG ULI Solh Program Stud Matemata Faultas Sas da Matemata UNIP Jl Prof Soedarto, SH Semarag 575, sol_erf@yahoocom BSTRK I ths aer we study Hestoc-uford

Lebih terperinci

Mengkaji Perbedaan Diagonalisasi Matriks Atas Field dan Matriks Atas Ring Komutatif

Mengkaji Perbedaan Diagonalisasi Matriks Atas Field dan Matriks Atas Ring Komutatif Megaji Perbedaa Diagoalisasi Matris Atas Field da Matris Atas Rig Komutatif Teorema : Jia A adalah matris x maa eryataa eryataa beriut eivale satu sama lai : a A daat didiagoalisasi b A memuyai vetor eige

Lebih terperinci

Konvolusi pada Distribusi dengan Support Kompak

Konvolusi pada Distribusi dengan Support Kompak Prosidig SI MaNIs (Semiar Nasioal Itegrasi Matematia da Nilai Islami) Vol1, No1, Juli 2017, Hal 453-457 p-issn: 2580-4596; e-issn: 2580-460X Halama 453 Kovolusi pada Distribusi dega Support Kompa Cythia

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 71-76, Agustus 2003, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 71-76, Agustus 2003, ISSN : JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 71-76, Agustus 2003, ISSN : 1410-8518 SYARAT CUKUP AGAR SUATU FUNGSI TERINTEGRAL HENSTOCK MUTLAK DI DALAM RUANG METRIK KOMPAK LOKAL Mauharawati Jurusa Matematika

Lebih terperinci

Aproksimasi Terbaik dalam Ruang Metrik Konveks

Aproksimasi Terbaik dalam Ruang Metrik Konveks Aprosimasi Terbai dalam Ruag etri Koves Oleh : Suharsoo S Jurusa atematia FIPA Uiversitas Lampug Abstra asalah esistesi da etuggala aprosimasi terbai suatu titi dalam ruag berorm telah dipelajari oleh

Lebih terperinci

Gambar 3.1Single Channel Multiple Phase

Gambar 3.1Single Channel Multiple Phase BAB III MODEL ANTRIAN PADA PEMBUATAN SIM C. Sigle Chael Multiple Phase Sistem atria sigle chael multiple phase merupaa sistem atria dimaa pelagga yag tiba, dapat memasui sistem dega megatri di tempat yag

Lebih terperinci

KEKONVERGENAN BARISAN DI DALAM RUANG

KEKONVERGENAN BARISAN DI DALAM RUANG KEKONVERGENAN BARISAN DI DALAM RUANG FUNGSI KONTINU C[a, b] Firdaus Ubaidillah 1, Soepara Darmawijaya, Ch. Rii Idrati 1 Jurusa Matematika FMIPA Uiversitas Gadjah Mada Yogyakarta e-mail: irdaus_u@yahoo.com

Lebih terperinci

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu

Lebih terperinci

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu

Lebih terperinci

MASALAH DAN ALTERNATIF JAWABAN DALAM MATEMATIKA KOMBINATORIK. Masalah 1 Terdapat berapa carakah kita dapat memilih 2 baju dari 20 baju yang tersedia?

MASALAH DAN ALTERNATIF JAWABAN DALAM MATEMATIKA KOMBINATORIK. Masalah 1 Terdapat berapa carakah kita dapat memilih 2 baju dari 20 baju yang tersedia? Kartia Yuliati, SPd, MSi MASALAH DAN ALTERNATIF JAWABAN DALAM MATEMATIKA KOMBINATORIK Masalah Terdapat berapa caraah ita dapat memilih baju dari 0 baju yag tersedia? Cara Misala baju diberi omor dari sampai

Lebih terperinci

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C.

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C. BAB II LANDASAN TEORI Pada bab ii aa dibahas teori teori yag meduug metode upper level set sca statistics, atara lai peubah aca, distribusi gamma, fugsi gamma, fugsi lielihood, da uji rasio lielihood.

Lebih terperinci

3. Integral (3) (Integral Tentu)

3. Integral (3) (Integral Tentu) Darublic www.darublic.com. Itegral () (Itegral Tetu).. Luas Sebagai Suatu Itegral. Itegral Tetu Itegral tetu meruaa itegral ag batas-batas itegrasia jelas. Kose dasar dari itegral tertetu adalah luas bidag

Lebih terperinci

Aplikasi Sistem Orthonormal Di Ruang Hilbert Pada Deret Fourier

Aplikasi Sistem Orthonormal Di Ruang Hilbert Pada Deret Fourier Apliasi Sistem Orthoormal Di Ruag Hilbert Pada Deret Fourier A 7 Fitriaa Yuli S. FMIPA UNY Abstra Ruag hilbert aa dibahas pada papper ii. Apliasi system orthoormal aa diaji da aa diapliasia pada ruahg

Lebih terperinci

TEOREMA CAYLEY-HAMILTON SEBAGAI SALAH SATU METODE DALAM PENGHITUNGAN FUNGSI MATRIKS

TEOREMA CAYLEY-HAMILTON SEBAGAI SALAH SATU METODE DALAM PENGHITUNGAN FUNGSI MATRIKS Jural Matematia Vol.6 No. November 6 [ 5 : ] TEOREMA CAYLEY-HAMILTON SEBAGAI SALAH SATU METODE DALAM PENGHITUNGAN FUNGSI MATRIKS Ooy Rohaei Jurusa Matematia, UNISBA, Jala Tamasari No, Badug,6, Idoesia

Lebih terperinci

MODUL BARISAN DAN DERET

MODUL BARISAN DAN DERET MODUL BARISAN DAN DERET SEMESTER 2 Muhammad Zaial Abidi Persoal Blog http://meetabied.wordpress.com BAB I. PENDAHULUAN A. Desripsi Dalam modul ii, ada aa mempelajari pola bilaga, barisa, da deret diidetifiasi

Lebih terperinci

SKRIPSI L LEBESGUE RUANG ISMAIL 02/154094/PA/08715

SKRIPSI L LEBESGUE RUANG ISMAIL 02/154094/PA/08715 SKRIPSI RUANG P L LEBESGUE ISMAIL 02/54094/PA/0875 DEPARTEMEN PENDIDIKAN NASIONAL FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA 2007 SKRIPSI RUANG P L LEBESGUE Sebagai salah satu

Lebih terperinci

PEMBUKTIAN SIFAT RUANG BANACH PADA B 1/4 (K) Malahayati

PEMBUKTIAN SIFAT RUANG BANACH PADA B 1/4 (K) Malahayati Jural Matematika Muri da Terapa εpsilo Vol. 07, No.01, (2013), Hal. 33 44 PEMBUKTIAN SIFAT RUANG BANACH PADA B 1/4 (K) Malahayati Program Studi Matematika Fakultas Sais da Tekologi UIN Sua Kalijaga Yogyakarta

Lebih terperinci

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 2, No.1, Februari 2013

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 2, No.1, Februari 2013 IfiityJural Ilmiah Program Studi Matematika STKIP Siliwagi Badug, Vol 2, No.1, Februari 2013 KEKONTINUAN FUNGSI PADA RUANG METRIK Oleh: Cece Kustiawa Jurusa Pedidika Matematika FPMIPA UPI, cecekustiawa@yahoo.com

Lebih terperinci

MACAM-MACAM TEKNIK MEMBILANG

MACAM-MACAM TEKNIK MEMBILANG 0 MACAM-MACAM TEKNIK MEMBILANG ATURAN PERKALIAN Beriut ii diberia sebuah dalil tetag peetua baya susua yag palig sederhaa dalam suatu permasalaha yag beraita dega peluag. Dalil 2.1: ATURAN PERKALIAN SECARA

Lebih terperinci

x x x1 x x,..., 2 x, 1

x x x1 x x,..., 2 x, 1 0.4 Variasi Kaoi amel Da Korelasi Kaoi amel amel aca dari observasi ada masig-masig variabel dari ( + q) variabel (), () daat digabuga edalam (( + q) ) data matris,,..., dimaa (0-5) Adau vetor rata-rata

Lebih terperinci

MAKALAH TEOREMA BINOMIAL

MAKALAH TEOREMA BINOMIAL MAKALAH TEOREMA BINOMIAL Disusu utu memeuhi tugas mata uliah Matematia Disrit Dose Pegampu : Dr. Isaii Rosyida, S.Si, M.Si Rombel B Kelompo 2 1. Wihdati Martalya (0401516006) 2. Betha Kuria S. (0401516012)

Lebih terperinci

KEKONVERGENAN INTEGRAL HENSTOCK-PETTIS. PADA RUANG EUCLIDE R (Henstock-Pettis Integral Convergence in Euclidean Space)

KEKONVERGENAN INTEGRAL HENSTOCK-PETTIS. PADA RUANG EUCLIDE R (Henstock-Pettis Integral Convergence in Euclidean Space) Harur Rahma da Soeara Darmawjaya, Keovergea Itegral Hestoc KEKONVERGENN INTEGRL HENSTOCK-PETTIS PD RUNG EUCLIDE R (Hestoc-Petts Itegral Covergece Eucldea Sace Harur Rahma da Soeara Darmawjaya 2 Uverstas

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 41-45, April 2001, ISSN : KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 41-45, April 2001, ISSN : KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH Vol. 4. No. 1, 41-45, Aril 2001, ISSN : 1410-8518 KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH Bambag Irawato Jurusa Matematika FMIPA UNDIP Abstact I this aer, it was leared of the ecessary ad sufficiet

Lebih terperinci

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar (pengertian) yang akan digunakan dalam. pembahasan penelitian. 2.

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar (pengertian) yang akan digunakan dalam. pembahasan penelitian. 2. II. LANDASAN TEORI Pada bab ii aka diberika beberapa kosep dasar (pegertia) yag aka diguaka dalam pembahasa peelitia 2.1 Ruag Vektor Defiisi 3.1.1 (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da

Lebih terperinci

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Itegral adalah salah satu kosep petig dalam Matematika yag dikemukaka pertama kali oleh Isac Newto da Gottfried Wilhelm Leibiz pada akhir abad ke-17. Selajutya

Lebih terperinci

TEOREMA INTEGRAL CAUCHY. Drs. GIM TARIGAN Fakultas Matematika dan Ilmu Pengetahuan Alam Jurusan Matematika Universitas Sumatera Utara

TEOREMA INTEGRAL CAUCHY. Drs. GIM TARIGAN Fakultas Matematika dan Ilmu Pengetahuan Alam Jurusan Matematika Universitas Sumatera Utara TEOREMA INTEGRAL AUHY rs. GIM TARIGAN Faultas Matematia da Ilmu Pegetahua Alam Jurusa Matematia Uiversitas umatera Utara PENAHULUAN alam tulisa ii daat ita lihat bahwa teorema Gree daat membutia erbedaa

Lebih terperinci

PRINSIP MAKSIMUM DAN MINIMUM FUNGSI PANHARMONIK

PRINSIP MAKSIMUM DAN MINIMUM FUNGSI PANHARMONIK PRINSIP MAKSIMUM DAN MINIMUM FUNGSI PANHARMONIK Oleh, Edag Cahya M.A. Jrsa Pedidia Matematia FPMIPA UPI Badg Jl. Dr. Setiabdi 9 Badg E-mail ecma@ds.math.itb.ac.id Abstra Tlisa ii mejelasa prisip masimm

Lebih terperinci

Abstract

Abstract Ideedet Domiatio Number Pada Graf Oerasi Siti Amiatus Solehah 1,, Ika Hesti Agusti 1,, Dafik 1,3 1 CGANT- Uiversity of Jember Deartmet of Mathematics Educatio - Uiversity of Jember 3 Deartmet of Iformatio

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG MASALAH

BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG MASALAH BAB ENDAHULUAN. LATAR BELAKANG MASALAH Dalam kehidua yata, sejumlah feomea daat diikirka sebagai ercobaa yag mecaku sederata egamata yag berturut-turut da buka satu kali egamata. Umumya, tia egamata dalam

Lebih terperinci

KARAKTERISTIK OPERATOR HIPONORMAL-p PADA RUANG HILBERT. Gunawan Universitas Muhammadiyah Purwokerto

KARAKTERISTIK OPERATOR HIPONORMAL-p PADA RUANG HILBERT. Gunawan Universitas Muhammadiyah Purwokerto JMP : Volue 6 Noor, Deseber 014, hal. 105-114 KARAKERISIK OPERAOR HIPONORMAL- PADA RUANG HILBER Guawa Uiversitas Muhaadiyah Purwokerto Eail: gu.oge@gail.co ABRAC. his article discusses the defiitio ad

Lebih terperinci

Bab 16 Integral di Ruang-n

Bab 16 Integral di Ruang-n Catata Kuliah MA3 Kalulus Elemeter II Oi Neswa,Ph.D., Departeme Matematia-ITB Bab 6 Itegral di uag- Itegral Gada atas persegi pajag Itegral Berulag Itegral Gada atas Daerah sebarag Itegral Gada Koordiat

Lebih terperinci

BAB III TAKSIRAN PROPORSI POPULASI JIKA TERJADI NONRESPON. Dalam bab ini akan dibahas penaksiran proporsi populasi jika terjadi

BAB III TAKSIRAN PROPORSI POPULASI JIKA TERJADI NONRESPON. Dalam bab ini akan dibahas penaksiran proporsi populasi jika terjadi BAB III TAKSIRA PROPORSI POPULASI JIKA TERJADI ORESPO Dalam bab ii aa dibaas peasira proporsi populasi jia terjadi orespo da dilaua allba sebaya t ali. Selai itu, juga aa dibaas peetua uura sampel yag

Lebih terperinci

KETAKSAMAAN TIPE LEMAH UNTUK OPERATOR MAKSIMAL DI RUANG MORREY TAK HOMOGEN YANG DIPERUMUM

KETAKSAMAAN TIPE LEMAH UNTUK OPERATOR MAKSIMAL DI RUANG MORREY TAK HOMOGEN YANG DIPERUMUM JMP : Volume 4 Nomor 2, Desember 2012, hal. 265-270 KETAKSAMAAN TIPE LEMAH UNTUK OPERATOR MAKSIMAL DI RUANG MORREY TAK HOMOGEN YANG DIPERUMUM Sri Maryai Uiversitas Jederal Soedirma sri.maryai@usoed.ac.id

Lebih terperinci

KARAKTERISTIK NILAI EIGEN DARI MATRIKS LAPLACIAN

KARAKTERISTIK NILAI EIGEN DARI MATRIKS LAPLACIAN JMP : Volume 3 Nomor, Jui 2 KARAKTERISTIK NILAI EIGEN DARI MATRIKS LAPLACIAN Siti Rahmah Nurshiami, Mutia Nur Estri, Noor Sofiyati Program Studi Matematika, Fakultas Sais da Tekik Uiversitas Jederal soedirma,

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

UNIVERSITAS INDONESIA DISTRIBUSI BANYAK SINGGAH DARI SUATU RANDOM WALK DAN UJI KERANDOMAN SKRIPSI RANTI NUGRAHENI

UNIVERSITAS INDONESIA DISTRIBUSI BANYAK SINGGAH DARI SUATU RANDOM WALK DAN UJI KERANDOMAN SKRIPSI RANTI NUGRAHENI UNIVERSITAS INDONESIA DISTRIBUSI BANYAK SINGGAH DARI SUATU RANDOM WALK DAN UJI KERANDOMAN SKRIPSI RANTI NUGRAHENI 35475 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI SARJANA MATEMATIKA DEPOK

Lebih terperinci

MENGUJI KEMAKNAAN SAMPEL TUNGGAL

MENGUJI KEMAKNAAN SAMPEL TUNGGAL MENGUJI KEMAKNAAN SAMPEL TUNGGAL 1.1 Uji Biomial 1. Uji esesuaia Chi Kuadrat 1.3 Uji Kesesuaia K-S 1.4 Uji Ideedesi Chi Kuadrat 1.5 Uji Pasti Fisher UJI BINOMIAL Meruaa uji roorsi dalam suatu oulasi Poulasi

Lebih terperinci

Perluasan Uji Kruskal Wallis untuk Data Multivariat

Perluasan Uji Kruskal Wallis untuk Data Multivariat Statistia, Vol. No., Mei Perluasa Uji Krusal Wallis utu Data Multivariat TETI SOFIA YANTI Program Studi Statistia, Uiversitas Islam Badug, Jl. Purawarma No. Badug. E-mail: buitet@yahoo.com ABSTAK Adaia

Lebih terperinci

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 1, No.2, September 2012

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 1, No.2, September 2012 IfiityJual Ilmiah Pogam Studi Matematia STKIP Siliwagi Badug, Vol, No., Septembe HIMPUNAN KOMPAK PADA RUANG METRIK Oleh : Cee Kustiawa Juusa Pedidia Matematia FPMIPA Uivesitas Pedidia Idoesia eeustiawa@yahoo.om

Lebih terperinci

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG)

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG) PEMBAHASAN SOAL OLIMPIADE SAINS NASIONAL SMP A. ISIAN SINGKAT SELEKSI TINGKAT PROPINSI TAHUN 011 BIDANG STUDI MATEMATIKA WAKTU : 150 MENIT 1. Jia x adalah jumlah 99 bilaga gajil terecil yag lebih besar

Lebih terperinci

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT Jural Matematika UNAND Vol. 4 No. 1 Hal. 12 22 ISSN : 2303 2910 c Jurusa Matematika FMIPA UNAND SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT ENIVA RAMADANI

Lebih terperinci

MASALAH DISTRIBUSI BOLA KE DALAM WADAH SEBAGAI FUNGSI ATAU KUMPULAN FUNGSI

MASALAH DISTRIBUSI BOLA KE DALAM WADAH SEBAGAI FUNGSI ATAU KUMPULAN FUNGSI Vol. 11, No. 1, 45-55, Juli 2014 MASALAH DISTRIBUSI BOLA KE DALAM WADAH SEBAGAI FUNGSI ATAU KUMPULAN FUNGSI Fauziah Baharuddi 1, Loey Haryato 2, Nurdi 3 Abstra Peulisa ii bertujua utu medapata perumusa

Lebih terperinci

TEOREMA WEYL UNTUK OPERATOR HYPONORMAL

TEOREMA WEYL UNTUK OPERATOR HYPONORMAL Jural UJMC, Volume 3, Nomor, Hal. - 6 pissn : 460-3333 eissn : 579-907X TEOREMA WEYL UNTUK OPERATOR HYPONORMAL Guawa Uiversitas Muhammadiyah Purwokerto, gu.oge@gmail.com Abstract This paper aims at describig

Lebih terperinci

Representasi sinyal dalam impuls

Representasi sinyal dalam impuls Represetasi siyal dalam impuls Represetasi siyal dalam impuls adalah siyal yag diyataa sebagai fugsi dari impuls atau sebagai umpula dari impuls-impuls. Sembarag siyal disret dapat diyataa sebagai pejumlaha

Lebih terperinci

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas II. TINJAUAN PUSTAKA 2.1 Ruag Vektor Defiisi 2.1.1 (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da (F,,. ) lapaga dega eleme idetitas 1. V disebut ruag vektor (vector space) atas F jika ada operasi

Lebih terperinci

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN Jural Matematika UNAND Vol. 2 No. 2 Hal. 0 6 ISSN : 2303 290 c Jurusa Matematika FMIPA UNAND HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN VIRA AGUSTA, DODI

Lebih terperinci

1. Integral (1) Pembahasan yang akan kita lakukan hanya mengenai bentuk persamaan diferensial seperti contoh yang pertama.

1. Integral (1) Pembahasan yang akan kita lakukan hanya mengenai bentuk persamaan diferensial seperti contoh yang pertama. Darublic www.darublic.com 1. Itegral (1) (Macam Itegral, Pedeata Numeri) Sudarato Sudirham Dalam bab sebeluma, ita memelajari salah satu bagia utama alulus, aitu alulus diferesial. Beriut ii ita aa membahas

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: 1-13 TEOREMA TITIK TETAP BANACH PADA RUANG METRIK-D

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: 1-13 TEOREMA TITIK TETAP BANACH PADA RUANG METRIK-D Jural Mateatika Muri da Terapa Vol 4 No Deseber : - 3 TEOREMA TITIK TETAP BANACH PADA RUANG METRIK-D Muhaad Ahsar Kari, Dewi Sri Susati, da Nurul Huda Progra Studi Mateatika Uiversitas Labug Magkurat Jl

Lebih terperinci

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain.

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain. BARIAN DAN DERET A. Barisa Barisa adalah uruta bilaga yag memilii atura tertetu. etiap bilaga pada barisa disebut suu barisa yag dipisaha dega lambag, (oma). Betu umum barisa:,, 3, 4,, dega: = suu pertama

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

RUANG BARISAN MUSIELAK-ORLICZ. Oleh: Encum Sumiaty dan Yedi Kurniadi

RUANG BARISAN MUSIELAK-ORLICZ. Oleh: Encum Sumiaty dan Yedi Kurniadi RUANG BARISAN USIELAK-ORLICZ Oleh: Ecu Suiat da Yedi Kuriadi Disapaia pada Seiar Nasioal ateatia ada taggal 8 Deseber 2008, di Jurusa edidia ateatia FIA UI JURUSAN ENDIDIKAN ATEATIKA FAKULTAS ENDIDIKAN

Lebih terperinci

MODUL BARISAN DAN DERET

MODUL BARISAN DAN DERET MODUL BARISAN DAN DERET KELAS XII. IPS SEMESTER I Oleh : Drs. Pudjul Prijoo ( http://vidyagata.wordpress.co ) SMA NEGERI 6 Jala Mayje Sugoo 58 Malag Telp./Fax : (034) 75036 E-Mail : sa6_alag@yahoo.co.id

Lebih terperinci

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B.

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B. TUGAS ANALISIS REAL LANJUT NOVEMBER 207 () (a) Jika b > 0, B > 0, da a b < A, buktika ab < ba. Kemudia buktika B a b < a + A b + B < A B. (b) Buktika [ 2 (a + b)] 2 2 (a2 + b 2 ). Kemudia tujukka bahwa

Lebih terperinci

GRUP TERURUT PARSIAL PADA MATRIKS SIMETRI BERUKURAN 2 2

GRUP TERURUT PARSIAL PADA MATRIKS SIMETRI BERUKURAN 2 2 Jural LOG!K@, Jilid 7, No, 7, Hal 46-5 ISSN 978 8568 GRU ERURU ARSIAL ADA MARIKS SIMERI BERUKURAN Irmatul Hasaah Uiversitas Islam Negeri Sulta Maulaa Hasauddi Bate Email: irmatulhasaah@uibateacid Abstract:

Lebih terperinci

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Ruag Baach Sumaag Muhtar Gozal UNIVERSITAS PENDIDIKAN INDONESIA Satu kose etg d kulah Aalss ugsoal adalah teor ruag Baach. Pada baga aka drevu defs, cotoh-cotoh, serta sfat-sfat etg ruag Baach. Kta aka

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi suatu ring serta

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi suatu ring serta BAB II LANDASAN TEORI Pada bab ii aka dibahas megeai defiisi suatu rig serta beberaa sifat yag dierluka dalam embahasa oliomial ermutasi Pejelasa megeai rig dimulai dega defiisi dari suatu sistem matematika

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFERENSIAL LANE-EMDEN MENGGUNAKAN METODE TRANSFORMASI DIFERENSIAL

PENYELESAIAN PERSAMAAN DIFERENSIAL LANE-EMDEN MENGGUNAKAN METODE TRANSFORMASI DIFERENSIAL PENYELESAIAN PERSAMAAN DIFERENSIAL LANE-EMDEN MENGGUNAKAN METODE TRANSFORMASI DIFERENSIAL Ahma Sya roi, M Natsir, Eag Lily E-mail: Arolativa@yahoocom Mahasiswa Program S Matematia Dose Jurusa Matematia

Lebih terperinci

Pelabelan E-cordial pada Graf Hasil Cartesian Product

Pelabelan E-cordial pada Graf Hasil Cartesian Product Pelabela E-cordial pada Gra Hasil Cartesia Product Kholis Widyasmedi, R. Heri Soelistyo Program Studi Matematika Jurusa Matematika Fakultas Sais da Matematika Uiversitas Dipoegoro Email: widyasmedi@gmail.com

Lebih terperinci

Teorema Nilai Rata-rata

Teorema Nilai Rata-rata Nilai Kus Prihatoso April 27, 2012 Yogyakarta Nilai Suatu Fugsi Masih igatkah ada tetag ilai rata-rata dari sekmpula bilaga? Berapakah ilai rata-rata dari sebayak bilaga y 1, y 2,..., y? Nilai Suatu Fugsi

Lebih terperinci

BAB 3 RUANG BERNORM-2

BAB 3 RUANG BERNORM-2 BAB RUANG BERNORM-. Norm- dan Ruang ` De nisi. Misalan V ruang vetor atas R berdimensi d (dalam hal ini d boleh ta hingga). Sebuah fungsi ; V V! R yang memenuhi sifat-sifat beriut;. x; y 0 ia dan hanya

Lebih terperinci

BAB 6 NOTASI SIGMA, BARISAN DAN DERET

BAB 6 NOTASI SIGMA, BARISAN DAN DERET BAB 6 NOTASI SIGMA, BARISAN DAN DERET A RINGKASAN MATERI. Notasi Sigma Diberia suatu barisa bilaga, a, a,..., a. Lambag deret tersebut, yaitu: a = a + a +... + a a meyataa jumlah suu pertama barisa Sifat-sifat

Lebih terperinci

Ring Noetherian dan Ring Artinian

Ring Noetherian dan Ring Artinian Jual Saismat, Maet 2013, Halama 79-83 ISSN 2086-6755 htt://ojs.um.ac.id/idex.h/saismat Vol. II, No. I Rig Noetheia da Rig Atiia The Atiia Rig ad The Noetheia Rig Fitiai Juusa Matematia Seolah Tiggi Ilmu

Lebih terperinci

BAGAN KENDALI G UNTUK PENGENDALIAN VARIABILITAS PROSES MULTIVARIAT (Studi Kasus pada data cuaca di kota Makassar pada tahun 2003 sampai tahun 2012)

BAGAN KENDALI G UNTUK PENGENDALIAN VARIABILITAS PROSES MULTIVARIAT (Studi Kasus pada data cuaca di kota Makassar pada tahun 2003 sampai tahun 2012) BAGAN KENDALI G UNTUK PENGENDALIAN VARIABILITAS PROSES MULTIVARIAT (Studi Kasus pada data cuaca di ota Maassar pada tahu 003 sampai tahu 0) PAISAL, H, HERDIANI, E.T. DAN SALEH, M 3 Jurusa Matematia, Faultas

Lebih terperinci

Abstract

Abstract Domiatig Set ada Hasil Oerasi Graf Khusus Hedry Dwi Sautro 1,2, Ika Hesti A. 1,2, Dafik 1,3 1 CGANT- Uiversity of Jember 2 Deartmet of Mathematics Educatio - Uiversity of Jember 3 Deartmet of Iformatio

Lebih terperinci

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,

Lebih terperinci

Definisi Integral Tentu

Definisi Integral Tentu Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang Masalah

BAB I PENDAHULUAN. A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakag Masalah Struktur alabar adalah suatu himpua yag di dalamya didefiisika suatu operasi bier yag memeuhi aksioma-aksioma tertetu. Gelaggag ( Rig ) merupaka suatu struktur

Lebih terperinci

KARAKTERISTIK GRUP YANG DIBANGUN OLEH MATRIKS N X N DENGAN ENTRI BILANGAN BULAT MODULO P, P PRIMA

KARAKTERISTIK GRUP YANG DIBANGUN OLEH MATRIKS N X N DENGAN ENTRI BILANGAN BULAT MODULO P, P PRIMA KARAKTERISTIK GRUP YANG DIBANGUN OLEH MATRIKS N X N DENGAN ENTRI BILANGAN BULAT MODULO P, P PRIMA Ibu Hadi Program Studi Matematika, Uiversitas Negeri Jakarta, Idoesia ibu_hadi@uj.ac.id, ibu_uj@yahoo.co.id

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat

Lebih terperinci

BAB 4 LIMIT FUNGSI Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah

BAB 4 LIMIT FUNGSI Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah BAB LIMIT FUNGSI Stadar Kompetesi Megguaka kosep it ugsi da turua ugsi dalam pemecaha masalah Kompetesi Dasar. Meghitug it ugsi aljabar sederhaa di suatu titik. Megguaka siat it ugsi utuk meghitug betuk

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 41-48, April 2003, ISSN : MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 41-48, April 2003, ISSN : MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No., 4-48, April 00, ISSN : 40-858 MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA Suryoto Jurusa Matematika F-MIPA Uiversas Dipoegoro Semarag Abstrak Suatu matriks tak

Lebih terperinci

Ruang Vektor. Modul 1 PENDAHULUAN

Ruang Vektor. Modul 1 PENDAHULUAN Modul Ruag Vektor Dr. Irawati D PENDAHULUAN alam buku materi okok Aljabar II ii kita secara erlaha-laha mulai megubah edekata kita dari edekata secara komutasi mejadi edekata yag lebih umum. Yag dimaksud

Lebih terperinci

Sistem Bilangan Kompleks (Bagian Ketiga)

Sistem Bilangan Kompleks (Bagian Ketiga) Sistem Bilaga Kompleks (Bagia Ketiga) Supama Jurusa Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemua Miggu III) Outlie 1 Akar Bilaga Kompleks 2 Akar

Lebih terperinci

PEMETAAN KONTRAKTIF PADA RUANG b-metrik CONE R BERNILAI R 2

PEMETAAN KONTRAKTIF PADA RUANG b-metrik CONE R BERNILAI R 2 J. Math. ad Its Appl. ISSN: 829-605X Vol. 3, No. 2, Nopember 206, -0 PEMETAAN KONTRAKTIF PADA RUANG b-metrik CONE R BERNILAI R 2 Suarsii, Mahmud Yuus 2, Sadjido 3, Auda Nuril Z 4,2,3,4 Jurusa Matematika,

Lebih terperinci

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 <

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 < II. TINJAUAN PUSTAKA 2.1 Keterbagia Secara umum apabila a bilaga bulat da b bilaga bulat positif, maka ada tepat satu bilaga bulat q da r sedemikia sehigga : = +, 0 < dalam hal ii b disebut hasil bagi

Lebih terperinci

MODUL 1.03 DINAMIKA PROSES. Oleh : Ir. Tatang Kusmara, M.Eng

MODUL 1.03 DINAMIKA PROSES. Oleh : Ir. Tatang Kusmara, M.Eng MODUL 1.03 DINMIK PROSES Ole : Ir. Tatag Kusmara, M.Eg LBORTORIUM OPERSI TEKNIK KIMI JURUSN TEKNIK KIMI UNIVERSITS SULTN GENG TIRTYS CILEGON BNTEN 2008 2 Modul 1.03 DINMIK PROSES I. Pedaulua Dalam bidag

Lebih terperinci

LOCALLY DAN GLOBALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA [a,b]

LOCALLY DAN GLOBALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA [a,b] PROSIING ISBN : 978 979 6353 9 4 LOCALLY AN GLOBALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-UNFOR PAA [a,b] A-8 Solh, Y Suato, St Khabbah 3,,3 Jurusa Mateata, Faultas Sas da Mateata, Uverstas poegoro

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE)

BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE) BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE) 5.1. Pembagit Radom Variate Disrit Suatu Radom Variate diartia sebagai ilai suatu radom variate yag mempuyai distribusi tertetu. Utu megambil

Lebih terperinci

Supriyadi Wibowo Jurusan Matematika F MIPA UNS

Supriyadi Wibowo Jurusan Matematika F MIPA UNS Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA akultas MIPA, Uiversitas Negeri Yogyakarta, 16 Mei 29 HUBUNGAN ANTARA ORDER DERIVATI- DARI UNGSI f : DENGAN DIMENSI-γ DARI HIMPUNAN RAKTAL Supriyadi

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 BAB XII. SUKU BANYAK A = a Pegertia: f(x) = a x + a x + a x + + a x +a adalah suku bayak (poliom) dega : - a, a, a,.,a, a, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

KONSTRUKSI INTEGRAL MENGGUNAKAN FUNGSI SEDERHANA δ PADA [, ] Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang, 50275

KONSTRUKSI INTEGRAL MENGGUNAKAN FUNGSI SEDERHANA δ PADA [, ] Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang, 50275 KONSTRUKSI INTEGRAL MENGGUNAKAN FUNGSI SEDERHANA δ PADA [,] Abdul Aziz 1, YD. Sumanto 2 1,2 Departemen Matematika, Fakultas Sains dan Matematika, Universitas Diponegoro Jl. Prof. H. Soedarto, S.H., Tembalang,

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET Pertemua 7. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuaku Tambusai Bagkiag 5. da kekovergeaya 5. DERET Diberika sebuah barisa a, dapat didefeisika barisa bilaga real S N dega S N := N a = a + a 2 +...

Lebih terperinci