BAB VIII KONSEP DASAR PROBABILITAS

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB VIII KONSEP DASAR PROBABILITAS"

Transkripsi

1 BAB VIII KONSEP DASAR PROBABILITAS 1.1. Pedahulua Dalam pertemua ii Ada aka mempelajari beberapa padaga tetag permutasi da kombiasi, fugsi da metode perhituga probabilitas, da meghitug probabilitas. Pada akhir perkuliaha ii Ada diharapka dapat; (1) Memahami permutasi da kombiasi, (2) Memahami fugsi da metode perhituga probabilitas, (3) Mejelaska arti dari kejadia/peristiwa da otasi himpua, (4) Meghitug probabilitas. Dari beberapa padaga ii aka membatu ada dalam megikuti perkuliaha berikutya tetag distribus probabilitas Peyajia Sebelum mempelajari kosep dasar probabilitas, kita pelajari dulu aalisis kombiatorial yag aka sagat membatu da bayak diguaka dalam kosep dasar probabilitas, yaitu aalisis bilaga faktorial, permutasi, da kombiasi. 1. Bilaga Faktorial Bila bilaga bulat positif, maka bilaga faktorial ditulis dega! da didefiisika sebagai: Rumus 9.1! ( 1)( 2) ! 1 da 1! 1 Cotoh 9.1 3! = 3.(3-1)(3-2) = = 6 5! = 5.(5-1)(5-2)(5-3)(5-4) = = 120 6! = 6.(6-1)! = = 720 Cotoh 9.2 Pembagia bilaga faktorial dega bilaga faktorial dilakuka dega cara meyederhaaka pembilag da peyebut, yaitu: Baha Ajar Statistik Tekik

2 7! ! ! ! ! 15! Terlihat bahwa semaki besar bilaga, maka bilaga faktorial! membesar dega cepat. 2. Permutasi Padaglah himpua {a,b,c} yag mempuyai tiga aggota, yaitu a,b,da c! Oleh karea bayakya aggota himpua tersebut =3, maka kita dapat megambil seluruhya atau sebagia dari aggota himpua tersebut. Katakalah kita ambil seluruhya r = 3, kita ambil dua r = 2, kita ambil satu r = 1, atau tidak diambil r = 0. Dari aggota-aggota yag diambil itu kemudia kita buat suatu susua atau ragkaia dega memberi arti pada uruta letak aggota pada susua tersebut. Dega demikia, kita peroleh jeis-jeis susua yag ditetuka oleh uruta letak aggota himpua tersebut pada setiap susua. Bila diambil 1 aggota, r = 1, tetu susua itu ada tiga, yaitu: a b c Bila diambil 2 aggota, r = 2, kita peroleh susua yag terdiri atas dua aggota, yaitu: ab ac bc ba ca cb Kita peroleh sebayak 6 susua. Jeis susua ab berbeda dega jeis susua ba, ab ba, sebab letak a pada susua pertama berbeda artiya dega letak a pada susua kedua, yaitu a terletak pada uruta pertama dari susu ab da a terletak pada uruta kedua dari susua ba. Begitu juga ac berbeda dega susua ca, da susua bc berbeda dega susua cb. Dega demikia, keeam susua itu berbeda satu sama lai. Baha Ajar Statistik Tekik

3 yaitu: Bila diambil 3 aggota, r = 3, kita peroleh susua yag terdiri atas 3 aggota, abc bac cab acb bca cba Kita peroleh sebayak 6 susua. Susua-susua yag dibetuk dari aggota-aggota suatu himpua dega megambil seluruh atau sebagia aggota himpua da memberi arti pada uruta aggota dari masig-masig susua tersebut disebut permutasi yag ditulis P. Bila himpua itu terdiri atas aggota da diambil sebayak r, tetu saja r <, maka bayakya susua yag dapat dibuat dega permutasi tersebut adalah: Cotoh 9.3 Rumus 9.2 P r! ( r)! 1. Bila =4 da r = 2 4! 4! Maka 4 P2 12 (4 2)! 2! Bila =5 da r = 3 5! 5! Maka 5 P3 60 (5 3)! 2! Bila = 7 da r = 7 7! 7! 7! Maka 7 P (7 7)! 0! 1 Cotoh 9.4 Perhatika himpua {a,b,c}, di maa = Bila diambil 1, r = 1, maka bayakya susua yag diperoleh adalah Baha Ajar Statistik Tekik

4 3! 3! (3 1)! 2! 3 P1 3 susua Tiga susua itu adalah a b c (lihat uraia di atas). 2. Bila diambil r = 2, maka bayakya susua yag diperoleh adalah 3! 3! 3.2 (3 2)! 1! 1 3 P2 6 susua (Keeam jeis susua dapat dilihat pada uraia di atas). 3. Bila diambil r = 3, maka bayakya susua yag diperoleh adalah 3! 3! (3 3)! 0! 1 3 P3 6 susua Keeam jeis susua dapat dilihat pada uraia di atas. Cotoh 9.5 Bila suatu himpua terdiri atas aggota da diambil sebayak, semuaya dipermutasika, maka bayakya susua yag diperoleh adalah; P! ( )!!! 0! 3. Beberapa Jeis Permutasi a. Permutasi Meligkar (Kelilig) Permutasi meligkar adalah suatu permutasi yag dibuat dega meyusu aggota-aggota suatu himpua secara meligkar. Bayakya permutasi dari aggota yag disusu secara meligkar sebagai berikut. Rumus 9.3 Bayakya permutasi = ( 1)! b. Permutasi dari Sebagia Aggota yag Sama Jeisya Bila kita mempuyai himpua yag terdiri atas aggota, maka ada kemugkia sebagia dari aggotaya mempuyai jeis yag sama. Katakalah jeis 1 terdiri atas, yag sama, jeis 2 terdiri atas 2 yag sama, jeis 3 terdiri Baha Ajar Statistik Tekik

5 atas 3 yag sama,..., jeis k terdiri atas k yag sama, maka bayakya permutasi yag dapat dibuat adalah: Rumus 9.4! 1, 2, 3,..., 1!. 2!. 3!... k! di maa k = Cotoh 9.6 Berapa bayak susua yag dapat dibuat dari kalimat "AKU SUKA KAMU"? Jawab: Semuaya ada = 11 huruf, yag terdiri atas: jeis 1, huruf A, yag bayakya adalah 1 = 3 jeis 2, huruf K, yag bayakya adalah 2 = 3 jeis 3, huruf U, yag bayakya adalah 3 = 3 jeis 4, huruf S, yag bayakya adalah 4 = 1 jeis 5, huruf M, yag bayakya adalah 5 = 1 Jadi, bayakya permutasi yag dapat dibuat adalah: 11 11! ,3,3,1,1 3!3!3!1!1! Kombiasi Padaglah kembali himpua {a,b,c}!. Dega permutasi kita peroleh susua yag terdiri atas dua aggota, yaitu: ab ba ac ca bc cb Dalam permutasi uruta aggota pada susua itu mempuyai arti, sehigga: ab ba, ac ca, da be cb Baha Ajar Statistik Tekik

6 Bila sekarag uruta aggota pada susua itu tidak mempuyai arti atau tidak diperhatika, maka susuaya: ab = ba, ac = ca, da bc = cb Dega demikia, bayakya susua yag diperoleh mejadi 3. Dega cara ii kita peroleh defiisi kombiasi, yaitu sebagai berikut. Rumus 9.5 C r r! r!( r)! Cotoh ! 6! 6.5.4! 1. 6 C !(6 2)! 2!.4! 2.1.4! 6 6! 6! 6.5.4! 2. 6 C !(6 4)! 4!.2! 4! ! 10! ! C !(10 3)! 3!.7! ! Cotoh 9.8 Bila dari (a, b, c, d) diambil 3 obyek, maka bayakya permutasi da kombiasi yag diperoleh ialah: Kombias i abc abd acd bcd abc abd acd bcd acb adb adc bdc Permutasi bac bad cad cbd 4 4x6 = 24 Bayakya: 4! 4! Permutasi 4 P (4 3)! 1! bca bda cda cdb cab dab dac dbc cba dba dca dcb Baha Ajar Statistik Tekik

7 4 4! 4.3! Kombiasi 4 C !(4 3)! 3!.1! Cotoh 9.9 Ada 4 orag berama A, B, C, da D. Bila dipilih 2 orag, ada berapa bayak piliha yag diperoleh? jawab: 4 4! 4! Bayakya piliha = 4 C 2 6, yaitu AB, AC, AD, BC, BD, 2 2!(4 2)! 2!.2! CD. Cotoh 9.10 Bila dalam suatu kelompok terdapat 4 kimiawa da 3 fisikawa, buatlah paitia 3 orag yag terdiri atas 2 kimiawa da 1 orag fisikawa! jawab: Misalka, kimiawa = {K 1, K 2, K 3, K 4 }, fisikawa = {F 1, F 2, F 3 } 4 4! 4! 2 kimiawa dipilih dari 4 kimiawa = 4 C !(4 2)! 2!.2! 3 3! 3! 1 fisikawa dipilih dari 3 fisikawa = 3C !(3 1)! 1!.2! Bayakya seluruh cara utuk membuat paitia tersebut adalah 6 x 3 = 18 cara atau 18 jeis paitia. Kosep Dasar Probabilitas 1. Pegatar Meuju Pemahama Kosep Probabilitas Bayak kejadia dalam kehidupa sehari-hari yag sulit diketahui dega pasti, apalagi kejadia di masa yag aka datag, misalya sebagai berikut. 1. Apakah ati malam aka datag huja? 2. Apakah Pesawat Garuda aka beragkat tepat waktu? Baha Ajar Statistik Tekik

8 3. Apakah tahu depa harga miyak metah di pasara duia aka aik? Begitu juga dalam percobaa statistika, kita tidak bisa megetahui dega pasti hasil-hasil yag aka mucul, misalya: 1. pada pelempara sebuah uag logam, kita tidak tahu dega pasti hasilya, apakah yag aka mucul sisi muka atau sisi belakag dari uag logam itu; 2. pada pelempara sebuah dadu, kita tidak tahu dega pasti hasilya, apakah yag aka mucul muka dadu 1, 2, 3, 4, 5 atau 6; da 3. pada pearika sebuah kartu bridge dalam kotak yag berisi 52 kartu, kita juga tidak tahu dega pasti, apakah yag aka mucul kartu as, kig, atau yag lai? Derajat/tigkat kepastia atau keyakia dari muculya hasil percobaa statistik disebut probabilitas atau peluag. Suatu probabilitas dilambagka dega P. 2. Perumusa Probabilitas Perumusa kosep dasar probabilitas dilakuka dega dua cara, yaitu dega cara klasik da cara frekuesi relatif. Bila kejadia-kejadia pada cotoh di atas kita lambagka dega huruf besar E, maka kita dapat merumuska probabilitas kejadia E, yaitu P(E). a. Perumusa Klasik Bila kejadia E terjadi dalam m cara dari seluruh cara yag mugki terjadi da masig-masig cara itu mempuyai kesempata atau kemugkia yag sama utuk mucul, maka probabilitas kejadia E yag ditulis P(E) dirumuska sebagai berikut. Rumus 9.6 P( E) m Cotoh 9.11 Sebuah uag logam dilemparka. Misalka sisi pertama kita sebut muka = m, da sisi kedua kita sebut belakag = b. Maka ada dua kejadia yag mugki, yaitu kejadia Baha Ajar Statistik Tekik

9 muculya muka m kita sebut E = {m) atau kejadia muculya belakag b kita sebut E = {b}. Oleh karea sisi uag logam terdiri atas dua sisi ( = 2) da kedua sisi itu mempuyai kesempata yag sama utuk mucul, maka probabilitas muculya kejadia E = {m} atau E= {b} adalah: m P( E) P[{ m}] 1 2 atau b P( E) P[{ b}] 1 2 Lebih sigkat ditulis P(E) = P(m) = 2 1 da P(E) = P(b) = 2 1 Cotoh 9.12 Sebuah dadu dilemparka. Muka dadu ada 6, yaitu: 1,2,3,4,5,6. Semua muka dadu mempuyai kesempata yag sama utuk mucul. Yag aka mucul salah satu dari muka-muka dadu itu (m = 1) yaitu muka 1, muka 2, muka 3, muka 4, muka 5, atau muka 6. Kita misalka: E = {1} bila mucul muka 1 E = {2} bila mucul muka 2 E = {3} bila mucul muka 3, da seterusya. Maka probabilitas kejadia E adalah: P(E) = P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = Cotoh 9.13 Hituglah probabilitas memperoleh kartu hati bila sebuah kartu diambil secara acak dari seperagkat kartu bridge yag legkap. Jawab: Jumlah seluruh kartu; = 52 Jumlah kartu hati; m = 13 Misalka E = kejadia muculya kartu hati. Semua kartu h mempuyai kemugkia yag sama utuk mucul, maka: 1 6 Baha Ajar Statistik Tekik m

10 m P( E) b. Perumusa dega Frekuesi Relatif Jika kejadia E terjadi bayak f kali dari keseluruha pegamata sebayak, di maa meedekati tak berhigga ( maka probabilitas kejadia E -rumuska sebagai: Rumus 9.7 P( E) Lim f Cotoh 9.14 Pada suatu percobaa statistik, yaitu pelempara sebuah dadu y diulag sebayak = kali, frekuesi muculya muka dadu adalah seperti pada Tabel 9.1 berikut ii. Tabel 9.1 Muka dadu (X) Frekuesi (f) Bila E meyataka kejadia muculya muka-muka dadu tersebut, maka E = (1), (2), (3), (4), (5), atau (6), sehigga probabilitas kejadia E utuk masig-masig kemugkia muculya muka dadu tersebut adalah: P( E) P(1), P( E) P(2), P( E) P(3) P( E) P(4), P( E) P(5), P( E) P(6) pada S, yaitu Sifat-Sifat Probabilitas Kejadia A 169, Dega pegetahua kejadia A, ruag sampel S, da peluag kejadia A Sifat 1 0 < P(A) < 1 ( A) m P( A), maka dapat diselidiki sifat- Sifat dari P(A). ( S) A merupaka himpua bagia dari S, yaitu A S, maka bayakya Baha Ajar Statistik Tekik

11 aggota A selalu lebih sedikit dari bayakya aggota S, yaitu (A) (S), sehigga 0 < ( A) ( S) < 1 atau 0 < P(A) < 1, (1) Sifat 2 Dalam hal A =, himpua kosog, artiya A tidak terjadi pada S, maka (A) = 0, sehigga ( A) 0 P( A) 0 ( S) Sifat 3 Dalam hal A = S, maksimum bayakya aggota A sama dega bayakya aggota S, maka (A) = (S) =, sehigga ( A) P( A) 1 ( S) Bila hasil (1), (2), da (3) digabug maka diperoleh sifat: 1.3 Peutup 0 < P(A) < 1 Berdasarka uraia di atas dapat diambil suatu kesimpula bahwa utuk megetahui probabilitas suatu peristiwa maka perlu dipahami dega baik tetag aalisis bilaga faktorial, permutasi, da kombiasi. Dega mempelajari kosep probabilitas maka kita dega mudah megetahui ataupu meghitug peluag dari suatu kejadia Soal Latiha 1. Hituglah a. P b. P C. P Hituglah 10 a b C. 5 Baha Ajar Statistik Tekik

12 3. Utuk ilai berapa berlaku persamaa-persamaa berkikut; 1 a. 1P3 P4 b Ada beberapa bayak cara 6 orag dapat diduduka pada sebuah sofa jika yag tersedia haya 4 tempat duduk? Ada berapa bayak cara 7 buku dapat disusu pada rak jika: a. sembarag susua dimugkika; b. 3 buku tertetu harus selalu berdiri berdampiga; c. 2 buku tertetu harus meempati Ujug-Ujug? 5. Empat jeis buku matematika, 6 buku fisika, da 2 buku kimia harus disusu di rak buku. Ada berapa bayak peyusua yag berbeda-beda yag mugki terjadi jika: a. buku-buku pada tiap jeis harus semuaya berdiri berkumpul; b. haya buku matematika yag berdiri berkumpul? 6. Ada berapa bayak cara utuk 3 pria, 5 waita, 4 pemuda, da 4 gadis dapat dipilih dari 7 pria, 9 waita, 5 pemuda, da 5 gadis jika: a. semua orag bebas dipilih pada masig-masig kelompok; b. seorag pria da waita tertetu harus terpilih; c. seorag pria, 1 orag waita, 1 orag pemuda, da 1 orag gadis tidak boleh dipilih? 7. Ada suatu kelompok yag terdiri atas 12 orag. Ada berapa bayak cara utuk membagi kelompok orag itu: a. bila kelompok itu dibagi mejadi dua kelompok yag terdiri atas 8 orag da 4 orag; b. bila kelompok itu dibagi mejadi tiga kelompok yag terdiri atas 5, 4, da 2 orag? Baha Ajar Statistik Tekik

13 8. Perusahaa Garuda mempuyai suatu jeis kedaraa yag berisi 6 tempat duduk (3 meghadap ke muka da 3 meghadap ke belakag). a. Dega berapa cara 6 karyawa yag dijemput dapat meempati tempat duduk yag tersedia? b. Bila ada 2 karyawa yag tidak mau duduk meghadap ke belakag, ada berapa cara 6 karyawa itu meempati tempat duduk yag tersedia? Baha Ajar Statistik Tekik

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia Himpua Suatu himpua atau gugus adalah merupaka sekumpula obyek. Pada umumya aggota dari gugus tersebut memiliki suatu sifat yag sama. Suatu himpua bagia atau aak gugus merupaka sekumpula obyek yag aggotaya

Lebih terperinci

PELUANG. Kegiatan Belajar 1 : Kaidah Pencacahan, Permutasi dan kombinasi

PELUANG. Kegiatan Belajar 1 : Kaidah Pencacahan, Permutasi dan kombinasi PELUANG Kegiata Belajar : Kaidah Pecacaha, Permutasi da kombiasi A. Kaidah Pecacaha. Prisip Dasar Membilag Jika suatu operasi terdiri dari tahap, tahap pertama dapat dilakuka dega m cara yag berbeda da

Lebih terperinci

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut:

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut: Statistik da Peluag A. Statistik Statistik adalah metode ilmiah yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis data, serta cara pegambila kesimpula berdasarka data-data tersebut. Data ialah

Lebih terperinci

PELUANG KEJADIAN. 3. Permutasi siklis adalah permutasi yang susunannya melingkar.

PELUANG KEJADIAN. 3. Permutasi siklis adalah permutasi yang susunannya melingkar. PELUANG KEJADIAN A. Atura Perkalia/Pegisia Tempat Jika kejadia pertama dapat terjadi dalam a cara berbeda, kejadia kedua dapat terjadi dalam b cara berbeda, kejadia ketiga dapat terjadi dalam c cara berbeda,

Lebih terperinci

Kombinatorial dan Peluang. Adri Priadana ilkomadri.com

Kombinatorial dan Peluang. Adri Priadana ilkomadri.com Kombiatorial da Peluag Adri Priadaa ilkomadri.com Pedahulua Sebuah kata-sadi (password) pajagya 6 sampai 8 karakter. Karakter boleh berupa huruf atau agka. Berapa bayak kemugkia kata-sadi yag dapat dibuat?

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang II. LANDASAN TEORI Pada bab ii aka diberika beberapa istilah, defiisi serta kosep-kosep yag medukug dalam peelitia ii. 2.1 Kosep Dasar Teori Graf Berikut ii aka diberika kosep dasar teori graf yag bersumber

Lebih terperinci

BAB II KAIDAH PENCACAHAN DAN PELUANG

BAB II KAIDAH PENCACAHAN DAN PELUANG 1 BAB II KAIDAH PENCACAHAN DAN PELUANG Dalam kehidupa sehari hari kita serig dihadapka pada persoala yag berkaita dega peluag. Baik mecari kemugkia, kesempata, bayak cara, harapa da sebagaiya. Dalam Materi

Lebih terperinci

Oleh: Yunissa Rara Fahreza Akuntansi Teknologi Sistem Informasi KOMBINATORIAL & PELUANG DISKRIT : PERMUTASI MATEMATIKA DISKRIT

Oleh: Yunissa Rara Fahreza Akuntansi Teknologi Sistem Informasi KOMBINATORIAL & PELUANG DISKRIT : PERMUTASI MATEMATIKA DISKRIT Oleh: Yuissa Rara Fahreza Akutasi Tekologi Sistem Iformasi KOMBINATORIAL & PELUANG DISKRIT : PERMUTASI MATEMATIKA DISKRIT ILUSTRASI 1 Misal ada 3 buah kelereg yag berbeda wara : merah (m), kuig (k) da

Lebih terperinci

Modul Kuliah statistika

Modul Kuliah statistika Modul Kuliah statistika Dose: Abdul Jamil, S.Kom., MM SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER MUHAMMADIYAH JAKARTA Bab 2 Populasi da Sampel 2.1 Populasi Populasi merupaka keseluruha pegamata

Lebih terperinci

1 n MODUL 5. Peubah Acak Diskret Khusus

1 n MODUL 5. Peubah Acak Diskret Khusus ODUL 5 Peubah Acak Diskret Khusus Terdapat beberapa peubah acak diskret khusus yag serig mucul dalam aplikasi. Peubah Acak Seragam ( Uiform) Bila X suatu peubah acak diskret dimaa setiap eleme dari X mempuyai

Lebih terperinci

PEMBEKALAN OSN-2011 SMP STELA DUCE I YOGYAKARTA MATA PELAJARAN: MATEMATIKA Pemateri: Murdanu

PEMBEKALAN OSN-2011 SMP STELA DUCE I YOGYAKARTA MATA PELAJARAN: MATEMATIKA Pemateri: Murdanu Pemateri: Murdau 1 BAGIAN A 1. Carilah dua bilaga yag hasilkali da jumlahya berilai sama!. Carilah dua bilaga yag perbadiga da selisihya berilai sama! 3. Diketahui: ab = 84, bc = 76, ac = 161. Berapakah

Lebih terperinci

4. KOMBINATORIKA ... S 1. S n S 2. Gambar 4.1

4. KOMBINATORIKA ... S 1. S n S 2. Gambar 4.1 4. KOMBINATORIKA 4. Atua Utuk Suatu Peistiwa Evet sesuatu yag tejadi. Jika peistiwa A dapat tejadi dalam m caa da peistiwa B dapat tejadi dalam N caa, maka tedapat (m, ) caa kedua peistiwa tejadi besama-sama.

Lebih terperinci

Matematika Diskret (Kombinatorial - Permutasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs

Matematika Diskret (Kombinatorial - Permutasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs Matematika Diskret (Kombiatorial - Permutasi) Istruktur : Ferry Wahyu Wibowo, S.Si., M.Cs Pedahulua Sebuah sadi-lewat (password) pajagya 6 sampai 8 karakter. Karakter boleh berupa huruf atau agka. Berapa

Lebih terperinci

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 <

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 < II. TINJAUAN PUSTAKA 2.1 Keterbagia Secara umum apabila a bilaga bulat da b bilaga bulat positif, maka ada tepat satu bilaga bulat q da r sedemikia sehigga : = +, 0 < dalam hal ii b disebut hasil bagi

Lebih terperinci

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas.

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas. 4 D E R E T Kosep deret merupaka kosep matematika yag cukup populer da aplikatif khusuya dalam kasus-kasus yag meyagkut perkembaga da pertumbuha suatu gejala tertetu. Apabila perkembaga atau pertumbuha

Lebih terperinci

Definisi Integral Tentu

Definisi Integral Tentu Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.

Lebih terperinci

DISTRIBUSI KHUSUS YANG DIKENAL

DISTRIBUSI KHUSUS YANG DIKENAL 0 DISTRIBUSI KHUSUS YANG DIKENAL Kita sudah membahas fugsi peluag atau fugsi desitas, baik defiisiya maupu sifatya. Fugsi peluag atau fugsi desitas ii merupaka ciri dari sebuah distribusi, artiya fugsi

Lebih terperinci

9 Departemen Statistika FMIPA IPB

9 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351 9 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Pegatar Aalisis utuk Data Respo Kategorik Data respo kategorik Sebara

Lebih terperinci

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,

Lebih terperinci

Kompetisi Statistika Tingkat SMA

Kompetisi Statistika Tingkat SMA . Arya da Bombom melakuka tos koikoi yag seimbag yag mempuyai sisi, agka da gambar Arya melakuka tos terhadap 6 koi, sedagka Bombom melakuka tos terhadap koi, maka peluag Arya medapatka hasil tos muka

Lebih terperinci

Pertemuan 4. Permutasi

Pertemuan 4. Permutasi Pertemuan 4 Permutasi Faktorial Faktorial dinotasikan atau dilambangkan dengan n! (dibaca n faktorial). n! adalah hasil perkalian semua bilangan asli dari 1 sampai n, sehingga didefinisikan sebagai berikut:

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN

Lebih terperinci

Aturan Pencacahan. Contoh: Berapa banyak kemungkinan jalur yang dapat dilalui dari Kota A ke Kota D?

Aturan Pencacahan. Contoh: Berapa banyak kemungkinan jalur yang dapat dilalui dari Kota A ke Kota D? Atura Pecacaha A. Atura Perkalia Jika terdapat k usur yag tersedia, dega: = bayak cara utuk meyusu usur pertama 2 = bayak cara utuk meyusu usur kedua setelah usur pertama tersusu 3 = bayak cara utuk meyusu

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat

Lebih terperinci

PELUANG Matematika Wajib Kelas XI MIA

PELUANG Matematika Wajib Kelas XI MIA PELUANG Matematika Wajib Kelas XI MIA P A A S Disusu oleh : Markus Yuiarto, S.Si Tahu Pelajara 06 07 SMA Sata Agela Jl. Merdeka No. Badug PENGANTAR : Modul ii kami susu sebagai salah satu sumber belajar

Lebih terperinci

PELUANG. Jika seluruhnya ada banyak kegiatan, dan masing-masing berturut-turut dapat dilakukan dalam

PELUANG. Jika seluruhnya ada banyak kegiatan, dan masing-masing berturut-turut dapat dilakukan dalam PELUANG Prinsip Perkalian Bila suatu kegiatan dapat dilakukan dalam n 1 cara yang berbeda, dan kegiatan yang lain dapat dilakukan dalam n 2 cara yang berbeda, maka seluruh peristiwa tersebut dapat dikerjakan

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

METODE PENELITIAN. dalam tujuh kelas dimana tingkat kemampuan belajar matematika siswa

METODE PENELITIAN. dalam tujuh kelas dimana tingkat kemampuan belajar matematika siswa 19 III. METODE PENELITIAN A. Populasi da Sampel Populasi dalam peelitia ii adalah seluruh siswa kelas VIII SMP Negeri 8 Badar Lampug tahu pelajara 2009/2010 sebayak 279 orag yag terdistribusi dalam tujuh

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi 6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Itegral adalah salah satu kosep petig dalam Matematika yag dikemukaka pertama kali oleh Isac Newto da Gottfried Wilhelm Leibiz pada akhir abad ke-17. Selajutya

Lebih terperinci

BAB VI PELUANG DAN STATISTIKA DASAR

BAB VI PELUANG DAN STATISTIKA DASAR BB VI PELUNG DN STTISTIK DSR. Kosep Peluag da Pegelolaa Data Peluag serigkali diperluka oleh seseorag utuk melihat besarya kemugkia atau kesempata utuk terjadiya sesuatu. Sebagai cotoh, coba ada perhatika

Lebih terperinci

Barisan Aritmetika dan deret aritmetika

Barisan Aritmetika dan deret aritmetika BARISAN DAN DERET BILANGAN Peyusu: Atmii Dhoruri, MS Kode: Jejag: SMP T/P: / A. Kompetesi yag diharapka. Meetuka suku ke- barisa aritmatika da barisa geometri. Meetuka jumlah suku pertama deret aritmatika

Lebih terperinci

PELUANG. Terjadinya 2 kemungkinan kejadian yaitu : AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC = 12 kemungkinan. Prinsip/kaidah perkalian:

PELUANG. Terjadinya 2 kemungkinan kejadian yaitu : AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC = 12 kemungkinan. Prinsip/kaidah perkalian: isip/kaidah pekalia: ELUANG Jika posisi /tempat petama dapat diisi dega caa yag bebeda, tempat kedua dega caa, da seteusya, sehigga lagkah ke ada caa maka bayakya caa utuk megisi tempat yag tesedia adalah

Lebih terperinci

SOAL PENYISIHAN =. a. 11 b. 12 c. 13 d. 14 e. 15

SOAL PENYISIHAN =. a. 11 b. 12 c. 13 d. 14 e. 15 SOAL PENYISIHAN Petujuk pegerjaa soal : Jumlah soal 0 soal Piliha Gada da Uraia Utuk piliha gada diberi peilaia bear +, salah -, tidak diisi 0 Lama pegerjaa soal adalah 0 meit Kalau berai, silaka pilih

Lebih terperinci

III. METODE PENELITIAN. kelas VIII semester ganjil SMP Sejahtera I Bandar Lampung tahun pelajaran 2010/2011

III. METODE PENELITIAN. kelas VIII semester ganjil SMP Sejahtera I Bandar Lampung tahun pelajaran 2010/2011 III. METODE PENELITIAN A. Latar Peelitia Peelitia ii merupaka peelitia yag megguaka total sampel yaitu seluruh siswa kelas VIII semester gajil SMP Sejahtera I Badar Lampug tahu pelajara 2010/2011 dega

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 010 TIM OLIMPIADE MATEMATIKA INDONESIA 0 Prestasi itu diraih buka didapat!!! SOLUSI SOAL Bidag Matematika Disusu oleh : Eddy Hermato, ST Olimpiade Matematika Tk

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Didalam melakuka kegiata suatu alat atau mesi yag bekerja, kita megeal adaya waktu hidup atau life time. Waktu hidup adalah lamaya waktu hidup suatu kompoe atau uit pada

Lebih terperinci

BARISAN DAN DERET. Nurdinintya Athari (NDT)

BARISAN DAN DERET. Nurdinintya Athari (NDT) BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu

Lebih terperinci

Soal-soal Latihan: jika Misalkan n adalah bilangan genap. Buktikan bahwa

Soal-soal Latihan: jika Misalkan n adalah bilangan genap. Buktikan bahwa Soal-soal Latiha:. Misalka kita aka meyusu kata-kata yag dibetuk dari huru-huru dalam kata SIMALAKAMA, jika a. huru S mucul setelah huru K (misalya, ALAMAKSIM). b. huru A mucul berdekata. c. tidak memuat

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang 2 LANDASAN TEORI Ruag Cotoh, Kejadia, da Peluag Percobaa acak adalah suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak dapat diprediksi secara tepat tetapi dapat diketahui semua

Lebih terperinci

BARISAN DAN DERET. Materi ke 1

BARISAN DAN DERET. Materi ke 1 BARISAN DAN DERET Materi ke 1 Pola Bilaga adalah? Susua bilaga yag disusu meurut atura tertetu. Cotoh : 1. Pola Bilaga Gajil 1, 3, 5,... 2. Pola Bilaga Geap 2, 4, 6,... PERHATIKAN SSNAN BILANGAN DI BAWAH

Lebih terperinci

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus -Mar- Ukura Pemusata Pertemua STATISTIKA DESKRIPTIF Statistik deskripti adalah pegolaha data utuk tujua medeskripsika atau memberika gambara terhadap obyek yag diteliti dega megguaka sampel atau populasi.

Lebih terperinci

BAB 6: ESTIMASI PARAMETER (2)

BAB 6: ESTIMASI PARAMETER (2) Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara

Lebih terperinci

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN ARTIKEL Meetuka rumus Jumlah Suatu Deret dega Operator Beda Markaba 191115198801005 Maret 015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB ENDAHULUAN. Latar Belakag Masalah Dalam kehidupa yata, hampir seluruh feomea alam megadug ketidak pastia atau bersifat probabilistik, misalya pergeraka lempega bumi yag meyebabka gempa, aik turuya

Lebih terperinci

III BAB BARISAN DAN DERET. Tujuan Pembelajaran. Pengantar

III BAB BARISAN DAN DERET. Tujuan Pembelajaran. Pengantar BAB III BARISAN DAN DERET Tujua Pembelajara Setelah mempelajari materi bab ii, Ada diharapka dapat:. meetuka suku ke- barisa da jumlah suku deret aritmetika da geometri,. meracag model matematika dari

Lebih terperinci

Himpunan. Modul 1 PENDAHULUAN. impunan sudah Anda kenal di sekolah menengah, bahkan sejak sekolah

Himpunan. Modul 1 PENDAHULUAN. impunan sudah Anda kenal di sekolah menengah, bahkan sejak sekolah Modul Himpua Dra Sri Haryati Kartiko, MS PENDHULUN impua sudah da keal di sekolah meegah, bahka sejak sekolah H dasar Himpua merupaka usur yag petig dalam probabilitas, sehigga dipelajari kembali dalam

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

PENDAHULUAN. Statistika penyajian DATA untuk memperoleh INFORMASI penafsiran DATA. Data (bentuk tunggal : Datum ) : ukuran suatu nilai

PENDAHULUAN. Statistika penyajian DATA untuk memperoleh INFORMASI penafsiran DATA. Data (bentuk tunggal : Datum ) : ukuran suatu nilai 1. Pegertia Statistika PENDAHULUAN Statistika berhubuga dega peyajia da peafsira kejadia yag bersifat peluag dalam suatu peyelidika terecaa atau peelitia ilmiah. Statistika peyajia DATA utuk memperoleh

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakag Salah satu pera da fugsi statistik dalam ilmu pegetahua adalah sebagai. alat aalisis da iterpretasi data kuatitatif ilmu pegetahua, sehigga didapatka suatu kesimpula

Lebih terperinci

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand TEKIK SAMPLIG PCA SEDERHAA Hazmira Yozza Izzati Rahmi HG Jurusa Matematika FMIPA Uad Defiisi : Jika suatu cotoh berukura diambil dari suatu populasi berukura sedemikia rupa sehigga setiap kemugkia cotoh

Lebih terperinci

III. METODELOGI PENELITIAN

III. METODELOGI PENELITIAN III. METODELOGI PENELITIAN A. Metode Peelitia Metode peelitia merupaka suatu cara tertetu yag diguaka utuk meeliti suatu permasalaha sehigga medapatka hasil atau tujua yag diigika, meurut Arikuto (998:73)

Lebih terperinci

SOAL DAN PEMBAHASAN TRY OUT MATEMATIKA SMP/MTS KABUPATEN LEMBATA TAHUN PELAJARAN 2014/2015

SOAL DAN PEMBAHASAN TRY OUT MATEMATIKA SMP/MTS KABUPATEN LEMBATA TAHUN PELAJARAN 2014/2015 SOAL DAN PEMBAHASAN TRY OUT MATEMATIKA SMP/MTS KABUPATEN LEMBATA TAHUN PELAJARAN 4/5 3. Hasil dari 3 : adalah... 4 4 A. B. C. 7 D. 5 3 3 3 5 3 : = : 4 4 4 4 3 4 5 = 4 3 5 = 6 55 = 8 = 5 = 3. Dalam try

Lebih terperinci

EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI

EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI Oleh: Sutopo Jurusa Fisika FMIPA UM sutopo@fisika.um.ac.id Ditulis pada sekitar bula Maret 2011. Diuggah pada 3 Desember 2011 PROBLEM Gambar di bawah ii meyataka

Lebih terperinci

MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM

MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM MATEMATIKA BISNIS OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM BAB BARISAN DAN DERET A. BARISAN Barisa bilaga adalah susua bilaga yag diurutka meurut atura tertetu.betuk umum barisa bilaga a,

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan Istitut Tekologi Sepuluh Nopember Surabaya Model Sistem dalam Persamaa Keadaa Pegatar Materi Cotoh Soal Rigkasa Latiha Pegatar Materi Cotoh Soal Rigkasa Istilah-istilah Dalam Persamaa Keadaa Aalisis Sistem

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Statistika iferesi merupaka salah satu cabag statistika yag bergua utuk meaksir parameter. Peaksira dapat diartika sebagai dugaa atau perkiraa atas sesuatu yag aka terjadi

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 30 III. METODE PENELITIAN A. Metode Dasar Peelitia Metode yag diguaka dalam peelitia adalah metode deskriptif, yaitu peelitia yag didasarka pada pemecaha masalah-masalah aktual yag ada pada masa sekarag.

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Racaga da Jeis Peelitia Racaga peelitia ii adalah deskriptif dega pedekata cross sectioal yaitu racaga peelitia yag meggambarka masalah megeai tigkat pegetahua remaja tetag

Lebih terperinci

BAB III METODOLOGI PENELITIAN. kuantitatif karena bertujuan untuk mengetahui kompetensi pedagogik mahasiswa

BAB III METODOLOGI PENELITIAN. kuantitatif karena bertujuan untuk mengetahui kompetensi pedagogik mahasiswa 54 BAB III METODOLOGI PENELITIAN A. Jeis Peelitia Peelitia ii merupaka peelitia deskriptif dega pedekata kuatitatif karea bertujua utuk megetahui kompetesi pedagogik mahasiswa setelah megikuti mata kuliah

Lebih terperinci

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya.

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya. BAB 1 PENDAHULUAN 1.1 Latar Belakag Aalisis regresi mejadi salah satu bagia statistika yag palig bayak aplikasiya. Aalisis regresi memberika keleluasaa kepada peeliti utuk meyusu model hubuga atau pegaruh

Lebih terperinci

SOAL-SOAL LATIHAN BARISAN DAN DERET ARITMETIKA DAN GEOMETRI UJIAN NASIONAL

SOAL-SOAL LATIHAN BARISAN DAN DERET ARITMETIKA DAN GEOMETRI UJIAN NASIONAL SOAL-SOAL LATIHAN BARISAN DAN DERET ARITMETIKA DAN GEOMETRI UJIAN NASIONAL Peserta didik memiliki kemampua memahami kosep pada topik barisa da deret aritmetika da geometri. Peserta didik memilki kemampua

Lebih terperinci

RENCANA PROGRAM PEMBELAJARAN KE - 1. : 6 jam pelajaran

RENCANA PROGRAM PEMBELAJARAN KE - 1. : 6 jam pelajaran RENCANA PROGRAM PEMBELAJARAN KE - 1 Satua Pedidika Mata Pelajara Kelas/Semester Materi Pokok Waktu : SMA N 6 YOGYAKARTA : Matematika : XII IPS/ : Barisa da Deret : 6 jam pelajara 1. Stadar Kompetesi 4.

Lebih terperinci

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.

Lebih terperinci

Pendekatan Nilai Logaritma dan Inversnya Secara Manual

Pendekatan Nilai Logaritma dan Inversnya Secara Manual Pedekata Nilai Logaritma da Iversya Secara Maual Moh. Affaf Program Studi Pedidika Matematika, STKIP PGRI BANGKALAN affafs.theorem@yahoo.com Abstrak Pada pegaplikasiaya, bayak peggua yag meggatugka masalah

Lebih terperinci

BAB VII RANDOM VARIATE DISTRIBUSI DISKRET

BAB VII RANDOM VARIATE DISTRIBUSI DISKRET BAB VII RANDOM VARIATE DISTRIBUSI DISKRET Diskret radom variabel dapat diguaka utuk berbagai radom umber yag diambil dalam betuk iteger. Pola kebutuha ivetori (persediaa) merupaka cotoh yag serig diguaka

Lebih terperinci

BAB V ANALISA PEMECAHAN MASALAH

BAB V ANALISA PEMECAHAN MASALAH 89 BAB V ANALISA PEMECAHAN MASALAH Dalam upaya mearik kesimpula da megambil keputusa, diperluka asumsi-asumsi da perkiraa-perkiraa. Secara umum hipotesis statistik merupaka peryataa megeai distribusi probabilitas

Lebih terperinci

Projek. Contoh Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri. Perhatikan barisan bilangan 2, 4, 8, 16,

Projek. Contoh Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri. Perhatikan barisan bilangan 2, 4, 8, 16, Projek Himpulah miimal tiga masalah peerapa barisa da deret aritmatika dalam bidag fisika, tekologi iformasi, da masalah yata di sekitarmu. Ujilah berbagai kosep da atura barisa da deret aritmatika di

Lebih terperinci

Probabilitas dan Statistika Teorema Bayes. Adam Hendra Brata

Probabilitas dan Statistika Teorema Bayes. Adam Hendra Brata robabilitas da Statistika Teorema ayes dam Hedra rata Itroduksi - Joit robability Itroduksi Teorema ayes eluag Kejadia ersyarat Jika muculya mempegaruhi peluag muculya kejadia atau sebalikya, da adalah

Lebih terperinci

Induksi Matematika. Pertemuan VII Matematika Diskret Semester Gasal 2014/2015 Jurusan Teknik Informatika UPN Veteran Yogyakarta

Induksi Matematika. Pertemuan VII Matematika Diskret Semester Gasal 2014/2015 Jurusan Teknik Informatika UPN Veteran Yogyakarta Iduksi Matematika Pertemua VII Matematika Diskret Semester Gasal 2014/2015 Jurusa Tekik Iformatika UPN Vetera Yogyakarta Metode pembuktia utuk peryataa perihal bilaga bulat adalah iduksi matematik. Cotoh

Lebih terperinci

MANAJEMEN RISIKO INVESTASI

MANAJEMEN RISIKO INVESTASI MANAJEMEN RISIKO INVESTASI A. PENGERTIAN RISIKO Resiko adalah peyimpaga hasil yag diperoleh dari recaa hasil yag diharapka Besarya tigkat resiko yag dimasukka dalam peilaia ivestasi aka mempegaruhi besarya

Lebih terperinci

) didefinisikan sebagai persamaan yang dapat dinyatakan dalam bentuk: a x a x a x b... b adalah suatu urutan bilangan dari bilangan s1, s2,...

) didefinisikan sebagai persamaan yang dapat dinyatakan dalam bentuk: a x a x a x b... b adalah suatu urutan bilangan dari bilangan s1, s2,... SISEM PERSAMAAN LINIER DAN MARIKS. SISEM PERSAMAAN LINIER Secara umum, persamaa liier dega variabel ( x, x,..., x ) didefiisika sebagai persamaa yag dapat diyataka dalam betuk: a x a x a x b... dega a,

Lebih terperinci

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari.

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari. Selag Kepercayaa Cotoh Besar Jika ukura cotoh (sample size) besar, maka meurut Teorema Limit Pusat, bayak statistik megikuti/mempuyai sebara yag medekati ormal (dapat diaggap ormal). Artiya jika adalah

Lebih terperinci

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu

Lebih terperinci

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015 RESPONSI STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 015 A. PENYAJIAN DAN PERINGKASAN DATA 1. PENYAJIAN DATA a. Sebutka tekik peyajia data utuk data kualitatif! Diagram kueh, diagram batag, distribusi

Lebih terperinci

BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada

BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada 8 BAB III RUANG HAUSDORFF Pada bab ii aka dibahas megeai ruag Hausdorff, kekompaka pada ruag Hausdorff da ruag regular legkap. Pembahasa diawali dega medefiisika Ruag Hausdorff da beberapa sifatya kemudia

Lebih terperinci

Setelah mempelajari modul ini Anda diharapkan dapat: a. memeriksa apakah suatu pemetaan merupakan operasi;

Setelah mempelajari modul ini Anda diharapkan dapat: a. memeriksa apakah suatu pemetaan merupakan operasi; Modul 1 Operasi Dr. Ahmad Muchlis B PENDAHULUAN erapakah 97531 86042? Kalau Ada megguaka kalkulator, jawabaya amat bergatug pada tipe kalkulator yag Ada pakai. 9 Kalkulator ilmiah Casio fx-250 memberika

Lebih terperinci

Solusi Pengayaan Matematika

Solusi Pengayaan Matematika Solusi Pegayaa Matematika Edisi 11 Maret Peka Ke-, 2007 Nomor Soal: 101-110 101. Bilaga desimal 0,7777 diyataka dalam hasil bagi bilaga rasioal sebagai a b, dega a da b relatif prima. Nilai dari ab A.

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini merupakan penelitian tindakan kelas yang dilaksanakan pada siswa

III. METODE PENELITIAN. Penelitian ini merupakan penelitian tindakan kelas yang dilaksanakan pada siswa III. METODE PENELITIAN A. Settig Peelitia Peelitia ii merupaka peelitia tidaka kelas yag dilaksaaka pada siswa kelas VIIIB SMP Muhammadiyah 1 Sidomulyo Kabupate Lampug Selata semester geap tahu pelajara

Lebih terperinci

Bab. Pola Bilangan, Barisan, dan Deret. A. Pola Bilangan B. Barisan Bilangan C. Deret Bilangan

Bab. Pola Bilangan, Barisan, dan Deret. A. Pola Bilangan B. Barisan Bilangan C. Deret Bilangan Bab Sumber: www.medeciepharmacie.uiv-fcomte.fr Pola Bilaga, Barisa, da Deret Pola bilaga, barisa, da deret merupaka materi baru yag aka kamu pelajari pada bab ii. Terdapat beberapa masalah yag peyelesaiaya

Lebih terperinci

JENIS PENDUGAAN STATISTIK

JENIS PENDUGAAN STATISTIK ENDUGAAN STATISTIK ENDAHULUAN Kosep pedugaa statistik diperluka utuk membuat dugaa dari gambara populasi. ada pedugaa statistik dibutuhka pegambila sampel utuk diaalisis (statistik sampel) yag ati diguaka

Lebih terperinci

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model.

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model. BAB II LANDASAN TEORI Pada bagia ii aka dibahas tetag teori-teori dasar yag diguaka utuk dalam megestimasi parameter model.. MATRIKS DAN VEKTOR Defiisi : Trace dari matriks bujur sagkar A a adalah pejumlaha

Lebih terperinci

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan Selag Kepercayaa (Cofidece Iterval) Pegatar Peduga titik (poit estimator) telah dibahas pada kuliah-kuliah sebelumya. Walau statistikawa telah berusaha memperoleh peduga titik yag baik, amu hampir bisa

Lebih terperinci

BAB 4: PELUANG DAN DISTRIBUSI NORMAL.

BAB 4: PELUANG DAN DISTRIBUSI NORMAL. BAB 4: PELUANG DAN DISTRIBUSI NORMAL. PELUANG Peluag atau yag biasa juga disebut dega istilah keugkia, probablilitas, atau kas eujukka suatu tigkat keugkia terjadiya suatu kejadia yag diyataka dala betuk

Lebih terperinci

UKURAN PEMUSATAN UKURAN PENYEBARAN

UKURAN PEMUSATAN UKURAN PENYEBARAN UKURAN PEMUSATAN DATA TUNGGAL DATA KELOMPOK. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL UKURAN PENYEBARAN JANGKAUAN HAMPARAN RAGAM / VARIANS SIMPANGAN BAKU

Lebih terperinci

MODUL BEBERAPA MACAM SEBARAN TEORITIS

MODUL BEBERAPA MACAM SEBARAN TEORITIS BEBERAPA MACAM SEBARAN TEORITIS MODUL 7 BEBERAPA MACAM SEBARAN TEORITIS Pedahulua Dibedaka sebara probabilitas yag diskrit dega sebara yag kotiyu Keduaya bukalah sebara yag berasal dari pegalama, melaika

Lebih terperinci

Bab III Metoda Taguchi

Bab III Metoda Taguchi Bab III Metoda Taguchi 3.1 Pedahulua [2][3] Metoda Taguchi meitikberatka pada pecapaia suatu target tertetu da meguragi variasi suatu produk atau proses. Pecapaia tersebut dilakuka dega megguaka ilmu statistika.

Lebih terperinci

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR Dose Pegampu : Darmadi, S.Si, M.Pd Disusu : Kelas 5A / Kelompok 5 : Dia Dwi Rahayu (084. 06) Hefetamala (084. 4) Khoiril Haafi (084. 70) Liaatul Nihayah (084. 74)

Lebih terperinci

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Fugsi Kompleks (Pertemua XXVII - XXX) Dr. AZ Jurusa Tekik Sipil Fakultas Tekik Uiversitas Brawijaya Pedahulua Persamaa x + 1 = 0 tidak memiliki akar dalam himpua bilaga real. Pertayaaya,

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi suatu ring serta

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi suatu ring serta BAB II LANDASAN TEORI Pada bab ii aka dibahas megeai defiisi suatu rig serta beberaa sifat yag dierluka dalam embahasa oliomial ermutasi Pejelasa megeai rig dimulai dega defiisi dari suatu sistem matematika

Lebih terperinci

III. METODOLOGI PENELITIAN. Menurut Sukardi, (2003:17) Metodologi penelitian adalah cara yang

III. METODOLOGI PENELITIAN. Menurut Sukardi, (2003:17) Metodologi penelitian adalah cara yang 5 III. METODOLOGI PENELITIAN A. Metode Peelitia Meurut Sukardi, (003:7) Metodologi peelitia adalah cara yag dilakuka secara sistematis megikuti atura-atura, direcaaka oleh para peeliti utuk memecahka permasalaha

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN 47 49 RENCANA PELAKSANAAN PEMBELAJARAN Nama Sekolah Program keahlia Mata Pelajara : SMK PGRI Salatiga : Akutasi : Matematika Kelas/ Semester : XI/ 3 Materi Pokok Alokasi Waktu : Barisa da Deret : 4 x 4

Lebih terperinci