PRINSIP MAKSIMUM DAN MINIMUM FUNGSI PANHARMONIK

Ukuran: px
Mulai penontonan dengan halaman:

Download "PRINSIP MAKSIMUM DAN MINIMUM FUNGSI PANHARMONIK"

Transkripsi

1 PRINSIP MAKSIMUM DAN MINIMUM FUNGSI PANHARMONIK Oleh, Edag Cahya M.A. Jrsa Pedidia Matematia FPMIPA UPI Badg Jl. Dr. Setiabdi 9 Badg ecma@ds.math.itb.ac.id Abstra Tlisa ii mejelasa prisip masimm da miimm fgsi paharmoi bai yag berilai real map yag berilai omples. Metoda pembtia yag digaa adalah perhitga alls biasa t fgsi da pebah. Sedaga t fgsi paharmoi berilai omples digaa prisip rotasi. 1. Pedahla Sebah fgsi = (x,y)di C ( memehi persamaa Yawa x x t sat ostata real da himpa ba di ) disebt fgsi paharmoi jia (1). Fgsi paharmoi disebt paharmoi pada himpa ttp jia paharmoi pada iteriorya da oti pada batasya. Maalah ii memberia bti bar terhadap beberapa hasil srvey yag ada pada literatr da jga memberia beberapa hasil yag bar. Pedeata yag digaa disii serpa dega pedeata yag diembaga ata digaa t fgsi harmoi. Hal ii dilaa haya area ada emiripa bet atara persamaa Laplace da persamaa Yawa. Kajia pertama diawali dega fata perhitga ilai masimm da miimm fgsi paharmoi pada sat caram, yag selajtya aa digaa sebagai lagah awal dgaa mm megeai prisip masimm da miimm fgsi paharmoi. Beritya jga dibahas megeai ilai masimm modls fgsi paharmoi berilai omples. 1

2 . Prisip Masimm da Miimm Fgsi Paharmoi Ut megaji masalah ilai masimm da miimm fgsi paharmoi, marilah ita lihat gagasa yag mcl dari fata berit. Berit ii teorema dari Dffi, t bti lihat [], hal 115. Teorema 1 Jia (r, ) fgsi paharmoi pada caram x + y a, maa t r a, ) i ( r, ) ci ( r e () dimaa c 1 I ( a) ( a, ) e i d. Di sii I merpaa fgsi Bessel termodifiasi jeis pertama, dega da 1 x I, (3)! x x 1... (4) 1.( 1) 1.( 1)( ) 4 Dapat ditja bahwa t masig-masig, I ) i ( r e merpaa solsi persamaa (1) da secara hss, ( r ) merpaa solsi positif dari persamaa (1). Dari teorema diatas, mari ita tija jia ilai batas osta, sebt saja (a, ) =, t sat ostata real. Maa masig-masig oefisie c aa mejadi c, ( a), da ( r, ) I ( r). (5) ( a) Melali persamaa (5) ii, ita tija da ass. Pertama, jia >, maa (r, ) >. Ut setiap da r, dega r a. Nilai masimm aa dicapai jia r = a, yait (r, ) = da ilai miimm aa dicapai jia r =. Ii megataa

3 bahwa ilai miimm terjadi tida di batas caram da ilai masimm terjadi di batas caram. Kass eda, jia < maa (r, ) < t setiap da r, dega r a. Nilai miimm aa dicapai di batas caram yait r = a da ilai masimm dicapai di psat caram. Ii megataa bahwa ilai miimm terjadi di batas caram da ilai masimm tida tejadi di batas. Dari eda ass ii, dgaa megeai tempat terjadiya ilai masimm da ilai miimm t fgsi paharmoi berbeda dega tempat terjadiya ilai masimm da ilai miimm t fgsi harmoi..1. Prisip Masimm Hasil pertama yag diperoleh dari gambara di atas diformlasia dalam teorema berit. Teorema Misala himpa ba terhbg sederhaa, da fgsi paharmoi pada. Jia ilai masimm positif maa ilai masimm tersebt aa dicapai di batas. Bti Adaia ada x di dalam sehigga, xx yy xy, da xx. Maa xx yy xy, tetapi xx (x) aibatya harslah yy (x). Karea it, (x). Ii bertetaga dega yag dietahi. Dega demiia dapat disimpla, tida ada x dalam yag memberia ilai masimm, area it harslah x ada di batas. Teorema di atas memberia aibat t fgsi paharmoi positif. Aibat 1 Misala fgsi paharmoi positif pada dicapai di batas., maa ilai masimm Bti Karea paharmoi positif maa ilai masimm jga positif. Berdasara Teorema maa ilai masimm terjadi di batas. Aibat Misala fgsi paharmoi ta egatif pada sat himpa ba terhbg sederhaa. Jia mecapai ilai masimm di dalam, maa harslah fgsi osta. (dalam hal ii harslah fgsi ol). Bti Lihat [1] da [3]. 3

4 Selajtya, aa dilihat fgsi paharmoi ta egatif pada sat himpa ba terhbg sederhaa da terbatas di batasya., da mgi fgsi tersebt tida oti pada Aibat 3 Misala himpa ba terhbg sederhaa da terbatas di Misala fgsi paharmoi ta egatif pada, da misala ada ostta M > sehigga lim sp( b ) M t setiap barisa (b ) di yag overge e sat titi di batas. Maa < M pada. Bti Misala M = sp{(x):x }, da pilih barisa (b ) di sehigga (b ) overge e M. Dari sii, ada da ass yag perl diperhatia. Pertama, jia (b ) memilii sbbarisa yag overge e sat titi b di dalam, maa (b) = M. Dega prisip masimm fgsi paharmoi ta egatif, maa = M pada. Ut ass eda, jia tida ada sbbarisa dari (b ) yag overge esat titi di dalam maa (b ) memilii sbbarisa (a ) yag overge e sat titi pada batas, sebt saja titi tersebt a, maa (a) = M. Ii megaibata M. Dega demiia, dari eda ass ii, ita peroleh < M pada... Prisip Miimm Prisip masimm di atas, cederg lebih tepat bila digaa pada fgsi paharmoi positif, aa tetapi prisip iip aa berimpliasi jga t fgsi paharmoi egatif. Teorema 3 Misala himpa ba terhbg sederhaa, da fgsi paharmoi pada. Jia ilai miimm egatif maa ilai miimm tersebt aa dicapai di batas. Bti Adaia ada x di dalam sehigga, xx yy xy, da xx. Maa xx yy xy, tetapi xx (x) aibatya harslah yy (x). Karea it, (x). Ii bertetaga dega yag dietahi. Dega demiia dapat disimpla, tida ada x dalam yag memberia ilai miimm egatif, area it harslah x ada di batas. Aibat 4 Misala fgsi paharmoi egatif pada dicapai di batas., maa ilai masimm Bti Karea paharmoi egatif maa ilai miimm jga egatif. Berdasara Teorema 3 maa ilai miimm terjadi di batas. 4

5 Aibat 5 Misala fgsi paharmoi ta positif pada sat himpa ba terhbg sederhaa. Jia mecapai ilai miimm di dalam, maa harslah fgsi osta. (dalam hal ii harslah fgsi ol). Bti Lihat [1] da [3]. Selajtya, aa dilihat fgsi paharmoi ta positif pada sat himpa ba terhbg sederhaa da terbatas di, da mgi fgsi tersebt tida oti pada batasya. Aibat 3 Misala himpa ba terhbg sederhaa da terbatas di Misala fgsi paharmoi ta positif pada, da misala ada ostta M < sehigga lim if ( b ) M t setiap barisa (b ) di yag overge e sat titi di batas. Maa > M pada. Bti Misala M = if {(x):x }, da pilih barisa (b ) di sehigga (b ) overge e M. Dari sii, ada da ass yag perl diperhatia. Pertama, jia (b ) memilii sbbarisa yag overge e sat titi b di dalam, maa (b) = M. Dega prisip miimm fgsi paharmoi ta positif, maa = M pada. Ut ass eda, jia tida ada sbbarisa dari (b ) yag overge esat titi di dalam maa (b ) memilii sbbarisa (a ) yag overge e sat titi pada batas, sebt saja titi tersebt a, maa (a) = M. Ii megaibata M. Dega demiia, dari eda ass ii, ita peroleh > M pada. Selajtya aa ita lihat ilai fgsi paharmoi di sat titi dalam, pada sat daerah ompa melali peyajia itegral fgsi paharmoi pada sat caram. Hasil ii diperoleh sebagai impliasi dari prisip masimm da miimm fgsi paharmoidi atas. Ut it terlebih dl perhatia peyajia itegral berit, da t bti dapat dilihat pada [] hal Teorema 4 Misala fgsi paharmoi pada caram (x-x ) +(y-y ). a, maa 1 ( x, y ) ( x a cos, y asi ) d. (6) ( a) 5

6 Berit ii salah sat hasil yag telah diemaa Dffi dalam [], da pada tlisa ii aa dibtia embali dega meggaa prisip masimm fgsi paharmoi positif yag telah diemaa di atas. Aibat 7 Misala fgsi paharmoi ta egatif pada daerah ompa. Jia M pada batas t sat ostata M >, da x sat titi iterior, maa M, ( ) a dimaa a adalah jara terdeat dari x terhadap batas. Bti Misala x =(x,y ) sembarag titi iterior. Kemdia bat caram (x-x ) +(y-y ) a, dimaa a adalah jara terdeat dari x terhadap batas. Maa ita pya (6). Karea M pada batas, maa ii jga berla pada caram caram (x-x ) +(y-y ) a di dalam, area it (6) aa mejadi M. ( ) a Selajtya sebagai impliasi dari prisip miimm fgsi paharmoi, ita tra sifat fgsi paharmoi seperti pada Aibat 7 t fgsi paharmoi ta positif. Aibat 8 Misala fgsi paharmoi ta positif pada daerah ompa. Jia M pada batas t sat ostata M <, da x sat titi iterior, maa M, ( ) a dimaa a adalah jara terdeat dari x terhadap batas. Bti Misala x =(x,y ) sembarag titi iterior. Kemdia bat caram (xx ) +(y-y ) a, dimaa a adalah jara terdeat dari x terhadap batas. Maa dari sii ita pya (6). Karea M pada batas, maa ii jga berla pada caram (x-x ) +(y-y ) a di dalam, area it (6) aa mejadi M. ( a) Ut lebih memperjelas prisip masimm da miimm di atas, dapat dilihat cotoh berit. Cotoh 1 Misala (x,y)=cosh x pada caram D(,R). Jelas paharmoi. Nilai masimm aa dicapai dibatas caram yait di titi (-R,) da (R,). Sedaga ilai miimm dicapai di sepajag garis x= pada caram D(,R). 6

7 Cotoh Misala (x,y)=sih x pada caram D(,R). Jelas fgsi paharmoi, dega ilai masimm da miimm dicapai dibatas caram D(,R) yait di titi (R,) da (-R,)..3 Fgsi Paharmoi Berilai Komples Fgsi paharmoi yag telah dibahas di atas adalah fgsi paharmoi berilai real. Berit ii aa dibahas megeai fgsi paharmoi berilai omples. Seperti defiisi pada fgsi paharmoi berilai real, maa t fgsi paharmoi berilai omples f didefiisia sebagai fgsi oti yag memehi persamaa (1). Teorema 5 Misala f(z)=(x,y)+iv(x,y) fgsi berilai omples di C ( paharmoi jia da haya jia da v paharmoi. ). Fgsi f Bti Misala f(z)=(x,y)+iv(x,y) paharmoi pada, maa f xx + f yy = xx + iv xx + yy + iv yy =( xx + yy )+iv xx + iv yy = (+iv)= f. Jadi xx + yy = da v xx + v yy = v. Aibat 9 Misala f fgsi paharmoi berilai omples da c sat ostata omples. Maa cf jga fgsi paharmoi. Teorema 6 Jia fgsi paharmoi berilai omples pada maa mecapai ilai masimm di pada batasya., da oti pada Bti Adaia mecapai ilai masimm di sat titi a di dalam, sebt saja ( a) M. Selajtya pilih bilaga omples b sehigga b 1 da b(a) = M. Maa fgsi paharmoi berilai real Re(b) aa mecapai ilai masimm M di sat titi a di dalam. Ii bertetaga dega prisip masimm fgsi paharmoi. Jadi harslah mecapai ilai masimm pada batas. Cotoh 3 Misala (x,y) = e x + i e- x pada caram D(,R). Maa e x e x cosh x. Dari sii bisa dihitg bahwa ilai masimm aa dicapai di batas caram, yait (-R,) da (R,), da ilai miimm aa dicapai disepajag garis x= pada caram D(,R). 7

8 Melihat eyataa cotoh 3 di atas, maa ilai miimm secara mm tida terjadi di batas. Secara eselrha prisip masimm da miimm fgsi paharmoi berbeda dega prisip masimm da miimm fgsi harmoi. Daftar Pstaa [1] E. Cahya, Paharmoics Fctios (dalam persiapa pbliasi). [] R.J. Dffi, Yawa Potetial Theory, J. Math. Aal. Appl. 35(1971) [3] W. Setyabdhi, Fgsi Paharmoi di Caram, MIHMI 6() [4] S. Axler, P. Bordo, W. Ramey, Harmoic Fctio Theory, Spriger Verlag, New Yor,

BAB I PENDAHULUAN. Masalah menarik yang terkait dengan masalah nilai eigen adalah masalah yang muncul sebagai persamaan Yukawa,

BAB I PENDAHULUAN. Masalah menarik yang terkait dengan masalah nilai eigen adalah masalah yang muncul sebagai persamaan Yukawa, 1. Latar Belakag Masalah dimaa Padag persamaa diferesial BAB I PENDAHULUAN (1) parameter. Persamaa di atas dapat dipadag sebagai masalah ilai eige tk operator Laplace, da persamaa tersebt merpaka persamaa

Lebih terperinci

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu

Lebih terperinci

Aplikasi Sistem Orthonormal Di Ruang Hilbert Pada Deret Fourier

Aplikasi Sistem Orthonormal Di Ruang Hilbert Pada Deret Fourier Apliasi Sistem Orthoormal Di Ruag Hilbert Pada Deret Fourier A 7 Fitriaa Yuli S. FMIPA UNY Abstra Ruag hilbert aa dibahas pada papper ii. Apliasi system orthoormal aa diaji da aa diapliasia pada ruahg

Lebih terperinci

MASALAH DAN ALTERNATIF JAWABAN DALAM MATEMATIKA KOMBINATORIK. Masalah 1 Terdapat berapa carakah kita dapat memilih 2 baju dari 20 baju yang tersedia?

MASALAH DAN ALTERNATIF JAWABAN DALAM MATEMATIKA KOMBINATORIK. Masalah 1 Terdapat berapa carakah kita dapat memilih 2 baju dari 20 baju yang tersedia? Kartia Yuliati, SPd, MSi MASALAH DAN ALTERNATIF JAWABAN DALAM MATEMATIKA KOMBINATORIK Masalah Terdapat berapa caraah ita dapat memilih baju dari 0 baju yag tersedia? Cara Misala baju diberi omor dari sampai

Lebih terperinci

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu

Lebih terperinci

MAKALAH TEOREMA BINOMIAL

MAKALAH TEOREMA BINOMIAL MAKALAH TEOREMA BINOMIAL Disusu utu memeuhi tugas mata uliah Matematia Disrit Dose Pegampu : Dr. Isaii Rosyida, S.Si, M.Si Rombel B Kelompo 2 1. Wihdati Martalya (0401516006) 2. Betha Kuria S. (0401516012)

Lebih terperinci

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL HENSTOCK- KURZWEIL SERENTAK DAN FUNGSI BERSIFAT LOCALLY SMALL RIEMANN SUMS (LSRS) DARI RUANG EUCLIDE

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL HENSTOCK- KURZWEIL SERENTAK DAN FUNGSI BERSIFAT LOCALLY SMALL RIEMANN SUMS (LSRS) DARI RUANG EUCLIDE Teorema Keovergea Fugsi Teritegral Hestoc(Aiswita) TORMA KKONVRGNAN FUNGSI TRINTGRAL HNSTOCK- KURZWIL SRNTAK DAN FUNGSI BRSIFAT LOCALLY SMALL RIMANN SUMS (LSRS) DARI RUANG UCLID K RUANG BARISAN Aiswita,

Lebih terperinci

PEMBUKTIAN SIFAT RUANG BANACH PADA D(K)

PEMBUKTIAN SIFAT RUANG BANACH PADA D(K) JMP : Volume 4 Nomor 1, Jui 2012, hal. 41-50 PEMBUKTIAN SIFAT RUANG BANACH PADA D(K) Malahayati Program Studi Matematia Faultas Sais da Teologi UIN Sua Kalijaga malahayati_01@yahoo.co.id ABSTRACT. I this

Lebih terperinci

MODUL BARISAN DAN DERET

MODUL BARISAN DAN DERET MODUL BARISAN DAN DERET SEMESTER 2 Muhammad Zaial Abidi Persoal Blog http://meetabied.wordpress.com BAB I. PENDAHULUAN A. Desripsi Dalam modul ii, ada aa mempelajari pola bilaga, barisa, da deret diidetifiasi

Lebih terperinci

Gambar 3.1Single Channel Multiple Phase

Gambar 3.1Single Channel Multiple Phase BAB III MODEL ANTRIAN PADA PEMBUATAN SIM C. Sigle Chael Multiple Phase Sistem atria sigle chael multiple phase merupaa sistem atria dimaa pelagga yag tiba, dapat memasui sistem dega megatri di tempat yag

Lebih terperinci

Aproksimasi Terbaik dalam Ruang Metrik Konveks

Aproksimasi Terbaik dalam Ruang Metrik Konveks Aprosimasi Terbai dalam Ruag etri Koves Oleh : Suharsoo S Jurusa atematia FIPA Uiversitas Lampug Abstra asalah esistesi da etuggala aprosimasi terbai suatu titi dalam ruag berorm telah dipelajari oleh

Lebih terperinci

Keywords: Convergen Series, Banach Space, Sequence space cs, Dual-α, Dual-

Keywords: Convergen Series, Banach Space, Sequence space cs, Dual-α, Dual- Jural MIPA FST UNDANA, Volume 2, Nomor, April 26 DUAL-, DUAL- DAN DUAL- DARI RUANG BARISAN CS Albert Kumaereg, Ariyato 2, Rapmaida 3,2,3 Jurusa Matematia, Faultas Sais da Tei Uiversitas Nusa Cedaa ABSTRACT

Lebih terperinci

TEOREMA CAYLEY-HAMILTON SEBAGAI SALAH SATU METODE DALAM PENGHITUNGAN FUNGSI MATRIKS

TEOREMA CAYLEY-HAMILTON SEBAGAI SALAH SATU METODE DALAM PENGHITUNGAN FUNGSI MATRIKS Jural Matematia Vol.6 No. November 6 [ 5 : ] TEOREMA CAYLEY-HAMILTON SEBAGAI SALAH SATU METODE DALAM PENGHITUNGAN FUNGSI MATRIKS Ooy Rohaei Jurusa Matematia, UNISBA, Jala Tamasari No, Badug,6, Idoesia

Lebih terperinci

Bab 16 Integral di Ruang-n

Bab 16 Integral di Ruang-n Catata Kuliah MA3 Kalulus Elemeter II Oi Neswa,Ph.D., Departeme Matematia-ITB Bab 6 Itegral di uag- Itegral Gada atas persegi pajag Itegral Berulag Itegral Gada atas Daerah sebarag Itegral Gada Koordiat

Lebih terperinci

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain.

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain. BARIAN DAN DERET A. Barisa Barisa adalah uruta bilaga yag memilii atura tertetu. etiap bilaga pada barisa disebut suu barisa yag dipisaha dega lambag, (oma). Betu umum barisa:,, 3, 4,, dega: = suu pertama

Lebih terperinci

Mengkaji Perbedaan Diagonalisasi Matriks Atas Field dan Matriks Atas Ring Komutatif

Mengkaji Perbedaan Diagonalisasi Matriks Atas Field dan Matriks Atas Ring Komutatif Megaji Perbedaa Diagoalisasi Matris Atas Field da Matris Atas Rig Komutatif Teorema : Jia A adalah matris x maa eryataa eryataa beriut eivale satu sama lai : a A daat didiagoalisasi b A memuyai vetor eige

Lebih terperinci

APLIKASI ALJABAR MAX-PLUS PADA SISTEM PRODUKSI TIPE ASSEMBLY

APLIKASI ALJABAR MAX-PLUS PADA SISTEM PRODUKSI TIPE ASSEMBLY Volme Tah 6 ISSN 58-59X APLIKASI ALJABAR MAX-PLUS PADA SISTEM PRODUKSI TIPE ASSEMBLY Pohet Bitoto Program Sti Peiia Matematia FST Uiversitas Kajrha Malag pohet.bitoto@gmail.com ABSTRAK. Efetivitas peggaa

Lebih terperinci

BAB IV KONSTRUKSI FUNGSI

BAB IV KONSTRUKSI FUNGSI BAB IV FUNGSI REGULAR KONSTRUKSI FUNGSI REGULAR Proposisi IV. Hal. 55 c dx a x e e x x dt t x t x y x v iv y x x y a x,,,, da. Dimaa pada Relar Maka secara lokal,. pada real berilai paharmoik si Misalka

Lebih terperinci

3. Integral (3) (Integral Tentu)

3. Integral (3) (Integral Tentu) Darublic www.darublic.com. Itegral () (Itegral Tetu).. Luas Sebagai Suatu Itegral. Itegral Tetu Itegral tetu meruaa itegral ag batas-batas itegrasia jelas. Kose dasar dari itegral tertetu adalah luas bidag

Lebih terperinci

BAB II KEGIATAN PEMBELAJARAN

BAB II KEGIATAN PEMBELAJARAN Page o BAB II KEGIATAN PEMBELAJARAN A. TURUNAN FUNGSI ALJABAR. Deiisi Tra Fgsi Deiisi Fgsi : ata mempai tra ag diotasika d d ata di deiisika : d d d d d d lim h 0 h h lim 0 ata Cotoh Soal :. Tetka tra

Lebih terperinci

SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA

SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA KELAS D(K) Malahayati Program Studi Matematia Faultas Sais da Teologi UIN Sua Kalijaga Yogyaarta e-mail: malahayati_01@yahoo.co.id ABSTRAK Himpua

Lebih terperinci

FUNCTIONALLY SMALL RIEMANN SUMS (FSRS) DAN ESSENTIALLY SMALL RIEMANN SUMS (ESRS) FUNGSI TERINTEGRAL HENSTOCKn. p )

FUNCTIONALLY SMALL RIEMANN SUMS (FSRS) DAN ESSENTIALLY SMALL RIEMANN SUMS (ESRS) FUNGSI TERINTEGRAL HENSTOCKn. p ) βeta -ISSN: 85-5893 e-issn: 54-458 Vol. 3 No. (Noember), Hal. 79-89 βeta DOI: htt://dx.doi.org/.44/betajtm.v9i.7 FUNCTIONALLY SMALL RIMANN SUMS (FSRS) DAN SSNTIALLY SMALL RIMANN SUMS (SRS) FUNGSI TRINTGRAL

Lebih terperinci

MACAM-MACAM TEKNIK MEMBILANG

MACAM-MACAM TEKNIK MEMBILANG 0 MACAM-MACAM TEKNIK MEMBILANG ATURAN PERKALIAN Beriut ii diberia sebuah dalil tetag peetua baya susua yag palig sederhaa dalam suatu permasalaha yag beraita dega peluag. Dalil 2.1: ATURAN PERKALIAN SECARA

Lebih terperinci

Konvolusi pada Distribusi dengan Support Kompak

Konvolusi pada Distribusi dengan Support Kompak Prosidig SI MaNIs (Semiar Nasioal Itegrasi Matematia da Nilai Islami) Vol1, No1, Juli 2017, Hal 453-457 p-issn: 2580-4596; e-issn: 2580-460X Halama 453 Kovolusi pada Distribusi dega Support Kompa Cythia

Lebih terperinci

Sifat-sifat Fungsi Karakteristik dari Sebaran Geometrik

Sifat-sifat Fungsi Karakteristik dari Sebaran Geometrik Sifat-sifat Fugsi Karateristi dari Sebara Geometri Dodi Deviato Jurusa Matematia, Faultas MIPA, Uiversitas Adalas Kamus Limau Mais, Padag 563, Sumatera Barat, Idoesia Abstra Fugsi arateristi dari suatu

Lebih terperinci

Himpunan Spektrum Real Untuk Masalah Balikan Nilai Eigen Dari Matriks Tak Negatif

Himpunan Spektrum Real Untuk Masalah Balikan Nilai Eigen Dari Matriks Tak Negatif Vol.4, No., -, Jaar 8 Hmpa petrm Real Ut Masalah ala Nla Ege ar Matrs Ta Negatf Kresa Jaya bstra Paa paper aa bahas represetas geometr ar hmpa spetrm la ege real yag la ege masmalya t masalah bala la ege

Lebih terperinci

EKSISTENSI BASIS ORTHONORMAL PADA RUANG HASIL KALI DALAM

EKSISTENSI BASIS ORTHONORMAL PADA RUANG HASIL KALI DALAM Ed-Math; ol Tah EKITENI BAI ORTHONORMAL PADA RUANG HAIL KALI DALAM Mhammad Kh Abstras at rag etor ag dlegap oleh sat operas ag memeh beberapa asoma tertet damaa Rag Hasl Kal Dalam (RHKD) Pada RHKD deal

Lebih terperinci

MASALAH DISTRIBUSI BOLA KE DALAM WADAH SEBAGAI FUNGSI ATAU KUMPULAN FUNGSI

MASALAH DISTRIBUSI BOLA KE DALAM WADAH SEBAGAI FUNGSI ATAU KUMPULAN FUNGSI Vol. 11, No. 1, 45-55, Juli 2014 MASALAH DISTRIBUSI BOLA KE DALAM WADAH SEBAGAI FUNGSI ATAU KUMPULAN FUNGSI Fauziah Baharuddi 1, Loey Haryato 2, Nurdi 3 Abstra Peulisa ii bertujua utu medapata perumusa

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET Pertemua 7. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuaku Tambusai Bagkiag 5. da kekovergeaya 5. DERET Diberika sebuah barisa a, dapat didefeisika barisa bilaga real S N dega S N := N a = a + a 2 +...

Lebih terperinci

Peluang Suatu Kejadian, Kaidah Penjumlahan, Peluang Bersyarat, Kaidah Perkalian dan Kaidah Baiyes

Peluang Suatu Kejadian, Kaidah Penjumlahan, Peluang Bersyarat, Kaidah Perkalian dan Kaidah Baiyes eluag uatu Kejadia, Kaidah ejumlaha, eluag ersyarat, Kaidah eralia da Kaidah aiyes.eluag uatu Kejadia Defiisi : eluag suatu ejadia adalah jumlah peluag semua titi otoh dalam. Dega demiia : 0 (), ( ) =

Lebih terperinci

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C.

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C. BAB II LANDASAN TEORI Pada bab ii aa dibahas teori teori yag meduug metode upper level set sca statistics, atara lai peubah aca, distribusi gamma, fugsi gamma, fugsi lielihood, da uji rasio lielihood.

Lebih terperinci

Representasi sinyal dalam impuls

Representasi sinyal dalam impuls Represetasi siyal dalam impuls Represetasi siyal dalam impuls adalah siyal yag diyataa sebagai fugsi dari impuls atau sebagai umpula dari impuls-impuls. Sembarag siyal disret dapat diyataa sebagai pejumlaha

Lebih terperinci

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b.

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b. Didowload dari ririez.blog.us.ac.id HALAMAN 36 37 5. Dega defiisi limit barisa buktika limit berikut ii : a. lim = 0 lim 1 2 + 3 = 0 > 0 h 1 = 2 + 3 0 = 1 2 + 3 1 2 1 2 1 2 < jadi terbukti bahwa lim =

Lebih terperinci

BAB II LANDASAN TEORI. persamaan yang mengandung diferensial. Persamaan diferensial

BAB II LANDASAN TEORI. persamaan yang mengandung diferensial. Persamaan diferensial 5 BAB II LANDASAN TEORI A. Persamaa Diferesial Dari ata persamaa da diferesial, dapat diliat bawa Persamaa Diferesial beraita dega peelesaia suatu betu persamaa ag megadug diferesial. Persamaa diferesial

Lebih terperinci

GRAFIKA

GRAFIKA 6 5 7 3 6 3 3 GRAFIKA 3 6 57 08 0 9 5 9 385 946 5 3 30 0 8 9 5 9 3 85 946 5 ANALISA REAL Utu uliah (pegatar) aalisa real yag dilegapi dega program MATLAB Dr. H.A. Parhusip G R A F I K A Peerbit Tisara

Lebih terperinci

V dinamakan ruang vektor jika terpenuhi aksioma : 1. V tertutup terhadap operasi penjumlahan

V dinamakan ruang vektor jika terpenuhi aksioma : 1. V tertutup terhadap operasi penjumlahan RUANG VEKTOR Rang Vetor Umm Misalan dan, l Riil V dinamaan rang vetor jia terpenhi asioma :. V terttp terhadap operasi penjmlahan.., Unt setiap v v v, w V, v V v w v w maa v V. Terdapat V sehingga nt setiap

Lebih terperinci

BAB 6 NOTASI SIGMA, BARISAN DAN DERET

BAB 6 NOTASI SIGMA, BARISAN DAN DERET BAB 6 NOTASI SIGMA, BARISAN DAN DERET A RINGKASAN MATERI. Notasi Sigma Diberia suatu barisa bilaga, a, a,..., a. Lambag deret tersebut, yaitu: a = a + a +... + a a meyataa jumlah suu pertama barisa Sifat-sifat

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2016/2017 3 Februari 2017 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg Batas

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer Aljabar Linear Elementer MA SKS Silabs : Bab I Matris dan Operasinya Bab II Determinan Matris Bab III Sistem Persamaan Linear Bab IV Vetor di Bidang dan di Rang Bab V Rang Vetor Bab VI Rang Hasil Kali

Lebih terperinci

MODUL BARISAN DAN DERET

MODUL BARISAN DAN DERET MODUL BARISAN DAN DERET KELAS XII. IPS SEMESTER I Oleh : Drs. Pudjul Prijoo ( http://vidyagata.wordpress.co ) SMA NEGERI 6 Jala Mayje Sugoo 58 Malag Telp./Fax : (034) 75036 E-Mail : sa6_alag@yahoo.co.id

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI. mandiri jika tidak mengandung t secara eksplisit di dalamnya. (Kreyszig, 1983)

I PENDAHULUAN II LANDASAN TEORI. mandiri jika tidak mengandung t secara eksplisit di dalamnya. (Kreyszig, 1983) I PENDAHULUAN Latar Belaag Permasalaha ebiaa pemaea ia yag memberia eutuga masimum da berelauta (tida teradi epuaha dari populasi ia yag dipae) adalah hal yag sagat petig bagi idustri periaa Para ilmuwa

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS TRIDIAGONAL NISA RACHMANI G

NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS TRIDIAGONAL NISA RACHMANI G NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS TRIDIAGONAL NISA RACHMANI G5435 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 8 ABSTRACT NISA RACHMANI. Eigevales

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 5

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 5 Mata Kuliah : Matematia Disrit Program Studi : Tei Iformatia Miggu e : 5 KOMBINATORIAL PENDAHULUAN Persoala ombiatori bua merupaa persoala baru dalam ehidupa yata. Baya persoala ombiatori sederhaa telah

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 1, No.2, September 2012

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 1, No.2, September 2012 IfiityJual Ilmiah Pogam Studi Matematia STKIP Siliwagi Badug, Vol, No., Septembe HIMPUNAN KOMPAK PADA RUANG METRIK Oleh : Cee Kustiawa Juusa Pedidia Matematia FPMIPA Uivesitas Pedidia Idoesia eeustiawa@yahoo.om

Lebih terperinci

1. Integral (1) Pembahasan yang akan kita lakukan hanya mengenai bentuk persamaan diferensial seperti contoh yang pertama.

1. Integral (1) Pembahasan yang akan kita lakukan hanya mengenai bentuk persamaan diferensial seperti contoh yang pertama. Darublic www.darublic.com 1. Itegral (1) (Macam Itegral, Pedeata Numeri) Sudarato Sudirham Dalam bab sebeluma, ita memelajari salah satu bagia utama alulus, aitu alulus diferesial. Beriut ii ita aa membahas

Lebih terperinci

BARISAN TAK HINGGA DAN DERET TAK HINGGA

BARISAN TAK HINGGA DAN DERET TAK HINGGA BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { } adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila.. maka fugsi

Lebih terperinci

BAB III TAKSIRAN PROPORSI POPULASI JIKA TERJADI NONRESPON. Dalam bab ini akan dibahas penaksiran proporsi populasi jika terjadi

BAB III TAKSIRAN PROPORSI POPULASI JIKA TERJADI NONRESPON. Dalam bab ini akan dibahas penaksiran proporsi populasi jika terjadi BAB III TAKSIRA PROPORSI POPULASI JIKA TERJADI ORESPO Dalam bab ii aa dibaas peasira proporsi populasi jia terjadi orespo da dilaua allba sebaya t ali. Selai itu, juga aa dibaas peetua uura sampel yag

Lebih terperinci

Penggunaan Transformasi z

Penggunaan Transformasi z Pegguaa Trasformasi pada Aalisa Respo Freuesi Sistem FIR Oleh: Tri Budi Satoso E-mail:tribudi@eepis-its.eduits.edu Lab Siyal,, EEPIS-ITS ITS /3/6 osep pemiira domais of represetatio Domai- discrete time:

Lebih terperinci

Sinyal dan Sistem Waktu Diskrit ET 3005 Pengolahan Sinyal Waktu Diskrit EL 5155 Pengolahan Sinyal Waktu Diskrit

Sinyal dan Sistem Waktu Diskrit ET 3005 Pengolahan Sinyal Waktu Diskrit EL 5155 Pengolahan Sinyal Waktu Diskrit Siyal da Sistem Watu Disrit ET 35 Pegolaha Siyal Watu Disrit EL 5155 Pegolaha Siyal Watu Disrit Effria Yati Hamid 1 2 Siyal da Sistem Watu Disrit 2.1 Siyal Watu Disrit 2.1.1 Pegertia Siyal Watu Disrit

Lebih terperinci

MODUL 1.03 DINAMIKA PROSES. Oleh : Ir. Tatang Kusmara, M.Eng

MODUL 1.03 DINAMIKA PROSES. Oleh : Ir. Tatang Kusmara, M.Eng MODUL 1.03 DINMIK PROSES Ole : Ir. Tatag Kusmara, M.Eg LBORTORIUM OPERSI TEKNIK KIMI JURUSN TEKNIK KIMI UNIVERSITS SULTN GENG TIRTYS CILEGON BNTEN 2008 2 Modul 1.03 DINMIK PROSES I. Pedaulua Dalam bidag

Lebih terperinci

Gerak Brown Fraksional dan Sifat-sifatnya

Gerak Brown Fraksional dan Sifat-sifatnya SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 06 S - 3 Gera Brow Frasioal da Sifat-sifatya Chataria Ey Murwaigtyas, Sri Haryatmi, Guardi 3, Herry P Suryawa 4,,3 Uiversitas Gadjah Mada,4 Uiversitas

Lebih terperinci

Bab IV. Penderetan Fungsi Kompleks

Bab IV. Penderetan Fungsi Kompleks Bab IV Pedereta Fugsi Kompleks Sebagaimaa pada fugsi real, fugsi kompleks juga dapat dideretka pada daerah kovergesiya. Semua watak kajia kovergesi pada fugsi real berlaku pula pada fugsi kompleks. Secara

Lebih terperinci

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0.

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0. PROGRAM STUDI PENDIDIKAN MATEMATIKA FKIP UNMUH PONOROGO SOAL UJIAN TENGAH SEMESTER GENAP TA 03/04 Mata Ujia : Aalisis Real Tipe Soal : REGULER Dose : Dr. Jula HERNADI Waktu : 90 meit Hari, Taggal : Selasa,

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFERENSIAL LANE-EMDEN MENGGUNAKAN METODE TRANSFORMASI DIFERENSIAL

PENYELESAIAN PERSAMAAN DIFERENSIAL LANE-EMDEN MENGGUNAKAN METODE TRANSFORMASI DIFERENSIAL PENYELESAIAN PERSAMAAN DIFERENSIAL LANE-EMDEN MENGGUNAKAN METODE TRANSFORMASI DIFERENSIAL Ahma Sya roi, M Natsir, Eag Lily E-mail: Arolativa@yahoocom Mahasiswa Program S Matematia Dose Jurusa Matematia

Lebih terperinci

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real:

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real: BARISAN TAK HINGGA Secara umum, suatu barisa dapat diyataka sebagai susua terurut dari bilaga-bilaga real: u 1, u 2, u 3, Barisa tak higga merupaka suatu fugsi dega domai berupa himpua bilaga bulat positif

Lebih terperinci

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG)

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG) PEMBAHASAN SOAL OLIMPIADE SAINS NASIONAL SMP A. ISIAN SINGKAT SELEKSI TINGKAT PROPINSI TAHUN 011 BIDANG STUDI MATEMATIKA WAKTU : 150 MENIT 1. Jia x adalah jumlah 99 bilaga gajil terecil yag lebih besar

Lebih terperinci

CADANGAN FULL PRELIMINARY TERM ASURANSI DWIGUNA DENGAN HUKUM DE MOIVRE

CADANGAN FULL PRELIMINARY TERM ASURANSI DWIGUNA DENGAN HUKUM DE MOIVRE CADANGAN ULL PRELIMINARY TERM ASURANSI DWIGUNA DENGAN HUKUM DE MOIRE Sherly Mya aradilla *, Hasriai 2, Tmpal P Nababa 2 Mahasiswa Program S Maemaia 2 Dose Jrsa Maemaia alas Maemaia da Ilm Pegeaha Alam

Lebih terperinci

III PEMBAHASAN. 2 2x. K dy dx dy dx, (3.2) h2 2 ( x) P g y dydx g y dydx

III PEMBAHASAN. 2 2x. K dy dx dy dx, (3.2) h2 2 ( x) P g y dydx g y dydx III PEMBAHASAN Pada peeliia ii aa dibaas formlasi Hamiloia bai era elomba ierfacial Pembaasa dibai dalam da ass yai ass perama dea baas aas berpa permaa raa da ass eda dea baas aas berpa permaa bebas Hamiloia

Lebih terperinci

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab

Lebih terperinci

BAB IV METODE BINOMIAL UNTUK PENENTUAN HARGA OPSI ASIA

BAB IV METODE BINOMIAL UNTUK PENENTUAN HARGA OPSI ASIA BAB IV : METODE BIOMIAL UTUK PEETUA HARGA OPSI ASIA 35 BAB IV METODE BIOMIAL UTUK PEETUA HARGA OPSI ASIA Pada bab ii aka dibahas sat pedekata merik tk peeta harga opsi Asia, khssya opsi Asia dega rata-rata

Lebih terperinci

Bab 6: Analisa Spektrum

Bab 6: Analisa Spektrum BAB Aalisa Spetrum Bab : Aalisa Spetrum Aalisa Spetrum Dega DFT Tujua Belajar Peserta dapat meghubuga DFT dega spetrum dari sial hasil samplig sial watu otiue. -poit DFT dari sial x adalah Xω ag diealuasi

Lebih terperinci

BARISAN, (1 p< ) Aniswita 1

BARISAN, (1 p< ) Aniswita 1 βeta -ISSN: 85-5893 e-issn: 54-458 Vol 6 No Mei 3 Hal 46-57 βeta3 TRMA NVRGNAN FUNGSI TRINTGRAL HNSTC- URZWIL SRNTA AN FUNGSI BRSIFAT LCALLY SMALL RIMANN SUMS LSRS ARI RUANG UCLI RUANG BARISAN < Aiswita

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

(The Method of Separation of Variables). Metode ini dapat digunakan pada PDP linier, khususnya PDP dengan koefisien konstan.

(The Method of Separation of Variables). Metode ini dapat digunakan pada PDP linier, khususnya PDP dengan koefisien konstan. METODE PEMISAHAN PEUBAH (The Method of Separatio of Variales) Metode ii dapat diguaka pada PDP liier, khususya PDP dega koefisie kosta Tujua Istruksioal : Setelah megikuti perkuliaha mahasiswa dapat: 1

Lebih terperinci

FAKULTAS DESAIN dan TEKNIK PERENCANAAN

FAKULTAS DESAIN dan TEKNIK PERENCANAAN Wiryato Dewobroto ------------------------------------- Jrsa Tekik Sipil - Uiversitas elita Harapa, Karawaci FAKULTAS DESAIN da TEKNIK ERENCANAAN UJIAN TENGAH SEMESTER ( U T S ) GENA TAHUN AKADEMIK 010

Lebih terperinci

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Itegral adalah salah satu kosep petig dalam Matematika yag dikemukaka pertama kali oleh Isac Newto da Gottfried Wilhelm Leibiz pada akhir abad ke-17. Selajutya

Lebih terperinci

SOAL-SOAL SPMB 2007 MATEMATIKA DASAR (MAT DAS) 1. SPMB, MAT DAS, Regional I, 2007 Suku ke-n suatu barisan aritmatika adalah

SOAL-SOAL SPMB 2007 MATEMATIKA DASAR (MAT DAS) 1. SPMB, MAT DAS, Regional I, 2007 Suku ke-n suatu barisan aritmatika adalah SOAL-SOAL SPMB 00 MATEMATIKA DASAR (MAT DAS). SPMB, MAT DAS, Regioal I, 00 Sk ke- sat barisa aritmatika adalah 0 p,da 6, maka.... Jika A. B. 3 C. D. 3 E.. SPMB, MAT DAS, Regioal I, 00 Jika p 0, q 0 q...

Lebih terperinci

Bab 1 PENDAHULUAN Latar Belakang

Bab 1 PENDAHULUAN Latar Belakang Bab PENDAHULUAN.. Latar Belakag Bayak peelitia yag bertja mecari dasar-dasar tk megadaka prediksi sat variabel dari iormasi-iormasi yag diperoleh dari variablel tersebt. Misalya apakah keadaa caca dapat

Lebih terperinci

Sistem Bilangan Kompleks (Bagian Ketiga)

Sistem Bilangan Kompleks (Bagian Ketiga) Sistem Bilaga Kompleks (Bagia Ketiga) Supama Jurusa Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemua Miggu III) Outlie 1 Akar Bilaga Kompleks 2 Akar

Lebih terperinci

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang 2 LANDASAN TEORI Ruag Cotoh, Kejadia, da Peluag Percobaa acak adalah suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak dapat diprediksi secara tepat tetapi dapat diketahui semua

Lebih terperinci

x x x1 x x,..., 2 x, 1

x x x1 x x,..., 2 x, 1 0.4 Variasi Kaoi amel Da Korelasi Kaoi amel amel aca dari observasi ada masig-masig variabel dari ( + q) variabel (), () daat digabuga edalam (( + q) ) data matris,,..., dimaa (0-5) Adau vetor rata-rata

Lebih terperinci

BARISAN DAN DERET TAK HINGGA

BARISAN DAN DERET TAK HINGGA Bab 5 BARISAN DAN DERET TAK HINGGA A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetesi Dasar. Memiliki motivasi iteral, kemampa bekerjasama, kosiste, sikap disipli, rasa percaya diri da sikap tolerasi

Lebih terperinci

Dasar Sistem Pengaturan - Transformasi Laplace. Transformasi Laplace bilateral atau dua sisi dari sinyal bernilai riil x(t) didefinisikan sebagai :

Dasar Sistem Pengaturan - Transformasi Laplace. Transformasi Laplace bilateral atau dua sisi dari sinyal bernilai riil x(t) didefinisikan sebagai : Defiisi Trasformasi Laplace Trasformasi Laplace Bilateral Trasformasi Laplace bilateral atau dua sisi dari siyal berilai riil x(t) didefiisika sebagai : X B x(t)e Operasi trasformasi Laplace bilateral

Lebih terperinci

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN ARTIKEL Meetuka rumus Jumlah Suatu Deret dega Operator Beda Markaba 191115198801005 Maret 015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN

Lebih terperinci

Ir. Wiryanto Dewobroto, MT Jurusan Teknik Sipil, Universitas Pelita Harapan

Ir. Wiryanto Dewobroto, MT Jurusan Teknik Sipil, Universitas Pelita Harapan Ir. Wiryato Dewobroto, MT Jrsa Tekik Sipil, Uiversitas elita Harapa http://wiryato.wordpress.com Title : Sambga Geser elat Tggal dega Bat M mt 3 Halama 1 dari 6 Sb-title : Tebal pelat t = mm Taggal : 7

Lebih terperinci

BAB V TURUNAN FUNGSI. Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah

BAB V TURUNAN FUNGSI. Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah BAB V TURUNAN FUNGSI Stadar Kompetesi Meggaka kosep it gsi da tra gsi dalam pemecaa masala Kompetesi Dasar Meggaka siat da atra tra dalam peritga tra gsi aljabar Meggaka tra tk meetka karakteristik sat

Lebih terperinci

II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4)

II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4) 3 II LANDASAN TEORI 2.1 Peubah Kompleks da Fugsi Kompleks Sebuah bilaga kompleks dapat diyataka dalam betuk z = x + jy, (2.1) dega x da y adalah bilaga-bilaga real da j = 1. Bilaga x disebut bagia real

Lebih terperinci

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN KALKULUS Dra. D. L. Crispia Pardede DEA. SARMAG TEKNIK MESIN KALKULUS - SILABUS. Deret Fourier.. Fugsi Periodik.2. Fugsi Geap da Gajil.3. Deret Trigoometri.. Betuk umum Deret Fourier.. Kodisi Dirichlet.6.

Lebih terperinci

Modul 1. (Pertemuan 1 s/d 3) Deret Takhingga

Modul 1. (Pertemuan 1 s/d 3) Deret Takhingga Modul. (Pertemua s/d ) Deret Takhigga. Deret Tidak Terhigga. Pembicaraa kita sekarag deret pada umumya. Deret yag bayakya suku tak terbatas disebut deret tak higga, otasi : Masalah pokok pada deret tak

Lebih terperinci

BAHAN AJAR DIKLAT GURU MATEMATIKA

BAHAN AJAR DIKLAT GURU MATEMATIKA BAHAN AJAR DIKLAT GURU MATEMATIKA DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN 005 DAFTAR ISI Kata Pegatar.. i Daftar Isi...

Lebih terperinci

Perluasan Uji Kruskal Wallis untuk Data Multivariat

Perluasan Uji Kruskal Wallis untuk Data Multivariat Statistia, Vol. No., Mei Perluasa Uji Krusal Wallis utu Data Multivariat TETI SOFIA YANTI Program Studi Statistia, Uiversitas Islam Badug, Jl. Purawarma No. Badug. E-mail: buitet@yahoo.com ABSTAK Adaia

Lebih terperinci

Kalkulus Rekayasa Hayati DERET

Kalkulus Rekayasa Hayati DERET Kalkulus Rekayasa Hayati DERET 1 Isi Bab Pedahulua Barisa tak-higga Deret tak-higga Deret Positif : Uji kekovergea Deret Gati Tada Deret Pagkat Deret Taylor da Maclauri 2 Kompetesi Dasar Setelah megikuti

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang II. LANDASAN TEORI Pada bab ii aka diberika beberapa istilah, defiisi serta kosep-kosep yag medukug dalam peelitia ii. 2.1 Kosep Dasar Teori Graf Berikut ii aka diberika kosep dasar teori graf yag bersumber

Lebih terperinci

Metode Perhitungan Grafik Dalam Geolistrik Tahanan Jenis Bumi Dengan Derajat Pendekatan Satu

Metode Perhitungan Grafik Dalam Geolistrik Tahanan Jenis Bumi Dengan Derajat Pendekatan Satu Metode Perhituga Grafi.. P. Maurug Metode Perhituga Grafi Dalam Geolistri Tahaa Jeis Bumi Dega Derajat Pedeata Satu Posma Maurug Jurusa Fisia, FMIPA Uiversitas Lampug Jl. S. Brojoegoro No. Badar Lampug

Lebih terperinci

Hendra Gunawan. 14 Februari 2014

Hendra Gunawan. 14 Februari 2014 MA20 MATEMATIKA 2A Hedra Guawa Semester II, 203/204 4 Februari 204 Sasara Kuliah Hari Ii 9. Barisa Tak Terhigga Memeriksa kekovergea suatu barisa da, bila mugki, meghitug limitya 9.2 Deret Tak Terhigga

Lebih terperinci

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1 Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga

Lebih terperinci

BAB II KAJIAN PUSTAKA. dalam sebuah dalam ruangan, versi modern dari pasar tradisional.

BAB II KAJIAN PUSTAKA. dalam sebuah dalam ruangan, versi modern dari pasar tradisional. BAB II KAJIAN PUSTAKA 2.1 Pegertia Shoppig Arcade Baga Shoppig Arcade adalah sebah psat perbelajaa dimaa sat ata lebih baga membetk sebah komplek toko dega iterkoeksi trotoar memgkika pegjg tk dega mdah

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

Solusi Numerik Persamaan Transport

Solusi Numerik Persamaan Transport Solusi Numerik Persamaa Trasport M. Jamhuri December 16, 2013 Diberika persamaa Trasport u t + 2u x = 0 1) Diberika persamaa Trasport u t + 2u x = 0 1) Diskretka persamaa trasport 1) dega megguaka persamaa

Lebih terperinci

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA BAB VI BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { },,,,, adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila,,,..,

Lebih terperinci

RENCANA PROGRAM PEMBELAJARAN KE - 1. : 6 jam pelajaran

RENCANA PROGRAM PEMBELAJARAN KE - 1. : 6 jam pelajaran RENCANA PROGRAM PEMBELAJARAN KE - 1 Satua Pedidika Mata Pelajara Kelas/Semester Materi Pokok Waktu : SMA N 6 YOGYAKARTA : Matematika : XII IPS/ : Barisa da Deret : 6 jam pelajara 1. Stadar Kompetesi 4.

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

BAB 4 LIMIT FUNGSI Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah

BAB 4 LIMIT FUNGSI Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah BAB LIMIT FUNGSI Stadar Kompetesi Megguaka kosep it ugsi da turua ugsi dalam pemecaha masalah Kompetesi Dasar. Meghitug it ugsi aljabar sederhaa di suatu titik. Megguaka siat it ugsi utuk meghitug betuk

Lebih terperinci

BARISAN DAN DERET. Nurdinintya Athari (NDT)

BARISAN DAN DERET. Nurdinintya Athari (NDT) BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga

Lebih terperinci

SOLUSI PERSAMAAN DIFERENSIAL BOLTZMANN LINEAR. Agus Sugandha

SOLUSI PERSAMAAN DIFERENSIAL BOLTZMANN LINEAR. Agus Sugandha JMP : Volume Nomor 2, Oober 2009 SOUSI PERSAMAAN DIFERENSIA BOTZMANN INEAR Agus Sugadha Faulas Sais da Tei, Uiversias Jederal Soedirma Purwoero, Idoesia Email : agussugadha@ymail.com ABSTRACT. I his research,

Lebih terperinci

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model.

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model. BAB II LANDASAN TEORI Pada bagia ii aka dibahas tetag teori-teori dasar yag diguaka utuk dalam megestimasi parameter model.. MATRIKS DAN VEKTOR Defiisi : Trace dari matriks bujur sagkar A a adalah pejumlaha

Lebih terperinci

UNIVERSITAS INDONESIA DISTRIBUSI BANYAK SINGGAH DARI SUATU RANDOM WALK DAN UJI KERANDOMAN SKRIPSI RANTI NUGRAHENI

UNIVERSITAS INDONESIA DISTRIBUSI BANYAK SINGGAH DARI SUATU RANDOM WALK DAN UJI KERANDOMAN SKRIPSI RANTI NUGRAHENI UNIVERSITAS INDONESIA DISTRIBUSI BANYAK SINGGAH DARI SUATU RANDOM WALK DAN UJI KERANDOMAN SKRIPSI RANTI NUGRAHENI 35475 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI SARJANA MATEMATIKA DEPOK

Lebih terperinci

Induksi Matematika. Pertemuan VII Matematika Diskret Semester Gasal 2014/2015 Jurusan Teknik Informatika UPN Veteran Yogyakarta

Induksi Matematika. Pertemuan VII Matematika Diskret Semester Gasal 2014/2015 Jurusan Teknik Informatika UPN Veteran Yogyakarta Iduksi Matematika Pertemua VII Matematika Diskret Semester Gasal 2014/2015 Jurusa Tekik Iformatika UPN Vetera Yogyakarta Metode pembuktia utuk peryataa perihal bilaga bulat adalah iduksi matematik. Cotoh

Lebih terperinci