Peluang Suatu Kejadian, Kaidah Penjumlahan, Peluang Bersyarat, Kaidah Perkalian dan Kaidah Baiyes

Ukuran: px
Mulai penontonan dengan halaman:

Download "Peluang Suatu Kejadian, Kaidah Penjumlahan, Peluang Bersyarat, Kaidah Perkalian dan Kaidah Baiyes"

Transkripsi

1 eluag uatu Kejadia, Kaidah ejumlaha, eluag ersyarat, Kaidah eralia da Kaidah aiyes.eluag uatu Kejadia Defiisi : eluag suatu ejadia adalah jumlah peluag semua titi otoh dalam. Dega demiia : 0 (), ( ) = 0 da () =. Cotoh : eepig uag logam dilempara dua ali. Hituglah peluag seurag uragya sisi gambar muul seali! Mis : = ejadia seurag uragya sisi gambar muul seali. isi gambar dilambaga dega G da sisi aga dilambaga sebagai. = {, G, G, GG} Karea ada buah aggota yag seurag uragya memilii sisi gambar da setiap aggota memilii peluag yag sama utu muul, maa : () = Jadi peluag seurag uragya sisi gambar gambar muul seali adalah. Dalil I : ila suatu perobaa mempuyai N hasil perobaa yag berbeda da masig masig mempuyai emugia yag sama utu terjadi da bila tepat di atar hasil perobaa itu meyusu ejadia, maa peluag ejadia adalah () N Cotoh : Hituglah peluag memperoleh artu hati bila sebuah artu diambil seara aa dari seperagat artu bridge!

2 Mis : = ejadia memproleh sebuah artu hati Karea artu bridge berjumlah 5 maa N = 5. Karea artu hati berjumlah da masig masig mempuyai emugia yag sama utu terjadi maa =. ehigga : () 5 Jadi peluag memperoleh sebuah artu hati dari seperagat arut bridge adalah..kaidah ejumlaha Dalil I : ila da adalah dua ejadia yag sembarag Maa : uti : erhatia Diagram Ve di atas. merupaa jumlah semua titi otoh dalam, sedaga () + () adalah jumlah semua peluag dalam ditambah jumlah semua peluag dalam. Dega demiia, ita telah meambaha peluag dalam sebaya ali. Karea jumlah peluag dalam adalah, maa ita harus meguraga peluag ii seali utu medapata jumlah peluag dalam yaitu.,

3 Cotoh : eluag seorag siswa lulus pelajara matematia adalah da peluag ia lulus pelajara bahasa iggris adalah. ila peluag ia lulus eduaya adalah, 9 6 tetua peluag ia lulus seurag uragya satu pelajara di atas! Mis : = ejadia siswa tersebut lulus pelajara matematia = ejadia siswa tersebut lulus pelajara bahasa iggris Maa : Korolari I : ila ejadia da salig terpisah :

4 Maa : uti : erhatia Diagram Ve di atas. Karea ejadia da salig terpisah maa ( ) 0 Cotoh : erapa peluag medapata jumlah 7 atau bila sepasag dadu dilempara seali? Karea masig masig dadu memilii 6 titi otoh da dilempara seali maa baya titi otoh dalam adalah erhatia tabel beriut : Dadu I Dadu II (,) (,) (,) (,) (,5) (,6) (,) (,) (,) (,) (,5) (,6) (,) (,) (,) (,) (,5) (,6) (,) (,) (,) (,) (,5) (,6) 5 (5,) (5,) (5,) (5,) (5,5) (5,6) 6 (6,) (6,) (6,) (6,) (6,5) (6,6) Mis : = ejadia sepasag dadu berjumlah 7 = ejadia sepasag dadu berjumlah Maa : = {(,6), (,5), (,), (,), (5,), (6,)} 6 = {(5,6), (6,5)} ejadia salig terpisah

5 Jadi peluag medapata jumlah 7 atau bila sepasag dadu dilempara seali adalah 9 Korolari II : ila,,,., adalah ejadia ejadia salig terpisah : Maa :... Dalil II : ila da adalah dua ejadia yag satu merupaa ompleme laiya : Maa : 5

6 uti : Cotoh : eepig uag logam dilempara sebaya 6 ali. Tetua peluag seurag uragya sisi gambar muul seali! Karea uag logam memilii titi otoh, yaitu sisi aga () da sisi gambar (G) da uag logam tersebut dilempara sebaya 6 ali, maa bayaya aggota adalah 6 6. Karea aggota terlalu baya da utu megefisiea watu, maa ita meoba utu berpiir bahwa pasti ada titi otoh yag tida memuat sisi gambar sama seali, yaitu :. Mis : = ejadia seurag uragya sisi gambar muul seali = ejadia bahwa sisi gambar tida muul sama seali Maa : Jadi peluag seurag uragya sisi gambar muul seali adalah. 6 6

7 7.eluag ersyarat Defiisi : eluag bersyarat bila dietahui, dilambaga dega / : Didefiisia sebagai beriut : / uti : / / / Cotoh : eluag suatu peerbaga reguler beragat tepat pada watuya adalah 0,5, peluag peerbaga itu medarat tepat pada watuya adalah 0,75 da peluag

8 peerbaga itu beragat da medarat tepat pada watuya adalah 0,5. Hituglah peluag peerbaga itu : a. medarat tepat pada watuya bila dietahui beragat tepat pada watuya. b. beragat tepat pada watuya bila dietahui medarat tepat pada watuya. Mis : = ejadia peerbaga tersebut beragat tepat pada watuya = ejadia peerbaga tersebut medarat tepat pada watuya 0,5 0,75 Maa : a. 0,5 / b. 0,5 0,5 / 0,5 0,75 Jadi peluag peerbaga itu medarat tepat pada watuya bila dietahui beragat tepat pada watuya adalah da peluag peerbaga itu beragat tepat pada watuya bila dietahui medarat tepat pada watuya adalah..kaidah eralia (Kaidah eggadaa) Dalil I : ila dalam suatu perobaa, ejadia da dapat terjadi sealigus, maa : / Cotoh : Misala ita mempuyai sebuah ota yag berisi 0 seerig, 5 di ataraya rusa. Kita aa megambil seerig tapa pegembalia. Tetua peluag terambilya seerig itu eduaya rusa! 8

9 Mis : = ejadia terambilya seerig rusa pada pegambila I / = ejadia terambilya seerig rusa pada pegambila II Maa : / Jadi peluag terambilya seerig itu eduaya rusa adalah. 9 Dalil II : ila ejadia da salig bebas, maa : uti : / ( area / ) Cotoh : ebuah desa memilii mobil pemadam ebaara da mobil ambulas. eluag mobil pemadam ebaara dapat diguaa pada saat diperlua adalah 0,6 da peluag mobil ambulas dapat diguaa pada saat diperlua adalah 0,8. ila terjadi eelaaa aibat ebaara, hituglah peluag mobil pemadam ebaara da mobil ambulas eduaya dapat diguaa pada saat diperlua! Mis : = ejadia mobil pemadam ebaara dapat diguaa pada saat diperlua = ejadia mobil ambulas dapat diguaa pada saat diperlua 0,6 0,8 Maa : 0,6 0,8 0,8 9

10 Jadi peluag mobil pemadam ebaara da mobil ambulas eduaya dapat diguaa pada saat diperlua adalah 0,8. Dalil III : ila dalam suatu perobaa, ejadia ejadia,,,., sealigus, maa : /... /... / dapat terjadi... ila dalam suatu perobaa, ejadia ejadia,,,., maa : salig bebas, Cotoh : Dari seperagat artu bridge aa diambil artu seara berturut turut tapa pegembalia. Tetua peluag terambilya artu tersebut bila artu yag terambil pertama adalah artu s merah, artu yag terambil edua adalah artu sepuluh da artu yag terambil etiga adalah artu yag lebih besar dari tetapi lebih eil dari 7! Mis : = ejadia artu yag terambil pertama adalah artu s merah / = ejadia artu yag terambil edua adalah artu sepuluh C/ = ejadia artu yag terambil etiga adalah artu yag lebih besar dari tetapi lebih eil dari 7 5 Maa : C / C / Jadi peluag terambilya artu tersebut bila artu yag terambil pertama adalah artu s merah, artu yag terambil edua adalah artu sepuluh da artu yag 0

11 terambil etiga adalah artu yag lebih besar dari tetapi lebih eil dari 7 adalah Kaidah aiyes Dalil : Jia ejadia ejadia,,., dega i 0 utu i,,,..., merupaa seata dari ruag otoh maa utu sembarag ejadia yag bersifat 0 : r /. / r. / r. /.... / utu r,,..., uti : r / r. r / r Kita tahu bahwa : /. /.... /.

12 ehigga : r /. / r. / r. / / Cotoh : Dalam suatu orgaisasi, terdapat alo etua yaitu Too, Tii da i. eluag Too mejadi etua adalah 0,, peluag Tii mejadi etua adalah 0,5, da peluag i mejadi etua adalah 0,. eadaiya Too mejadi etua, maa peluag terjadiya eaia iura aggota adalah 0,8. eadaiya Tii mejadi etua maa peluag terjadiya eaia iura aggota adalah 0, da seadaiya i terpilih mejadi etua, maa peluag terjadiya eaia iura aggota adalah 0,. erapaah peluag Tii mejadi etua orgaisasi tersebut? Mis : = ejadia Too mejadi etua orgaisasi = ejadia Tii mejadi etua orgaisasi = ejadia i mejadi etua orgaisasi = ejadia terjadiya eaia iura aggota / 0,8 0, 0,5 / / 0, 0, 0,

13 Maa : /. /. /. /. / 0,5 0, 0, 0,8 0,5 0, 0, 0, 0,05 0, 0,05 0,08 0,05 0, Jadi peluag Tii mejadi etua orgaisasi tersebut adalah. 7

MACAM-MACAM TEKNIK MEMBILANG

MACAM-MACAM TEKNIK MEMBILANG 0 MACAM-MACAM TEKNIK MEMBILANG ATURAN PERKALIAN Beriut ii diberia sebuah dalil tetag peetua baya susua yag palig sederhaa dalam suatu permasalaha yag beraita dega peluag. Dalil 2.1: ATURAN PERKALIAN SECARA

Lebih terperinci

Gambar 3.1Single Channel Multiple Phase

Gambar 3.1Single Channel Multiple Phase BAB III MODEL ANTRIAN PADA PEMBUATAN SIM C. Sigle Chael Multiple Phase Sistem atria sigle chael multiple phase merupaa sistem atria dimaa pelagga yag tiba, dapat memasui sistem dega megatri di tempat yag

Lebih terperinci

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain.

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain. BARIAN DAN DERET A. Barisa Barisa adalah uruta bilaga yag memilii atura tertetu. etiap bilaga pada barisa disebut suu barisa yag dipisaha dega lambag, (oma). Betu umum barisa:,, 3, 4,, dega: = suu pertama

Lebih terperinci

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG)

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG) PEMBAHASAN SOAL OLIMPIADE SAINS NASIONAL SMP A. ISIAN SINGKAT SELEKSI TINGKAT PROPINSI TAHUN 011 BIDANG STUDI MATEMATIKA WAKTU : 150 MENIT 1. Jia x adalah jumlah 99 bilaga gajil terecil yag lebih besar

Lebih terperinci

BAB 6 NOTASI SIGMA, BARISAN DAN DERET

BAB 6 NOTASI SIGMA, BARISAN DAN DERET BAB 6 NOTASI SIGMA, BARISAN DAN DERET A RINGKASAN MATERI. Notasi Sigma Diberia suatu barisa bilaga, a, a,..., a. Lambag deret tersebut, yaitu: a = a + a +... + a a meyataa jumlah suu pertama barisa Sifat-sifat

Lebih terperinci

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 5

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 5 Mata Kuliah : Matematia Disrit Program Studi : Tei Iformatia Miggu e : 5 KOMBINATORIAL PENDAHULUAN Persoala ombiatori bua merupaa persoala baru dalam ehidupa yata. Baya persoala ombiatori sederhaa telah

Lebih terperinci

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C.

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C. BAB II LANDASAN TEORI Pada bab ii aa dibahas teori teori yag meduug metode upper level set sca statistics, atara lai peubah aca, distribusi gamma, fugsi gamma, fugsi lielihood, da uji rasio lielihood.

Lebih terperinci

PELUANG KEJADIAN. 3. Permutasi siklis adalah permutasi yang susunannya melingkar.

PELUANG KEJADIAN. 3. Permutasi siklis adalah permutasi yang susunannya melingkar. PELUANG KEJADIAN A. Atura Perkalia/Pegisia Tempat Jika kejadia pertama dapat terjadi dalam a cara berbeda, kejadia kedua dapat terjadi dalam b cara berbeda, kejadia ketiga dapat terjadi dalam c cara berbeda,

Lebih terperinci

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu

Lebih terperinci

BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE)

BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE) BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE) 5.1. Pembagit Radom Variate Disrit Suatu Radom Variate diartia sebagai ilai suatu radom variate yag mempuyai distribusi tertetu. Utu megambil

Lebih terperinci

Representasi sinyal dalam impuls

Representasi sinyal dalam impuls Represetasi siyal dalam impuls Represetasi siyal dalam impuls adalah siyal yag diyataa sebagai fugsi dari impuls atau sebagai umpula dari impuls-impuls. Sembarag siyal disret dapat diyataa sebagai pejumlaha

Lebih terperinci

MODUL BARISAN DAN DERET

MODUL BARISAN DAN DERET MODUL BARISAN DAN DERET SEMESTER 2 Muhammad Zaial Abidi Persoal Blog http://meetabied.wordpress.com BAB I. PENDAHULUAN A. Desripsi Dalam modul ii, ada aa mempelajari pola bilaga, barisa, da deret diidetifiasi

Lebih terperinci

PELUANG. Drs. Marsudi Raharjo, M.Sc.Ed JENJANG LANJUT

PELUANG. Drs. Marsudi Raharjo, M.Sc.Ed JENJANG LANJUT DIKLAT INSTRUKTUR PENGEMBANG MATEMATIKA SMA JENJANG LANJUT PELUANG JENJANG LANJUT Drs Marsudi Raharjo, MScEd DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENINGKATAN MUTU PENDIDIK DAN TENAGA KEPENDIDIKAN

Lebih terperinci

Perluasan Uji Kruskal Wallis untuk Data Multivariat

Perluasan Uji Kruskal Wallis untuk Data Multivariat Statistia, Vol. No., Mei Perluasa Uji Krusal Wallis utu Data Multivariat TETI SOFIA YANTI Program Studi Statistia, Uiversitas Islam Badug, Jl. Purawarma No. Badug. E-mail: buitet@yahoo.com ABSTAK Adaia

Lebih terperinci

1 n MODUL 5. Peubah Acak Diskret Khusus

1 n MODUL 5. Peubah Acak Diskret Khusus ODUL 5 Peubah Acak Diskret Khusus Terdapat beberapa peubah acak diskret khusus yag serig mucul dalam aplikasi. Peubah Acak Seragam ( Uiform) Bila X suatu peubah acak diskret dimaa setiap eleme dari X mempuyai

Lebih terperinci

Mengkaji Perbedaan Diagonalisasi Matriks Atas Field dan Matriks Atas Ring Komutatif

Mengkaji Perbedaan Diagonalisasi Matriks Atas Field dan Matriks Atas Ring Komutatif Megaji Perbedaa Diagoalisasi Matris Atas Field da Matris Atas Rig Komutatif Teorema : Jia A adalah matris x maa eryataa eryataa beriut eivale satu sama lai : a A daat didiagoalisasi b A memuyai vetor eige

Lebih terperinci

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 1, No.2, September 2012

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 1, No.2, September 2012 IfiityJual Ilmiah Pogam Studi Matematia STKIP Siliwagi Badug, Vol, No., Septembe HIMPUNAN KOMPAK PADA RUANG METRIK Oleh : Cee Kustiawa Juusa Pedidia Matematia FPMIPA Uivesitas Pedidia Idoesia eeustiawa@yahoo.om

Lebih terperinci

BAHAN AJAR DIKLAT GURU MATEMATIKA

BAHAN AJAR DIKLAT GURU MATEMATIKA BAHAN AJAR DIKLAT GURU MATEMATIKA DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN 005 DAFTAR ISI Kata Pegatar.. i Daftar Isi...

Lebih terperinci

BAB X. PELUANG. Terjadinya 2 kemungkinan kejadian yaitu : AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC = 12 kemungkinan. Prinsip/kaidah perkalian:

BAB X. PELUANG. Terjadinya 2 kemungkinan kejadian yaitu : AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC = 12 kemungkinan. Prinsip/kaidah perkalian: isip/kaidah pekalia: BAB X. ELUANG Jika posisi /tempat petama dapat diisi dega caa yag bebeda, tempat kedua dea caa, da seteusya, sehigga lagkah ke ada caa maka bayakya caa utuk megisi tempat yag tesedia

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Risio Operasioal.1.1 Defiisi Dewasa ii risio operasioal semai diaui sebagai salah satu fator uci yag perlu dielola da dicermati oleh para pelau usaha, hususya di bidag jasa euaga.

Lebih terperinci

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia Himpua Suatu himpua atau gugus adalah merupaka sekumpula obyek. Pada umumya aggota dari gugus tersebut memiliki suatu sifat yag sama. Suatu himpua bagia atau aak gugus merupaka sekumpula obyek yag aggotaya

Lebih terperinci

PEMBUKTIAN SIFAT RUANG BANACH PADA D(K)

PEMBUKTIAN SIFAT RUANG BANACH PADA D(K) JMP : Volume 4 Nomor 1, Jui 2012, hal. 41-50 PEMBUKTIAN SIFAT RUANG BANACH PADA D(K) Malahayati Program Studi Matematia Faultas Sais da Teologi UIN Sua Kalijaga malahayati_01@yahoo.co.id ABSTRACT. I this

Lebih terperinci

Model Antrian Multi Layanan

Model Antrian Multi Layanan Jural Gradie Vol. No. Juli : 8- Model Atria Multi Layaa Sisa Yosmar Jurusa Matematia, Faultas Matematia da Ilmu egetahua Alam, Uiversitas Begulu, Idoesia Diterima 9 April; Disetujui 8 Jui Abstra - Salah

Lebih terperinci

BAB II KAIDAH PENCACAHAN DAN PELUANG

BAB II KAIDAH PENCACAHAN DAN PELUANG 1 BAB II KAIDAH PENCACAHAN DAN PELUANG Dalam kehidupa sehari hari kita serig dihadapka pada persoala yag berkaita dega peluag. Baik mecari kemugkia, kesempata, bayak cara, harapa da sebagaiya. Dalam Materi

Lebih terperinci

Aplikasi Sistem Orthonormal Di Ruang Hilbert Pada Deret Fourier

Aplikasi Sistem Orthonormal Di Ruang Hilbert Pada Deret Fourier Apliasi Sistem Orthoormal Di Ruag Hilbert Pada Deret Fourier A 7 Fitriaa Yuli S. FMIPA UNY Abstra Ruag hilbert aa dibahas pada papper ii. Apliasi system orthoormal aa diaji da aa diapliasia pada ruahg

Lebih terperinci

Modul Kuliah statistika

Modul Kuliah statistika Modul Kuliah statistika Dose: Abdul Jamil, S.Kom., MM SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER MUHAMMADIYAH JAKARTA Bab 2 Populasi da Sampel 2.1 Populasi Populasi merupaka keseluruha pegamata

Lebih terperinci

PELUANG. Kegiatan Belajar 1 : Kaidah Pencacahan, Permutasi dan kombinasi

PELUANG. Kegiatan Belajar 1 : Kaidah Pencacahan, Permutasi dan kombinasi PELUANG Kegiata Belajar : Kaidah Pecacaha, Permutasi da kombiasi A. Kaidah Pecacaha. Prisip Dasar Membilag Jika suatu operasi terdiri dari tahap, tahap pertama dapat dilakuka dega m cara yag berbeda da

Lebih terperinci

1) Leptokurtik Merupakan distribusi yang memiliki puncak relatif tinggi

1) Leptokurtik Merupakan distribusi yang memiliki puncak relatif tinggi Statisti Desriptif Keruciga atau Kurtosis Pegertia Kurtosis Peguura urtosis (peruciga) sebuah distribusi teoritis adaalaya diamaam peguura eses (excess) dari sebuah distribusi Sebearya urtosis bisa diaggap

Lebih terperinci

Bab 16 Integral di Ruang-n

Bab 16 Integral di Ruang-n Catata Kuliah MA3 Kalulus Elemeter II Oi Neswa,Ph.D., Departeme Matematia-ITB Bab 6 Itegral di uag- Itegral Gada atas persegi pajag Itegral Berulag Itegral Gada atas Daerah sebarag Itegral Gada Koordiat

Lebih terperinci

SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA

SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA KELAS D(K) Malahayati Program Studi Matematia Faultas Sais da Teologi UIN Sua Kalijaga Yogyaarta e-mail: malahayati_01@yahoo.co.id ABSTRAK Himpua

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang. B. Tujuan dan Sasaran. C. Ruang Lingkup

BAB I PENDAHULUAN. A. Latar Belakang. B. Tujuan dan Sasaran. C. Ruang Lingkup BAB I PENDAHULUAN A. Latar Belaag Kombiatoria mempuyai beberapa aspe, yaitu eumerasi, teori graf, da ofigurasi atau peyusua. Eumerasi membahas peghituga susua berbagai tipe. Sebagai cotoh: (i) meghitug

Lebih terperinci

3. Integral (3) (Integral Tentu)

3. Integral (3) (Integral Tentu) Darublic www.darublic.com. Itegral () (Itegral Tetu).. Luas Sebagai Suatu Itegral. Itegral Tetu Itegral tetu meruaa itegral ag batas-batas itegrasia jelas. Kose dasar dari itegral tertetu adalah luas bidag

Lebih terperinci

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut:

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut: Statistik da Peluag A. Statistik Statistik adalah metode ilmiah yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis data, serta cara pegambila kesimpula berdasarka data-data tersebut. Data ialah

Lebih terperinci

PRINSIP MAKSIMUM DAN MINIMUM FUNGSI PANHARMONIK

PRINSIP MAKSIMUM DAN MINIMUM FUNGSI PANHARMONIK PRINSIP MAKSIMUM DAN MINIMUM FUNGSI PANHARMONIK Oleh, Edag Cahya M.A. Jrsa Pedidia Matematia FPMIPA UPI Badg Jl. Dr. Setiabdi 9 Badg E-mail ecma@ds.math.itb.ac.id Abstra Tlisa ii mejelasa prisip masimm

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang II. LANDASAN TEORI Pada bab ii aka diberika beberapa istilah, defiisi serta kosep-kosep yag medukug dalam peelitia ii. 2.1 Kosep Dasar Teori Graf Berikut ii aka diberika kosep dasar teori graf yag bersumber

Lebih terperinci

SEBARAN t dan SEBARAN F

SEBARAN t dan SEBARAN F SEBARAN t da SEBARAN F 1 Tabel uji t disebut juga tabel t studet. Sebara t pertama kali diperkealka oleh W.S. Gosset pada tahu 1908. Saat itu, Gosset bekerja pada perusahaa bir Irladia yag melarag peerbita

Lebih terperinci

Himpunan. Modul 1 PENDAHULUAN. impunan sudah Anda kenal di sekolah menengah, bahkan sejak sekolah

Himpunan. Modul 1 PENDAHULUAN. impunan sudah Anda kenal di sekolah menengah, bahkan sejak sekolah Modul Himpua Dra Sri Haryati Kartiko, MS PENDHULUN impua sudah da keal di sekolah meegah, bahka sejak sekolah H dasar Himpua merupaka usur yag petig dalam probabilitas, sehigga dipelajari kembali dalam

Lebih terperinci

ARITMATIKA MODUL PEMBINAAN OLEH TIM PEMBINA OLIMPIADE KOMPUTER ILMU KOMPUTER UDAYANA (DISAJIKAN UNTUK PESERTA PEMBINAAN BIDANG KOMPUTER OSN 2009)

ARITMATIKA MODUL PEMBINAAN OLEH TIM PEMBINA OLIMPIADE KOMPUTER ILMU KOMPUTER UDAYANA (DISAJIKAN UNTUK PESERTA PEMBINAAN BIDANG KOMPUTER OSN 2009) ARITATIKA ODUL PEBINAAN OLEH TI PEBINA OLIPIADE KOPUTER ILU KOPUTER UDAYANA (DISAJIKAN UNTUK PESERTA PEBINAAN BIDANG KOPUTER OSN 009) PEERINTAH DAERAH PROPINSI BALI DINAS PENDIDIKAN PEUDA DAN OLAHRAGA

Lebih terperinci

GRAFIKA

GRAFIKA 6 5 7 3 6 3 3 GRAFIKA 3 6 57 08 0 9 5 9 385 946 5 3 30 0 8 9 5 9 3 85 946 5 ANALISA REAL Utu uliah (pegatar) aalisa real yag dilegapi dega program MATLAB Dr. H.A. Parhusip G R A F I K A Peerbit Tisara

Lebih terperinci

Aproksimasi Terbaik dalam Ruang Metrik Konveks

Aproksimasi Terbaik dalam Ruang Metrik Konveks Aprosimasi Terbai dalam Ruag etri Koves Oleh : Suharsoo S Jurusa atematia FIPA Uiversitas Lampug Abstra asalah esistesi da etuggala aprosimasi terbai suatu titi dalam ruag berorm telah dipelajari oleh

Lebih terperinci

MENGUJI KEMAKNAAN SAMPEL TUNGGAL

MENGUJI KEMAKNAAN SAMPEL TUNGGAL MENGUJI KEMAKNAAN SAMPEL TUNGGAL 1.1 Uji Biomial 1. Uji esesuaia Chi Kuadrat 1.3 Uji Kesesuaia K-S 1.4 Uji Ideedesi Chi Kuadrat 1.5 Uji Pasti Fisher UJI BINOMIAL Meruaa uji roorsi dalam suatu oulasi Poulasi

Lebih terperinci

INTERVAL KEPERCAYAAN

INTERVAL KEPERCAYAAN INTERVAL KEPERCAYAAN Tujua utama diambil ebuah ampel dari ebuah populai adalah utuk memperoleh iformai megeai parameter populai.. Ada cara meetuka parameter populai yaitu peakira da pegujia hipotei. Peakira

Lebih terperinci

Metode Perhitungan Grafik Dalam Geolistrik Tahanan Jenis Bumi Dengan Derajat Pendekatan Satu

Metode Perhitungan Grafik Dalam Geolistrik Tahanan Jenis Bumi Dengan Derajat Pendekatan Satu Metode Perhituga Grafi.. P. Maurug Metode Perhituga Grafi Dalam Geolistri Tahaa Jeis Bumi Dega Derajat Pedeata Satu Posma Maurug Jurusa Fisia, FMIPA Uiversitas Lampug Jl. S. Brojoegoro No. Badar Lampug

Lebih terperinci

BAB 4: PELUANG DAN DISTRIBUSI NORMAL.

BAB 4: PELUANG DAN DISTRIBUSI NORMAL. BAB 4: PELUANG DAN DISTRIBUSI NORMAL. PELUANG Peluag atau yag biasa juga disebut dega istilah keugkia, probablilitas, atau kas eujukka suatu tigkat keugkia terjadiya suatu kejadia yag diyataka dala betuk

Lebih terperinci

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand TEKIK SAMPLIG PCA SEDERHAA Hazmira Yozza Izzati Rahmi HG Jurusa Matematika FMIPA Uad Defiisi : Jika suatu cotoh berukura diambil dari suatu populasi berukura sedemikia rupa sehigga setiap kemugkia cotoh

Lebih terperinci

MANAJEMEN RISIKO INVESTASI

MANAJEMEN RISIKO INVESTASI MANAJEMEN RISIKO INVESTASI A. PENGERTIAN RISIKO Resiko adalah peyimpaga hasil yag diperoleh dari recaa hasil yag diharapka Besarya tigkat resiko yag dimasukka dalam peilaia ivestasi aka mempegaruhi besarya

Lebih terperinci

PERBANDINGAN PENDEKATAN SEPARABLE PROGRAMMING DENGAN THE KUHN-TUCKER CONDITIONS DALAM PEMECAHAN MASALAH NONLINEAR

PERBANDINGAN PENDEKATAN SEPARABLE PROGRAMMING DENGAN THE KUHN-TUCKER CONDITIONS DALAM PEMECAHAN MASALAH NONLINEAR Jural Tei da Ilmu Komputer PERBANDINGAN PENDEKATAN SEPARABLE PROGRAMMING DENGAN THE KUHN-TUCKER CONDITIONS DALAM PEMECAHAN MASALAH NONLINEAR Budi Marpaug Faultas Tei da Ilmu Komputer Jurusa Tei Idustri

Lebih terperinci

Penulis: Penilai: Editor: Ilustrator: Dra. Puji Iryanti, M.Sc. Ed. Al. Krismanto, M.Sc. Sri Purnama Surya, S.Pd, M.Si. Fadjar N. Hidayat, S.Si.,M.Ed.

Penulis: Penilai: Editor: Ilustrator: Dra. Puji Iryanti, M.Sc. Ed. Al. Krismanto, M.Sc. Sri Purnama Surya, S.Pd, M.Si. Fadjar N. Hidayat, S.Si.,M.Ed. PAKET FASILITASI PEMBERDAYAAN KKG/MGMP MATEMATIKA Pembelajara Barisa, Deret Bilaga da Notasi Sigma di SMA Peulis: Dra. Puji Iryati, M.Sc. Ed. Peilai: Al. Krismato, M.Sc. Editor: Sri Purama Surya, S.Pd,

Lebih terperinci

Distribusi Peluang BERBAGAI MACAM DISTRIBUSI SAMPEL. Distribusi Peluang 5/6/2012

Distribusi Peluang BERBAGAI MACAM DISTRIBUSI SAMPEL. Distribusi Peluang 5/6/2012 5/6/0 Distribusi Peluag BERBAGAI MACAM DISTRIBUSI SAMPEL Distribusi peluag, P( x), adalah kumpula pasaga ilai-ilai variabel acak Cotoh: Jika dua buah koi dilempar bersamaa. Kejadia bayakya mucul agka.

Lebih terperinci

9 Departemen Statistika FMIPA IPB

9 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351 9 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Pegatar Aalisis utuk Data Respo Kategorik Data respo kategorik Sebara

Lebih terperinci

Penggunaan Transformasi z

Penggunaan Transformasi z Pegguaa Trasformasi pada Aalisa Respo Freuesi Sistem FIR Oleh: Tri Budi Satoso E-mail:tribudi@eepis-its.eduits.edu Lab Siyal,, EEPIS-ITS ITS /3/6 osep pemiira domais of represetatio Domai- discrete time:

Lebih terperinci

9. SOAL-SOAL STATISTIKA

9. SOAL-SOAL STATISTIKA 9. SOAL-SOAL STATISTIKA UN00SMK. Dagram lgara d bawah meyaja jes estrauruler d suatu SMK yag dut oleh 500 orag sswa. Baya sswa yag tda megut estrauruler Pasbra adalah.. A. 00 sswa Olah B. 50 sswa Pasbra

Lebih terperinci

KEKONSISTENAN PENDUGA FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR. Oleh: LIA NURLIANA

KEKONSISTENAN PENDUGA FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR. Oleh: LIA NURLIANA KEKONSISTENAN PENDUGA FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR Ole: LIA NURLIANA PROGRAM STUDI MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR

Lebih terperinci

BAB X. PELUANG. Terjadinya 2 kemungkinan kejadian yaitu : AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC = 12 kemungkinan. Prinsip/kaidah perkalian:

BAB X. PELUANG. Terjadinya 2 kemungkinan kejadian yaitu : AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC = 12 kemungkinan. Prinsip/kaidah perkalian: isip/kaidah pekalia: BAB X. ELUANG Jika posisi /tempat petama dapat diisi dega caa yag bebeda, tempat kedua dea caa, da seteusya, sehigga lagkah ke ada caa maka bayakya caa utuk megisi tempat yag tesedia

Lebih terperinci

Bab 5 Sinyal dan Sistem Waktu Diskrit. Oleh: Tri Budi Santoso Laboratorium Sinyal, EEPIS-ITS

Bab 5 Sinyal dan Sistem Waktu Diskrit. Oleh: Tri Budi Santoso Laboratorium Sinyal, EEPIS-ITS Bab 5 Siyal da Sistem Watu Disrit Oleh: Tri Budi Satoso Laboratorium Siyal, EEPIS-ITS Materi: Represetasi matemati pada siyal watu disrit, domai watu da freuesi pada suatu siyal watu disrit, trasformasi

Lebih terperinci

Bab 6: Analisa Spektrum

Bab 6: Analisa Spektrum BAB Aalisa Spetrum Bab : Aalisa Spetrum Aalisa Spetrum Dega DFT Tujua Belajar Peserta dapat meghubuga DFT dega spetrum dari sial hasil samplig sial watu otiue. -poit DFT dari sial x adalah Xω ag diealuasi

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI. mandiri jika tidak mengandung t secara eksplisit di dalamnya. (Kreyszig, 1983)

I PENDAHULUAN II LANDASAN TEORI. mandiri jika tidak mengandung t secara eksplisit di dalamnya. (Kreyszig, 1983) I PENDAHULUAN Latar Belaag Permasalaha ebiaa pemaea ia yag memberia eutuga masimum da berelauta (tida teradi epuaha dari populasi ia yag dipae) adalah hal yag sagat petig bagi idustri periaa Para ilmuwa

Lebih terperinci

Anova (analysis of varian)

Anova (analysis of varian) ova (aalysis of varia) Ui hipotesis perbedaa ilai rata-rata dari atau lebih elompo idepede Cotoh: daah perbedaa berat bayi lahir dari eluarga E tiggi dega E sedag atau E redah sumsi Ui ova: 1. ube diambil

Lebih terperinci

Penerapan Algoritma Dijkstra dalam Pemilihan Trayek Bus Transjakarta

Penerapan Algoritma Dijkstra dalam Pemilihan Trayek Bus Transjakarta Peerapa Algoritma Dijstra dalam Pemiliha Traye Bus Trasjaarta Muhammad Yafi 504 Program Studi Tei Iformatia Seolah Tei Eletro da Iformatia Istitut Teologi Badug, Jl. Gaesha 0 Badug 40, Idoesia 504@std.stei.itb.ac.id

Lebih terperinci

MATEMATIKA EKONOMI 1 Deret. DOSEN Fitri Yulianti, SP, MSi.

MATEMATIKA EKONOMI 1 Deret. DOSEN Fitri Yulianti, SP, MSi. MATEMATIKA EKONOMI 1 Deret DOSEN Fitri Yuliati, SP, MSi. Deret Deret ialah ragkaia bilaga yag tersusu secara teratur da memeuhi kaidah-kaidah tertetu. Bilaga-bilaga yag merupaka usur da pembetuk sebuah

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemua VI Sebara Pearika Cotoh Septia Rahardiatoro - STK IPB 1 Sebara Pearika Cotoh Megidetifikasi sebara suatu fugsi dari cotoh ketika diambil dari suatu populasi X

Lebih terperinci

Pendekatan Teori Antrian : Kasus Nasabah Bank pada Pukul WIB di Bank BNI 46 Cabang Bengkulu

Pendekatan Teori Antrian : Kasus Nasabah Bank pada Pukul WIB di Bank BNI 46 Cabang Bengkulu Jural Gradie Vol. No. Juli 5 : 9-97 edeata Teori Atria : Kasus Nasabah Ba pada uul 8.-. WIB di Ba BNI 46 Cabag Begulu Fahri Faisal Jurusa Matematia, Faultas Matematia da Ilmu egetahua Alam, Uiversitas

Lebih terperinci

Probabilitas. Modul 1

Probabilitas. Modul 1 Modul Probabilitas Prof. Dr. Subaar T eori probabilitas adalah abag Matematika yag berusaha meggambarka atau memodelka hae behavior. Perjudia memberika bayak otoh sederhaa hae behavior, seperti bermai

Lebih terperinci

MODUL BARISAN DAN DERET

MODUL BARISAN DAN DERET MODUL BARISAN DAN DERET KELAS XII. IPS SEMESTER I Oleh : Drs. Pudjul Prijoo ( http://vidyagata.wordpress.co ) SMA NEGERI 6 Jala Mayje Sugoo 58 Malag Telp./Fax : (034) 75036 E-Mail : sa6_alag@yahoo.co.id

Lebih terperinci

8.4 GENERATING FUNCTIONS

8.4 GENERATING FUNCTIONS 8.4 GEERATIG FUCTIOS Fugs pembagt Fugs pembagt dguaa utu merepresetasa barsa secara efse dega megodea usur barsa sebaga oefse deret pagat dalam varabel. Fugs pembagt dapat dguaa utu: memecaha berbaga masalah

Lebih terperinci

Soal-soal Latihan: jika Misalkan n adalah bilangan genap. Buktikan bahwa

Soal-soal Latihan: jika Misalkan n adalah bilangan genap. Buktikan bahwa Soal-soal Latiha:. Misalka kita aka meyusu kata-kata yag dibetuk dari huru-huru dalam kata SIMALAKAMA, jika a. huru S mucul setelah huru K (misalya, ALAMAKSIM). b. huru A mucul berdekata. c. tidak memuat

Lebih terperinci

PENDAHULUAN. Statistika penyajian DATA untuk memperoleh INFORMASI penafsiran DATA. Data (bentuk tunggal : Datum ) : ukuran suatu nilai

PENDAHULUAN. Statistika penyajian DATA untuk memperoleh INFORMASI penafsiran DATA. Data (bentuk tunggal : Datum ) : ukuran suatu nilai 1. Pegertia Statistika PENDAHULUAN Statistika berhubuga dega peyajia da peafsira kejadia yag bersifat peluag dalam suatu peyelidika terecaa atau peelitia ilmiah. Statistika peyajia DATA utuk memperoleh

Lebih terperinci

BAB VII DISTRIBUSI SAMPLING DAN DESKRIPSI DATA

BAB VII DISTRIBUSI SAMPLING DAN DESKRIPSI DATA BAB VII DITRIBUI AMPLING DAN DEKRIPI DATA 7. Distribusi amplig (samplig distributio) amplig distributio adalah distribusi probabilitas dari suatu statistik. amplig distributio tergatug dari ukura populasi,

Lebih terperinci

BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada

BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada 8 BAB III RUANG HAUSDORFF Pada bab ii aka dibahas megeai ruag Hausdorff, kekompaka pada ruag Hausdorff da ruag regular legkap. Pembahasa diawali dega medefiisika Ruag Hausdorff da beberapa sifatya kemudia

Lebih terperinci

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN KALKULUS Dra. D. L. Crispia Pardede DEA. SARMAG TEKNIK MESIN KALKULUS - SILABUS. Deret Fourier.. Fugsi Periodik.2. Fugsi Geap da Gajil.3. Deret Trigoometri.. Betuk umum Deret Fourier.. Kodisi Dirichlet.6.

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi.

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi. Distribusi Samplig (Distribusi Pearika Sampel). Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

BAB 2 LANDASAN TEORI. lebar pita sinyal tersebut. Pada kebanyakan aplikasi, termasuk kamera digital video dan

BAB 2 LANDASAN TEORI. lebar pita sinyal tersebut. Pada kebanyakan aplikasi, termasuk kamera digital video dan BAB LADASA TEORI Teorema Shao-yquist meyataa agar tida ada iformasi yag hilag etia pecuplia siyal, maa ecepata pecuplia harus miimal dua ali dari lebar pita siyal tersebut. Pada ebayaa apliasi, termasu

Lebih terperinci

BAB II TINJAUAN PUSTAKA. membahas distribusi normal dan distribusi normal baku, penaksir takbias μ dan σ,

BAB II TINJAUAN PUSTAKA. membahas distribusi normal dan distribusi normal baku, penaksir takbias μ dan σ, BAB II TINJAUAN PUSTAKA.1 Pedahulua Dalam peulisa materi poo dari sripsi ii diperlua beberapa teori-teori yag meduug, yag mejadi uraia poo pada bab ii. Uraia dimulai dega membahas distribusi ormal da distribusi

Lebih terperinci

BAB 3 PRINSIP SANGKAR BURUNG MERPATI

BAB 3 PRINSIP SANGKAR BURUNG MERPATI BAB 3 PRINSIP SANGKAR BURUNG MERPATI 3. Pengertian Prinsip Sangar Burung Merpati Sebagai ilustrasi ita misalan terdapat 3 eor burung merpati dan 2 sangar burung merpati. Terdapat beberapa emunginan bagaimana

Lebih terperinci

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL HENSTOCK- KURZWEIL SERENTAK DAN FUNGSI BERSIFAT LOCALLY SMALL RIEMANN SUMS (LSRS) DARI RUANG EUCLIDE

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL HENSTOCK- KURZWEIL SERENTAK DAN FUNGSI BERSIFAT LOCALLY SMALL RIEMANN SUMS (LSRS) DARI RUANG EUCLIDE Teorema Keovergea Fugsi Teritegral Hestoc(Aiswita) TORMA KKONVRGNAN FUNGSI TRINTGRAL HNSTOCK- KURZWIL SRNTAK DAN FUNGSI BRSIFAT LOCALLY SMALL RIMANN SUMS (LSRS) DARI RUANG UCLID K RUANG BARISAN Aiswita,

Lebih terperinci

PELUANG. Misalkan n = A,B,C,D Terjadinya 2 kemungkinan kejadian yaitu : AB, AC,AD, BA,BC,BD, CA,CB,CD, DA,DB,DC = 12 kemungkinan

PELUANG. Misalkan n = A,B,C,D Terjadinya 2 kemungkinan kejadian yaitu : AB, AC,AD, BA,BC,BD, CA,CB,CD, DA,DB,DC = 12 kemungkinan SMA - ELUANG A. Kaidah emutasi da kombiasi. emutasi : Bayakya kemugkia dega mempehatika uuta ada Misalka A,B,,D Tejadiya 2 kemugkia kejadia yaitu : AB, A,AD, BA,B,BD, A,B,D, DA,DB,D 2 kemugkia 4 ; 2 Rumusya

Lebih terperinci

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.

Lebih terperinci

PENDUGAAN FUNGSI INTENSITAS GLOBAL DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT LIA YULIAWATI G

PENDUGAAN FUNGSI INTENSITAS GLOBAL DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT LIA YULIAWATI G PENDUGAAN FUNGSI INTENSITAS GLBAL DARI PRSES PISSN PERIDIK DENGAN TREN FUNGSI PANGKAT LIA YULIAWATI G5444 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUN ALAM INSTITUT PERTANIAN BGR BGR 8

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat

Lebih terperinci

OSN 2014 Matematika SMA/MA

OSN 2014 Matematika SMA/MA Soal 5. Suatu barisan bilangan asli a 1, a 2, a 3,... memenuhi a + a l = a m + a n untu setiap bilangan asli, l, m, n dengan l = mn. Jia m membagi n, butian bahwa a m a n. Solusi. Andaian terdapat bilangan

Lebih terperinci

CATATAN KULIAH #12&13 Bunga Majemuk

CATATAN KULIAH #12&13 Bunga Majemuk CATATAN KULIAH #12&13 Buga Majemuk 10.1 Pedahulua Pada pembahasa sebelumya diasumsika bahwa P atau ilai pokok pembayara tidak megalami perubaha dari awal higga akhir sehigga ilai buga selalu dihitug dari

Lebih terperinci

1. Integral (1) Pembahasan yang akan kita lakukan hanya mengenai bentuk persamaan diferensial seperti contoh yang pertama.

1. Integral (1) Pembahasan yang akan kita lakukan hanya mengenai bentuk persamaan diferensial seperti contoh yang pertama. Darublic www.darublic.com 1. Itegral (1) (Macam Itegral, Pedeata Numeri) Sudarato Sudirham Dalam bab sebeluma, ita memelajari salah satu bagia utama alulus, aitu alulus diferesial. Beriut ii ita aa membahas

Lebih terperinci

PENGARUH MODAL KERJA TERHADAP KREDIT YANG DISALURKAN SERTA DAMPAKNYA TERHADAP RENTABILITAS PERUSAHAAN

PENGARUH MODAL KERJA TERHADAP KREDIT YANG DISALURKAN SERTA DAMPAKNYA TERHADAP RENTABILITAS PERUSAHAAN Jural Autasi FE Usil, Vol. 4, No., 009 ISSN : 907-9958 PENGARUH MODAL KERJA TERHADAP KREDIT YANG DISALURKAN SERTA DAMPAKNYA TERHADAP RENTABILITAS PERUSAHAAN Rai Rahma Dose Jurusa Autasi Faultas Eoomi Uiversitas

Lebih terperinci

Proses Kelahiran dengan Imigrasi dan Kematian Password

Proses Kelahiran dengan Imigrasi dan Kematian Password Statistia, Vol. 6 No., 7 Mei 26 Proses Kelaira dega Imigrasi da Kematia Password Sri Mulyai Saro i, Neeg Suegsi da Gatot Riwi Setyato Jurusa Statistia FMIPA Upad ABSTRAK Dalam peelitia dibaas megeai sebua

Lebih terperinci

MAKALAH GEOMETRI TRANSFORMASI MEMBAHAS TENTANG GESERAN (TRANSLASI) Kelompok VI (Enam)

MAKALAH GEOMETRI TRANSFORMASI MEMBAHAS TENTANG GESERAN (TRANSLASI) Kelompok VI (Enam) KLH EOETRI TRNSFORSI EHS TENTN ESERN (TRNSLSI) ENN ERSONIL : Kelopo VI (Ea) YEN RVH N : ( ) FIRN N : ( ) 3 I JEN N : ( ) 4 RIK RIYNI N : ( ) 5 SE RIZON N : ( ) 6 TRI HELENZ N : ( ) SEKOLH TINI KEURUN N

Lebih terperinci

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai PENGUJIAN HIPOTESIS Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai ilai-ilai parameter populasi,

Lebih terperinci

HIMPUNAN RENTANGAN DAN BEBAS LINIER. di V. Vektor w dikatakan sebagai kombinasi linier dari vektor-vektor v, 1

HIMPUNAN RENTANGAN DAN BEBAS LINIER. di V. Vektor w dikatakan sebagai kombinasi linier dari vektor-vektor v, 1 HIMPUNAN RENTANGAN DAN BEBA LINIER HIMPUNAN RENTANGAN Defs (Kombas Ler) Msala V suatu ruag etor atas feld F. w etor d V, da, 1, juga etoretor d V. Vetor w dataa sebaga ombas ler dar etor-etor, 1, ja w

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

APROKSIMASI DISTRIBUSI WAKTU HIDUP YANG AKAN DATANG (Aproximations of the Future Lifetime Distribution)

APROKSIMASI DISTRIBUSI WAKTU HIDUP YANG AKAN DATANG (Aproximations of the Future Lifetime Distribution) Jural Bareeg Vol 5 No Hal 47 5 (2) APROKSIMASI DISRIBUSI WAKU HIDUP YANG AKAN DAANG (Aproimatios of te Future Lifetime Distributio) HOMAS PENURY RUDY WOLER MAAKUPAN 2 LEXY JANZEN SINAY 3 Guru Besar Jurusa

Lebih terperinci

Peubah Acak. Peubah Acak Diskrit dan Distribusi Peluang. Peubah Acak. Peubah Acak

Peubah Acak. Peubah Acak Diskrit dan Distribusi Peluang. Peubah Acak. Peubah Acak Peubah Acak Peubah Acak Diskrit da Distribusi Peluag Peubah Acak (Radom Variable): Sebuah keluara umerik yag merupaka hasil dari percobaa (eksperime) Utuk setiap aggota dari ruag sampel percobaa, peubah

Lebih terperinci

Distribusi Sampling (Distribusi Penarikan Sampel)

Distribusi Sampling (Distribusi Penarikan Sampel) Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

BAB 6: ESTIMASI PARAMETER (2)

BAB 6: ESTIMASI PARAMETER (2) Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara

Lebih terperinci

Jika dibandingkan dengan bulan sebelumnyakenaikan curah hujan terbesar terjadi pada bulan A. Oktober D. Januari B. November E. Februari C.

Jika dibandingkan dengan bulan sebelumnyakenaikan curah hujan terbesar terjadi pada bulan A. Oktober D. Januari B. November E. Februari C. Page of. Diatara data berikut, yag merupaka data kualitatif adalah Tiggi hotel-hotel di Yogyakarta B. Bayakya mobil yag melewati jala Mawar C. Kecepata sepeda motor per jam D. Luas huta di Sumatra E. Meigkatya

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto Tue 0/04/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato Estimasi : salah satu cara megemukaka peryataa iduktif (meyataka karakteristik populasi dega meggu aka karakteristik yag didapat dari cuplika).

Lebih terperinci

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel)

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel) DISTRIBUSI SAMPLING (Distribusi Pearika Sampel) I. PENDAHULUAN Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

DISTRIBUSI BINOMIAL. (sukses sebanyak x kali, gagal sebanyak n x kali)

DISTRIBUSI BINOMIAL. (sukses sebanyak x kali, gagal sebanyak n x kali) DISTRIBUSI BINOMIAL Distribusi bioial berasal dari percobaa bioial yaitu suatu proses Beroulli yag diulag sebayak kali da salig bebas. Distribusi Bioial erupaka distribusi peubah acak diskrit. Secara lagsug,

Lebih terperinci

Statistika Matematika. Soal dan Pembahasan. M. Samy Baladram

Statistika Matematika. Soal dan Pembahasan. M. Samy Baladram Statistika Matematika Soal da embahasa M Samy Baladram Bab 4 Ubiasedess, Cosistecy, ad Limitig istributios Ubiasedess, Cosistecy, ad Limitig istributios 41 Ekspektasi Fugsi Key oits Ṫeorema 411 Jika T

Lebih terperinci

BAB III HITUNG KEUANGAN

BAB III HITUNG KEUANGAN BAB III HITUNG KEUANGAN A. BUNGA TUNGGAL. ENGERTIAN BUNGA TUNGGAL Utu memahami pegertia buga, coba ita lihat cotoh beriut : Cotoh :. Tofa memijam modal pada sebuah Ba sebesar Rp.000.000,00. Setelah satu

Lebih terperinci