BAB 2 LANDASAN TEORI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 LANDASAN TEORI"

Transkripsi

1 BAB LANDASAN TEORI.1 Risio Operasioal.1.1 Defiisi Dewasa ii risio operasioal semai diaui sebagai salah satu fator uci yag perlu dielola da dicermati oleh para pelau usaha, hususya di bidag jasa euaga. Dalam idustri lai yag memilii ativitas perdagaga, risio operasioal pu diaggap sebagai ompoe vital dalam eraga pegelolaa risio perusahaa yag lebih luas. Oleh area itu, pemahama megeai osep risio operasioal beserta pedeata matematis da probabilisti mejadi sagat petig diuasai oleh para pratisi duia usaha da aademis. Maajeme risio operasioal itu sediri merupaa seragaia prosedur da metodologi yag diguaa utu megidetifiasi, meguur, mematau da megedalia risio pasar yag timbul dari egiata perusaha. Utu memahami pegertia risio operasioal terlebih dahulu ita harus megetahui apa sebearya risio itu sediri. Secara umum risio dapat diartia sebagai potesi terjadiya suatu peristiwa yag dapat meimbula erugia bagi perusahaa. Maa risio operasioal merupaa risio yag atara lai disebaba adaya etidacuupa atau tida berfugsiya proses iteral, esalaha mausia, egagala sistem atau adaya problem esteral yag mempegaruhi operasioal perusahaa.

2 .1. Perubaha Risio Operasioal Bai Lembaga Pegawas maupu ba meyadari bahwa perubaha dalam idustri perbaa telah medorog pula perubaha arateristi risio operasioal ba. Evet yag secara historis berasal dari esalaha yag megadug biaya redah sebagai pelegap atau digati dega evet yag memilii freuesi redah tetapi memilii dampa yag besar. Peristiwa risio operasioal dielompoa dalam dua fator yaitu freuesi da dampa. Freuesi adalah seberapa serig suatu peristiwa operasioal itu terjadi, sedaga dampa adalah jumlah erugia yag timbul dari peristiwa tersebut. Pegelompoa risio operasioal didasara pada seberapa serig peristiwa terjadi da dampa erugia yag ditimbula (severity). Misala ada empat jeis ejadia operasioal (evets), yaitu: a. Low Frequecy/High Impact (LFHI) b. High Frequecy/High Impact (HFHI) c. Low Frequecy/Low Impact (LFLI) d. High Frequecy/Low Impact (HFLI) Impact LFHI HFHI LFLI HFLI Gambar.1 Jeis Peristiwa Risio Operasioal Frequecy

3 Secara umum maajeme risio operasioal memfousa epada dua jeis peristiwa, yaitu low frequecy/high impact (LFHI) da high frequecy/low impact (HFLI). Ba megabaia suatu ejadia yag memilii low frequecy/low impact (LFLI) area membutuha biaya yag lebih besar utu megelola da mematau dibadiga dega tigat erugia yag timbul bila terjadi. Sedaga high frequecy/high impact (HFHI) tida releva area bila ejadia ii terjadi ba secara cepat aa mederita erugia yag besar da harus meghetia usahaya. Kerugia ii juga tida berelajuta da pegawasa ba aa megambil lagahlagah utu meyelesaia prate-prate bisis yag buru..1.3 Kategori Kejadia Risio Operasioal Cara sederhaa utu megerti risio operasioal dalam ba adalah dega megategoria setiap risio yag tida dicaup dalam risio redit da risio pasar. Namu demiia, ii merupaa defiisi yag terlalu luas da tida membatu dalam megelola risio operasioal Mesipu Basel II Accord tida secara resmi melaua ii, operatioal ris evets dapat dielompoa dalam ategori-ategori seperti risio yag meleat pada: a. Risio proses iteral didefiisia sebagai risio yag timbul dari egagala proses da prosedur ba b. Risio mausia didefiisia sebagai risio yag meleat pada aryawa suatu ba c. Risio sistem adalah risio yag meleat pada teologi da sistem yag diguaa d. Risio esteral adalah risio yag terjadi di luar edali ba secara lagsug e. Risio huum adalah risio etidapastia dari tidaa huum atau etidapastia utu megapliasia atau megiterprestasia suatu otra, peratura da perudag-udaga

4 . Peguura Risio Operasioal Basel II Accord memboleha ba utu megguaa salah satu dari tiga pedeata utu meghitug pedapata risio operasioal. Peguura potesi erugia risio operasioal dapat dilaua dega metode stadard atau metode iteral. Peguura potesi erugia risio operasioal berdasara pedeata metode stadard dapat dilaua melalui tiga pedeata yaitu: a. The Basic Idicator Approach (BIA) b. The Stadardized Approach (SA) c. The Alterative Stadardized Approach (ASA) Sedaga peguura potesi erugia risio operasioal dega metode iteral tersebut disebut sebagai The Advaced Measuremet Approach (AMA). The Advaced Measuremet Approach adalah cara yag palig caggih. Pedeata ii memboleha ba megguaa iteralya utu meghitug operasioal ris capital. Namu, ii terea stadard regulator yag etat. Basel Committee tida meetua model utu Advaced Measuremet Approach area ba diperboleha megguaa sistem peguura risio operasioal iteral merea. Peguura potesi erugia risio operasioal dega metode iteral dapat diperguaa oleh semua perusahaa termasu juga ba yag igi meguur risio operasioalya dega metode iteral. Dibadiga dega model yag stadard, pedeata model AMA lebih meeaa pada aalisis erugia operasioal. Utu ba yag igi meerapa model AMA dalam peguura risio operasioal harus mempuyai database erugia operasioal seurag-uragya dua higga lima tahu e belaag. Ba yag igi megguaa metode ii harus memilii teologi yag tiggi sehigga dega batua teologi tersebut dapat dibuat model yag meagap, meyelesi da melapora iformasi risio operasioal esteral utu tujua validasi model. Pedeata megguaa metode The Advaced Measuremet Approach (AMA) ii ada beberapa pedeata yag serig diguaa yaitu sebagai beriut:

5 a. Iteral Measuremet Approach (IMA) b. Loss Distributio Approach (LDA) c. Ris Driver ad Cotrol Approach (RDCA) Scorecards.3 Sifat-Sifat Desriptif Statisti Peguura potesi erugia risio operasioal da utu melaua pemodela pada suatu ba perlu terlebih dahulu megetahui arateristi dari distribusi erugia operasioal. Adapu distribusi erugia risio operasioal dapat dielompoa mejadi distribusi freuesi erugia operasioal da distribusi severitas erugia operasioal..3.1 Distribusi Freuesi Kerugia Operasioal Distribusi freuesi meujua jumlah atau freuesi terjadiya suatu jeis erugia operasioal dalam suatu periode tertetu, tapa melihat ilai atau rupiah erugia. Distribusi freuesi erugia operasioal merupaa distribusi disrit yaitu distribusi atas data yag ilai data harus bilaga iteger atau tida pecaha. Freuesi ejadia bersifat iteger area jumlah bilaga merupaa bilaga bulat positif. Distribusi freuesi erugia operasioal dapat dielompoa dalam distribusi Poisso, geometric, biomial da hypergeometric Distribusi Poisso Distribusi freuesi Poisso merupaa distribusi freuesi erugia operasioal yag palig baya terjadi area arateristiya yag sederhaa da palig sesuai dega freuesi terjadiya erugia operasioal. Distribusi Poisso mecermia probabilitas jumlah atau freuesi.

6 Rata-rata jumlah atau freuesi terjadiya esalaha bayar asir atau rata-rata freuesi terjadiya ecelaaa erja dapat diyataa sebagai (lambda) dalam suatu periode watu tertetu. Dega demiia secara umum freuesi terjadiya erugia operasioal atas suatu ejadia tertetu dapat diyataa sebagai distribusi Poisso. Distribuisi Poisso dari suatu ejadia erugia tertetu dapat ditetua probabilitasya dega rumus: P e! Dega: = variabel aca disrit yag meyataa jumlah atau freuesi ejadia per iterval watu dimaa! = (-1)(-)...1 = rata-rata jumlah atau freuesi ejadia per iterval watu e =,7188 (bilaga osta) Parameter dapat diestimasi sebagai beriut: 0 0 Distribusi Poisso memilii mea da varias sebagai beriut: Mea: E X Varias: V X Distribusi Geometric Distribusi geometric diguaa utu megetahui berapa baya egagala aa terjadi sebelum terjadiya ejadia suses dari suatu seri ativitas yag bersifat idepede. Karateristi dari distribusi geometric adalah suatu ejadia yag gagal

7 da suses pertama. Distribusi geometric tida beraita dega epetiga suses pertama, suses edua da seterusya. Distribusi geometric mempuyai probabilitas fugsi sebagai beriut: P Parameter dapat diestimasi dega 1 Distribusi geometric memilii mea da varias sebagai beriut: Mea: EX p p Varias: V X Distribusi Biomial Distribusi biomial merupaa salah satu distribusi disrit yag bergua utu memodela masalah probabilitas dari freuesi atau jumlah suses atas suatu ativitas yag bersifat idepede. Distribusi biomial diyataa dega dua parameter yaitu m yag meujua erugia operasioal tertetu yag bersifat idepede da ideti sedaga q yag meujua probabilitasya da meyataa ejadia e-i dimaa 0. Probabilitas fugsi distribusi biomial diyataa sebagai beriut: P m m q 1 q, dega = 1,,..,m Dega parameter distribusi biomial yag dapat diestimasi sebagai beriut: jumlah observasi ejadia q masimum jumlah emugia ejadia

8 Distribusi biomial memilii mea da varias sebagai beriut: Mea: mq X E Varias: q mq X V Distribusi Hypergeometric Distribusi hypergeometric meujua suatu proses yag dilaua secara aca tapa perubaha jumlah sampel dari suatu populasi da meetua berapa jumlah atau freuesi ejadia yag terdapat dalam sampel yag memilii arateristi tertetu. Probabilitas fugsi distribusi hypergeometric diyataa sebagai beriut: M D M D f Sedaga probabilita umulatifya adalah sebagai beriut: i M i D M i D F 0 Dega: M = jumlah elompo idividu item yag diteliti D = jumlah atau freuesi yag memilii arateristi tertetu yag diigia Distribusi hypergeometric memilii mea da varias sebagai beriut: Mea: M D E

9 D D M V 1 M M M 1 Varias:.3. Distribusi Severitas Kerugia Operasioal Distribusi severitas erugia operasioal sagat perlu dietahui agar dalam pemodela erugia risio operasioal dapat memperguaa parameter data yag tepat. Dalam meetua jeis distribusi severitas erugia, pedeata yag dilaua adalah memilih elompo umum dari distribusi probabilitas da emudia meetapa ilai parameter yag palig coco dega data severitas erugia yag diobservasi. Distribusi severitas data erugia meujua ilai rupiah erugia dari jeis erugia operasioal dalam periode watu tertetu. Distribusi severitas erugia operasioal dapat dielompoa dalam distribusi ormal, distribusi logormal, distribusi espoesial da distribusi weibull Distribusi Normal Distribusi ormal erugia baya terjadi pada risio pasar da risio redit. Distribusi ormal atas suatu erugia memilii arateristi parameter mea ( ) da stadard deviasi ( ). Probabilitas fugsi desitas distribusi ormal diyataa dega: 1 1 f - ep, utu Jia =0 da =1 maa distribusiya disebut distribusi ormal stadard. Distribusi ormal stadard mempuyai betu umum yag simetris diseitar ilai meaya. Hal ii berarti bahwa distribusi ormal mempuyai arateristi ilai sewess sama dega ol da ilai media serta modusya sama dega ilai

10 meaya. Parameter da dapat diestimasi dega rumus mome esatu da edua sebagai beriut: i 1 X i i1 X i X.3.. Distribusi Logormal Distribusi ormal sagat bermafaat utu megatisipasi erugia risio pasar area arateristi erugia pasar dapat terdistribusi secara ormal. Namu distribusi erugia operasioal tida coco dega distribusi ormal yag bersifat simetris. Distribusi logormal mempuyai betu yag tida simetris da merupaa salah satu betu distribusi severitas yag coco utu erugia operasioal. Suatu data erugia operasioal diataa terdistribusia secara logormal, jia logaritma atural dari data erugia tersebut terdistribusi secara ormal. Probabilitas fugsi desitas dari variabel dapat dirumusa dega: f 1 ep l Dega: = parameter scale = variabel radom Distribusi logormal mempuyai mea da varias sebagai beriut: E X e Mea: Varias: V X e e 1

11 .3..3 Distribusi Espoesial Distribusi espoesial mejelasa probabilita watu meuggu diatara ejadia dalam distribusi Poisso. Sebagai cotoh adalah jia rata-rata jumlah pemalsua artu redit adalah dua per bula atau =, maa watu terjadiya pemalsua artu redit dijelasa dega distribusi espoesial. Fugsi desitas espoesisal dari suatu variabel radom erugia espoesial dirumusa sebagai beriut: f 1 ep, utu da 0 Distribusi espoesial juga dapat diguaa utu mejelasa tigat egagala atau failure rate, dimaa failure rate dalam distribusi espoesial adalah bersifat osta da selalu sama dega. Besarya failure rate dapat ditetua dega persamaa sebagai beriut: t f 1 t Ft e e Distribusi espoesial mempuyai ilai mea da varias sebagai beriut: Mea: E X 1 1 Varias: V X.3..4 Distribusi Weibull Dalam distribusi espoesial di atas telah dietahui bahwa tigat egagala diyataa sebagai osta. Jia tigat egagala meigat bersamaa dega watu atau umur, maa distribusi Weibull merupaa model yag diguaa. Dalam 1 distribusi Weibull tigat egagala diyataa sebagai. Jia

12 0 da 0, maa tigat egagala aa meigat dega meigatya ilai. Fugsi desitas distribusi Weibull adalah sebagai beriut: f 1 e, utu 0 da 0 da 0 Nilai mea da varias dari distribusi Weibull dihitug dega fugsi gamma yaitu: Mea: E Varias: V

Gambar 3.1Single Channel Multiple Phase

Gambar 3.1Single Channel Multiple Phase BAB III MODEL ANTRIAN PADA PEMBUATAN SIM C. Sigle Chael Multiple Phase Sistem atria sigle chael multiple phase merupaa sistem atria dimaa pelagga yag tiba, dapat memasui sistem dega megatri di tempat yag

Lebih terperinci

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C.

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C. BAB II LANDASAN TEORI Pada bab ii aa dibahas teori teori yag meduug metode upper level set sca statistics, atara lai peubah aca, distribusi gamma, fugsi gamma, fugsi lielihood, da uji rasio lielihood.

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakag Maajeme risiko merupaka salah satu eleme petig dalam mejalaka bisis perusahaa karea semaki berkembagya duia perusahaa serta meigkatya kompleksitas aktivitas perusahaa

Lebih terperinci

BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE)

BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE) BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE) 5.1. Pembagit Radom Variate Disrit Suatu Radom Variate diartia sebagai ilai suatu radom variate yag mempuyai distribusi tertetu. Utu megambil

Lebih terperinci

MODUL BARISAN DAN DERET

MODUL BARISAN DAN DERET MODUL BARISAN DAN DERET SEMESTER 2 Muhammad Zaial Abidi Persoal Blog http://meetabied.wordpress.com BAB I. PENDAHULUAN A. Desripsi Dalam modul ii, ada aa mempelajari pola bilaga, barisa, da deret diidetifiasi

Lebih terperinci

1) Leptokurtik Merupakan distribusi yang memiliki puncak relatif tinggi

1) Leptokurtik Merupakan distribusi yang memiliki puncak relatif tinggi Statisti Desriptif Keruciga atau Kurtosis Pegertia Kurtosis Peguura urtosis (peruciga) sebuah distribusi teoritis adaalaya diamaam peguura eses (excess) dari sebuah distribusi Sebearya urtosis bisa diaggap

Lebih terperinci

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain.

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain. BARIAN DAN DERET A. Barisa Barisa adalah uruta bilaga yag memilii atura tertetu. etiap bilaga pada barisa disebut suu barisa yag dipisaha dega lambag, (oma). Betu umum barisa:,, 3, 4,, dega: = suu pertama

Lebih terperinci

Representasi sinyal dalam impuls

Representasi sinyal dalam impuls Represetasi siyal dalam impuls Represetasi siyal dalam impuls adalah siyal yag diyataa sebagai fugsi dari impuls atau sebagai umpula dari impuls-impuls. Sembarag siyal disret dapat diyataa sebagai pejumlaha

Lebih terperinci

MACAM-MACAM TEKNIK MEMBILANG

MACAM-MACAM TEKNIK MEMBILANG 0 MACAM-MACAM TEKNIK MEMBILANG ATURAN PERKALIAN Beriut ii diberia sebuah dalil tetag peetua baya susua yag palig sederhaa dalam suatu permasalaha yag beraita dega peluag. Dalil 2.1: ATURAN PERKALIAN SECARA

Lebih terperinci

Sifat-sifat Fungsi Karakteristik dari Sebaran Geometrik

Sifat-sifat Fungsi Karakteristik dari Sebaran Geometrik Sifat-sifat Fugsi Karateristi dari Sebara Geometri Dodi Deviato Jurusa Matematia, Faultas MIPA, Uiversitas Adalas Kamus Limau Mais, Padag 563, Sumatera Barat, Idoesia Abstra Fugsi arateristi dari suatu

Lebih terperinci

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1. Tempat da Watu Peelitia Peelitia megeai Kepuasa Kosume Restora Gampoeg Aceh, dilasaaa pada bula Mei 2011 higga Jui 2011. Restora Gampoeg Aceh, bertempat di Jl Pajajara, Batarjati,

Lebih terperinci

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu

Lebih terperinci

BAB III TAKSIRAN PROPORSI POPULASI JIKA TERJADI NONRESPON. Dalam bab ini akan dibahas penaksiran proporsi populasi jika terjadi

BAB III TAKSIRAN PROPORSI POPULASI JIKA TERJADI NONRESPON. Dalam bab ini akan dibahas penaksiran proporsi populasi jika terjadi BAB III TAKSIRA PROPORSI POPULASI JIKA TERJADI ORESPO Dalam bab ii aa dibaas peasira proporsi populasi jia terjadi orespo da dilaua allba sebaya t ali. Selai itu, juga aa dibaas peetua uura sampel yag

Lebih terperinci

Peluang Suatu Kejadian, Kaidah Penjumlahan, Peluang Bersyarat, Kaidah Perkalian dan Kaidah Baiyes

Peluang Suatu Kejadian, Kaidah Penjumlahan, Peluang Bersyarat, Kaidah Perkalian dan Kaidah Baiyes eluag uatu Kejadia, Kaidah ejumlaha, eluag ersyarat, Kaidah eralia da Kaidah aiyes.eluag uatu Kejadia Defiisi : eluag suatu ejadia adalah jumlah peluag semua titi otoh dalam. Dega demiia : 0 (), ( ) =

Lebih terperinci

MODUL 1.03 DINAMIKA PROSES. Oleh : Ir. Tatang Kusmara, M.Eng

MODUL 1.03 DINAMIKA PROSES. Oleh : Ir. Tatang Kusmara, M.Eng MODUL 1.03 DINMIK PROSES Ole : Ir. Tatag Kusmara, M.Eg LBORTORIUM OPERSI TEKNIK KIMI JURUSN TEKNIK KIMI UNIVERSITS SULTN GENG TIRTYS CILEGON BNTEN 2008 2 Modul 1.03 DINMIK PROSES I. Pedaulua Dalam bidag

Lebih terperinci

STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS

STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS (Tati Octavia et al.) STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS Tati Octavia Dose Faultas

Lebih terperinci

BAB PENDAHULUAN

BAB PENDAHULUAN Aalisis Value at Ris Megguaa Metode Extreme Value Theory- Geeralized Pareto Distributio Dega Kombiasi Algoritma Meboot da Teori Samad-Kha (studi asus PT.X) Agga Adiperdaa 2506.202.03 BAB PENDAHULUAN Latar

Lebih terperinci

Model Antrian Multi Layanan

Model Antrian Multi Layanan Jural Gradie Vol. No. Juli : 8- Model Atria Multi Layaa Sisa Yosmar Jurusa Matematia, Faultas Matematia da Ilmu egetahua Alam, Uiversitas Begulu, Idoesia Diterima 9 April; Disetujui 8 Jui Abstra - Salah

Lebih terperinci

Bab 6: Analisa Spektrum

Bab 6: Analisa Spektrum BAB Aalisa Spetrum Bab : Aalisa Spetrum Aalisa Spetrum Dega DFT Tujua Belajar Peserta dapat meghubuga DFT dega spetrum dari sial hasil samplig sial watu otiue. -poit DFT dari sial x adalah Xω ag diealuasi

Lebih terperinci

Perluasan Uji Kruskal Wallis untuk Data Multivariat

Perluasan Uji Kruskal Wallis untuk Data Multivariat Statistia, Vol. No., Mei Perluasa Uji Krusal Wallis utu Data Multivariat TETI SOFIA YANTI Program Studi Statistia, Uiversitas Islam Badug, Jl. Purawarma No. Badug. E-mail: buitet@yahoo.com ABSTAK Adaia

Lebih terperinci

Sinyal dan Sistem Waktu Diskrit ET 3005 Pengolahan Sinyal Waktu Diskrit EL 5155 Pengolahan Sinyal Waktu Diskrit

Sinyal dan Sistem Waktu Diskrit ET 3005 Pengolahan Sinyal Waktu Diskrit EL 5155 Pengolahan Sinyal Waktu Diskrit Siyal da Sistem Watu Disrit ET 35 Pegolaha Siyal Watu Disrit EL 5155 Pegolaha Siyal Watu Disrit Effria Yati Hamid 1 2 Siyal da Sistem Watu Disrit 2.1 Siyal Watu Disrit 2.1.1 Pegertia Siyal Watu Disrit

Lebih terperinci

3. Integral (3) (Integral Tentu)

3. Integral (3) (Integral Tentu) Darublic www.darublic.com. Itegral () (Itegral Tetu).. Luas Sebagai Suatu Itegral. Itegral Tetu Itegral tetu meruaa itegral ag batas-batas itegrasia jelas. Kose dasar dari itegral tertetu adalah luas bidag

Lebih terperinci

BAB II TINJAUAN PUSTAKA. membahas distribusi normal dan distribusi normal baku, penaksir takbias μ dan σ,

BAB II TINJAUAN PUSTAKA. membahas distribusi normal dan distribusi normal baku, penaksir takbias μ dan σ, BAB II TINJAUAN PUSTAKA.1 Pedahulua Dalam peulisa materi poo dari sripsi ii diperlua beberapa teori-teori yag meduug, yag mejadi uraia poo pada bab ii. Uraia dimulai dega membahas distribusi ormal da distribusi

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

MENGUJI KEMAKNAAN SAMPEL TUNGGAL

MENGUJI KEMAKNAAN SAMPEL TUNGGAL MENGUJI KEMAKNAAN SAMPEL TUNGGAL 1.1 Uji Biomial 1. Uji esesuaia Chi Kuadrat 1.3 Uji Kesesuaia K-S 1.4 Uji Ideedesi Chi Kuadrat 1.5 Uji Pasti Fisher UJI BINOMIAL Meruaa uji roorsi dalam suatu oulasi Poulasi

Lebih terperinci

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG)

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG) PEMBAHASAN SOAL OLIMPIADE SAINS NASIONAL SMP A. ISIAN SINGKAT SELEKSI TINGKAT PROPINSI TAHUN 011 BIDANG STUDI MATEMATIKA WAKTU : 150 MENIT 1. Jia x adalah jumlah 99 bilaga gajil terecil yag lebih besar

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 5

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 5 Mata Kuliah : Matematia Disrit Program Studi : Tei Iformatia Miggu e : 5 KOMBINATORIAL PENDAHULUAN Persoala ombiatori bua merupaa persoala baru dalam ehidupa yata. Baya persoala ombiatori sederhaa telah

Lebih terperinci

BAB 2 LANDASAN TEORI. lebar pita sinyal tersebut. Pada kebanyakan aplikasi, termasuk kamera digital video dan

BAB 2 LANDASAN TEORI. lebar pita sinyal tersebut. Pada kebanyakan aplikasi, termasuk kamera digital video dan BAB LADASA TEORI Teorema Shao-yquist meyataa agar tida ada iformasi yag hilag etia pecuplia siyal, maa ecepata pecuplia harus miimal dua ali dari lebar pita siyal tersebut. Pada ebayaa apliasi, termasu

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakag Salah satu pera da fugsi statistik dalam ilmu pegetahua adalah sebagai. alat aalisis da iterpretasi data kuatitatif ilmu pegetahua, sehigga didapatka suatu kesimpula

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya.

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya. BAB 1 PENDAHULUAN 1.1 Latar Belakag Aalisis regresi mejadi salah satu bagia statistika yag palig bayak aplikasiya. Aalisis regresi memberika keleluasaa kepada peeliti utuk meyusu model hubuga atau pegaruh

Lebih terperinci

Metode Perhitungan Grafik Dalam Geolistrik Tahanan Jenis Bumi Dengan Derajat Pendekatan Satu

Metode Perhitungan Grafik Dalam Geolistrik Tahanan Jenis Bumi Dengan Derajat Pendekatan Satu Metode Perhituga Grafi.. P. Maurug Metode Perhituga Grafi Dalam Geolistri Tahaa Jeis Bumi Dega Derajat Pedeata Satu Posma Maurug Jurusa Fisia, FMIPA Uiversitas Lampug Jl. S. Brojoegoro No. Badar Lampug

Lebih terperinci

PENGARUH MODAL KERJA TERHADAP KREDIT YANG DISALURKAN SERTA DAMPAKNYA TERHADAP RENTABILITAS PERUSAHAAN

PENGARUH MODAL KERJA TERHADAP KREDIT YANG DISALURKAN SERTA DAMPAKNYA TERHADAP RENTABILITAS PERUSAHAAN Jural Autasi FE Usil, Vol. 4, No., 009 ISSN : 907-9958 PENGARUH MODAL KERJA TERHADAP KREDIT YANG DISALURKAN SERTA DAMPAKNYA TERHADAP RENTABILITAS PERUSAHAAN Rai Rahma Dose Jurusa Autasi Faultas Eoomi Uiversitas

Lebih terperinci

Penggunaan Transformasi z

Penggunaan Transformasi z Pegguaa Trasformasi pada Aalisa Respo Freuesi Sistem FIR Oleh: Tri Budi Satoso E-mail:tribudi@eepis-its.eduits.edu Lab Siyal,, EEPIS-ITS ITS /3/6 osep pemiira domais of represetatio Domai- discrete time:

Lebih terperinci

MODUL BARISAN DAN DERET

MODUL BARISAN DAN DERET MODUL BARISAN DAN DERET KELAS XII. IPS SEMESTER I Oleh : Drs. Pudjul Prijoo ( http://vidyagata.wordpress.co ) SMA NEGERI 6 Jala Mayje Sugoo 58 Malag Telp./Fax : (034) 75036 E-Mail : sa6_alag@yahoo.co.id

Lebih terperinci

BAB VII RANDOM VARIATE DISTRIBUSI DISKRET

BAB VII RANDOM VARIATE DISTRIBUSI DISKRET BAB VII RANDOM VARIATE DISTRIBUSI DISKRET Diskret radom variabel dapat diguaka utuk berbagai radom umber yag diambil dalam betuk iteger. Pola kebutuha ivetori (persediaa) merupaka cotoh yag serig diguaka

Lebih terperinci

MATERI 12 ANALISIS PERUSAHAAN

MATERI 12 ANALISIS PERUSAHAAN MATERI 12 ANALISIS PERUSAHAAN EPS DAN INFORMASI LAPORAN KEUANGAN KELEMAHAN PELAPORAN EPS DALAM LAPORAN KEUANGAN ANALISIS RASIO PROFITABILITAS PERUSAHAAN EARNING PER SHARE (EPS) PRICE EARNING RATIO (PER)

Lebih terperinci

MANAJEMEN RISIKO INVESTASI

MANAJEMEN RISIKO INVESTASI MANAJEMEN RISIKO INVESTASI A. PENGERTIAN RISIKO Resiko adalah peyimpaga hasil yag diperoleh dari recaa hasil yag diharapka Besarya tigkat resiko yag dimasukka dalam peilaia ivestasi aka mempegaruhi besarya

Lebih terperinci

BAHAN AJAR DIKLAT GURU MATEMATIKA

BAHAN AJAR DIKLAT GURU MATEMATIKA BAHAN AJAR DIKLAT GURU MATEMATIKA DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN 005 DAFTAR ISI Kata Pegatar.. i Daftar Isi...

Lebih terperinci

Bab 16 Integral di Ruang-n

Bab 16 Integral di Ruang-n Catata Kuliah MA3 Kalulus Elemeter II Oi Neswa,Ph.D., Departeme Matematia-ITB Bab 6 Itegral di uag- Itegral Gada atas persegi pajag Itegral Berulag Itegral Gada atas Daerah sebarag Itegral Gada Koordiat

Lebih terperinci

BAB III METODE PENELITIAN. penelitian yang tepat dalam sebuah penelitian ditentukan guna menjawab

BAB III METODE PENELITIAN. penelitian yang tepat dalam sebuah penelitian ditentukan guna menjawab BAB III METODE PENELITIAN Metode peelitia merupaka suatu cara atau prosedur utuk megetahui da medapatka data dega tujua tertetu yag megguaka teori da kosep yag bersifat empiris, rasioal da sistematis.

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1 Lokasi da Waktu peelitia Peelitia dilakuka pada budidaya jamur tiram putih yag dimiliki oleh usaha Yayasa Paguyuba Ikhlas yag berada di Jl. Thamri No 1 Desa Cibeig, Kecamata Pamijaha,

Lebih terperinci

STATISTIKA: UKURAN PENYEBARAN DATA. Tujuan Pembelajaran

STATISTIKA: UKURAN PENYEBARAN DATA. Tujuan Pembelajaran KTSP & K-3 matemata K e l a s XI STATISTIKA: UKURAN PENYEBARAN DATA Tujua Pembelajara Setelah mempelajar mater, amu dharapa meml emampua berut.. Memaham defs uura peyebara data da jes-jesya.. Dapat meetua

Lebih terperinci

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data IV METODE PENELITIAN 4.1 Lokasi da waktu Peelitia ii dilakuka di PD Pacet Segar milik Alm Bapak H. Mastur Fuad yag beralamat di Jala Raya Ciherag o 48 Kecamata Cipaas, Kabupate Ciajur, Propisi Jawa Barat.

Lebih terperinci

BAB 6: ESTIMASI PARAMETER (2)

BAB 6: ESTIMASI PARAMETER (2) Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

UNIVERSITAS INDONESIA DISTRIBUSI BANYAK SINGGAH DARI SUATU RANDOM WALK DAN UJI KERANDOMAN SKRIPSI RANTI NUGRAHENI

UNIVERSITAS INDONESIA DISTRIBUSI BANYAK SINGGAH DARI SUATU RANDOM WALK DAN UJI KERANDOMAN SKRIPSI RANTI NUGRAHENI UNIVERSITAS INDONESIA DISTRIBUSI BANYAK SINGGAH DARI SUATU RANDOM WALK DAN UJI KERANDOMAN SKRIPSI RANTI NUGRAHENI 35475 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI SARJANA MATEMATIKA DEPOK

Lebih terperinci

PETA KONSEP RETURN dan RISIKO PORTOFOLIO

PETA KONSEP RETURN dan RISIKO PORTOFOLIO PETA KONSEP RETURN da RISIKO PORTOFOLIO RETURN PORTOFOLIO RISIKO PORTOFOLIO RISIKO TOTAL DIVERSIFIKASI PORTOFOLIO DENGAN DUA AKTIVA PORTOFOLIO DENGAN BANYAK AKTIVA DEVERSIFIKASI DENGAN BANYAK AKTIVA DEVERSIFIKASI

Lebih terperinci

Penulis: Penilai: Editor: Ilustrator: Dra. Puji Iryanti, M.Sc. Ed. Al. Krismanto, M.Sc. Sri Purnama Surya, S.Pd, M.Si. Fadjar N. Hidayat, S.Si.,M.Ed.

Penulis: Penilai: Editor: Ilustrator: Dra. Puji Iryanti, M.Sc. Ed. Al. Krismanto, M.Sc. Sri Purnama Surya, S.Pd, M.Si. Fadjar N. Hidayat, S.Si.,M.Ed. PAKET FASILITASI PEMBERDAYAAN KKG/MGMP MATEMATIKA Pembelajara Barisa, Deret Bilaga da Notasi Sigma di SMA Peulis: Dra. Puji Iryati, M.Sc. Ed. Peilai: Al. Krismato, M.Sc. Editor: Sri Purama Surya, S.Pd,

Lebih terperinci

BAB 6 NOTASI SIGMA, BARISAN DAN DERET

BAB 6 NOTASI SIGMA, BARISAN DAN DERET BAB 6 NOTASI SIGMA, BARISAN DAN DERET A RINGKASAN MATERI. Notasi Sigma Diberia suatu barisa bilaga, a, a,..., a. Lambag deret tersebut, yaitu: a = a + a +... + a a meyataa jumlah suu pertama barisa Sifat-sifat

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Didalam melakuka kegiata suatu alat atau mesi yag bekerja, kita megeal adaya waktu hidup atau life time. Waktu hidup adalah lamaya waktu hidup suatu kompoe atau uit pada

Lebih terperinci

III. METODELOGI PENELITIAN

III. METODELOGI PENELITIAN III. METODELOGI PENELITIAN A. Metode Peelitia Metode peelitia merupaka suatu cara tertetu yag diguaka utuk meeliti suatu permasalaha sehigga medapatka hasil atau tujua yag diigika, meurut Arikuto (998:73)

Lebih terperinci

PERBANDINGAN PENDEKATAN SEPARABLE PROGRAMMING DENGAN THE KUHN-TUCKER CONDITIONS DALAM PEMECAHAN MASALAH NONLINEAR

PERBANDINGAN PENDEKATAN SEPARABLE PROGRAMMING DENGAN THE KUHN-TUCKER CONDITIONS DALAM PEMECAHAN MASALAH NONLINEAR Jural Tei da Ilmu Komputer PERBANDINGAN PENDEKATAN SEPARABLE PROGRAMMING DENGAN THE KUHN-TUCKER CONDITIONS DALAM PEMECAHAN MASALAH NONLINEAR Budi Marpaug Faultas Tei da Ilmu Komputer Jurusa Tei Idustri

Lebih terperinci

PEMBUKTIAN SIFAT RUANG BANACH PADA D(K)

PEMBUKTIAN SIFAT RUANG BANACH PADA D(K) JMP : Volume 4 Nomor 1, Jui 2012, hal. 41-50 PEMBUKTIAN SIFAT RUANG BANACH PADA D(K) Malahayati Program Studi Matematia Faultas Sais da Teologi UIN Sua Kalijaga malahayati_01@yahoo.co.id ABSTRACT. I this

Lebih terperinci

Bab 5 Sinyal dan Sistem Waktu Diskrit. Oleh: Tri Budi Santoso Laboratorium Sinyal, EEPIS-ITS

Bab 5 Sinyal dan Sistem Waktu Diskrit. Oleh: Tri Budi Santoso Laboratorium Sinyal, EEPIS-ITS Bab 5 Siyal da Sistem Watu Disrit Oleh: Tri Budi Satoso Laboratorium Siyal, EEPIS-ITS Materi: Represetasi matemati pada siyal watu disrit, domai watu da freuesi pada suatu siyal watu disrit, trasformasi

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi.

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi. Distribusi Samplig (Distribusi Pearika Sampel). Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian ini bertujuan untuk mengetahui ada tidaknya peningkatan

BAB III METODE PENELITIAN. Penelitian ini bertujuan untuk mengetahui ada tidaknya peningkatan BAB III METODE PENELITIAN A. Desai Peelitia Peelitia ii bertujua utu megetahui ada tidaya peigata emampua siswa dalam pealara setelah megguaa model pembelajara berbasis masalah terstrutur dalam pembelajara

Lebih terperinci

Pemilihan Kapasitas Dan Lokasi Optimal Kapasitor Paralel Pada Sistem Distribusi Daya Listrik

Pemilihan Kapasitas Dan Lokasi Optimal Kapasitor Paralel Pada Sistem Distribusi Daya Listrik ELECTRICIAN Jural Reayasa da Teologi Eletro 0 Pemiliha Kapasitas Da Loasi Optimal Paralel Pada Sistem Distribusi Daya Listri Osea Zebua Jurusa Tei Eletro, Faultas Tei, Uiversitas Lampug Jl. Prof. Sumatri

Lebih terperinci

Distribusi Sampling (Distribusi Penarikan Sampel)

Distribusi Sampling (Distribusi Penarikan Sampel) Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur III. METODOLOGI PENELITIAN A. Lokasi da Waktu Peelitia Peelitia ii dilakuka di SMA Negeri Way Jepara Kabupate Lampug Timur pada bula Desember 0 sampai dega Mei 03. B. Populasi da Sampel Populasi dalam

Lebih terperinci

Jurnal MIPA 38 (1) (2015): Jurnal MIPA.

Jurnal MIPA 38 (1) (2015): Jurnal MIPA. Jural MIPA 38 () (5): 68-78 Jural MIPA http://ouraluesacid/u/idephp/jm APROKSIMASI ANUIAS HIDUP MENGGUNAKAN KOMBINASI EKSPONENSIAL LJ Siay S Gurito Guardi 3 Jurusa Matematia FMIPA Uiversitas Pattimura

Lebih terperinci

Bab III Metoda Taguchi

Bab III Metoda Taguchi Bab III Metoda Taguchi 3.1 Pedahulua [2][3] Metoda Taguchi meitikberatka pada pecapaia suatu target tertetu da meguragi variasi suatu produk atau proses. Pecapaia tersebut dilakuka dega megguaka ilmu statistika.

Lebih terperinci

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel)

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel) DISTRIBUSI SAMPLING (Distribusi Pearika Sampel) I. PENDAHULUAN Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

SEBARAN t dan SEBARAN F

SEBARAN t dan SEBARAN F SEBARAN t da SEBARAN F 1 Tabel uji t disebut juga tabel t studet. Sebara t pertama kali diperkealka oleh W.S. Gosset pada tahu 1908. Saat itu, Gosset bekerja pada perusahaa bir Irladia yag melarag peerbita

Lebih terperinci

1. Integral (1) Pembahasan yang akan kita lakukan hanya mengenai bentuk persamaan diferensial seperti contoh yang pertama.

1. Integral (1) Pembahasan yang akan kita lakukan hanya mengenai bentuk persamaan diferensial seperti contoh yang pertama. Darublic www.darublic.com 1. Itegral (1) (Macam Itegral, Pedeata Numeri) Sudarato Sudirham Dalam bab sebeluma, ita memelajari salah satu bagia utama alulus, aitu alulus diferesial. Beriut ii ita aa membahas

Lebih terperinci

Anova (analysis of varian)

Anova (analysis of varian) ova (aalysis of varia) Ui hipotesis perbedaa ilai rata-rata dari atau lebih elompo idepede Cotoh: daah perbedaa berat bayi lahir dari eluarga E tiggi dega E sedag atau E redah sumsi Ui ova: 1. ube diambil

Lebih terperinci

STATISTIKA ANALISIS REGRESI DAN KORELASI LINIER SEDERHANA

STATISTIKA ANALISIS REGRESI DAN KORELASI LINIER SEDERHANA STATISTIKA ANALISIS REGRESI DAN KORELASI LINIER SEDERHANA OUTLINE LANJUTAN Peetua garis duga regresi dega Metode OLS kostata a da koefisie b Aalisis Varias komposisi variasi sekitar garis r da r Stadard

Lebih terperinci

GRAFIKA

GRAFIKA 6 5 7 3 6 3 3 GRAFIKA 3 6 57 08 0 9 5 9 385 946 5 3 30 0 8 9 5 9 3 85 946 5 ANALISA REAL Utu uliah (pegatar) aalisa real yag dilegapi dega program MATLAB Dr. H.A. Parhusip G R A F I K A Peerbit Tisara

Lebih terperinci

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai PENGUJIAN HIPOTESIS Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai ilai-ilai parameter populasi,

Lebih terperinci

UNIVERSITAS INDONESIA META-ANALISIS UNTUK RELIABILITAS SUATU ALAT UKUR BERDASARKAN KOEFISIEN ALPHA CRONBACH SKRIPSI JANUARINA ANGGRIANI

UNIVERSITAS INDONESIA META-ANALISIS UNTUK RELIABILITAS SUATU ALAT UKUR BERDASARKAN KOEFISIEN ALPHA CRONBACH SKRIPSI JANUARINA ANGGRIANI UNIVERSITAS INDONESIA META-ANALISIS UNTUK RELIABILITAS SUATU ALAT UKUR BERDASARKAN KOEFISIEN ALHA CRONBACH SKRISI JANUARINA ANGGRIANI 080655 FAKULTAS MATEMATIKA DAN ILMU ENGETAHUAN ALAM ROGRAM STUDI SARJANA

Lebih terperinci

ANALISIS KESALAHAN Deskripsi : Objektif : 6.1 Pendahuluan 6.2 Koefesien Kesalahan Statik

ANALISIS KESALAHAN Deskripsi : Objektif : 6.1 Pendahuluan 6.2 Koefesien Kesalahan Statik 96 VI ANALISIS ESALAHAN Desrisi : Bab ii memberia gambara tetag aalisis esalaha da eeaa ada sistem edali yag terdiri dari oefesie esalaha stati, oefesie esalaha diami da aalisis eeaa sistem Objetif : Memahami

Lebih terperinci

Aplikasi Sistem Orthonormal Di Ruang Hilbert Pada Deret Fourier

Aplikasi Sistem Orthonormal Di Ruang Hilbert Pada Deret Fourier Apliasi Sistem Orthoormal Di Ruag Hilbert Pada Deret Fourier A 7 Fitriaa Yuli S. FMIPA UNY Abstra Ruag hilbert aa dibahas pada papper ii. Apliasi system orthoormal aa diaji da aa diapliasia pada ruahg

Lebih terperinci

APROKSIMASI DISTRIBUSI WAKTU HIDUP YANG AKAN DATANG (Aproximations of the Future Lifetime Distribution)

APROKSIMASI DISTRIBUSI WAKTU HIDUP YANG AKAN DATANG (Aproximations of the Future Lifetime Distribution) Jural Bareeg Vol 5 No Hal 47 5 (2) APROKSIMASI DISRIBUSI WAKU HIDUP YANG AKAN DAANG (Aproimatios of te Future Lifetime Distributio) HOMAS PENURY RUDY WOLER MAAKUPAN 2 LEXY JANZEN SINAY 3 Guru Besar Jurusa

Lebih terperinci

BAGAN KENDALI G UNTUK PENGENDALIAN VARIABILITAS PROSES MULTIVARIAT (Studi Kasus pada data cuaca di kota Makassar pada tahun 2003 sampai tahun 2012)

BAGAN KENDALI G UNTUK PENGENDALIAN VARIABILITAS PROSES MULTIVARIAT (Studi Kasus pada data cuaca di kota Makassar pada tahun 2003 sampai tahun 2012) BAGAN KENDALI G UNTUK PENGENDALIAN VARIABILITAS PROSES MULTIVARIAT (Studi Kasus pada data cuaca di ota Maassar pada tahu 003 sampai tahu 0) PAISAL, H, HERDIANI, E.T. DAN SALEH, M 3 Jurusa Matematia, Faultas

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 6 BAB III METODE PENELITIAN 3.1 Desai Peelitia Meurut Kucoro (003:3): Peelitia ilmiah merupaka usaha utuk megugkapka feomea alami fisik secara sistematik, empirik da rasioal. Sistematik artiya proses yag

Lebih terperinci

PEMODELAN LAMA PEMBERIAN ASI EKSKLUSIF PADA RUMAH TANGGA MISKIN DENGAN METODE REGRESI POHON DI PROVINSI SULAWESI TENGAH

PEMODELAN LAMA PEMBERIAN ASI EKSKLUSIF PADA RUMAH TANGGA MISKIN DENGAN METODE REGRESI POHON DI PROVINSI SULAWESI TENGAH PEMODELAN LAMA PEMBERIAN ASI EKSKLUSIF PADA RUMAH TANGGA MISKIN DENGAN METODE REGRESI POHON DI PROVINSI SULAWESI TENGAH Yermia Firma Setiawirawa da Dr. Bambag Widjaaro Oto, S.Si, M.Si Mahasiswa Jurusa

Lebih terperinci

A. Pengertian Hipotesis

A. Pengertian Hipotesis PENGUJIAN HIPOTESIS A. Pegertia Hipotesis Hipotesis statistik adalah suatu peryataa atau dugaa megeai satu atau lebih populasi Ada macam hipotesis:. Hipotesis ol (H 0 ), adalah suatu hipotesis dega harapa

Lebih terperinci

Distribusi Sampel Sampling Distribution

Distribusi Sampel Sampling Distribution Chapter 5 Studet Lecture otes 5-1 Samplig Distributio Pegatar Distribusi mea Sampel dari ilai Rata-rata Distribusi mea Sampel dari ilai Proporsi Chap 5-1 Distribusi sampel adalah f() distribusi dari ratarata

Lebih terperinci

UJI STATISTIK PENGARUH PERLAKUAN PERMUKAAN TERHADAP UMUR FATIK DENGAN DATA TERBATAS

UJI STATISTIK PENGARUH PERLAKUAN PERMUKAAN TERHADAP UMUR FATIK DENGAN DATA TERBATAS Uji Statisti Pegaruh Perlaua Permuaa terhadap dega Data Terbatas (Agus Suhartoo) Areditasi LIPI omor : 536/D/007 Taggal 6 Jui 007 UJI STATISTIK PEGARUH PERLAKUA PERMUKAA TERHADAP UMUR FATIK DEGA DATA TERBATAS

Lebih terperinci

PENAKSIRAN DAN PERAMALAN BIAYA D. PENAKSIRAN BIAYA JANGKA PANJANG E. PERAMALAN BIAYA

PENAKSIRAN DAN PERAMALAN BIAYA D. PENAKSIRAN BIAYA JANGKA PANJANG E. PERAMALAN BIAYA PENAKSIRAN DAN PERAMALAN BIAYA Ari Darmawa, Dr. S.AB, M.AB Email: aridarmawa_fia@ub.ac.id A. PENDAHULUAN B. PENAKSIRAN DAN PRAKIRAAN FUNGSI BIAYA C. PENAKSIRAN JANGKA PENDEK - Ekstrapolasi sederhaa - Aalisis

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

IV. METODE PENELITIAN. berdasarkan tujuan penelitian (purposive) dengan pertimbangan bahwa Kota

IV. METODE PENELITIAN. berdasarkan tujuan penelitian (purposive) dengan pertimbangan bahwa Kota IV. METODE PENELITIAN 4.1. Lokasi da Waktu Peelitia ii dilaksaaka di Kota Bogor Pemiliha lokasi peelitia berdasarka tujua peelitia (purposive) dega pertimbaga bahwa Kota Bogor memiliki jumlah peduduk yag

Lebih terperinci

Oleh : H. BERNIK MASKUN

Oleh : H. BERNIK MASKUN (D.5) ANALISIS VARIANS UNTUK MENGUJI KEKUATAN LEKAT SEMEN ADHESIF PADA PERMUKAAN LOGAM KARENA EMPAT MACAM PERLAKUAN (Studi Esperime pada Bidag Ortodoti Kedotera Gigi) Oleh : H. BERNIK MASKUN ABSTRAK Pegujia

Lebih terperinci

PENDUGA TERBAIK UNTUK DISTRIBUSI PARETO DENGAN MENGGUNAKAN TEOREMA BATAS BAWAH CRAMMER-RAO SKRIPSI

PENDUGA TERBAIK UNTUK DISTRIBUSI PARETO DENGAN MENGGUNAKAN TEOREMA BATAS BAWAH CRAMMER-RAO SKRIPSI PENDUGA TERBAIK UNTUK DISTRIBUSI PARETO DENGAN MENGGUNAKAN TEOREMA BATAS BAWAH CRAMMER-RAO SKRIPSI Diajua Utu Memeuhi Sebagia Persyarata Mecapai Derajat Sarjaa S-1 OLEH: RISKA JULIANI F1A1 11 031 PROGRAM

Lebih terperinci

IV METODE PENELITIAN

IV METODE PENELITIAN IV METODE PENELITIAN 4.1. Lokasi da Waktu Peelitia Lokasi peelitia dilakuka di PT. Bak Bukopi, Tbk Cabag Karawag yag berlokasi pada Jala Ahmad Yai No.92 Kabupate Karawag, Jawa Barat da Kabupate Purwakarta

Lebih terperinci

Inflasi dan Indeks Harga I

Inflasi dan Indeks Harga I PERTEMUAN 1 Iflasi da Ideks Harga I 1 1 TEORI RINGKAS A Pegertia Agka Ideks Agka ideks merupaka suatu kosep yag dapat memberika gambara tetag perubaha-perubaha variabel dari suatu priode ke periode berikutya

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1. Lokasi da Waktu Peelitia Daerah peelitia adalah Kota Bogor yag terletak di Provisi Jawa Barat. Pemiliha lokasi ii berdasarka pertimbaga atara lai: (1) tersediaya Tabel Iput-Output

Lebih terperinci

BAB 1 PENDAHULUAN. Bagi Negara yang mempunyai wilayah terdiri dari pulau-pulau yang dikelilingi lautan,

BAB 1 PENDAHULUAN. Bagi Negara yang mempunyai wilayah terdiri dari pulau-pulau yang dikelilingi lautan, BAB 1 PENDAHULUAN 1.1 Latar Belakag Bagi Negara yag mempuyai wilayah terdiri dari pulau-pulau yag dikeliligi lauta, laut merupaka saraa trasportasi yag dimia, sehigga laut memiliki peraa yag petig bagi

Lebih terperinci

METODE PENELITIAN. 3.1 Kerangka Pemikiran

METODE PENELITIAN. 3.1 Kerangka Pemikiran 24 III. METODE PENELITIN 3.1 Keragka Pemikira BMT l-fath IKMI melakuka fugsi meyalurka daa dega melakuka pembiayaa kepada UMKM. Produk pembiayaa yag dimiliki BMT l-fath IKMI adalah Murabahah da Iarah.

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN 3.1 Disai Peelitia Tujua Jeis Peelitia Uit Aalisis Time Horiso T-1 Assosiatif survey Orgaisasi Logitudial T-2 Assosiatif survey Orgaisasi Logitudial T-3 Assosiatif survey Orgaisasi

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Statistika iferesi merupaka salah satu cabag statistika yag bergua utuk meaksir parameter. Peaksira dapat diartika sebagai dugaa atau perkiraa atas sesuatu yag aka terjadi

Lebih terperinci

BAB III METODE PENELITIAN Penelitian ini dilakukan di kelas X SMA Muhammadiyah 1 Pekanbaru. semester ganjil tahun ajaran 2013/2014.

BAB III METODE PENELITIAN Penelitian ini dilakukan di kelas X SMA Muhammadiyah 1 Pekanbaru. semester ganjil tahun ajaran 2013/2014. BAB III METODE PENELITIAN A. Waktu da Tempat Peelitia Peelitia dilaksaaka dari bula Agustus-September 03.Peelitia ii dilakuka di kelas X SMA Muhammadiyah Pekabaru semester gajil tahu ajara 03/04. B. Subjek

Lebih terperinci

Konvolusi pada Distribusi dengan Support Kompak

Konvolusi pada Distribusi dengan Support Kompak Prosidig SI MaNIs (Semiar Nasioal Itegrasi Matematia da Nilai Islami) Vol1, No1, Juli 2017, Hal 453-457 p-issn: 2580-4596; e-issn: 2580-460X Halama 453 Kovolusi pada Distribusi dega Support Kompa Cythia

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Tujua Peelitia Peelitia ii bertujua utuk megetahui apakah terdapat perbedaa hasil belajar atara pegguaa model pembelajara Jigsaw dega pegguaa model pembelajara Picture ad Picture

Lebih terperinci

Studi Determinasi Nilai Tukar di Indonesia : Pendekatan Vector Autoregressive (VAR)

Studi Determinasi Nilai Tukar di Indonesia : Pendekatan Vector Autoregressive (VAR) Mie et al., Studi Determiasi Nilai Tuar di Idoesia : Pedeata Vector Autoregressive... 1 Studi Determiasi Nilai Tuar di Idoesia : Pedeata Vector Autoregressive (VAR) Exchage Rate Determiatio Studies i Idoesia

Lebih terperinci

Gerak Brown Fraksional dan Sifat-sifatnya

Gerak Brown Fraksional dan Sifat-sifatnya SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 06 S - 3 Gera Brow Frasioal da Sifat-sifatya Chataria Ey Murwaigtyas, Sri Haryatmi, Guardi 3, Herry P Suryawa 4,,3 Uiversitas Gadjah Mada,4 Uiversitas

Lebih terperinci

MASALAH RUTE DISTRIBUSI MULTIDEPOT DENGAN KAPASITAS DAN KECEPATAN KENDARAAN HETEROGEN

MASALAH RUTE DISTRIBUSI MULTIDEPOT DENGAN KAPASITAS DAN KECEPATAN KENDARAAN HETEROGEN MASALAH RUTE DISTRIBUSI MULTIDEPOT DENGAN KAPASITAS DAN KECEPATAN KENDARAAN HETEROGEN Adam Priyo Hartoo 1), Farida Haum 2), Toi Bahtiar 3) 1)2)3) Departeme Matematia, FMIPA, Istitut Pertaia Bogor Kampus

Lebih terperinci