Mengkaji Perbedaan Diagonalisasi Matriks Atas Field dan Matriks Atas Ring Komutatif

Ukuran: px
Mulai penontonan dengan halaman:

Download "Mengkaji Perbedaan Diagonalisasi Matriks Atas Field dan Matriks Atas Ring Komutatif"

Transkripsi

1 Megaji Perbedaa Diagoalisasi Matris Atas Field da Matris Atas Rig Komutatif Teorema : Jia A adalah matris x maa eryataa eryataa beriut eivale satu sama lai : a A daat didiagoalisasi b A memuyai vetor eige yag bebas liier ( a b Misala A daat didiagoalisasi maa terdaat matris ivertibel P Misala P = ivertibel sehigga P - AP = D dimaa D adalah matris diagoal λ D = λ λ Maa AP = PD yaitu AP = = λ λ λ λ λ λ λ λ λ λ Misala adalah vetor vetor olom P maa AP berurut turut λ λ λ Dilai iha olom olom AP berturut turut adalah A A A Jadi dieroleh A = λ A = λ A = λ Karea P ivertibel maa determia P tida sama dega ol sehigga vetor vetor olomya ta ol Dimaa λ λ λ adalah ilai eige dari matris A da da adalah vetor vetor eige yag bersesuaia dega λ λ λ λ

2 Jadi adalah bebas liier jadi A memuyai vetor eige yag bebas liier ( b a Misala A memuyai betor eige yag bebas liier Maa adalah vetor eige yag bersesuaia dega ilai eige λ λ λ Misala P = adalah matris yag vetor vetor olomya Kolom olom dari hasil ali AP adalah A A A Tetai A = λ A = λ A = λ Karea adalah vetor eige yag bersesuaia dega ilai eige λ λ λ sehigga : λ λ λ AP = λ λ λ λ λ λ = λ = PD λ Dimaa D adalah matris diagoal yag memuyai ilai eige λ λ λ ada diagoal utama Karea vetor vetor dari P adalah bebas liier maa P ivertibel Da area P ivertibel maa daat ditulis P - AP = D yaitu A daat didiagoalisasi Dari teorema di atas di daat rosedur mediagoalisasi matris atas field adalah : Carilah vetor eige yag bebas liear Betu matris yag memuyai sebagai vetor vetor olom 3 Matris P - AP = D dimaa ( λ λ λ sebagai etri etri diagoal utama matris diagoal D dimaa λi adalah ilai eige yag bersesuaia dega i utu i = 3

3 Teorema : Misal M adalah R Modul Adaia m m m da adalah eleme dari M dimaa { m m m } bebas liier da { } meretag M Maa Jia = maa { } adalah R Modul bebas Dietahui { m m m } bebas liier da { } meretag M Adaia > utu j = 3 Karea { } meretag M maa terdaat a ij m i = a ij i i= Padag ersamaa r m + r m + r m = dimaa r r r adalah ostata m i = r m i i i= r aij = i= i= r a ij i = i= i= c i i = i= i= maa terdaat lebih baya variabel dalam ersamaa maa ersamaa tersebut memuyai eyelesaia tatrivial Kotradisi dega { m m m } bebas liier Jadi Utu = maa R Modul memuat eleme M dimaa { m m m } bebas liier da { } meretag M Aa dibutia { } bebas liier Misala m j = a ij i utu j = 3 da a ij M x ( R i= Padag ersamaa y + y + + y = Jia Y = [ y y y ] t 3 maa ersamaa daat ditulis PY = Misala C j = b y j utu j = 3 dimaa b j M x (R = C j = BY Sehigga

4 j= c j m j = c j j= j= a ij i c j b j y j = aij i i= j= = a ij i i= j= = = y aijb j i i= j= j= = y α i i i= = = y i i = Dari { m m m } bebas liier maa c m j j = c j = utu j = c j = b y j = = Jadi y = utu = 3 area a ij = Karea y = utu = 3 maa { } bebas liier Karea { } bebas liier da { } meretag M maa { } membetu basis Jadi { } adalah R- Modul Bebas j= Dari teorema diatas tercita aibat aibat yaitu : Aibat : Misala P Q M x (R dimaa ruag olom matris P samadega ruag olom matris Q Jia setia olom di P adalah bebas liier ada R maa terdaat matris ivertibel S dimaa P= QS Misala P = ( da Q = ( q q q adalah artisi matris dari P da Q dimaa ruag olom dari matris P sama dega ruag olom dari matris Q { } adalah bebas liier di R Asumsia { q q q } adalah meretag di R Meurut teorema maa { q q q } juga bebas liier di R Misala a q ij j b ij j j= i = da qi = j= utu i = 3

5 Dimaa A = (a ij da B = ( b ij M x (R i = aijq j = b j j= j= = = aijb j = j= = c ij = j= Karea { } adalah bebas liier di R maa c ij utu I = Ambil S matris ivertibel col S col ( S col ( QS = Q ( ( S = ( Qcol S Qcol ( S Qcol ( = Jadi QS = P ( S aij j= j= = ( a j q j Aibat : Misala matris P = ( { } adalah R- Modul Bebas ( Dietahui P ivertibel Misala P = ( Matris P ivertibel jia da haya jia Aa dibutia { } adalah R- Modul Bebas Padag ersamaa x + x + + x = ( Jia dimisala X = [ x x x ] t maa ersamaa daat ditulis dalam betu PX = X = (PP - X = P - (XP = P - = Karea X = maa { } adalah bebas liier Ambil sebarag λ R Aa dibutia { } adalah meretag x + x + + x = λ PX = λ Persamaa ii memuyai eyelesaia X = P - λ Jadi ersamaa { } adalah meretag

6 Karea { } adalah bebas liier da meretag maa { } membetu basis di R Jadi { } adalah R- Modul Bebas ( Dietahui { } adalah R- Modul Bebas Aa dibutia P ivertibel Karea { } adalah R- Modul Bebas maa { } membetu basis di R dimaa basis bau utu R adalah (e e e Misala matris P = ( da I = adalah matris yag olomya membetu basis Meurut aibat maa terdaat maris S ivertibel sehigga P = IS Jadi P adalah ivertibel Defiisi : a Misala A M x (R maa : b Eleme λ R disebt ilai eige dari A jia Ax = λ x utu x R c { λ R } λ adalah ilai eige dari A da disebut sectrum dari A d Vetor ta ol λ R disebut vetor eige dari A jia Ax = λ x utu x R e Misala λ sectrum A E(λ = { x R Ax = xλ} disebut ruag eige dari λ Defiisi : ( R = x R xmemuyaiivers Eleme idetitas dari R terhada eralia { } adalah Maa x (R jia y R xy = Teorema 3 : Misala A M x (R Matris diagoal similar dega matris A jia da haya E( λ meruaa R Modul Bebas di R jia λ R( A ( Misala D = diag ( λ λ λ similar dega matris A di M x (R Aa dibutia λ R( A E( λ meruaa R Modul Bebas di R Misala P = ( AP = ( A A adalah artisi olom dari matris P sehigga A

7 PD = ( λ λ λ Ambil sebarag matris P ivertibel Meurut aibat jia { } adalah R- Modul Bebas maa { } membetu basis di R Sehigga { } adalah bebas liier da meretag Misala ( λ λ λ R( A λ R C λ = dimaa R (A = { } ( } A λ R( A Da { } Karea { } adalah bebas liier da meretag E ( λ adalah bebas liier da meretag Maa λ R( A ( λ Jadi λ R( A E meruaa R Modul Bebas di R ( ( Misala λ R( A E λ meruaa R Modul Bebas di R Aa dibutia matris diagoal D similar dega matris A Misala { } adalah vetor vetor eige yag bersesuaia dega ilai eige di R(A { } λ R( A E( λ P = ( AP = ( A A A = ( λ λ λ = P ( dimaa P adalah ivertibel P - AP = diag ( λ λ λ Jadi matris diagoal D similar dega matris A

8 Teorema 4 : Misala A M x (R A ivertibel jia da haya jia det ( A (R ( Misala A ivetibel Aa dibutia det ( A (R Karea A ivertibel maa B M x (R AB = BA = I AB = I det (AB = det (I det (A det ( B = det (I det (A det ( B = Jadi det ( A (R ( Misala det ( A (R Aa dibutia A ivetibel Karea det ( A maa y R det( y = A - = adj( A det( A A - det ( A = adj (A Dega megalia edua ruas dega A didaat A A - det ( A= A adj (A I det ( A= A adj (A Dega megalia edua ruas dega y I det ( Ay= A adj (Ay I = A adj (Ay I = A y adj (A R Dari teorema teorema diatas di daat rosedur mediagoalisasia matris atas rig omutatif adalah : Carilah vetor eige yag meruaa R modul bebas Betu matris P yag memuyai sebagai vetor = vetor olom 3 Matris P - AP = D adalah dega ( λ λ λ sebagai etri etri diagoal utama matris diagoal D dimaa λi adalah ilai eige yag bersesuaia dega i utu i = 3

TEOREMA CAYLEY-HAMILTON SEBAGAI SALAH SATU METODE DALAM PENGHITUNGAN FUNGSI MATRIKS

TEOREMA CAYLEY-HAMILTON SEBAGAI SALAH SATU METODE DALAM PENGHITUNGAN FUNGSI MATRIKS Jural Matematia Vol.6 No. November 6 [ 5 : ] TEOREMA CAYLEY-HAMILTON SEBAGAI SALAH SATU METODE DALAM PENGHITUNGAN FUNGSI MATRIKS Ooy Rohaei Jurusa Matematia, UNISBA, Jala Tamasari No, Badug,6, Idoesia

Lebih terperinci

x x x1 x x,..., 2 x, 1

x x x1 x x,..., 2 x, 1 0.4 Variasi Kaoi amel Da Korelasi Kaoi amel amel aca dari observasi ada masig-masig variabel dari ( + q) variabel (), () daat digabuga edalam (( + q) ) data matris,,..., dimaa (0-5) Adau vetor rata-rata

Lebih terperinci

MASALAH DAN ALTERNATIF JAWABAN DALAM MATEMATIKA KOMBINATORIK. Masalah 1 Terdapat berapa carakah kita dapat memilih 2 baju dari 20 baju yang tersedia?

MASALAH DAN ALTERNATIF JAWABAN DALAM MATEMATIKA KOMBINATORIK. Masalah 1 Terdapat berapa carakah kita dapat memilih 2 baju dari 20 baju yang tersedia? Kartia Yuliati, SPd, MSi MASALAH DAN ALTERNATIF JAWABAN DALAM MATEMATIKA KOMBINATORIK Masalah Terdapat berapa caraah ita dapat memilih baju dari 0 baju yag tersedia? Cara Misala baju diberi omor dari sampai

Lebih terperinci

Sifat-sifat Fungsi Karakteristik dari Sebaran Geometrik

Sifat-sifat Fungsi Karakteristik dari Sebaran Geometrik Sifat-sifat Fugsi Karateristi dari Sebara Geometri Dodi Deviato Jurusa Matematia, Faultas MIPA, Uiversitas Adalas Kamus Limau Mais, Padag 563, Sumatera Barat, Idoesia Abstra Fugsi arateristi dari suatu

Lebih terperinci

MAKALAH TEOREMA BINOMIAL

MAKALAH TEOREMA BINOMIAL MAKALAH TEOREMA BINOMIAL Disusu utu memeuhi tugas mata uliah Matematia Disrit Dose Pegampu : Dr. Isaii Rosyida, S.Si, M.Si Rombel B Kelompo 2 1. Wihdati Martalya (0401516006) 2. Betha Kuria S. (0401516012)

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain.

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain. BARIAN DAN DERET A. Barisa Barisa adalah uruta bilaga yag memilii atura tertetu. etiap bilaga pada barisa disebut suu barisa yag dipisaha dega lambag, (oma). Betu umum barisa:,, 3, 4,, dega: = suu pertama

Lebih terperinci

Semigrup Matriks Admitting Struktur Ring

Semigrup Matriks Admitting Struktur Ring Semigrup Matriks dmittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIP, Uiversitas Negeri Yogyakarta Email: yatiuy@yahoo.com bstrak Diberika adalah rig komutatif dega eleme satua da adalah

Lebih terperinci

Beberapa Sifat Semigrup Matriks Atas Daerah Integral Admitting Struktur Ring 1

Beberapa Sifat Semigrup Matriks Atas Daerah Integral Admitting Struktur Ring 1 Beberapa Sifat Semigrup Matriks Atas Daerah Itegral Admittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIPA, Uiversitas Negeri Yogyakarta Email: yatiuy@yahoo.com Abstrak Diberika adalah daerah

Lebih terperinci

MENENTUKAN INVERS DRAZIN DARI MATRIKS SINGULAR. Lisnilwati Khasanah 1 dan Bambang Irawanto 2. Jl.Prof.Soedarto, S.H Semarang 50275

MENENTUKAN INVERS DRAZIN DARI MATRIKS SINGULAR. Lisnilwati Khasanah 1 dan Bambang Irawanto 2. Jl.Prof.Soedarto, S.H Semarang 50275 ENENTUKN INVERS RZIN RI TRIKS SINGULR Lisilwati Khasaah da Babag Irawato Progra Studi ateatia FIP UNIP lprofsoedarto SH Searag 7 bstract sigular atri with size has a iverse be called razi iverse ad deoted

Lebih terperinci

Gambar 3.1Single Channel Multiple Phase

Gambar 3.1Single Channel Multiple Phase BAB III MODEL ANTRIAN PADA PEMBUATAN SIM C. Sigle Chael Multiple Phase Sistem atria sigle chael multiple phase merupaa sistem atria dimaa pelagga yag tiba, dapat memasui sistem dega megatri di tempat yag

Lebih terperinci

Keywords: Convergen Series, Banach Space, Sequence space cs, Dual-α, Dual-

Keywords: Convergen Series, Banach Space, Sequence space cs, Dual-α, Dual- Jural MIPA FST UNDANA, Volume 2, Nomor, April 26 DUAL-, DUAL- DAN DUAL- DARI RUANG BARISAN CS Albert Kumaereg, Ariyato 2, Rapmaida 3,2,3 Jurusa Matematia, Faultas Sais da Tei Uiversitas Nusa Cedaa ABSTRACT

Lebih terperinci

KARAKTERISTIK NILAI EIGEN DARI MATRIKS LAPLACIAN

KARAKTERISTIK NILAI EIGEN DARI MATRIKS LAPLACIAN JMP : Volume 3 Nomor, Jui 2 KARAKTERISTIK NILAI EIGEN DARI MATRIKS LAPLACIAN Siti Rahmah Nurshiami, Mutia Nur Estri, Noor Sofiyati Program Studi Matematika, Fakultas Sais da Tekik Uiversitas Jederal soedirma,

Lebih terperinci

FUNCTIONALLY SMALL RIEMANN SUMS (FSRS) DAN ESSENTIALLY SMALL RIEMANN SUMS (ESRS) FUNGSI TERINTEGRAL HENSTOCKn. p )

FUNCTIONALLY SMALL RIEMANN SUMS (FSRS) DAN ESSENTIALLY SMALL RIEMANN SUMS (ESRS) FUNGSI TERINTEGRAL HENSTOCKn. p ) βeta -ISSN: 85-5893 e-issn: 54-458 Vol. 3 No. (Noember), Hal. 79-89 βeta DOI: htt://dx.doi.org/.44/betajtm.v9i.7 FUNCTIONALLY SMALL RIMANN SUMS (FSRS) DAN SSNTIALLY SMALL RIMANN SUMS (SRS) FUNGSI TRINTGRAL

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi suatu ring serta

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi suatu ring serta BAB II LANDASAN TEORI Pada bab ii aka dibahas megeai defiisi suatu rig serta beberaa sifat yag dierluka dalam embahasa oliomial ermutasi Pejelasa megeai rig dimulai dega defiisi dari suatu sistem matematika

Lebih terperinci

) didefinisikan sebagai persamaan yang dapat dinyatakan dalam bentuk: a x a x a x b... b adalah suatu urutan bilangan dari bilangan s1, s2,...

) didefinisikan sebagai persamaan yang dapat dinyatakan dalam bentuk: a x a x a x b... b adalah suatu urutan bilangan dari bilangan s1, s2,... SISEM PERSAMAAN LINIER DAN MARIKS. SISEM PERSAMAAN LINIER Secara umum, persamaa liier dega variabel ( x, x,..., x ) didefiisika sebagai persamaa yag dapat diyataka dalam betuk: a x a x a x b... dega a,

Lebih terperinci

Volume 1, Nomor 2, Desember 2007

Volume 1, Nomor 2, Desember 2007 Volue, Noor, Deseber 7 Bareeg, Deseber 7 al4-7 Vol No DIAGONAISASI MATRIKS UNTUK MENYEESAIKAN MODE MANGSA-EMANGSA EVINUS R ERSUESSY Jurusa Mateatia FMIA UNATTI Abo ABSTRACT Diagoalizatio of a square atrix

Lebih terperinci

Representasi sinyal dalam impuls

Representasi sinyal dalam impuls Represetasi siyal dalam impuls Represetasi siyal dalam impuls adalah siyal yag diyataa sebagai fugsi dari impuls atau sebagai umpula dari impuls-impuls. Sembarag siyal disret dapat diyataa sebagai pejumlaha

Lebih terperinci

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR Dose Pegampu : Darmadi, S.Si, M.Pd Disusu : Kelas 5A / Kelompok 5 : Dia Dwi Rahayu (084. 06) Hefetamala (084. 4) Khoiril Haafi (084. 70) Liaatul Nihayah (084. 74)

Lebih terperinci

Aplikasi Sistem Orthonormal Di Ruang Hilbert Pada Deret Fourier

Aplikasi Sistem Orthonormal Di Ruang Hilbert Pada Deret Fourier Apliasi Sistem Orthoormal Di Ruag Hilbert Pada Deret Fourier A 7 Fitriaa Yuli S. FMIPA UNY Abstra Ruag hilbert aa dibahas pada papper ii. Apliasi system orthoormal aa diaji da aa diapliasia pada ruahg

Lebih terperinci

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas II. TINJAUAN PUSTAKA 2.1 Ruag Vektor Defiisi 2.1.1 (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da (F,,. ) lapaga dega eleme idetitas 1. V disebut ruag vektor (vector space) atas F jika ada operasi

Lebih terperinci

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C.

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C. BAB II LANDASAN TEORI Pada bab ii aa dibahas teori teori yag meduug metode upper level set sca statistics, atara lai peubah aca, distribusi gamma, fugsi gamma, fugsi lielihood, da uji rasio lielihood.

Lebih terperinci

SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA

SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA KELAS D(K) Malahayati Program Studi Matematia Faultas Sais da Teologi UIN Sua Kalijaga Yogyaarta e-mail: malahayati_01@yahoo.co.id ABSTRAK Himpua

Lebih terperinci

Aproksimasi Terbaik dalam Ruang Metrik Konveks

Aproksimasi Terbaik dalam Ruang Metrik Konveks Aprosimasi Terbai dalam Ruag etri Koves Oleh : Suharsoo S Jurusa atematia FIPA Uiversitas Lampug Abstra asalah esistesi da etuggala aprosimasi terbai suatu titi dalam ruag berorm telah dipelajari oleh

Lebih terperinci

BAB I PENDAHULUAN. , membentuk struktur ring terhadap operasi penjumlahan matriks dan operasi pergandaan matriks baku. Himpunan bagian dari

BAB I PENDAHULUAN. , membentuk struktur ring terhadap operasi penjumlahan matriks dan operasi pergandaan matriks baku. Himpunan bagian dari BB I PENDHULUN. Latar Belakag Masalah Struktur rig (gelaggag) R adalah suatu himpua R yag kepadaya didefiisika dua operasi bier yag disebut pejumlaha da pergadaa yag memeuhi aksioma-aksioma tertetu, yaitu:

Lebih terperinci

BAB III TAKSIRAN PROPORSI POPULASI JIKA TERJADI NONRESPON. Dalam bab ini akan dibahas penaksiran proporsi populasi jika terjadi

BAB III TAKSIRAN PROPORSI POPULASI JIKA TERJADI NONRESPON. Dalam bab ini akan dibahas penaksiran proporsi populasi jika terjadi BAB III TAKSIRA PROPORSI POPULASI JIKA TERJADI ORESPO Dalam bab ii aa dibaas peasira proporsi populasi jia terjadi orespo da dilaua allba sebaya t ali. Selai itu, juga aa dibaas peetua uura sampel yag

Lebih terperinci

Ruang Vektor. Modul 1 PENDAHULUAN

Ruang Vektor. Modul 1 PENDAHULUAN Modul Ruag Vektor Dr. Irawati D PENDAHULUAN alam buku materi okok Aljabar II ii kita secara erlaha-laha mulai megubah edekata kita dari edekata secara komutasi mejadi edekata yag lebih umum. Yag dimaksud

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang Masalah

BAB I PENDAHULUAN. A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakag Masalah Struktur alabar adalah suatu himpua yag di dalamya didefiisika suatu operasi bier yag memeuhi aksioma-aksioma tertetu. Gelaggag ( Rig ) merupaka suatu struktur

Lebih terperinci

PEMBUKTIAN SIFAT RUANG BANACH PADA D(K)

PEMBUKTIAN SIFAT RUANG BANACH PADA D(K) JMP : Volume 4 Nomor 1, Jui 2012, hal. 41-50 PEMBUKTIAN SIFAT RUANG BANACH PADA D(K) Malahayati Program Studi Matematia Faultas Sais da Teologi UIN Sua Kalijaga malahayati_01@yahoo.co.id ABSTRACT. I this

Lebih terperinci

Homomorfisma Pada Semimodul Atas Aljabar Max-Plus

Homomorfisma Pada Semimodul Atas Aljabar Max-Plus Homomorfisma Pada Semimodul Atas Aljabar Max-Plus A 14 Oleh : Musthofa Jurusa Pedidika Matematika FMIPA UNY Abstrak Kosep homorfisma telah bayak dibahas pada beberapa struktur aljabar yaitu pada ruag vektor

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

PERSAMAAN DIFERENSIAL

PERSAMAAN DIFERENSIAL PERSAMAAN DIFERENSIAL A. Persamaa Diferesial Liier Tigkat Satu Betuk umum ersamaa diferesial liier tigkat satu adalah sebagai berikut: P( ) y Q( ) d atau y P( ) y Q( ) Rumus eyelesaia umum utuk ersamaa

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab bers defs-defs da sfat-sfat yag petg yag berhubuga dega modul. Hal-hal tersebut dperlua dalam pembahasa megea modul jetf pada Bab III. 2.1. Modul Mata ulah Aljabar Ler membahas

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu

Lebih terperinci

HIMPUNAN RENTANGAN DAN BEBAS LINIER. di V. Vektor w dikatakan sebagai kombinasi linier dari vektor-vektor v, 1

HIMPUNAN RENTANGAN DAN BEBAS LINIER. di V. Vektor w dikatakan sebagai kombinasi linier dari vektor-vektor v, 1 HIMPUNAN RENTANGAN DAN BEBA LINIER HIMPUNAN RENTANGAN Defs (Kombas Ler) Msala V suatu ruag etor atas feld F. w etor d V, da, 1, juga etoretor d V. Vetor w dataa sebaga ombas ler dar etor-etor, 1, ja w

Lebih terperinci

Sinyal dan Sistem Waktu Diskrit ET 3005 Pengolahan Sinyal Waktu Diskrit EL 5155 Pengolahan Sinyal Waktu Diskrit

Sinyal dan Sistem Waktu Diskrit ET 3005 Pengolahan Sinyal Waktu Diskrit EL 5155 Pengolahan Sinyal Waktu Diskrit Siyal da Sistem Watu Disrit ET 35 Pegolaha Siyal Watu Disrit EL 5155 Pegolaha Siyal Watu Disrit Effria Yati Hamid 1 2 Siyal da Sistem Watu Disrit 2.1 Siyal Watu Disrit 2.1.1 Pegertia Siyal Watu Disrit

Lebih terperinci

RUANG BANACH PADA RUANG BARISAN, DAN

RUANG BANACH PADA RUANG BARISAN, DAN RUANG BANACH PADA RUANG BARISAN, DAN Wahidah Alwi* * Dose ada Jurusa Mateatia Faultas Sais da Teologi UIN Alauddi Maassar e-ail: wahidah.alwi79@gail.co Abstract: The ai object of the vectors are the vectors

Lebih terperinci

Peluang Suatu Kejadian, Kaidah Penjumlahan, Peluang Bersyarat, Kaidah Perkalian dan Kaidah Baiyes

Peluang Suatu Kejadian, Kaidah Penjumlahan, Peluang Bersyarat, Kaidah Perkalian dan Kaidah Baiyes eluag uatu Kejadia, Kaidah ejumlaha, eluag ersyarat, Kaidah eralia da Kaidah aiyes.eluag uatu Kejadia Defiisi : eluag suatu ejadia adalah jumlah peluag semua titi otoh dalam. Dega demiia : 0 (), ( ) =

Lebih terperinci

MODUL 1.03 DINAMIKA PROSES. Oleh : Ir. Tatang Kusmara, M.Eng

MODUL 1.03 DINAMIKA PROSES. Oleh : Ir. Tatang Kusmara, M.Eng MODUL 1.03 DINMIK PROSES Ole : Ir. Tatag Kusmara, M.Eg LBORTORIUM OPERSI TEKNIK KIMI JURUSN TEKNIK KIMI UNIVERSITS SULTN GENG TIRTYS CILEGON BNTEN 2008 2 Modul 1.03 DINMIK PROSES I. Pedaulua Dalam bidag

Lebih terperinci

UNIVERSITAS INDONESIA DISTRIBUSI BANYAK SINGGAH DARI SUATU RANDOM WALK DAN UJI KERANDOMAN SKRIPSI RANTI NUGRAHENI

UNIVERSITAS INDONESIA DISTRIBUSI BANYAK SINGGAH DARI SUATU RANDOM WALK DAN UJI KERANDOMAN SKRIPSI RANTI NUGRAHENI UNIVERSITAS INDONESIA DISTRIBUSI BANYAK SINGGAH DARI SUATU RANDOM WALK DAN UJI KERANDOMAN SKRIPSI RANTI NUGRAHENI 35475 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI SARJANA MATEMATIKA DEPOK

Lebih terperinci

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu

Lebih terperinci

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA, Fakultas MIPA, Uiversitas Negeri Yogyakarta, 4 Mei 0 SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS Musthofa Jurusa Pedidika Matematika FMIPA

Lebih terperinci

KARAKTERISTIK GRUP YANG DIBANGUN OLEH MATRIKS N X N DENGAN ENTRI BILANGAN BULAT MODULO P, P PRIMA

KARAKTERISTIK GRUP YANG DIBANGUN OLEH MATRIKS N X N DENGAN ENTRI BILANGAN BULAT MODULO P, P PRIMA KARAKTERISTIK GRUP YANG DIBANGUN OLEH MATRIKS N X N DENGAN ENTRI BILANGAN BULAT MODULO P, P PRIMA Ibu Hadi Program Studi Matematika, Uiversitas Negeri Jakarta, Idoesia ibu_hadi@uj.ac.id, ibu_uj@yahoo.co.id

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 6 No.1 Juni 2012: 9-16 KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC

Jurnal Matematika Murni dan Terapan Vol. 6 No.1 Juni 2012: 9-16 KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC Jural Matematika Muri da Teraa Vol. 6 No.1 Jui 01: 9-16 KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC Muhammad Ahsar Karim 1 Faisal Yui Yulida 3 [1,,3] PS Matematika FMIPA Uiversitas

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFERENSIAL LANE-EMDEN MENGGUNAKAN METODE TRANSFORMASI DIFERENSIAL

PENYELESAIAN PERSAMAAN DIFERENSIAL LANE-EMDEN MENGGUNAKAN METODE TRANSFORMASI DIFERENSIAL PENYELESAIAN PERSAMAAN DIFERENSIAL LANE-EMDEN MENGGUNAKAN METODE TRANSFORMASI DIFERENSIAL Ahma Sya roi, M Natsir, Eag Lily E-mail: Arolativa@yahoocom Mahasiswa Program S Matematia Dose Jurusa Matematia

Lebih terperinci

MACAM-MACAM TEKNIK MEMBILANG

MACAM-MACAM TEKNIK MEMBILANG 0 MACAM-MACAM TEKNIK MEMBILANG ATURAN PERKALIAN Beriut ii diberia sebuah dalil tetag peetua baya susua yag palig sederhaa dalam suatu permasalaha yag beraita dega peluag. Dalil 2.1: ATURAN PERKALIAN SECARA

Lebih terperinci

MENGUJI KEMAKNAAN SAMPEL TUNGGAL

MENGUJI KEMAKNAAN SAMPEL TUNGGAL MENGUJI KEMAKNAAN SAMPEL TUNGGAL 1.1 Uji Biomial 1. Uji esesuaia Chi Kuadrat 1.3 Uji Kesesuaia K-S 1.4 Uji Ideedesi Chi Kuadrat 1.5 Uji Pasti Fisher UJI BINOMIAL Meruaa uji roorsi dalam suatu oulasi Poulasi

Lebih terperinci

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG)

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG) PEMBAHASAN SOAL OLIMPIADE SAINS NASIONAL SMP A. ISIAN SINGKAT SELEKSI TINGKAT PROPINSI TAHUN 011 BIDANG STUDI MATEMATIKA WAKTU : 150 MENIT 1. Jia x adalah jumlah 99 bilaga gajil terecil yag lebih besar

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 41-45, April 2001, ISSN : KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 41-45, April 2001, ISSN : KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH Vol. 4. No. 1, 41-45, Aril 2001, ISSN : 1410-8518 KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH Bambag Irawato Jurusa Matematika FMIPA UNDIP Abstact I this aer, it was leared of the ecessary ad sufficiet

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 41-48, April 2003, ISSN : MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 41-48, April 2003, ISSN : MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No., 4-48, April 00, ISSN : 40-858 MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA Suryoto Jurusa Matematika F-MIPA Uiversas Dipoegoro Semarag Abstrak Suatu matriks tak

Lebih terperinci

PRINSIP MAKSIMUM DAN MINIMUM FUNGSI PANHARMONIK

PRINSIP MAKSIMUM DAN MINIMUM FUNGSI PANHARMONIK PRINSIP MAKSIMUM DAN MINIMUM FUNGSI PANHARMONIK Oleh, Edag Cahya M.A. Jrsa Pedidia Matematia FPMIPA UPI Badg Jl. Dr. Setiabdi 9 Badg E-mail ecma@ds.math.itb.ac.id Abstra Tlisa ii mejelasa prisip masimm

Lebih terperinci

BAB 6 NOTASI SIGMA, BARISAN DAN DERET

BAB 6 NOTASI SIGMA, BARISAN DAN DERET BAB 6 NOTASI SIGMA, BARISAN DAN DERET A RINGKASAN MATERI. Notasi Sigma Diberia suatu barisa bilaga, a, a,..., a. Lambag deret tersebut, yaitu: a = a + a +... + a a meyataa jumlah suu pertama barisa Sifat-sifat

Lebih terperinci

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL HENSTOCK- KURZWEIL SERENTAK DAN FUNGSI BERSIFAT LOCALLY SMALL RIEMANN SUMS (LSRS) DARI RUANG EUCLIDE

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL HENSTOCK- KURZWEIL SERENTAK DAN FUNGSI BERSIFAT LOCALLY SMALL RIEMANN SUMS (LSRS) DARI RUANG EUCLIDE Teorema Keovergea Fugsi Teritegral Hestoc(Aiswita) TORMA KKONVRGNAN FUNGSI TRINTGRAL HNSTOCK- KURZWIL SRNTAK DAN FUNGSI BRSIFAT LOCALLY SMALL RIMANN SUMS (LSRS) DARI RUANG UCLID K RUANG BARISAN Aiswita,

Lebih terperinci

Bab 16 Integral di Ruang-n

Bab 16 Integral di Ruang-n Catata Kuliah MA3 Kalulus Elemeter II Oi Neswa,Ph.D., Departeme Matematia-ITB Bab 6 Itegral di uag- Itegral Gada atas persegi pajag Itegral Berulag Itegral Gada atas Daerah sebarag Itegral Gada Koordiat

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 31-41, April 2004, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 31-41, April 2004, ISSN : Vol. 7. No. 1, 31-41, April 24, ISSN : 141-8518 Peetua Kestabila Sistem Kotrol Lup Tertutup Waktu Kotiu dega Metode Trasformasi ke Betuk Kaoik Terkotrol Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI. mandiri jika tidak mengandung t secara eksplisit di dalamnya. (Kreyszig, 1983)

I PENDAHULUAN II LANDASAN TEORI. mandiri jika tidak mengandung t secara eksplisit di dalamnya. (Kreyszig, 1983) I PENDAHULUAN Latar Belaag Permasalaha ebiaa pemaea ia yag memberia eutuga masimum da berelauta (tida teradi epuaha dari populasi ia yag dipae) adalah hal yag sagat petig bagi idustri periaa Para ilmuwa

Lebih terperinci

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 1, No.2, September 2012

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 1, No.2, September 2012 IfiityJual Ilmiah Pogam Studi Matematia STKIP Siliwagi Badug, Vol, No., Septembe HIMPUNAN KOMPAK PADA RUANG METRIK Oleh : Cee Kustiawa Juusa Pedidia Matematia FPMIPA Uivesitas Pedidia Idoesia eeustiawa@yahoo.om

Lebih terperinci

Energi Derajat Maksimal pada Graf Terhubung

Energi Derajat Maksimal pada Graf Terhubung Eergi Derajat Maksimal pada Graf Terhubug Destika Dwi Setyowidi, Lucia Ratasari S.Si, M.Si Program Studi Matematika Jurusa Matematika Uiversitas Dipoegoro Semarag ABSTRAK Graf G adalah pasaga himpua (V,

Lebih terperinci

MODUL BARISAN DAN DERET

MODUL BARISAN DAN DERET MODUL BARISAN DAN DERET SEMESTER 2 Muhammad Zaial Abidi Persoal Blog http://meetabied.wordpress.com BAB I. PENDAHULUAN A. Desripsi Dalam modul ii, ada aa mempelajari pola bilaga, barisa, da deret diidetifiasi

Lebih terperinci

Kestabilan Rangkaian Tertutup Waktu Kontinu Menggunakan Metode Transformasi Ke Bentuk Kanonik Terkendali

Kestabilan Rangkaian Tertutup Waktu Kontinu Menggunakan Metode Transformasi Ke Bentuk Kanonik Terkendali Jural Tekika ISSN : 285-859 Fakultas Tekik Uiversitas Islam Lamoga Volume No.2 Tahu 29 Kestabila Ragkaia Tertutup Waktu Kotiu Megguaka Metode Trasformasi Ke Betuk Kaoik Terkedali Suhariyato ) Dose Fakultas

Lebih terperinci

KETERKAITAN ANTARA MODUL BEBAS DENGAN MODUL DILIHAT DARI SIFAT-SIFAT HOMOMORFISME MODUL

KETERKAITAN ANTARA MODUL BEBAS DENGAN MODUL DILIHAT DARI SIFAT-SIFAT HOMOMORFISME MODUL KETERKAITAN ANTARA MODUL BEBAS DENGAN MODUL DILIHAT DARI SIFAT-SIFAT HOMOMORFISME MODUL Khusul Afifa 1, Abdussakir 2 1 Mahasiswa Jurusa Matematika UIN Maulaa Malik Ibrahim Malag 2 Dose Jurusa Matematika

Lebih terperinci

SOLUSI PERSAMAAN DIFERENSIAL BOLTZMANN LINEAR. Agus Sugandha

SOLUSI PERSAMAAN DIFERENSIAL BOLTZMANN LINEAR. Agus Sugandha JMP : Volume Nomor 2, Oober 2009 SOUSI PERSAMAAN DIFERENSIA BOTZMANN INEAR Agus Sugadha Faulas Sais da Tei, Uiversias Jederal Soedirma Purwoero, Idoesia Email : agussugadha@ymail.com ABSTRACT. I his research,

Lebih terperinci

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS. Abstrak

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS. Abstrak Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA, Fakultas MIPA, Uiversitas Negeri Yogyakarta, 4 Mei 0 SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS Musthofa Jurusa Pedidika Matematika FMIPA

Lebih terperinci

BAB 3 RUANG BERNORM-2

BAB 3 RUANG BERNORM-2 BAB RUANG BERNORM-. Norm- dan Ruang ` De nisi. Misalan V ruang vetor atas R berdimensi d (dalam hal ini d boleh ta hingga). Sebuah fungsi ; V V! R yang memenuhi sifat-sifat beriut;. x; y 0 ia dan hanya

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Bicriteria Liear Programmig (BLP) Pesoala optimisasi dega beberapa fugsi tujua memperhitugka beberapa tujua yag koflik secara simulta, secara umum Multi objective programmig (MOP)

Lebih terperinci

SIFAT-SIFAT DASAR MATRIKS SKEW HERMITIAN Basic Properties of Skew Hermitian Matrices

SIFAT-SIFAT DASAR MATRIKS SKEW HERMITIAN Basic Properties of Skew Hermitian Matrices Jural Barekeg Vol. 7 No. 2 Hal. 19 26 (2013) SIFAT-SIFAT DASAR MATRIKS SKEW HERMITIAN Basic Properties of Skew Hermitia Matrices LIDIA SALAKA 1, HENRY W. M. PATTY 2, MOZART WINSTON TALAKUA 3 1 Mahasiswa

Lebih terperinci

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model.

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model. BAB II LANDASAN TEORI Pada bagia ii aka dibahas tetag teori-teori dasar yag diguaka utuk dalam megestimasi parameter model.. MATRIKS DAN VEKTOR Defiisi : Trace dari matriks bujur sagkar A a adalah pejumlaha

Lebih terperinci

Konvolusi pada Distribusi dengan Support Kompak

Konvolusi pada Distribusi dengan Support Kompak Prosidig SI MaNIs (Semiar Nasioal Itegrasi Matematia da Nilai Islami) Vol1, No1, Juli 2017, Hal 453-457 p-issn: 2580-4596; e-issn: 2580-460X Halama 453 Kovolusi pada Distribusi dega Support Kompa Cythia

Lebih terperinci

INVERS TERGENERALISASI MATRIKS ATAS ALJABAR MAXPLUS Musthofa Jurusan Pendidikan Matematika FMIPA UNY

INVERS TERGENERALISASI MATRIKS ATAS ALJABAR MAXPLUS Musthofa Jurusan Pendidikan Matematika FMIPA UNY INVERS TERGENERALISASI MATRIKS ATAS ALJABAR MAXPLUS Musthofa Jurusa Pedidika Matematika FMIPA UNY musthofa@uy.ac.id Abstrak Jika A matriks atas lapaga, maka pasti terdapat dega tuggal suatu matriks B yag

Lebih terperinci

Nilai Eigen dan Vektor Eigen Matriks atas Aljabar Max-Plus Interval

Nilai Eigen dan Vektor Eigen Matriks atas Aljabar Max-Plus Interval Nilai Eige da Vetor Eige Matris atas Aljabar Max-Plus Iterval 2 M. Ady Rudhito, Sri Wahyui, 3 Ari Suparwato, ad 4 F. Susilo Mahasiswa S3 Mateatia FMIPA UGM da Staff Pegajar FKIP Uiversitas Saata Dhara

Lebih terperinci

TEOREMA INTEGRAL CAUCHY. Drs. GIM TARIGAN Fakultas Matematika dan Ilmu Pengetahuan Alam Jurusan Matematika Universitas Sumatera Utara

TEOREMA INTEGRAL CAUCHY. Drs. GIM TARIGAN Fakultas Matematika dan Ilmu Pengetahuan Alam Jurusan Matematika Universitas Sumatera Utara TEOREMA INTEGRAL AUHY rs. GIM TARIGAN Faultas Matematia da Ilmu Pegetahua Alam Jurusa Matematia Uiversitas umatera Utara PENAHULUAN alam tulisa ii daat ita lihat bahwa teorema Gree daat membutia erbedaa

Lebih terperinci

Ruang Vektor Eigen Suatu Matriks Atas Aljabar Max-Plus Interval. Eigenvector Space of a Matrix of Interval Max-Plus Algebra

Ruang Vektor Eigen Suatu Matriks Atas Aljabar Max-Plus Interval. Eigenvector Space of a Matrix of Interval Max-Plus Algebra Jural Mateatia & Sais April 2014 Vol 19 Noor 1 Ruag Vetor Eige Suatu Matris Atas Alabar Max-Plus Iterval Abstra Siswato 1) Ari Suparwato 2) da M Ady Rudhito 3) 1) Jurusa Mateatia FMIPA UNS Suraarta 2)

Lebih terperinci

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar (pengertian) yang akan digunakan dalam. pembahasan penelitian. 2.

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar (pengertian) yang akan digunakan dalam. pembahasan penelitian. 2. II. LANDASAN TEORI Pada bab ii aka diberika beberapa kosep dasar (pegertia) yag aka diguaka dalam pembahasa peelitia 2.1 Ruag Vektor Defiisi 3.1.1 (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da

Lebih terperinci

RUANG BASIS SOLUSI. Ini disusun untuk memenuhi tugas mata kuliah. Aljabar Linier DISUSUN OLEH : DONNA SEPTIAN CAHYA RINI (08411.

RUANG BASIS SOLUSI. Ini disusun untuk memenuhi tugas mata kuliah. Aljabar Linier DISUSUN OLEH : DONNA SEPTIAN CAHYA RINI (08411. RUANG BASIS SOLUSI Ii disusu utuk memeuhi tugas mata kuliah Aljabar Liier DISUSUN OLEH : DONNA SEPIAN CAHYA RINI (08411.114) FIRIA ASUI (08411.133) NURUL AISYAH (08411.211) SULIS SEYOWAI (08411.260) SULISIANI

Lebih terperinci

MASALAH DISTRIBUSI BOLA KE DALAM WADAH SEBAGAI FUNGSI ATAU KUMPULAN FUNGSI

MASALAH DISTRIBUSI BOLA KE DALAM WADAH SEBAGAI FUNGSI ATAU KUMPULAN FUNGSI Vol. 11, No. 1, 45-55, Juli 2014 MASALAH DISTRIBUSI BOLA KE DALAM WADAH SEBAGAI FUNGSI ATAU KUMPULAN FUNGSI Fauziah Baharuddi 1, Loey Haryato 2, Nurdi 3 Abstra Peulisa ii bertujua utu medapata perumusa

Lebih terperinci

Aplikasi diagonalisasi matriks pada rantai Markov

Aplikasi diagonalisasi matriks pada rantai Markov J. Sains Dasar 2014 3(1) 20-24 Apliasi diagonalisasi matris pada rantai Marov (Application of matrix diagonalization on Marov chain) Bidayatul hidayah, Rahayu Budhiyati V., dan Putriaji Hendiawati Jurusan

Lebih terperinci

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum BAB II TEORI DASAR 2.1 Aljabar Liier Defiisi 2. 1. 1 Grup Himpua tak kosog G disebut grup (G, ) jika pada G terdefiisi operasi, sedemikia rupa sehigga berlaku : a. Jika a, b eleme dari G, maka a b eleme

Lebih terperinci

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B.

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B. TUGAS ANALISIS REAL LANJUT NOVEMBER 207 () (a) Jika b > 0, B > 0, da a b < A, buktika ab < ba. Kemudia buktika B a b < a + A b + B < A B. (b) Buktika [ 2 (a + b)] 2 2 (a2 + b 2 ). Kemudia tujukka bahwa

Lebih terperinci

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Ruag Baach Sumaag Muhtar Gozal UNIVERSITAS PENDIDIKAN INDONESIA Satu kose etg d kulah Aalss ugsoal adalah teor ruag Baach. Pada baga aka drevu defs, cotoh-cotoh, serta sfat-sfat etg ruag Baach. Kta aka

Lebih terperinci

3.1 TEOREMA DASAR ARITMATIKA

3.1 TEOREMA DASAR ARITMATIKA 3. TEOREMA DASAR ARITMATIKA Definisi 3. Suatu bilangan bulat > disebut (bilangan) rima, jia embagi ositif bilangan tersebut hanya dan. Jia bilangan bulat lebih dari satu buan bilangan rima disebut (bilangan)

Lebih terperinci

3. Integral (3) (Integral Tentu)

3. Integral (3) (Integral Tentu) Darublic www.darublic.com. Itegral () (Itegral Tetu).. Luas Sebagai Suatu Itegral. Itegral Tetu Itegral tetu meruaa itegral ag batas-batas itegrasia jelas. Kose dasar dari itegral tertetu adalah luas bidag

Lebih terperinci

RUANG VEKTOR MATRIKS FUZZY

RUANG VEKTOR MATRIKS FUZZY RUANG VEKTOR MATRIKS FUZZY Siti Robiatul Adawiyah 1, Rade Sulaima 2 1 Jurusa Matematika, Fakultas Matematika da Ilmu Pegetahua Alam, Uiversitas Negeri Surabaya, 60231 2 Jurusa Matematika, Fakultas Matematika

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG MASALAH

BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG MASALAH BAB ENDAHULUAN. LATAR BELAKANG MASALAH Dalam kehidua yata, sejumlah feomea daat diikirka sebagai ercobaa yag mecaku sederata egamata yag berturut-turut da buka satu kali egamata. Umumya, tia egamata dalam

Lebih terperinci

Ring Noetherian dan Ring Artinian

Ring Noetherian dan Ring Artinian Jual Saismat, Maet 2013, Halama 79-83 ISSN 2086-6755 htt://ojs.um.ac.id/idex.h/saismat Vol. II, No. I Rig Noetheia da Rig Atiia The Atiia Rig ad The Noetheia Rig Fitiai Juusa Matematia Seolah Tiggi Ilmu

Lebih terperinci

RINGKASAN SKRIPSI MODUL PERKALIAN

RINGKASAN SKRIPSI MODUL PERKALIAN RINGKASAN SKRIPSI MODUL PERKALIAN SAMSUL ARIFIN 04/177414/PA/09899 DEPARTEMEN PENDIDIKAN NASIONAL UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM YOGYAKARTA 2008 HALAMAN PENGESAHAN

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Vol. 6. No., 97-09, Agustus 003, ISSN : 40-858 METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak Tulisa ii membahas peetua persamaa ruag

Lebih terperinci

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma Soal-Soal da Pembahasa Matematika Dasar SBMPTN - SNMPTN 01 Taggal Ujia: 1 Jui 01 1. Jika a da b adalah bilaga bulat positip yag memeuhi a b = 0-19, maka ilai a + b adalah... A. 3 C. 19 E. 3 B. 7 D. 1 BAB

Lebih terperinci

ANALISIS HUBUNGAN KETAKSAMAAN NILAI SINGULAR PADA PEMETAAN LINIER DAN RENTANG NUMERIK UNTUK FUNGSI EKSPONENSIAL MATRIKS

ANALISIS HUBUNGAN KETAKSAMAAN NILAI SINGULAR PADA PEMETAAN LINIER DAN RENTANG NUMERIK UNTUK FUNGSI EKSPONENSIAL MATRIKS ANALISIS HUBUNGAN KETAKSAMAAN NILAI SINGULAR PADA PEMETAAN LINIER DAN RENTANG NUMERIK UNTUK FUNGSI EKSPONENSIAL MATRIKS MNatsir 1) Asli Sirait ) Musraii 3) Rola Pae 4) Jurusa Matematika Fakultas Matematika

Lebih terperinci

BARISAN PANGKAT TERURUT MATRIKS PADA ALJABAR MAX PLUS

BARISAN PANGKAT TERURUT MATRIKS PADA ALJABAR MAX PLUS BRISN PNGKT TERURUT MTRIKS PD LJBR MX PLUS Nurwa Jurusa Matematika FMIP Uiversitas Negeri Gorotalo E-mail: urwa_mat@ug.ac.id bstrak Diberika matriks R yag memeuhi = λ. Matriks adalah k + c c k taktereduksi

Lebih terperinci

Dasar Sistem Pengaturan - Transformasi Laplace. Transformasi Laplace bilateral atau dua sisi dari sinyal bernilai riil x(t) didefinisikan sebagai :

Dasar Sistem Pengaturan - Transformasi Laplace. Transformasi Laplace bilateral atau dua sisi dari sinyal bernilai riil x(t) didefinisikan sebagai : Defiisi Trasformasi Laplace Trasformasi Laplace Bilateral Trasformasi Laplace bilateral atau dua sisi dari siyal berilai riil x(t) didefiisika sebagai : X B x(t)e Operasi trasformasi Laplace bilateral

Lebih terperinci

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma Soal-Soal da Pembahasa Matematika Dasar SNMPTN 01 Taggal Ujia: 1 Jui 01 1. Jika a da b adalah bilaga bulat positip yag memeuhi a b 0-19, maka ilai a + b adalah... A. 3 C. 19 E. 3 B. 7 D. 1 BAB I Perpagkata

Lebih terperinci

GRUP TERURUT PARSIAL PADA MATRIKS SIMETRI BERUKURAN 2 2

GRUP TERURUT PARSIAL PADA MATRIKS SIMETRI BERUKURAN 2 2 Jural LOG!K@, Jilid 7, No, 7, Hal 46-5 ISSN 978 8568 GRU ERURU ARSIAL ADA MARIKS SIMERI BERUKURAN Irmatul Hasaah Uiversitas Islam Negeri Sulta Maulaa Hasauddi Bate Email: irmatulhasaah@uibateacid Abstract:

Lebih terperinci

MATA KULIAH MATEMATIKA TEKNIK 2 [KODE/SKS : KD / 2 SKS] Ruang Vektor

MATA KULIAH MATEMATIKA TEKNIK 2 [KODE/SKS : KD / 2 SKS] Ruang Vektor MATA KULIAH MATEMATIKA TEKNIK [KODE/SKS : KD4 / SKS] Ruang Vetor FIELD: Ruang vetor V atas field salar K adalah himpunan ta osong dengan operasi penjumlahan vetor dan peralian salar. Himpunan ta osong

Lebih terperinci

Bab 6: Analisa Spektrum

Bab 6: Analisa Spektrum BAB Aalisa Spetrum Bab : Aalisa Spetrum Aalisa Spetrum Dega DFT Tujua Belajar Peserta dapat meghubuga DFT dega spetrum dari sial hasil samplig sial watu otiue. -poit DFT dari sial x adalah Xω ag diealuasi

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS TRIDIAGONAL NISA RACHMANI G

NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS TRIDIAGONAL NISA RACHMANI G NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS TRIDIAGONAL NISA RACHMANI G5435 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 8 ABSTRACT NISA RACHMANI. Eigevales

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA Pada bab ii aka dituliska beberapa aspek teoritis berupa defiisi, teorema da sifat-sifat yag berhubuga dega aljabar liear, struktur aljabar da teori kodig yag diguaka sebagai

Lebih terperinci

PENGOLAHAN SINYAL DIGITAL. Modul 5. Sistem Waktu Diskret dan Aplikasi TZ

PENGOLAHAN SINYAL DIGITAL. Modul 5. Sistem Waktu Diskret dan Aplikasi TZ PENGOLHN SINL DIGITL Modul 5. Sistem Watu Disret da pliasi TZ Cotet Overview Sistem Watu Disrit Sstem Properties Shift Ivariace, Kausalitas, Stabilitas diaita dega TZ Trasformasi sistem dari persamaa differece

Lebih terperinci

PROSIDING ISSN:

PROSIDING ISSN: PROSIDING ISSN: 5-656 OPTIMISASI BERKENDALA MENGGUNAKAN METODE GRADIEN TERPROYEKSI Nida Sri Uami Uiversias Muhammadiyah Suraara idaruwiyai@gmailcom ABSTRAK Dalam ulisa ii dibahas eag meode gradie erproyesi

Lebih terperinci

SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN (FIELD)

SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN (FIELD) SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN (FIELD) Muhamad Zaki Riyato NIM: 02/156792/PA/08944 E-mail: zaki@mail.ugm.ac.id http://zaki.math.web.id Dose Pembimbig: Pof. D. Si Wahyui Pedahulua Sebelum melagkah

Lebih terperinci