BAB 2 LANDASAN TEORI. lebar pita sinyal tersebut. Pada kebanyakan aplikasi, termasuk kamera digital video dan

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 LANDASAN TEORI. lebar pita sinyal tersebut. Pada kebanyakan aplikasi, termasuk kamera digital video dan"

Transkripsi

1 BAB LADASA TEORI Teorema Shao-yquist meyataa agar tida ada iformasi yag hilag etia pecuplia siyal, maa ecepata pecuplia harus miimal dua ali dari lebar pita siyal tersebut. Pada ebayaa apliasi, termasu amera digital video da citra, ilai yquist-rate sagat tiggi sehigga meghasila jumlah data yag baya sehigga pemampata sagat diperlua sebelum data disimpa atau diirima. Pada apliasi-apliasi lai seperti pecitraa medis da high-speed ADC meigata ecepata pecuplia memerlua biaya yag sagat mahal.. Represetasi da Aprosimasi Represetasi adalah bagaimaa meyataa suatu siyal dalam basis pembetuya. Represetasi siyal satu dimesi adalah meyataa suatu siyal satu dimesi dalam basis pembetuya. Represetasi tida megubah baya data siyal asli. Represetasi dilaua dega harapa suatu siyal diyataa dalam basis pembetu yag tepat sehigga meghasila pemampata atau sparsity. Dega sparsity maa haya sebagia ilai oefisie yag besar yag memuat sebagia besar iformasi dari siyal. Sedaga sebagia besar laiya memilii ilai oefisie yag ecil yag tida memuat iformasi dari siyal sehigga dapat dihilaga. 7

2 8 Rumus represetasi adalah sebagai beriut: f i I α ϕ i i ) Dimaa : f α i ϕ i : suatu siyal : oefisie : basis Basis dalam suatu trasformasi bergua utu merepresetasia sebuah siyal da ilai. Misala pada fourier trasform yag memilii basis sius maa dapat diataa bahwa siyal yag dihasila aa berbetu sius da memilii ilai-ilai tertetu. Basis sius diguaa juga pada teorema samplig yag dapat merepresetasia setiap fugsi yag dibatasi fiite fuctio) da prosesya dapat diselesaia dega sampel-sampel. Selai itu basis juga berpegaruh dalam aprosimasi. Basis yag berbeda dapat memberia ilai aprosimasi yag berbeda pula. Aprosimasi merupaa pedeata dalam megambil suatu data. Data yag diambil haya sebagia sedaga sisa dataya dijadia ol. Ketia melaua aprosimasi maa aa terdapat selisih atara data asli dega data yag diaprosimasi. Selisih ii yag dieal dega sebuta orm error. Beriut adalah betu persamaaya [7] : f t) fˆ t) f t) fˆ t) dt / )

3 9 Aprosimasi dapat dibedaa mejadi dua jeis yaitu: Aprosimasi liier Pada aprosimasi liier sebagia data yag diambil adalah data yag terleta di bagia depa sedaga sisaya dijadia ol. Baya data yag diambil tergatug dari persetase data yag diigia. Cotohya dapat dilihat di bawah ii: Misala terdapat data siyal iput: - 0,03-0,0-0,07-0,0 0, 0,0 0,08-0,43-0,7 0,09 Bila persetase data yag diigia adalah 0 % maa data yag diambil adalah sebaya data. Hal ii didapat dari 0 % dialia dega bayaya jumlah data siyal iput. Dari cotoh di atas jumlah data siyal iput adalah sebaya 0 data. Jadi data yag diambil 0 % x 0 data. Sehigga data siyal iput aa mejadi: - 0,03-0, Aprosimasi oliier Pada aprosimasi oliier sebagia data yag diambil adalah data yag palig besar setelah data-data tersebut diabsoluta. Data-data yag tida diambil dijadia ol. Sama seperti aprosimasi liier baya data yag diambil pada aprosimasi oliier tergatug dari

4 0 persetase data yag diigia. Cotohya dapat dilihat di bawah ii: Misala terdapat data siyal iput: - 0,03-0,0-0,07-0,0 0, 0,0 0,08-0,43-0,7 0,09 Beriut adalah data siyal iput di atas yag telah diabsoluta: 0,03 0,0 0,07 0,0 0, 0,0 0,08 0,43 0,7 0,09 Bila persetase data yag diigia adalah 40 % maa data yag diambil adalah sebaya 4 data. Hal ii didapat dari 40 % dialia dega bayaya jumlah data siyal iput. Dari cotoh di atas jumlah data siyal iput adalah sebaya 0 data. Jadi data yag diambil 40 % x 0 4 data. Sehigga data siyal iput aa mejadi: , 0 0-0,43-0,7 0,09. Sparsity Kebayaa siyal alami memilii represetasi yag padat etia diyataa e dalam basis yag tepat. Sebagai cotoh, pada Gambar. a) da trasformasi wavelet-ya pada Gambar. b). Walaupu hampir seluruh pisel citra memilii ilai tida ol, amu ebayaa oefisie wavelet-ya berilai ecil da haya sediit oefisie yag berilai besar dimaa memuat sebagia besar iformasi dari citra.

5 Gambar. a) Citra asli beruura Megapisel. b) Koefisie-oefisie wavelet. c) Reotrusi citra yag didapata dega haya megguaa oefisie wavelet terbesar. Secara matemati, jia suatu vetor x R yag direpresetasia megguaa basis orthoormal misalya basis wavelet) Ψ [ ψ ψ... ] seperti persamaa beriut: ψ x i siψ i ) t 3) Dimaa s i adalah oefisie dari x didapata dari, s i x, ψ, biasaya i 3) ditulisa dalam betu matris x Ψs dimaa Ψ adalah matris sedaga x da s berupa vetor olom ). Siyal x diataa K-sparse jia haya K dari oefisie-oefisie s berilai tida ol sedaga sejumlah -K) oefisie berilai ol. Jia K <<, maa siyal x diataa compressible [8]. Dega haya megambil oefisie-oefisie berilai besar da megabaia sisaya mejadi prisip dasar pemampata data seperti JPEG-000 da stadar

6 pemampata data laiya [9]. Tei pemampata data seperti di atas disebut dega trasform-codig, walaupu memberia pemampata data yag bai da diguaa pada baya stadar pemampata saat ii, amu memilii etidaefisie-a yaitu pertama jumlah data semula mugi sagat besar walaupu jumlah K ecil, e-dua seluruh oefisie trasformasi harus dihitug walaupu atiya haya sejumlah K oefisie terbesar yag diambil sedaga sisaya dibuag, e-tiga loasi dari K oefisie terbesar tersebut harus disimpa, Gambar. memperlihata etidaefisie-a tersebut [0]. Gambar. Blo diagram stadar trasform-codig yag saat ii diguaa..3 Fourier Trasform Trasformasi Fourier) Dipereala pertama ali oleh Jea Baptiste Joseph Fourier pada tahu 807. Dia meyataa bahwa semua siyal periodi yag otiu dapat diyataa sebagai jumlah dari siyal-siyal siusoidal dega freuesi, amplitudo, da fasa yag tertetu [][]. Dega fourier trasform, suatu siyal

7 3 dalam domai watu dapat direpresetasia e dalam domai freuesi. ilaiilai freuesi dari siyal tersebut dapat dietahui setelah direpresetasia e dalam domai freuesi. amu dalam domai freuesi tida terdapat iformasi watu apa freuesi-freuesi tersebut mucul. Karea hal iilah maa fourier trasform haya coco utu siyal stasioer da tida coco utu siyal o-stasioer. Hal ii disebaba fourier trasform megaalisa siyal dalam eseluruha watu dari awal samplig higga ahir samplig) sehigga mucul asumsi bahwa iformasi freuesi siyal tersebut terjadi dalam setiap watu. Padahal belum tetu freuesi-freuesi tersebut terjadi dalam setiap watu pada siyal tersebut. Iilah yag mejadi euraga dari fourier trasform dalam megaalisa suatu siyal..4 Discrete Cosie Tasform DCT) Discrete Cosie Trasform DCT) merupaa suatu tei yag diguaa utu melaua oversi siyal e dalam ompoe freuesi pembetuya dega cara memperhituga ilai riil dari hasil trasformasiya. Dari amaya dapat dietahui bahwa DCT haya megguaa gelombag cosius cosie waves). DCT merupaa trasformasi yag berhubuga dega fourier trasform, amu DCT haya megguaa bilaga-bilaga riilya [3]. DCT dapat dielompoa mejadi dua yaitu DCT maju da DCT bali.

8 4.4. Discrete Cosie Trasform Maju Forward DCT) Persamaa forward DCT yag diguaa yaitu:, ) ) )cos ) ) x w y π,..., Dimaa,, ) w adalah pajag dari x), x) adalah ilai siyal asli, y) adalah ilai dari forward DCT, x) da y) mempuyai uura yag sama..4. Discrete Cosie Trasform Bali Iverse DCT) Pada iverse DCT dilaua proses reostrusi yaitu megembalia ompoe freuesi mejadi ompoe siyal semula. Persamaa yag diguaa yaitu:, ) ) )cos ) ) y w x π,..., Dimaa,, ) w.4) 5) 6)

9 5 adalah pajag dari y), y) adalah ilai dari forward DCT, x) adalah ilai dari iverse DCT, x) da y) mempuyai uura yag sama..5 Wavelet Trasform Trasformasi Wavelet) Dega berembagya tei-tei aalisa siyal maa mucullah suatu osep baru yag dapat megatasi euraga dari fourier trasform da tei aalisa siyal tersebut diamaa dega Wavelet Trasform. Wavelet trasform mulai dipereala pada tahu 980-a oleh Morlet da Grossma sebagai fugsi matematis utu merepresetasia data atau fugsi sebagai alteratif trasformasi-trasformasi matematia yag lahir sebelumya utu meagai masalah resolusi. Sebuah wavelet merupaa gelombag sigat small wave) yag eergiya terosetrasi pada suatu selag watu utu memberia emampua aalisis trasie, etidastasioera, atau feomea berubah terhadap watu time varyig). Karateristi dari wavelet atara lai adalah berosilasi sigat, traslasi pergesera), da dilatasi sala). Wavelet trasform memilii emampua utu megaalisa suatu data dalam domai watu da domai freuesi secara bersamaa. Aalisa data pada wavelet trasform dilaua dega medeomposisia suatu siyal e dalam ompoe-ompoe freuesi yag berbeda-beda da selajutya masigmasig ompoe freuesi tersebut dapat diaalisa sesuai dega sala resolusiya atau level deomposisiya. Hal ii seperti proses filterig, dimaa siyal dalam domai watu dilewata e dalam low-pass filter LPF) da high-

10 6 pass filter HPF) utu memisaha ompoe freuesi tiggi da freuesi redah [4]. Tahap pertama aalisis wavelet adalah meetua tipe wavelet atau mother wavelet yag aa diguaa. Hal ii perlu dilaua area fugsi wavelet sagat bervariasi. Beberapa cotoh mother wavelet adalah Haar, Daubechies, Biortoghoal, Coiflets, Symlets, Morlet, Mexica Hat, da Meyer. Setelah pemiliha mother wavelet, tahap selajutya adalah membetu basis wavelet yag aa diguaa utu metrasformasia siyal. Berdasara jeis siyal yag diprosesya, wavelet trasform dapat dibagi mejadi dua bagia besar, yaitu Cotiuous Wavelet Trasform CWT) da Discrete Wavelet Trasform DWT)..5. Discrete Wavelet Trasform Trasformasi Wavelet Disrit) Discrete wavelet trasform DWT) secara umum merupaa deomposisi siyal pada freuesi subbad siyal tersebut. Kompoe subbad wavelet trasform dihasila dega cara peurua level deomposisi. Implemetasi DWT dapat dilaua dega cara melewata siyal melalui sebuah LPF da HPF serta melaua dowsamplig pada eluara masig-masig filter seperti yag ditujua pada Gambar.3 [5].

11 7 Gambar.3 Proses DWT. Dimaa : x[] : Siyal asli g[] : Low-Pass Filter LPF) h[] : High-Pass Filter HPF) Keluara dari LPF merupaa oefisie aprosimasi dari DWT da eluara dari HPF merupaa oefisie detail dari DWT. DWT yag diguaa dalam peelitia ii adalah Liftig Wavelet Trasform LWT)..5. Liftig Wavelet Trasform Trasformasi Wavelet Liftig) Liftig wavelet trasform LWT) adalah salah satu bagia dari DWT yag dieala oleh Wim Sweldes. LWT ii emudia disebut sebagai geerasi edua DWT. Pada DWT dilaua proses beberapa filter secara terpisah, sedaga dega LWT operasi proses dibagi da diproses secara bersamaa [6]. Proses pada LWT diamaa dega Predict P) da Update U).

12 8 Gambar.4 Proses LWT. Dapat dilihat pada Gambar.4 bahwa pada proses LWT, proses Predict P) da Update U) dibagi mejadi dua bagia da diproses secara bersamaa. Cara erja LWT seperti iilah yag membuat tei ii lebih efisie dibadiga dega DWT. Dalam peelitia ii, tipe wavelet atau mother wavelet yag aa diguaa adalah jeis Biortoghoal Liftig Wavelet Trasform Maju Forward LWT) Gambar.5 Sema Liftig Wavelet Trasform Maju. Proses forward LWT adalah dega membagi split) siyal Sj yag masu e dalam tahap yaitu utu gajil eve j+ ) da geap odd j+ ). Dimaa pada

13 9 tahap gajil eve j+ ) diambil ilai siyal dari S 0 sampai S/)-, sedaga pada tahap geap odd j+ ) diambil ilai siyal dari S/)- sampai Sj-. Tahap gajil dilaua dega oefisie Predict P) sedaga tahap geap dilaua dega oefisie Update U)..5.. Liftig Wavelet Trasform Bali Iverse LWT) Gambar.6 Sema Liftig Wavelet Trasform Bali. Iverse LWT adalah proses reostrusi yaitu megembalia ompoe freuesi mejadi ompoe siyal semula..6 Mea Square Error MSE) Mea Square Error MSE) merupaa uura otrol ualitas yag diguaa utu megetahui ualitas dari suatu proses. MSE meghitug seberapa besar pergesera data atara siyal sumber da siyal hasil eluara, dimaa siyal sumber da siyal hasil eluara memilii uura yag sama. ilai MSE yag bai adalah medeati ol MSE 0).

14 0 Rumus dari perhituga MSE adalah [7] : MSE i S S e ) 7) Dimaa : MSE : Mea Square Error S : Siyal sumber S e : Siyal Hasil Keluara : Pajag siyal.7 Pea Sigal to oise Ratio PSR) Pea Sigal to oise Ratio PSR) adalah perbadiga atara ilai masimum siyal sumber dega ilai rata-rata uadrat error MSE). ilai PSR yag bai adalah ta higga PSR ). PSR dihitug dalam satua desibel db). Desibel adalah satua yag serigali diguaa dalam meyataa perbedaa relatif euata siyal. Desibel diyataa sebagai logaritmi basis 0 yag merupaa rasio dari dua siyal.

15 Rumus dari perhituga PSR adalah [8] : PSR db) 0x log 0 Max siyal MSE 8) Dimaa : PSRdB) : Pea Sigal to oise Ratio dalam desibel Max Siyal : ilai masimum siyal sumber MSE : Mea Square Error

Representasi sinyal dalam impuls

Representasi sinyal dalam impuls Represetasi siyal dalam impuls Represetasi siyal dalam impuls adalah siyal yag diyataa sebagai fugsi dari impuls atau sebagai umpula dari impuls-impuls. Sembarag siyal disret dapat diyataa sebagai pejumlaha

Lebih terperinci

Bab 5 Sinyal dan Sistem Waktu Diskrit. Oleh: Tri Budi Santoso Laboratorium Sinyal, EEPIS-ITS

Bab 5 Sinyal dan Sistem Waktu Diskrit. Oleh: Tri Budi Santoso Laboratorium Sinyal, EEPIS-ITS Bab 5 Siyal da Sistem Watu Disrit Oleh: Tri Budi Satoso Laboratorium Siyal, EEPIS-ITS Materi: Represetasi matemati pada siyal watu disrit, domai watu da freuesi pada suatu siyal watu disrit, trasformasi

Lebih terperinci

Bab 6: Analisa Spektrum

Bab 6: Analisa Spektrum BAB Aalisa Spetrum Bab : Aalisa Spetrum Aalisa Spetrum Dega DFT Tujua Belajar Peserta dapat meghubuga DFT dega spetrum dari sial hasil samplig sial watu otiue. -poit DFT dari sial x adalah Xω ag diealuasi

Lebih terperinci

MACAM-MACAM TEKNIK MEMBILANG

MACAM-MACAM TEKNIK MEMBILANG 0 MACAM-MACAM TEKNIK MEMBILANG ATURAN PERKALIAN Beriut ii diberia sebuah dalil tetag peetua baya susua yag palig sederhaa dalam suatu permasalaha yag beraita dega peluag. Dalil 2.1: ATURAN PERKALIAN SECARA

Lebih terperinci

Penggunaan Transformasi z

Penggunaan Transformasi z Pegguaa Trasformasi pada Aalisa Respo Freuesi Sistem FIR Oleh: Tri Budi Satoso E-mail:tribudi@eepis-its.eduits.edu Lab Siyal,, EEPIS-ITS ITS /3/6 osep pemiira domais of represetatio Domai- discrete time:

Lebih terperinci

BAB 2 LANDASAN TEORI. linear antara atom-atom (tiap kolom dalam matriks sebuah dictionary), dengan

BAB 2 LANDASAN TEORI. linear antara atom-atom (tiap kolom dalam matriks sebuah dictionary), dengan BAB 2 LADASA TEORI 2.1 Represetasi da Sparsity Represetasi siyal adalah suatu koefisie yag meyataka suatu siyal dalam betuk siyal basis. Represetasi siyal diperoleh dari hubuga kombiasi liear atara atom-atom

Lebih terperinci

Gambar 3.1Single Channel Multiple Phase

Gambar 3.1Single Channel Multiple Phase BAB III MODEL ANTRIAN PADA PEMBUATAN SIM C. Sigle Chael Multiple Phase Sistem atria sigle chael multiple phase merupaa sistem atria dimaa pelagga yag tiba, dapat memasui sistem dega megatri di tempat yag

Lebih terperinci

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C.

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C. BAB II LANDASAN TEORI Pada bab ii aa dibahas teori teori yag meduug metode upper level set sca statistics, atara lai peubah aca, distribusi gamma, fugsi gamma, fugsi lielihood, da uji rasio lielihood.

Lebih terperinci

BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE)

BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE) BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE) 5.1. Pembagit Radom Variate Disrit Suatu Radom Variate diartia sebagai ilai suatu radom variate yag mempuyai distribusi tertetu. Utu megambil

Lebih terperinci

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu

Lebih terperinci

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain.

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain. BARIAN DAN DERET A. Barisa Barisa adalah uruta bilaga yag memilii atura tertetu. etiap bilaga pada barisa disebut suu barisa yag dipisaha dega lambag, (oma). Betu umum barisa:,, 3, 4,, dega: = suu pertama

Lebih terperinci

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu

Lebih terperinci

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG)

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG) PEMBAHASAN SOAL OLIMPIADE SAINS NASIONAL SMP A. ISIAN SINGKAT SELEKSI TINGKAT PROPINSI TAHUN 011 BIDANG STUDI MATEMATIKA WAKTU : 150 MENIT 1. Jia x adalah jumlah 99 bilaga gajil terecil yag lebih besar

Lebih terperinci

MODUL BARISAN DAN DERET

MODUL BARISAN DAN DERET MODUL BARISAN DAN DERET SEMESTER 2 Muhammad Zaial Abidi Persoal Blog http://meetabied.wordpress.com BAB I. PENDAHULUAN A. Desripsi Dalam modul ii, ada aa mempelajari pola bilaga, barisa, da deret diidetifiasi

Lebih terperinci

PENGHALUSAN DERAU PADA PENERIMAAN SINYAL VIDEO TELEVISI BERWARNA MENGGUNAKAN METODE WAVELET

PENGHALUSAN DERAU PADA PENERIMAAN SINYAL VIDEO TELEVISI BERWARNA MENGGUNAKAN METODE WAVELET PENGHALUSAN DERAU PADA PENERIMAAN SINYAL VIDEO TELEVISI BERWARNA MENGGUNAKAN METODE WAVELET Bledug Kusuma P. * Fathul Qodir *, Nurul Qhomariyah ** * Tei Eletro FT Uiversitas Muhammadiyah Yogyaarta Jala

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 5

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 5 Mata Kuliah : Matematia Disrit Program Studi : Tei Iformatia Miggu e : 5 KOMBINATORIAL PENDAHULUAN Persoala ombiatori bua merupaa persoala baru dalam ehidupa yata. Baya persoala ombiatori sederhaa telah

Lebih terperinci

Aplikasi Sistem Orthonormal Di Ruang Hilbert Pada Deret Fourier

Aplikasi Sistem Orthonormal Di Ruang Hilbert Pada Deret Fourier Apliasi Sistem Orthoormal Di Ruag Hilbert Pada Deret Fourier A 7 Fitriaa Yuli S. FMIPA UNY Abstra Ruag hilbert aa dibahas pada papper ii. Apliasi system orthoormal aa diaji da aa diapliasia pada ruahg

Lebih terperinci

Perluasan Uji Kruskal Wallis untuk Data Multivariat

Perluasan Uji Kruskal Wallis untuk Data Multivariat Statistia, Vol. No., Mei Perluasa Uji Krusal Wallis utu Data Multivariat TETI SOFIA YANTI Program Studi Statistia, Uiversitas Islam Badug, Jl. Purawarma No. Badug. E-mail: buitet@yahoo.com ABSTAK Adaia

Lebih terperinci

BAB 6 NOTASI SIGMA, BARISAN DAN DERET

BAB 6 NOTASI SIGMA, BARISAN DAN DERET BAB 6 NOTASI SIGMA, BARISAN DAN DERET A RINGKASAN MATERI. Notasi Sigma Diberia suatu barisa bilaga, a, a,..., a. Lambag deret tersebut, yaitu: a = a + a +... + a a meyataa jumlah suu pertama barisa Sifat-sifat

Lebih terperinci

Bab 16 Integral di Ruang-n

Bab 16 Integral di Ruang-n Catata Kuliah MA3 Kalulus Elemeter II Oi Neswa,Ph.D., Departeme Matematia-ITB Bab 6 Itegral di uag- Itegral Gada atas persegi pajag Itegral Berulag Itegral Gada atas Daerah sebarag Itegral Gada Koordiat

Lebih terperinci

7. Perbaikan Kualitas Citra

7. Perbaikan Kualitas Citra 7. Perbaia Kualitas Citra Perbaia ualitas citra (image ehacemet) merupaa salah satu proses awal dalam pegolaha citra (image preprocessig). Perbaia ualitas diperlua area serigali citra yag diadia obe pembahasa

Lebih terperinci

PERBANDINGAN PENDEKATAN SEPARABLE PROGRAMMING DENGAN THE KUHN-TUCKER CONDITIONS DALAM PEMECAHAN MASALAH NONLINEAR

PERBANDINGAN PENDEKATAN SEPARABLE PROGRAMMING DENGAN THE KUHN-TUCKER CONDITIONS DALAM PEMECAHAN MASALAH NONLINEAR Jural Tei da Ilmu Komputer PERBANDINGAN PENDEKATAN SEPARABLE PROGRAMMING DENGAN THE KUHN-TUCKER CONDITIONS DALAM PEMECAHAN MASALAH NONLINEAR Budi Marpaug Faultas Tei da Ilmu Komputer Jurusa Tei Idustri

Lebih terperinci

BAB II TINJAUAN PUSTAKA. membahas distribusi normal dan distribusi normal baku, penaksir takbias μ dan σ,

BAB II TINJAUAN PUSTAKA. membahas distribusi normal dan distribusi normal baku, penaksir takbias μ dan σ, BAB II TINJAUAN PUSTAKA.1 Pedahulua Dalam peulisa materi poo dari sripsi ii diperlua beberapa teori-teori yag meduug, yag mejadi uraia poo pada bab ii. Uraia dimulai dega membahas distribusi ormal da distribusi

Lebih terperinci

BAHAN AJAR DIKLAT GURU MATEMATIKA

BAHAN AJAR DIKLAT GURU MATEMATIKA BAHAN AJAR DIKLAT GURU MATEMATIKA DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN 005 DAFTAR ISI Kata Pegatar.. i Daftar Isi...

Lebih terperinci

3. Integral (3) (Integral Tentu)

3. Integral (3) (Integral Tentu) Darublic www.darublic.com. Itegral () (Itegral Tetu).. Luas Sebagai Suatu Itegral. Itegral Tetu Itegral tetu meruaa itegral ag batas-batas itegrasia jelas. Kose dasar dari itegral tertetu adalah luas bidag

Lebih terperinci

PEMBUKTIAN SIFAT RUANG BANACH PADA D(K)

PEMBUKTIAN SIFAT RUANG BANACH PADA D(K) JMP : Volume 4 Nomor 1, Jui 2012, hal. 41-50 PEMBUKTIAN SIFAT RUANG BANACH PADA D(K) Malahayati Program Studi Matematia Faultas Sais da Teologi UIN Sua Kalijaga malahayati_01@yahoo.co.id ABSTRACT. I this

Lebih terperinci

Metode Perhitungan Grafik Dalam Geolistrik Tahanan Jenis Bumi Dengan Derajat Pendekatan Satu

Metode Perhitungan Grafik Dalam Geolistrik Tahanan Jenis Bumi Dengan Derajat Pendekatan Satu Metode Perhituga Grafi.. P. Maurug Metode Perhituga Grafi Dalam Geolistri Tahaa Jeis Bumi Dega Derajat Pedeata Satu Posma Maurug Jurusa Fisia, FMIPA Uiversitas Lampug Jl. S. Brojoegoro No. Badar Lampug

Lebih terperinci

1) Leptokurtik Merupakan distribusi yang memiliki puncak relatif tinggi

1) Leptokurtik Merupakan distribusi yang memiliki puncak relatif tinggi Statisti Desriptif Keruciga atau Kurtosis Pegertia Kurtosis Peguura urtosis (peruciga) sebuah distribusi teoritis adaalaya diamaam peguura eses (excess) dari sebuah distribusi Sebearya urtosis bisa diaggap

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI. mandiri jika tidak mengandung t secara eksplisit di dalamnya. (Kreyszig, 1983)

I PENDAHULUAN II LANDASAN TEORI. mandiri jika tidak mengandung t secara eksplisit di dalamnya. (Kreyszig, 1983) I PENDAHULUAN Latar Belaag Permasalaha ebiaa pemaea ia yag memberia eutuga masimum da berelauta (tida teradi epuaha dari populasi ia yag dipae) adalah hal yag sagat petig bagi idustri periaa Para ilmuwa

Lebih terperinci

PENGEDITAN DETIL KURVA DENGAN METODE CURVE ANALOGIES MENGGUNAKAN PUSTAKA KURVA MULTIRESOLUSI

PENGEDITAN DETIL KURVA DENGAN METODE CURVE ANALOGIES MENGGUNAKAN PUSTAKA KURVA MULTIRESOLUSI PENGEDITAN DETIL KURVA DENGAN METODE CURVE ANALOGIES MENGGUNAKAN PUSTAKA KURVA MULTIRESOLUSI Nai Suciati, Rizy Yuiar Hau Jurusa Tei Iformatia, Faultas Teologi Iformasi, Istitut Teologi Sepuluh Nopember

Lebih terperinci

Peluang Suatu Kejadian, Kaidah Penjumlahan, Peluang Bersyarat, Kaidah Perkalian dan Kaidah Baiyes

Peluang Suatu Kejadian, Kaidah Penjumlahan, Peluang Bersyarat, Kaidah Perkalian dan Kaidah Baiyes eluag uatu Kejadia, Kaidah ejumlaha, eluag ersyarat, Kaidah eralia da Kaidah aiyes.eluag uatu Kejadia Defiisi : eluag suatu ejadia adalah jumlah peluag semua titi otoh dalam. Dega demiia : 0 (), ( ) =

Lebih terperinci

PETA KONSEP RETURN dan RISIKO PORTOFOLIO

PETA KONSEP RETURN dan RISIKO PORTOFOLIO PETA KONSEP RETURN da RISIKO PORTOFOLIO RETURN PORTOFOLIO RISIKO PORTOFOLIO RISIKO TOTAL DIVERSIFIKASI PORTOFOLIO DENGAN DUA AKTIVA PORTOFOLIO DENGAN BANYAK AKTIVA DEVERSIFIKASI DENGAN BANYAK AKTIVA DEVERSIFIKASI

Lebih terperinci

COMPARISON OF ONE DIMENSIONAL DCT AND LWT SPARSE REPRESENTATION

COMPARISON OF ONE DIMENSIONAL DCT AND LWT SPARSE REPRESENTATION COMPARISON OF ONE DIMENSIONAL DCT AND LWT SPARSE REPRESENTATION Endra 1 ; Gusandy 2 ; Kurniawaty 3 ; Yenny Lan 4 Jurusan Sistem Komputer, Fakultas Ilmu Komputer, BINUS University, Jakarta Jln K.H. Syahdan

Lebih terperinci

PENGOLAHAN SINYAL DIGITAL. Modul 5. Sistem Waktu Diskret dan Aplikasi TZ

PENGOLAHAN SINYAL DIGITAL. Modul 5. Sistem Waktu Diskret dan Aplikasi TZ PENGOLHN SINL DIGITL Modul 5. Sistem Watu Disret da pliasi TZ Cotet Overview Sistem Watu Disrit Sstem Properties Shift Ivariace, Kausalitas, Stabilitas diaita dega TZ Trasformasi sistem dari persamaa differece

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS

STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS (Tati Octavia et al.) STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS Tati Octavia Dose Faultas

Lebih terperinci

Deret Fourier. Modul 1 PENDAHULUAN

Deret Fourier. Modul 1 PENDAHULUAN Modul Deret Fourier Prof. Dr. Bambag Soedijoo P PENDAHULUAN ada modul ii dibahas masalah ekspasi deret Fourier Sius osius utuk suatu fugsi periodik ataupu yag diaggap periodik, da dibahas pula trasformasi

Lebih terperinci

Model Antrian Multi Layanan

Model Antrian Multi Layanan Jural Gradie Vol. No. Juli : 8- Model Atria Multi Layaa Sisa Yosmar Jurusa Matematia, Faultas Matematia da Ilmu egetahua Alam, Uiversitas Begulu, Idoesia Diterima 9 April; Disetujui 8 Jui Abstra - Salah

Lebih terperinci

Penulis: Penilai: Editor: Ilustrator: Dra. Puji Iryanti, M.Sc. Ed. Al. Krismanto, M.Sc. Sri Purnama Surya, S.Pd, M.Si. Fadjar N. Hidayat, S.Si.,M.Ed.

Penulis: Penilai: Editor: Ilustrator: Dra. Puji Iryanti, M.Sc. Ed. Al. Krismanto, M.Sc. Sri Purnama Surya, S.Pd, M.Si. Fadjar N. Hidayat, S.Si.,M.Ed. PAKET FASILITASI PEMBERDAYAAN KKG/MGMP MATEMATIKA Pembelajara Barisa, Deret Bilaga da Notasi Sigma di SMA Peulis: Dra. Puji Iryati, M.Sc. Ed. Peilai: Al. Krismato, M.Sc. Editor: Sri Purama Surya, S.Pd,

Lebih terperinci

Bab 7 Penyelesaian Persamaan Differensial

Bab 7 Penyelesaian Persamaan Differensial Bab 7 Peelesaia Persamaa Differesial Persamaa differesial merupaka persamaa ag meghubugka suatu besara dega perubahaa. Persamaa differesial diataka sebagai persamaa ag megadug suatu besara da differesiala

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian ini bertujuan untuk mengetahui ada tidaknya peningkatan

BAB III METODE PENELITIAN. Penelitian ini bertujuan untuk mengetahui ada tidaknya peningkatan BAB III METODE PENELITIAN A. Desai Peelitia Peelitia ii bertujua utu megetahui ada tidaya peigata emampua siswa dalam pealara setelah megguaa model pembelajara berbasis masalah terstrutur dalam pembelajara

Lebih terperinci

Teorema Nilai Rata-rata

Teorema Nilai Rata-rata Nilai Kus Prihatoso April 27, 2012 Yogyakarta Nilai Suatu Fugsi Masih igatkah ada tetag ilai rata-rata dari sekmpula bilaga? Berapakah ilai rata-rata dari sebayak bilaga y 1, y 2,..., y? Nilai Suatu Fugsi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Risio Operasioal.1.1 Defiisi Dewasa ii risio operasioal semai diaui sebagai salah satu fator uci yag perlu dielola da dicermati oleh para pelau usaha, hususya di bidag jasa euaga.

Lebih terperinci

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

9 Departemen Statistika FMIPA IPB

9 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351 9 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Pegatar Aalisis utuk Data Respo Kategorik Data respo kategorik Sebara

Lebih terperinci

MENGUJI KEMAKNAAN SAMPEL TUNGGAL

MENGUJI KEMAKNAAN SAMPEL TUNGGAL MENGUJI KEMAKNAAN SAMPEL TUNGGAL 1.1 Uji Biomial 1. Uji esesuaia Chi Kuadrat 1.3 Uji Kesesuaia K-S 1.4 Uji Ideedesi Chi Kuadrat 1.5 Uji Pasti Fisher UJI BINOMIAL Meruaa uji roorsi dalam suatu oulasi Poulasi

Lebih terperinci

Makalah Tugas Akhir. Abstract

Makalah Tugas Akhir. Abstract Maalah Tugas Ahir IDENTIFIKASI JENIS PENYAKIT KULIT BERDASARKAN ANALISIS WARNA DAN TEKSTUR PADA CITRA KULIT MENGGUNAKAN KLASIFIKASI K-NEAREST NEIGHBOR Faris Fitriato 1, R Rizal Isato 2, Ajub Ajulia Zahra.

Lebih terperinci

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015 RESPONSI STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 015 A. PENYAJIAN DAN PERINGKASAN DATA 1. PENYAJIAN DATA a. Sebutka tekik peyajia data utuk data kualitatif! Diagram kueh, diagram batag, distribusi

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

REGRESI DAN KORELASI SEDERHANA

REGRESI DAN KORELASI SEDERHANA REGRESI DAN KORELASI SEDERHANA Apa yag disebut Regresi? Korelasi? Aalisa regresi da korelasi sederhaa membahas tetag keterkaita atara sebuah variabel (variabel terikat/depede) dega (sebuah) variabel lai

Lebih terperinci

Solusi Numerik PDP. ( Metode Beda Hingga ) December 9, 2013. Solusi Numerik PDP

Solusi Numerik PDP. ( Metode Beda Hingga ) December 9, 2013. Solusi Numerik PDP ( Metode Beda Higga ) December 9, 2013 Sebuah persamaa differesial apabila didiskritisasi dega metode beda higga aka mejadi sebuah persamaa beda. Jika persamaa differesial parsial mempuyai solusi eksak

Lebih terperinci

Mengkaji Perbedaan Diagonalisasi Matriks Atas Field dan Matriks Atas Ring Komutatif

Mengkaji Perbedaan Diagonalisasi Matriks Atas Field dan Matriks Atas Ring Komutatif Megaji Perbedaa Diagoalisasi Matris Atas Field da Matris Atas Rig Komutatif Teorema : Jia A adalah matris x maa eryataa eryataa beriut eivale satu sama lai : a A daat didiagoalisasi b A memuyai vetor eige

Lebih terperinci

Analisis dan Visualisasi Representasi Deret Fourier Gelombang Sinyal Periodik Menggunakan MATLAB

Analisis dan Visualisasi Representasi Deret Fourier Gelombang Sinyal Periodik Menggunakan MATLAB ELECRICIAN Jural Rekayasa da ekologi Elektro Aalisis da Visualisasi Represetasi Deret Fourier Gelombag Siyal Periodik Megguaka MALAB Ahmad Saudi Samosir Jurusa ekik Elektro Uiversitas Lampug, Badar Lampug

Lebih terperinci

BAB IV PEMECAHAN MASALAH

BAB IV PEMECAHAN MASALAH BAB IV PEMECAHAN MASALAH 4.1 Metodologi Pemecaha Masalah Dalam ragka peigkata keakurata rekomedasi yag aka diberika kepada ivestor, maka dicoba diguaka Movig Average Mometum Oscillator (MAMO). MAMO ii

Lebih terperinci

Gerak Brown Fraksional dan Sifat-sifatnya

Gerak Brown Fraksional dan Sifat-sifatnya SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 06 S - 3 Gera Brow Frasioal da Sifat-sifatya Chataria Ey Murwaigtyas, Sri Haryatmi, Guardi 3, Herry P Suryawa 4,,3 Uiversitas Gadjah Mada,4 Uiversitas

Lebih terperinci

BAGAN KENDALI G UNTUK PENGENDALIAN VARIABILITAS PROSES MULTIVARIAT (Studi Kasus pada data cuaca di kota Makassar pada tahun 2003 sampai tahun 2012)

BAGAN KENDALI G UNTUK PENGENDALIAN VARIABILITAS PROSES MULTIVARIAT (Studi Kasus pada data cuaca di kota Makassar pada tahun 2003 sampai tahun 2012) BAGAN KENDALI G UNTUK PENGENDALIAN VARIABILITAS PROSES MULTIVARIAT (Studi Kasus pada data cuaca di ota Maassar pada tahu 003 sampai tahu 0) PAISAL, H, HERDIANI, E.T. DAN SALEH, M 3 Jurusa Matematia, Faultas

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI III.1 Peambaga Teks (Text Miig) Text Miig memiliki defiisi meambag data yag berupa teks dimaa sumber data biasaya didapatka dari dokume, da tujuaya adalah mecari kata-kata yag dapat

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1 Lokasi da Waktu peelitia Peelitia dilakuka pada budidaya jamur tiram putih yag dimiliki oleh usaha Yayasa Paguyuba Ikhlas yag berada di Jl. Thamri No 1 Desa Cibeig, Kecamata Pamijaha,

Lebih terperinci

MANAJEMEN RISIKO INVESTASI

MANAJEMEN RISIKO INVESTASI MANAJEMEN RISIKO INVESTASI A. PENGERTIAN RISIKO Resiko adalah peyimpaga hasil yag diperoleh dari recaa hasil yag diharapka Besarya tigkat resiko yag dimasukka dalam peilaia ivestasi aka mempegaruhi besarya

Lebih terperinci

III. METODE PENELITIAN. Pembangunan Daerah (BAPPEDA) Provinsi NTB, BPS pusat, dan instansi lain

III. METODE PENELITIAN. Pembangunan Daerah (BAPPEDA) Provinsi NTB, BPS pusat, dan instansi lain III. METODE PENELITIAN 3.1 Jeis da Sumber Data Data yag diguaka pada peelitia ii merupaka data sekuder yag diperoleh dari Bada Pusat Statistik (BPS) Provisi NTB, Bada Perecaaa Pembagua Daerah (BAPPEDA)

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Lokasi da Waktu Pegambila Data Pegambila data poho Pius (Pius merkusii) dilakuka di Huta Pedidika Guug Walat, Kabupate Sukabumi, Jawa Barat pada bula September 2011.

Lebih terperinci

ANALISIS KESALAHAN Deskripsi : Objektif : 6.1 Pendahuluan 6.2 Koefesien Kesalahan Statik

ANALISIS KESALAHAN Deskripsi : Objektif : 6.1 Pendahuluan 6.2 Koefesien Kesalahan Statik 96 VI ANALISIS ESALAHAN Desrisi : Bab ii memberia gambara tetag aalisis esalaha da eeaa ada sistem edali yag terdiri dari oefesie esalaha stati, oefesie esalaha diami da aalisis eeaa sistem Objetif : Memahami

Lebih terperinci

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN KALKULUS Dra. D. L. Crispia Pardede DEA. SARMAG TEKNIK MESIN KALKULUS - SILABUS. Deret Fourier.. Fugsi Periodik.2. Fugsi Geap da Gajil.3. Deret Trigoometri.. Betuk umum Deret Fourier.. Kodisi Dirichlet.6.

Lebih terperinci

UJI STATISTIK PENGARUH PERLAKUAN PERMUKAAN TERHADAP UMUR FATIK DENGAN DATA TERBATAS

UJI STATISTIK PENGARUH PERLAKUAN PERMUKAAN TERHADAP UMUR FATIK DENGAN DATA TERBATAS Uji Statisti Pegaruh Perlaua Permuaa terhadap dega Data Terbatas (Agus Suhartoo) Areditasi LIPI omor : 536/D/007 Taggal 6 Jui 007 UJI STATISTIK PEGARUH PERLAKUA PERMUKAA TERHADAP UMUR FATIK DEGA DATA TERBATAS

Lebih terperinci

SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA

SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA KELAS D(K) Malahayati Program Studi Matematia Faultas Sais da Teologi UIN Sua Kalijaga Yogyaarta e-mail: malahayati_01@yahoo.co.id ABSTRAK Himpua

Lebih terperinci

SINYAL WAKTU Pengolahan Sinyal Digital Minggu II

SINYAL WAKTU Pengolahan Sinyal Digital Minggu II SINYAL WAKTU Pegolaha Siyal Digital Miggu II 24 Goodrich, Tamassia PENDAHULUAN Defiisi Siyal x(t) Fugsi dari variabel bebas yag memiliki ilai real/skalar yag meyampaika iformasi tetag keadaa atau ligkuga

Lebih terperinci

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data IV METODE PENELITIAN 4.1 Lokasi da waktu Peelitia ii dilakuka di PD Pacet Segar milik Alm Bapak H. Mastur Fuad yag beralamat di Jala Raya Ciherag o 48 Kecamata Cipaas, Kabupate Ciajur, Propisi Jawa Barat.

Lebih terperinci

GRAFIKA

GRAFIKA 6 5 7 3 6 3 3 GRAFIKA 3 6 57 08 0 9 5 9 385 946 5 3 30 0 8 9 5 9 3 85 946 5 ANALISA REAL Utu uliah (pegatar) aalisa real yag dilegapi dega program MATLAB Dr. H.A. Parhusip G R A F I K A Peerbit Tisara

Lebih terperinci

Kuliah 9 Filter Digital

Kuliah 9 Filter Digital TEKNIK PENGOLAHAN ISYARAT DIGITAL Kuliah 9 Filter Digital Idah Susilawati, S.T.,.Eg. Progra Studi Tei Eletro Progra Studi Tei Iforatia Faultas Tei da Ilu Koputer Uiversitas ercu Buaa Yogaarta 9 Kuliah

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 6 BAB III METODE PENELITIAN 3.1 Desai Peelitia Meurut Kucoro (003:3): Peelitia ilmiah merupaka usaha utuk megugkapka feomea alami fisik secara sistematik, empirik da rasioal. Sistematik artiya proses yag

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang. B. Tujuan dan Sasaran. C. Ruang Lingkup

BAB I PENDAHULUAN. A. Latar Belakang. B. Tujuan dan Sasaran. C. Ruang Lingkup BAB I PENDAHULUAN A. Latar Belaag Kombiatoria mempuyai beberapa aspe, yaitu eumerasi, teori graf, da ofigurasi atau peyusua. Eumerasi membahas peghituga susua berbagai tipe. Sebagai cotoh: (i) meghitug

Lebih terperinci

KOMPUTASI ALIRAN FLUIDA DINAMIK DENGAN CITRA DIGITAL DAN PIV (PARTICLE IMAGE VELOCIMETRY), KHUSUSNYA DALAM APLIKASI NUKLIR. Muhammad Arifin Sanusi *

KOMPUTASI ALIRAN FLUIDA DINAMIK DENGAN CITRA DIGITAL DAN PIV (PARTICLE IMAGE VELOCIMETRY), KHUSUSNYA DALAM APLIKASI NUKLIR. Muhammad Arifin Sanusi * KOMPUTASI ALIRA FLUIDA DIAMIK DEGA CITRA DIGITAL DA PIV PARTICLE IMAGE VELOCIMETRY KHUSUSYA DALAM APLIKASI UKLIR Muhammad Arifi Sausi * ABSTRAK KOMPUTASI ALIRA FLUIDA DIAMIK DEGA CITRA DIGITAL DA PIV PARTICLE

Lebih terperinci

PENJADWALAN JOBS PADA SINGLE MACHINE DENGAN MEMINIMUMKAN VARIANS WAKTU PENYELESAIAN JOBS (Studi Kasus di P.T. XYZ )

PENJADWALAN JOBS PADA SINGLE MACHINE DENGAN MEMINIMUMKAN VARIANS WAKTU PENYELESAIAN JOBS (Studi Kasus di P.T. XYZ ) (Fey Nilawati Kusuma et al.) PENJADWALAN JOBS PADA SINGLE MACHINE DENGAN MEMINIMUMKAN VARIANS WAKTU PENYELESAIAN JOBS (Studi Kasus di P.T. XYZ ) I Gede Agus Widyadaa I Nyoma Sutapa Dose Faultas Teologi

Lebih terperinci

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1 Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga

Lebih terperinci

PENAKSIRAN DAN PERAMALAN BIAYA D. PENAKSIRAN BIAYA JANGKA PANJANG E. PERAMALAN BIAYA

PENAKSIRAN DAN PERAMALAN BIAYA D. PENAKSIRAN BIAYA JANGKA PANJANG E. PERAMALAN BIAYA PENAKSIRAN DAN PERAMALAN BIAYA Ari Darmawa, Dr. S.AB, M.AB Email: aridarmawa_fia@ub.ac.id A. PENDAHULUAN B. PENAKSIRAN DAN PRAKIRAAN FUNGSI BIAYA C. PENAKSIRAN JANGKA PENDEK - Ekstrapolasi sederhaa - Aalisis

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB ENDAHULUAN. Latar Belakag Masalah Dalam kehidupa yata, hampir seluruh feomea alam megadug ketidak pastia atau bersifat probabilistik, misalya pergeraka lempega bumi yag meyebabka gempa, aik turuya

Lebih terperinci

Aproksimasi Terbaik dalam Ruang Metrik Konveks

Aproksimasi Terbaik dalam Ruang Metrik Konveks Aprosimasi Terbai dalam Ruag etri Koves Oleh : Suharsoo S Jurusa atematia FIPA Uiversitas Lampug Abstra asalah esistesi da etuggala aprosimasi terbai suatu titi dalam ruag berorm telah dipelajari oleh

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu

Lebih terperinci

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai PENGUJIAN HIPOTESIS Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai ilai-ilai parameter populasi,

Lebih terperinci

BAB III METODOLOGI 3.1 Tempat dan Waktu Penelitian 3.2 Bahan dan Alat 3.3 Metode Pengumpulan Data Pembuatan plot contoh

BAB III METODOLOGI 3.1 Tempat dan Waktu Penelitian 3.2 Bahan dan Alat 3.3 Metode Pengumpulan Data Pembuatan plot contoh BAB III METODOLOGI 3.1 Tempat da Waktu Peelitia Pegambila data peelitia dilakuka di areal revegetasi laha pasca tambag Blok Q 3 East elevasi 60 Site Lati PT Berau Coal Kalimata Timur. Kegiata ii dilakuka

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

Analisis Kinerja Kompresi Citra Digital dengan Komparasi DWT, DCT dan Hybrid (DWT-DCT)

Analisis Kinerja Kompresi Citra Digital dengan Komparasi DWT, DCT dan Hybrid (DWT-DCT) Aalisis Kierja Kompresi Citra Digital dega Komparasi DWT, DCT da Hybrid (DWT-DCT) Aditya Mahmud Faza 1, Cepy Slamet, Dia Nursatika 3 1,,3 Jurusa Tekik Iformatika, Fakultas Sais da Tekologi Uiversitas Islam

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

1. Integral (1) Pembahasan yang akan kita lakukan hanya mengenai bentuk persamaan diferensial seperti contoh yang pertama.

1. Integral (1) Pembahasan yang akan kita lakukan hanya mengenai bentuk persamaan diferensial seperti contoh yang pertama. Darublic www.darublic.com 1. Itegral (1) (Macam Itegral, Pedeata Numeri) Sudarato Sudirham Dalam bab sebeluma, ita memelajari salah satu bagia utama alulus, aitu alulus diferesial. Beriut ii ita aa membahas

Lebih terperinci

Penerapan Algoritma Dijkstra dalam Pemilihan Trayek Bus Transjakarta

Penerapan Algoritma Dijkstra dalam Pemilihan Trayek Bus Transjakarta Peerapa Algoritma Dijstra dalam Pemiliha Traye Bus Trasjaarta Muhammad Yafi 504 Program Studi Tei Iformatia Seolah Tei Eletro da Iformatia Istitut Teologi Badug, Jl. Gaesha 0 Badug 40, Idoesia 504@std.stei.itb.ac.id

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat

Lebih terperinci

Distribusi Peluang BERBAGAI MACAM DISTRIBUSI SAMPEL. Distribusi Peluang 5/6/2012

Distribusi Peluang BERBAGAI MACAM DISTRIBUSI SAMPEL. Distribusi Peluang 5/6/2012 5/6/0 Distribusi Peluag BERBAGAI MACAM DISTRIBUSI SAMPEL Distribusi peluag, P( x), adalah kumpula pasaga ilai-ilai variabel acak Cotoh: Jika dua buah koi dilempar bersamaa. Kejadia bayakya mucul agka.

Lebih terperinci

PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA

PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA Cara Peyajia Data dega Tabel Distribusi Frekuesi Distribusi Frekuesi adalah data yag disusu dalam betuk kelompok baris berdasarka

Lebih terperinci

Bab 3 Metode Interpolasi

Bab 3 Metode Interpolasi Baha Kuliah 03 Bab 3 Metode Iterpolasi Pedahulua Iterpolasi serig diartika sebagai mecari ilai variabel tergatug tertetu, misalya y, pada ilai variabel bebas, misalya, diatara dua atau lebih ilai yag diketahui

Lebih terperinci

STATISTIKA NON PARAMETRIK

STATISTIKA NON PARAMETRIK . PENDAHULUAN STATISTIKA NON PARAMETRIK Kelebiha Uji No Parametrik: - Perhituga sederhaa da cepat - Data dapat berupa data kualitatif (Nomial atau Ordial) - Distribusi data tidak harus Normal Kelemaha

Lebih terperinci

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas II. TINJAUAN PUSTAKA 2.1 Ruag Vektor Defiisi 2.1.1 (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da (F,,. ) lapaga dega eleme idetitas 1. V disebut ruag vektor (vector space) atas F jika ada operasi

Lebih terperinci

IV. METODE PENELITIAN. berdasarkan tujuan penelitian (purposive) dengan pertimbangan bahwa Kota

IV. METODE PENELITIAN. berdasarkan tujuan penelitian (purposive) dengan pertimbangan bahwa Kota IV. METODE PENELITIAN 4.1. Lokasi da Waktu Peelitia ii dilaksaaka di Kota Bogor Pemiliha lokasi peelitia berdasarka tujua peelitia (purposive) dega pertimbaga bahwa Kota Bogor memiliki jumlah peduduk yag

Lebih terperinci

REGRESI DAN KORELASI

REGRESI DAN KORELASI REGRESI DAN KORELASI Pedahulua Dalam kehidupa sehari-hari serig ditemuka masalah/kejadia yagg salig berkaita satu sama lai. Kita memerluka aalisis hubuga atara kejadia tersebut Dalam bab ii kita aka membahas

Lebih terperinci

ANALISIS ALOKASI RUGI TRANSMISI DENGAN METODE Z-BUS

ANALISIS ALOKASI RUGI TRANSMISI DENGAN METODE Z-BUS ANALISIS ALOKASI RUGI TRANSMISI DENGAN METODE Z-BUS Firdaus Dose Jurusa edidia Tei Eletro FT UNM Abstra Sistem teaga listri telah berembag begitu pesat sehigga sistem ariga uga meela biaya rugirugi daya

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Defiisi Persamaa diferesial adalah persamaa yag melibatka variabelvariabel tak bebas da derivatif-derivatifya terhadap variabel-variabel bebas. Berikut ii adalah

Lebih terperinci

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1 BARISAN DAN DERET 05//06 Matematika Tekik BARISAN Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 05//06 Matematika Tekik Barisa Tak Higga Secara sederhaa, barisa merupaka

Lebih terperinci

Dasar Sistem Pengaturan - Transformasi Laplace. Transformasi Laplace bilateral atau dua sisi dari sinyal bernilai riil x(t) didefinisikan sebagai :

Dasar Sistem Pengaturan - Transformasi Laplace. Transformasi Laplace bilateral atau dua sisi dari sinyal bernilai riil x(t) didefinisikan sebagai : Defiisi Trasformasi Laplace Trasformasi Laplace Bilateral Trasformasi Laplace bilateral atau dua sisi dari siyal berilai riil x(t) didefiisika sebagai : X B x(t)e Operasi trasformasi Laplace bilateral

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah:

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah: BAB III METODOLOGI PENELITIAN 3. Variabel da Defiisi Operasioal Variabel-variabel yag diguaka pada peelitia ii adalah: a. Teaga kerja, yaitu kotribusi terhadap aktivitas produksi yag diberika oleh para

Lebih terperinci

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd Pertemua Ke- Komparasi berasal dari kata compariso (Eg) yag mempuyai arti perbadiga atau pembadiga. Tekik aalisis komparasi yaitu salah satu tekik aalisis kuatitatif yag diguaka utuk meguji hipotesis tetag

Lebih terperinci