MENGUJI KEMAKNAAN SAMPEL TUNGGAL

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "MENGUJI KEMAKNAAN SAMPEL TUNGGAL"

Transkripsi

1 MENGUJI KEMAKNAAN SAMPEL TUNGGAL 1.1 Uji Biomial 1. Uji esesuaia Chi Kuadrat 1.3 Uji Kesesuaia K-S 1.4 Uji Ideedesi Chi Kuadrat 1.5 Uji Pasti Fisher

2 UJI BINOMIAL Meruaa uji roorsi dalam suatu oulasi Poulasi 1 samel Percobaa Beroulli ; ercobaa yag meghasila dua outcome mutually eclusive Percobaa Biomial???

3 Syarat Percobaa Beroulli 1. Setia ercobaa terdiri dari dua emugia. Probabilitas suses =, gagal =1-=q 3. Percobaa bersifat ideede

4 Rumus P( ) q,,1,..., = roorsi suses dalam oulasi q =roorsi gagal dalam oulasi

5 Eamle Jia.3 bagia dari oulasi mahasiswa yag megambil MK MetStat tida lulus UAS da.7 sisaya lulus dalam eriode watu 1 semester maa beraaah robabilitas dari samel aca mahasiswa tersebut dega uura =5 da =4 orag tida lulus? P(=4)=??? itug juga P( P( 4) 4)

6 iotesis dalam uji Biomial a. Dua sisi b. Satu sisi c. Satu Sisi 1 1 1

7 Atura Peghituga a. Dua Sisi 1 1,, q q q

8 c. Satu Sisi b. Satu Sisi 1 1 q q 1 1 q

9 Soal Peelitia dilaua utu megetahui egaruh embagua PLTN terhada masyaraat seitar. Adai hasil eelitia meyebuta bahwa 4 dari 13 ematia berusia th disebaba area aer. Aaah bear adaya laora bahwa % dari semua ematia disebaba area aer?

10 Prosedur i. Susu hiotesis?? Dua atau satu sisi?? ii. Pilih tigat sigifiasi iii. itug hitug?? iv. Keutusa Jia tigat sigifiasi > P hitug maa o ditola

11 eyelesaia 1. Susu hiotesis 1. Pilih α=.5 3. itug 4. area α=.5< maa area q , diterima.8 13

12 UJI KESESUAIAN CI KUADRAT Test of goodess of fit distribusi samel sesuai dega distribusi oulasi??? Test of ideedece Dua samel variabel dari sebuah samel salig tergatug??? Test of homogeeity Beberaa samel dievaluasi aaah berasal dari oulasi yag sama (homoge)???

13 Syarat Samel diilih aca Semua egamata Ideede Setia sel alig sediit berisi freuesi haraa sebesar 1 Uura samel sebaiya > 4

14 Rumus O ij E E ij ij O ij E ij = freuesi teramati dari sel baris e-i olom e-j =freuesi haraa dari sel baris e-i olom e-j

15 Format Tabel Kotigesi Variabel 1 Variabel O11(E11) a O1(E1) c O13(E13) b O(E) d

16 Daerah Kritis Freuesi teramati da freuesi haraa terdaat erbedaa yag bermaa JIKA hitug Tabel 1, 1

17 cotoh Seorag guru SMK igi megetahui eilaia siswaya tetag egiata yag diagga alig bermafaat di atara eemat egiata beriut 1. Observasi di Idustri. Kerja roye eroraga di begel 3. Kerja roye rodusi bersama 4. Megadaa ercobaa Guru tersebut megambil siswa-siswa elas III ada jurusaya sebagai samel. Misala ada 88 siswa yag terdaftar. Siswa-siswa tersebut dimita memberia edaatya tetag egiata yag alig bermafaat diatara emat egiata seerti Tabel beriut

18 Peyelesaia 1. Susu hiotesis tida ada erbedaa yag sigifia eilaia siswa thd eemat egiata 1 Ada erbedaa yag sigifia eilaia siswa thd eemat egiata. Pilih α=5% 3. itug hitug Tabel 1, Tabel (8) 8 36,7381 Tabel 3,.5 ( 4) ( 41) 41 Maa di tola. Jadi Freuesi teramati da freuesi haraa terdaat erbedaa yag bermaa atau d..l ada erbedaa sigifia atara eilaia siswa thd eemat egiata (15) 15

19 Tugas KD1_1 1. Peelitia tetag ecederuga Ibu hamil memilih temat bersali di Polides atau di Pusesmas. Jumlah samel 4 Ibu hamil, 14 Ibu hamil memilih di Polides, 1 Ibu hamil memilih di Pusesmas. Uji hiotesis bahwa eluag Ibu hamil memilih temat bersali di Polides atau Pusesmas adalah sama, yaitu 5%.

20 . Peelitia dilaua utu megetahui adaah hubuga atara tigat edidia masyaraat dega jeis Ba yag diilih utu meyima uagya. Pedidia masyaraat dielomoa mejadi, yaitu lulusa SLTA da Pergurua Tiggi. Samel ertama sebaya 8 orag lulusa SLTA, da samel edua sebaya 7 orag lulusa Pergurua Tiggi. Berdasara aget yag diberia eada samel lulusa SLTA, 6 orag memilih ba ereitah da ba swasta. Selajutya dari elomo samel Pergurua Tiggi, sebaya 3 orag memilih ba emeritah da 4 ba swasta.

MACAM-MACAM TEKNIK MEMBILANG

MACAM-MACAM TEKNIK MEMBILANG 0 MACAM-MACAM TEKNIK MEMBILANG ATURAN PERKALIAN Beriut ii diberia sebuah dalil tetag peetua baya susua yag palig sederhaa dalam suatu permasalaha yag beraita dega peluag. Dalil 2.1: ATURAN PERKALIAN SECARA

Lebih terperinci

1. Pendahuluan. Materi 3 Pengujuan Hipotesis

1. Pendahuluan. Materi 3 Pengujuan Hipotesis Materi 3 Pegujua Hiotesis. Pedahulua Hiotesis eryataa yag meruaka edugaa berkaita dega ilai suatu arameter oulasi (satu atau lebih oulasi) Kebeara suatu hiotesis diuji dega megguaka statistik samel hiotesis

Lebih terperinci

Statistika 2. Pengujian Hipotesis. 1. Pendahuluan. Topik Bahasan: Oleh : Edi M. Pribadi, SP., MSc.

Statistika 2. Pengujian Hipotesis. 1. Pendahuluan. Topik Bahasan: Oleh : Edi M. Pribadi, SP., MSc. Statistika Toik Bahasa: Pegujia Hiotesis Oleh : Edi M. Pribadi, SP., MSc. E-mail: edi_m@staff.guadarma.ac.id. Pedahulua Hiotesis eryataa yag meruaka edugaa berkaita dega ilai suatu arameter oulasi (satu

Lebih terperinci

Perluasan Uji Kruskal Wallis untuk Data Multivariat

Perluasan Uji Kruskal Wallis untuk Data Multivariat Statistia, Vol. No., Mei Perluasa Uji Krusal Wallis utu Data Multivariat TETI SOFIA YANTI Program Studi Statistia, Uiversitas Islam Badug, Jl. Purawarma No. Badug. E-mail: buitet@yahoo.com ABSTAK Adaia

Lebih terperinci

x x x1 x x,..., 2 x, 1

x x x1 x x,..., 2 x, 1 0.4 Variasi Kaoi amel Da Korelasi Kaoi amel amel aca dari observasi ada masig-masig variabel dari ( + q) variabel (), () daat digabuga edalam (( + q) ) data matris,,..., dimaa (0-5) Adau vetor rata-rata

Lebih terperinci

UNIVERSITAS INDONESIA DISTRIBUSI BANYAK SINGGAH DARI SUATU RANDOM WALK DAN UJI KERANDOMAN SKRIPSI RANTI NUGRAHENI

UNIVERSITAS INDONESIA DISTRIBUSI BANYAK SINGGAH DARI SUATU RANDOM WALK DAN UJI KERANDOMAN SKRIPSI RANTI NUGRAHENI UNIVERSITAS INDONESIA DISTRIBUSI BANYAK SINGGAH DARI SUATU RANDOM WALK DAN UJI KERANDOMAN SKRIPSI RANTI NUGRAHENI 35475 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI SARJANA MATEMATIKA DEPOK

Lebih terperinci

Gambar 3.1Single Channel Multiple Phase

Gambar 3.1Single Channel Multiple Phase BAB III MODEL ANTRIAN PADA PEMBUATAN SIM C. Sigle Chael Multiple Phase Sistem atria sigle chael multiple phase merupaa sistem atria dimaa pelagga yag tiba, dapat memasui sistem dega megatri di tempat yag

Lebih terperinci

Pengujian Hipotesis. 1/26/2010 Pengujian Hipotesis 1

Pengujian Hipotesis. 1/26/2010 Pengujian Hipotesis 1 Pegujia Hiotesis /6/00 Pegujia Hiotesis Estimasi da Pegujia Pada ertemua sebelumya, samel diguaka utuk membuat estimasi iterval ilai arameter oulasi berdasarka suatu robabilitas keyakia yag kita tetuka.

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG MASALAH

BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG MASALAH BAB ENDAHULUAN. LATAR BELAKANG MASALAH Dalam kehidua yata, sejumlah feomea daat diikirka sebagai ercobaa yag mecaku sederata egamata yag berturut-turut da buka satu kali egamata. Umumya, tia egamata dalam

Lebih terperinci

3. Integral (3) (Integral Tentu)

3. Integral (3) (Integral Tentu) Darublic www.darublic.com. Itegral () (Itegral Tetu).. Luas Sebagai Suatu Itegral. Itegral Tetu Itegral tetu meruaa itegral ag batas-batas itegrasia jelas. Kose dasar dari itegral tertetu adalah luas bidag

Lebih terperinci

Praktikum Perancangan Percobaan 9

Praktikum Perancangan Percobaan 9 Praktikum Peracaga Percobaa 9 PRAKTIKUM RANCANGAN ACAK LENGKAP A. Tujua Istruksioal Khusus Mahasiswa diharaka mamu: a. Megguaka kalkulator utuk meyelesaika aalisis ragam RAL b. Megguaka kalkulator ada

Lebih terperinci

Mengkaji Perbedaan Diagonalisasi Matriks Atas Field dan Matriks Atas Ring Komutatif

Mengkaji Perbedaan Diagonalisasi Matriks Atas Field dan Matriks Atas Ring Komutatif Megaji Perbedaa Diagoalisasi Matris Atas Field da Matris Atas Rig Komutatif Teorema : Jia A adalah matris x maa eryataa eryataa beriut eivale satu sama lai : a A daat didiagoalisasi b A memuyai vetor eige

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 5

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 5 Mata Kuliah : Matematia Disrit Program Studi : Tei Iformatia Miggu e : 5 KOMBINATORIAL PENDAHULUAN Persoala ombiatori bua merupaa persoala baru dalam ehidupa yata. Baya persoala ombiatori sederhaa telah

Lebih terperinci

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd Pertemua Ke- Komparasi berasal dari kata compariso (Eg) yag mempuyai arti perbadiga atau pembadiga. Tekik aalisis komparasi yaitu salah satu tekik aalisis kuatitatif yag diguaka utuk meguji hipotesis tetag

Lebih terperinci

MODUL BARISAN DAN DERET

MODUL BARISAN DAN DERET MODUL BARISAN DAN DERET SEMESTER 2 Muhammad Zaial Abidi Persoal Blog http://meetabied.wordpress.com BAB I. PENDAHULUAN A. Desripsi Dalam modul ii, ada aa mempelajari pola bilaga, barisa, da deret diidetifiasi

Lebih terperinci

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C.

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C. BAB II LANDASAN TEORI Pada bab ii aa dibahas teori teori yag meduug metode upper level set sca statistics, atara lai peubah aca, distribusi gamma, fugsi gamma, fugsi lielihood, da uji rasio lielihood.

Lebih terperinci

Perilaku Distribusi Bernoulli. Definisi: Bernoulli. Contoh Binomial. Contoh Binomial

Perilaku Distribusi Bernoulli. Definisi: Bernoulli. Contoh Binomial. Contoh Binomial Defiisi: Beroulli ercobaa Beroulli: Haya terdaat satu kali ercobaa dega eluag sukses da eluag gagal - eluag Sukse: eluag Gagal: ( = ) = ( = 0 ( = 0) = ( 0 0 = erilaku Distribusi Beroulli E() = Var () =

Lebih terperinci

1. Integral (1) Pembahasan yang akan kita lakukan hanya mengenai bentuk persamaan diferensial seperti contoh yang pertama.

1. Integral (1) Pembahasan yang akan kita lakukan hanya mengenai bentuk persamaan diferensial seperti contoh yang pertama. Darublic www.darublic.com 1. Itegral (1) (Macam Itegral, Pedeata Numeri) Sudarato Sudirham Dalam bab sebeluma, ita memelajari salah satu bagia utama alulus, aitu alulus diferesial. Beriut ii ita aa membahas

Lebih terperinci

Model Antrian Multi Layanan

Model Antrian Multi Layanan Jural Gradie Vol. No. Juli : 8- Model Atria Multi Layaa Sisa Yosmar Jurusa Matematia, Faultas Matematia da Ilmu egetahua Alam, Uiversitas Begulu, Idoesia Diterima 9 April; Disetujui 8 Jui Abstra - Salah

Lebih terperinci

BAB III TAKSIRAN PROPORSI POPULASI JIKA TERJADI NONRESPON. Dalam bab ini akan dibahas penaksiran proporsi populasi jika terjadi

BAB III TAKSIRAN PROPORSI POPULASI JIKA TERJADI NONRESPON. Dalam bab ini akan dibahas penaksiran proporsi populasi jika terjadi BAB III TAKSIRA PROPORSI POPULASI JIKA TERJADI ORESPO Dalam bab ii aa dibaas peasira proporsi populasi jia terjadi orespo da dilaua allba sebaya t ali. Selai itu, juga aa dibaas peetua uura sampel yag

Lebih terperinci

PEMANFAATAN METODE GEOGRAPHICALLY WEIGHTED REGRESSION (GWR) UNTUK MERAMALKAN DEBIT PUNCAK PADA DAERAH ALIRAN SUNGAI

PEMANFAATAN METODE GEOGRAPHICALLY WEIGHTED REGRESSION (GWR) UNTUK MERAMALKAN DEBIT PUNCAK PADA DAERAH ALIRAN SUNGAI PEMANFAATAN METODE GEOGRAPHICALLY WEIGHTED REGRESSION (GWR UNTUK MERAMALKAN DEBIT PUNCAK PADA DAERAH ALIRAN SUNGAI Nur Atiah* Abstra : Debit uca daerah alira sugai diegaruhi beberaa fator, salah satu fator

Lebih terperinci

3/27/2013. Ali Muhson, M.Pd. Jenisnya. Uji Beda Rata-rata. Uji z Uji t. Uji Beda Proporsi. Uji z. (c) 2013 by Ali Muhson 2

3/27/2013. Ali Muhson, M.Pd. Jenisnya. Uji Beda Rata-rata. Uji z Uji t. Uji Beda Proporsi. Uji z. (c) 2013 by Ali Muhson 2 3/7/03 Ali Muhso, M.Pd. Jeisya Uji Beda Rata-rata Uji z Uji t Uji Beda Proorsi Uji z (c) 03 by Ali Muhso 3/7/03 Jeis Uji Beda Rata-rata dua kelomok Dua Kelomok Salig Bebas (Ideedet Samles): Uji z utuk

Lebih terperinci

FUNCTIONALLY SMALL RIEMANN SUMS (FSRS) DAN ESSENTIALLY SMALL RIEMANN SUMS (ESRS) FUNGSI TERINTEGRAL HENSTOCKn. p )

FUNCTIONALLY SMALL RIEMANN SUMS (FSRS) DAN ESSENTIALLY SMALL RIEMANN SUMS (ESRS) FUNGSI TERINTEGRAL HENSTOCKn. p ) βeta -ISSN: 85-5893 e-issn: 54-458 Vol. 3 No. (Noember), Hal. 79-89 βeta DOI: htt://dx.doi.org/.44/betajtm.v9i.7 FUNCTIONALLY SMALL RIMANN SUMS (FSRS) DAN SSNTIALLY SMALL RIMANN SUMS (SRS) FUNGSI TRINTGRAL

Lebih terperinci

Representasi sinyal dalam impuls

Representasi sinyal dalam impuls Represetasi siyal dalam impuls Represetasi siyal dalam impuls adalah siyal yag diyataa sebagai fugsi dari impuls atau sebagai umpula dari impuls-impuls. Sembarag siyal disret dapat diyataa sebagai pejumlaha

Lebih terperinci

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL HENSTOCK- KURZWEIL SERENTAK DAN FUNGSI BERSIFAT LOCALLY SMALL RIEMANN SUMS (LSRS) DARI RUANG EUCLIDE

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL HENSTOCK- KURZWEIL SERENTAK DAN FUNGSI BERSIFAT LOCALLY SMALL RIEMANN SUMS (LSRS) DARI RUANG EUCLIDE Teorema Keovergea Fugsi Teritegral Hestoc(Aiswita) TORMA KKONVRGNAN FUNGSI TRINTGRAL HNSTOCK- KURZWIL SRNTAK DAN FUNGSI BRSIFAT LOCALLY SMALL RIMANN SUMS (LSRS) DARI RUANG UCLID K RUANG BARISAN Aiswita,

Lebih terperinci

Jurdik Fisika FPMIPA UPI Bandung DISTRIBUSI VARIABEL RANDOM DISKRIT

Jurdik Fisika FPMIPA UPI Bandung DISTRIBUSI VARIABEL RANDOM DISKRIT Jurdik Fisika FPMIPA UPI Badug DISTRIBUSI VARIABEL RANDOM DISKRIT Distribusi Variabel Radom Diskrit Proses Beroulli Distribusi Biomial Distribusi Geometrik Distribusi Hiergeometrik Proses & Distribusi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI LNDSN TEORI. robabilitas robabilitas adalah suatu ilai utuk megukur tigkat kemugkia terjadiya suatu eristiwa evet aka terjadi di masa medatag yag hasilya tidak asti ucertai evet. robabilitas diyataka atara

Lebih terperinci

III. METODOLOGI PENELITIAN

III. METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN 3.. Watu da Temat Peelta Peelta srs dlaua d Jurusa Matemata Faultas Matemata da Ilmu Pegetahua Alam Uverstas Lamug ada tahu aadem 2009/200. 3.2. Metode Peelta Secara umum, elasaaa

Lebih terperinci

SEBARAN t dan SEBARAN F

SEBARAN t dan SEBARAN F SEBARAN t da SEBARAN F 1 Tabel uji t disebut juga tabel t studet. Sebara t pertama kali diperkealka oleh W.S. Gosset pada tahu 1908. Saat itu, Gosset bekerja pada perusahaa bir Irladia yag melarag peerbita

Lebih terperinci

BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE)

BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE) BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE) 5.1. Pembagit Radom Variate Disrit Suatu Radom Variate diartia sebagai ilai suatu radom variate yag mempuyai distribusi tertetu. Utu megambil

Lebih terperinci

Peluang Suatu Kejadian, Kaidah Penjumlahan, Peluang Bersyarat, Kaidah Perkalian dan Kaidah Baiyes

Peluang Suatu Kejadian, Kaidah Penjumlahan, Peluang Bersyarat, Kaidah Perkalian dan Kaidah Baiyes eluag uatu Kejadia, Kaidah ejumlaha, eluag ersyarat, Kaidah eralia da Kaidah aiyes.eluag uatu Kejadia Defiisi : eluag suatu ejadia adalah jumlah peluag semua titi otoh dalam. Dega demiia : 0 (), ( ) =

Lebih terperinci

BAB V ANALISA PEMECAHAN MASALAH

BAB V ANALISA PEMECAHAN MASALAH 89 BAB V ANALISA PEMECAHAN MASALAH Dalam upaya mearik kesimpula da megambil keputusa, diperluka asumsi-asumsi da perkiraa-perkiraa. Secara umum hipotesis statistik merupaka peryataa megeai distribusi probabilitas

Lebih terperinci

Pendugaan Parameter: Kasus Dua sampel saling bebas. Selisih rataan dua populasi

Pendugaan Parameter: Kasus Dua sampel saling bebas. Selisih rataan dua populasi Pedugaa Parameter: Kau Dua amel alig beba Seliih rataa dua oulai - x x.96 x x.96 x x - SAMPLING ERROR Dugaa Selag bagi µ - µ ( x x z ( x x z Formula klik diketahui ama & Syarat : & Tidak ama Formula klik

Lebih terperinci

STATISTIKA-2 (STATISTIKA INDUKTIF)

STATISTIKA-2 (STATISTIKA INDUKTIF) Brief Note o Iductive Statistics (014: revised editio) Drs. Basuki, M.Si. (origial editio : 1995) STATISTIKA- (STATISTIKA INDUKTIF) MATERI KULIAH: 1. TEORI PROBABILITAS (TEORI PELUANG). DISTRIBUSI PROBABILITAS

Lebih terperinci

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG)

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG) PEMBAHASAN SOAL OLIMPIADE SAINS NASIONAL SMP A. ISIAN SINGKAT SELEKSI TINGKAT PROPINSI TAHUN 011 BIDANG STUDI MATEMATIKA WAKTU : 150 MENIT 1. Jia x adalah jumlah 99 bilaga gajil terecil yag lebih besar

Lebih terperinci

MODUL 1.03 DINAMIKA PROSES. Oleh : Ir. Tatang Kusmara, M.Eng

MODUL 1.03 DINAMIKA PROSES. Oleh : Ir. Tatang Kusmara, M.Eng MODUL 1.03 DINMIK PROSES Ole : Ir. Tatag Kusmara, M.Eg LBORTORIUM OPERSI TEKNIK KIMI JURUSN TEKNIK KIMI UNIVERSITS SULTN GENG TIRTYS CILEGON BNTEN 2008 2 Modul 1.03 DINMIK PROSES I. Pedaulua Dalam bidag

Lebih terperinci

BAB 6 NOTASI SIGMA, BARISAN DAN DERET

BAB 6 NOTASI SIGMA, BARISAN DAN DERET BAB 6 NOTASI SIGMA, BARISAN DAN DERET A RINGKASAN MATERI. Notasi Sigma Diberia suatu barisa bilaga, a, a,..., a. Lambag deret tersebut, yaitu: a = a + a +... + a a meyataa jumlah suu pertama barisa Sifat-sifat

Lebih terperinci

Inferensia dan Perbandingan Vektor Nilai Tengah

Inferensia dan Perbandingan Vektor Nilai Tengah Iferesia da Perbadiga Vektor Nilai egah Perbadiga Kasus Peubah uggal da Peubah Gada Peduga titik arameter ilai tegah Peduga selag ilai tegah Peguia hioteis ilai tegah satu oulasi Peguia beda ilai tegah

Lebih terperinci

1) Leptokurtik Merupakan distribusi yang memiliki puncak relatif tinggi

1) Leptokurtik Merupakan distribusi yang memiliki puncak relatif tinggi Statisti Desriptif Keruciga atau Kurtosis Pegertia Kurtosis Peguura urtosis (peruciga) sebuah distribusi teoritis adaalaya diamaam peguura eses (excess) dari sebuah distribusi Sebearya urtosis bisa diaggap

Lebih terperinci

A. Pengertian Hipotesis

A. Pengertian Hipotesis PENGUJIAN HIPOTESIS A. Pegertia Hipotesis Hipotesis statistik adalah suatu peryataa atau dugaa megeai satu atau lebih populasi Ada macam hipotesis:. Hipotesis ol (H 0 ), adalah suatu hipotesis dega harapa

Lebih terperinci

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.

Lebih terperinci

ANALISIS KESALAHAN Deskripsi : Objektif : 6.1 Pendahuluan 6.2 Koefesien Kesalahan Statik

ANALISIS KESALAHAN Deskripsi : Objektif : 6.1 Pendahuluan 6.2 Koefesien Kesalahan Statik 96 VI ANALISIS ESALAHAN Desrisi : Bab ii memberia gambara tetag aalisis esalaha da eeaa ada sistem edali yag terdiri dari oefesie esalaha stati, oefesie esalaha diami da aalisis eeaa sistem Objetif : Memahami

Lebih terperinci

2. Menentukan koleksi inti ubi kayu dan mengevaluasi kebaikan koleksi inti yang diperoleh. METODE. Data

2. Menentukan koleksi inti ubi kayu dan mengevaluasi kebaikan koleksi inti yang diperoleh. METODE. Data 2 2. Menentuan olesi inti ubi ayu dan mengevaluasi ebaian olesi inti yang dieroleh. METODE Data Data yang digunaan dalam enelitian ini berasal dari Kelomo Peneliti Pengelolaan Sumberdaya Geneti (Kelti

Lebih terperinci

Bab6 PENAKSIRAN PARAMETER

Bab6 PENAKSIRAN PARAMETER Bab6 PENAKSIRAN PARAMETER MENAKSIR RATARATA μ Mialka kita memuyai ebuah oulai berukura N dega ratarata µ da imaga baku σ Dari oulai ii arameter ratarata µ aka ditakir Utuk keerlua ii,ambil ebuah amel acak

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian ini bertujuan untuk mengetahui ada tidaknya peningkatan

BAB III METODE PENELITIAN. Penelitian ini bertujuan untuk mengetahui ada tidaknya peningkatan BAB III METODE PENELITIAN A. Desai Peelitia Peelitia ii bertujua utu megetahui ada tidaya peigata emampua siswa dalam pealara setelah megguaa model pembelajara berbasis masalah terstrutur dalam pembelajara

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bagian landasan teori ini aan dibahas materi-materi aa saja yang menunjang materi yang dibahas ada bab selanjutnya. Adaun materi-materi tersebut adalah analisis variansi, metode

Lebih terperinci

JENIS PENDUGAAN STATISTIK

JENIS PENDUGAAN STATISTIK ENDUGAAN STATISTIK ENDAHULUAN Kosep pedugaa statistik diperluka utuk membuat dugaa dari gambara populasi. ada pedugaa statistik dibutuhka pegambila sampel utuk diaalisis (statistik sampel) yag ati diguaka

Lebih terperinci

1. Ilustrasi. Materi 2 Pendugaan Parameter

1. Ilustrasi. Materi 2 Pendugaan Parameter Materi Pedugaa Parameter. Ilutrai Ifereia Statitika : Mecaku emua metode yag diguaka utuk earika keimula atau geeraliai megeai oulai dega melakuka egambila amel (amlig) Etimai / Pedugaa Parameter Yaitu

Lebih terperinci

Bab 16 Integral di Ruang-n

Bab 16 Integral di Ruang-n Catata Kuliah MA3 Kalulus Elemeter II Oi Neswa,Ph.D., Departeme Matematia-ITB Bab 6 Itegral di uag- Itegral Gada atas persegi pajag Itegral Berulag Itegral Gada atas Daerah sebarag Itegral Gada Koordiat

Lebih terperinci

MODUL BARISAN DAN DERET

MODUL BARISAN DAN DERET MODUL BARISAN DAN DERET KELAS XII. IPS SEMESTER I Oleh : Drs. Pudjul Prijoo ( http://vidyagata.wordpress.co ) SMA NEGERI 6 Jala Mayje Sugoo 58 Malag Telp./Fax : (034) 75036 E-Mail : sa6_alag@yahoo.co.id

Lebih terperinci

Statistika 2. Pendugaan Parameter. 1. Ilustrasi. Topik Bahasan: Oleh : Edi M. Pribadi, SP., MSc.

Statistika 2. Pendugaan Parameter. 1. Ilustrasi. Topik Bahasan: Oleh : Edi M. Pribadi, SP., MSc. Statitika Toik Bahaa: Pedugaa Parameter Oleh : Edi M Pribadi, SP, MSc E-mail: edi_m@taffguadarmaacid edi_m@ymailcom Ilutrai Statitika Ifereia : Mecaku emua metode yag diguaka utuk earika keimula atau geeraliai

Lebih terperinci

BAB 6: ESTIMASI PARAMETER (2)

BAB 6: ESTIMASI PARAMETER (2) Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Risio Operasioal.1.1 Defiisi Dewasa ii risio operasioal semai diaui sebagai salah satu fator uci yag perlu dielola da dicermati oleh para pelau usaha, hususya di bidag jasa euaga.

Lebih terperinci

Pokok Bahasan Return dan Risiko. Return. Klasifikasi Return. Return PENDAHULUAN AIMP. Trisnadi Wijaya, S.E., S.Kom.

Pokok Bahasan Return dan Risiko. Return. Klasifikasi Return. Return PENDAHULUAN AIMP. Trisnadi Wijaya, S.E., S.Kom. Pokok Bahasa -9. Retur da Risiko Lecture Note: Defiisi retur da risiko Klasifikasi retur da risiko Hubuga retur da risiko Retur da Risiko Aktiva Tuggal Abormal Retur Retur da Risiko Portofolio 1 2 Retur

Lebih terperinci

PENENTUAN KARAKTERISTIK PENGGUNA CDMA DENGAN METODE AID (AUTOMATIC INTERACTION DETECTION)

PENENTUAN KARAKTERISTIK PENGGUNA CDMA DENGAN METODE AID (AUTOMATIC INTERACTION DETECTION) PENENTUAN KARAKTERISTIK PENGGUNA CDMA DENGAN METODE AID (AUTOMATIC INTERACTION DETECTION) SKRIPSI Oleh : OHANNA WAHU WARDHANI NIM : JE00365 PROGRAM STUDI STATISTIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA

Lebih terperinci

TINJAUAN PUSTAKA Statistical Proses Control Control Chart

TINJAUAN PUSTAKA Statistical Proses Control Control Chart TINJAUAN PUTAKA tatistical Proses Cotrol tatistical Proses Cotrol adalah salah satu cabag ilu statistia yag eelajari tetag eeraa tei statistia utu eguur da egaalisis variasi yag terjadi selaa roses rodusi

Lebih terperinci

Pokok Bahasan Return dan Risiko. Return. Klasifikasi Return. Return PENDAHULUAN AIMP. Trisnadi Wijaya, S.E., S.Kom.

Pokok Bahasan Return dan Risiko. Return. Klasifikasi Return. Return PENDAHULUAN AIMP. Trisnadi Wijaya, S.E., S.Kom. Pokok Bahasa 3-6. Retur da Risiko Lecture Note: Defiisi retur da risiko Klasifikasi retur da risiko Hubuga retur da risiko Retur da Risiko Aktiva Tuggal Abormal Retur Retur da Risiko Portofolio 1 Retur

Lebih terperinci

PROSES INFERENSI PADA MODEL LOGIT. Oleh: Agus Rusgiyono Program Studi Statistika FMIPA UNDIP. 1 n

PROSES INFERENSI PADA MODEL LOGIT. Oleh: Agus Rusgiyono Program Studi Statistika FMIPA UNDIP. 1 n PROSS INFRNSI PADA MODL LOGIT Oleh: Agus Rusgiyoo Program Studi Statistika FMIPA UNDIP Abstracts Let { 3 L } rereset the resose o a omial radom variable o Beroulli distributio with P[ ] P[ ] where is a

Lebih terperinci

BAB 2 LANDASAN TEORI. lebar pita sinyal tersebut. Pada kebanyakan aplikasi, termasuk kamera digital video dan

BAB 2 LANDASAN TEORI. lebar pita sinyal tersebut. Pada kebanyakan aplikasi, termasuk kamera digital video dan BAB LADASA TEORI Teorema Shao-yquist meyataa agar tida ada iformasi yag hilag etia pecuplia siyal, maa ecepata pecuplia harus miimal dua ali dari lebar pita siyal tersebut. Pada ebayaa apliasi, termasu

Lebih terperinci

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain.

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain. BARIAN DAN DERET A. Barisa Barisa adalah uruta bilaga yag memilii atura tertetu. etiap bilaga pada barisa disebut suu barisa yag dipisaha dega lambag, (oma). Betu umum barisa:,, 3, 4,, dega: = suu pertama

Lebih terperinci

Anova (analysis of varian)

Anova (analysis of varian) ova (aalysis of varia) Ui hipotesis perbedaa ilai rata-rata dari atau lebih elompo idepede Cotoh: daah perbedaa berat bayi lahir dari eluarga E tiggi dega E sedag atau E redah sumsi Ui ova: 1. ube diambil

Lebih terperinci

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand TEKIK SAMPLIG PCA SEDERHAA Hazmira Yozza Izzati Rahmi HG Jurusa Matematika FMIPA Uad Defiisi : Jika suatu cotoh berukura diambil dari suatu populasi berukura sedemikia rupa sehigga setiap kemugkia cotoh

Lebih terperinci

Distribusi Probabilitas (Peluang)

Distribusi Probabilitas (Peluang) Distribusi Probabilitas (Peluag Distribusi? Probabilitas? Distribusi Probabilitas? JURUSAN PENDIDIKAN FISIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA Distribusi sebara, ecara, susua data Probabilitas: a

Lebih terperinci

1 n MODUL 5. Peubah Acak Diskret Khusus

1 n MODUL 5. Peubah Acak Diskret Khusus ODUL 5 Peubah Acak Diskret Khusus Terdapat beberapa peubah acak diskret khusus yag serig mucul dalam aplikasi. Peubah Acak Seragam ( Uiform) Bila X suatu peubah acak diskret dimaa setiap eleme dari X mempuyai

Lebih terperinci

Pendekatan Teori Antrian : Kasus Nasabah Bank pada Pukul WIB di Bank BNI 46 Cabang Bengkulu

Pendekatan Teori Antrian : Kasus Nasabah Bank pada Pukul WIB di Bank BNI 46 Cabang Bengkulu Jural Gradie Vol. No. Juli 5 : 9-97 edeata Teori Atria : Kasus Nasabah Ba pada uul 8.-. WIB di Ba BNI 46 Cabag Begulu Fahri Faisal Jurusa Matematia, Faultas Matematia da Ilmu egetahua Alam, Uiversitas

Lebih terperinci

BAB 2 ANAVA 2 JALAN. Merupakan pengembangan dari ANAVA 1 Jalan Jika pada ANAVA 1 jalan 1 Faktor Jika pada ANAVA 2 jalan 2 Faktor

BAB 2 ANAVA 2 JALAN. Merupakan pengembangan dari ANAVA 1 Jalan Jika pada ANAVA 1 jalan 1 Faktor Jika pada ANAVA 2 jalan 2 Faktor BAB ANAVA JALAN Merupaka pegembaga dari ANAVA 1 Jala Jika pada ANAVA 1 jala 1 Faktor Jika pada ANAVA jala Faktor Model Liier i i 1,..., a j 1,..., Satu faktor ag diteliti Aava 1 jala k i j k i 1,,...,

Lebih terperinci

PEMODELAN LAMA PEMBERIAN ASI EKSKLUSIF PADA RUMAH TANGGA MISKIN DENGAN METODE REGRESI POHON DI PROVINSI SULAWESI TENGAH

PEMODELAN LAMA PEMBERIAN ASI EKSKLUSIF PADA RUMAH TANGGA MISKIN DENGAN METODE REGRESI POHON DI PROVINSI SULAWESI TENGAH PEMODELAN LAMA PEMBERIAN ASI EKSKLUSIF PADA RUMAH TANGGA MISKIN DENGAN METODE REGRESI POHON DI PROVINSI SULAWESI TENGAH Yermia Firma Setiawirawa da Dr. Bambag Widjaaro Oto, S.Si, M.Si Mahasiswa Jurusa

Lebih terperinci

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu

Lebih terperinci

Sinyal dan Sistem Waktu Diskrit ET 3005 Pengolahan Sinyal Waktu Diskrit EL 5155 Pengolahan Sinyal Waktu Diskrit

Sinyal dan Sistem Waktu Diskrit ET 3005 Pengolahan Sinyal Waktu Diskrit EL 5155 Pengolahan Sinyal Waktu Diskrit Siyal da Sistem Watu Disrit ET 35 Pegolaha Siyal Watu Disrit EL 5155 Pegolaha Siyal Watu Disrit Effria Yati Hamid 1 2 Siyal da Sistem Watu Disrit 2.1 Siyal Watu Disrit 2.1.1 Pegertia Siyal Watu Disrit

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB ENDAHULUAN. Latar Belakag Masalah Dalam kehidupa yata, hampir seluruh feomea alam megadug ketidak pastia atau bersifat probabilistik, misalya pergeraka lempega bumi yag meyebabka gempa, aik turuya

Lebih terperinci

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai PENGUJIAN HIPOTESIS Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai ilai-ilai parameter populasi,

Lebih terperinci

BAB III METODOLOGI START. Baca Input Data γ, c, φ, x 1, y 1, x 2, y 2, x 3, y 3, x 4, y 4, D. Menghitung FK Manual. Tidak.

BAB III METODOLOGI START. Baca Input Data γ, c, φ, x 1, y 1, x 2, y 2, x 3, y 3, x 4, y 4, D. Menghitung FK Manual. Tidak. BAB III METODOLOGI 3.. ALUR PROGRAM (FLOW CHART) Seerti telah dijelaska sebelumya, bahwa tujua dari eelitia ii adalah utuk megaalisis suatu kasus stabilitas lereg. Aalisis stabilitas lereg tergatug ada

Lebih terperinci

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL)

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) Setiap peelitia selalu berkeaa dega sekelompok data. Yag dimaksud kelompok disii adalah: Satu orag mempuyai sekelompok data, atau sekelompok orag mempuyai satu

Lebih terperinci

STATISTIKA NON PARAMETRIK

STATISTIKA NON PARAMETRIK . PENDAHULUAN STATISTIKA NON PARAMETRIK Kelebiha Uji No Parametrik: - Perhituga sederhaa da cepat - Data dapat berupa data kualitatif (Nomial atau Ordial) - Distribusi data tidak harus Normal Kelemaha

Lebih terperinci

9 Departemen Statistika FMIPA IPB

9 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351 9 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Pegatar Aalisis utuk Data Respo Kategorik Data respo kategorik Sebara

Lebih terperinci

Teori Penaksiran. Oleh : Dadang Juandi

Teori Penaksiran. Oleh : Dadang Juandi Teori Peakira Oleh : Dadag Juadi Pedahulua Ada metode iferei : metode klaik da metode Baye dalam meakir arameter oulai Dalam metode klaik iferei didaarka ada iformai yag dieroleh melalui amel acak Dalam

Lebih terperinci

Modul Kuliah statistika

Modul Kuliah statistika Modul Kuliah statistika Dose: Abdul Jamil, S.Kom., MM SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER MUHAMMADIYAH JAKARTA Bab 2 Populasi da Sampel 2.1 Populasi Populasi merupaka keseluruha pegamata

Lebih terperinci

Chapter 7 Student Lecture Notes 7-1

Chapter 7 Student Lecture Notes 7-1 Chapter 7 Studet Lecture Notes 7-1 DASAR-DASAR UJI Hipotesis: Hipo (di bawah) da Tesis (peryataa yag telah diuji) Hipotesis Statistik:suatu proposisi atau aggapa megeai parameter populasi yag dapat diuji

Lebih terperinci

ESTIMASI. Jika parameter populasi disimbolkan dengan θ maka θ yang tidak diketahui harganya ditaksir oleh harga

ESTIMASI. Jika parameter populasi disimbolkan dengan θ maka θ yang tidak diketahui harganya ditaksir oleh harga ESTIMASI Salah atu aek utuk mearik keimula megeai uatu oulai dega memakai amel yag diambil dari oulai terebut megguaka etimai (eakira) Jika arameter oulai diimbolka dega θ maka θ yag tidak diketahui hargaya

Lebih terperinci

Biostatistics UJI CHI-SQUARE UJI HIPOTESIS CHI-SQUARE

Biostatistics UJI CHI-SQUARE UJI HIPOTESIS CHI-SQUARE Biostatistics UJI CHI-SQUARE I N T A N Y U S U F H A B I B I E, S. G Z - Ilmu statistik tidak haya membatu kita utuk medeskripsika data secara rigkas, tapi juga dapat diguaka utuk meguji hipotesa. - Hipotesa

Lebih terperinci

Jurusan Pendidikan Matematika, Fakultas Keguruan dan Ilmu Pendidikan Universitas Bung Hatta

Jurusan Pendidikan Matematika, Fakultas Keguruan dan Ilmu Pendidikan Universitas Bung Hatta PENERAPAN MODEL COOPERATIVE LEARNING TIPE THINK PAIR SQUARE UNTUK MENINGKATKAN KEMAMPUAN PEMECAHAN MASALAH MATEMATIKA SISWA KELAS VIII SMP PERTIWI 1 PADANG Cherly Mardelfi 1, Lutfia Almash 2, Yusri Wahyui

Lebih terperinci

STATISTIKA DAN PELUANG BAB III STATISTIKA

STATISTIKA DAN PELUANG BAB III STATISTIKA Matematika Kelas IX Semester BAB Statistika STATISTIKA DAN PELUANG BAB III STATISTIKA A. Statistika Pegertia Statistika Statistika adalah ilmu yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis

Lebih terperinci

UJI STATISTIK PENGARUH PERLAKUAN PERMUKAAN TERHADAP UMUR FATIK DENGAN DATA TERBATAS

UJI STATISTIK PENGARUH PERLAKUAN PERMUKAAN TERHADAP UMUR FATIK DENGAN DATA TERBATAS Uji Statisti Pegaruh Perlaua Permuaa terhadap dega Data Terbatas (Agus Suhartoo) Areditasi LIPI omor : 536/D/007 Taggal 6 Jui 007 UJI STATISTIK PEGARUH PERLAKUA PERMUKAA TERHADAP UMUR FATIK DEGA DATA TERBATAS

Lebih terperinci

BAB III METODE PENELITIAN. Metode yang digunakan dalam penelitian ini adalah penelitian korelasi,

BAB III METODE PENELITIAN. Metode yang digunakan dalam penelitian ini adalah penelitian korelasi, BAB III METODE PENELITIAN 3.1 Metode Peelitia Metode yag diguaka dalam peelitia ii adalah peelitia korelasi, yaitu suatu metode yag secara sistematis meggambarka tetag hubuga pola asuh orag tua dega kosep

Lebih terperinci

1. Uji Dua Pihak. mis. Contoh :

1. Uji Dua Pihak. mis. Contoh : . Uji Dua Pihak H 0 H a : : Cotoh : mis : mea kelas Lab mea kelas tapa lab Ho : Tidak ada perbedaa kemampua hasil belajar biologi siswa atara yag belajar melalui media laboratorium dega yag tidak. Ha :

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 30 III. METODE PENELITIAN A. Metode Dasar Peelitia Metode yag diguaka dalam peelitia adalah metode deskriptif, yaitu peelitia yag didasarka pada pemecaha masalah-masalah aktual yag ada pada masa sekarag.

Lebih terperinci

BAB IV PERSAMAAN TINGKAT SATU DERAJAT TI NGGI (1-n)

BAB IV PERSAMAAN TINGKAT SATU DERAJAT TI NGGI (1-n) BAB IV ERSAMAAN TINGKAT SATU DERAJAT TI NGGI 1- Stadar Kometesi Setelah memelajari okok bahasa ii diharaka mahasiswa daat memahami ara-ara meetuka selesaia umum ersamaa dieresial tigkat satu derajat tiggi.

Lebih terperinci

Lecture 4 : Queueing Theory and Aplications. Hanna Lestari, M.Eng

Lecture 4 : Queueing Theory and Aplications. Hanna Lestari, M.Eng Leture 4 : Queueig Theory ad Apliatios Haa Lestari, M.Eg Struktur Dasar Model Model Atria Teori Atria bertujua utuk megetahui/meetuka besara kierja sistem atria. Ukura kierja sistem dalam kodisi steady

Lebih terperinci

BAB VII RANDOM VARIATE DISTRIBUSI DISKRET

BAB VII RANDOM VARIATE DISTRIBUSI DISKRET BAB VII RANDOM VARIATE DISTRIBUSI DISKRET Diskret radom variabel dapat diguaka utuk berbagai radom umber yag diambil dalam betuk iteger. Pola kebutuha ivetori (persediaa) merupaka cotoh yag serig diguaka

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1. Tempat da Watu Peelitia Peelitia megeai Kepuasa Kosume Restora Gampoeg Aceh, dilasaaa pada bula Mei 2011 higga Jui 2011. Restora Gampoeg Aceh, bertempat di Jl Pajajara, Batarjati,

Lebih terperinci

Jurnal Ilmiah Matematika dan Terapan, vol.7, no. 1, Mei 2010, hal PERBANDINGAN MODEL REGRESI NONPARAMETRIK DENGAN REGRESI SPLINE DAN KERNEL

Jurnal Ilmiah Matematika dan Terapan, vol.7, no. 1, Mei 2010, hal PERBANDINGAN MODEL REGRESI NONPARAMETRIK DENGAN REGRESI SPLINE DAN KERNEL Jural Ilmiah Matematika da Teraa, vol.7, o., Mei 0, hal. -7. Abstrak PERBANDINGAN MODEL REGRESI NONPARAMETRIK DENGAN REGRESI SPLINE DAN KERNEL Lilis Laome ) ) Jurusa Matematika FMIPA Uiversitas Haluoleo

Lebih terperinci

ANAVA 2 Jalan. Jumlah sampel dalam sel tak sama

ANAVA 2 Jalan. Jumlah sampel dalam sel tak sama ANAVA Jala Jumlah sampel dalam sel tak sama Iteraksi? Teradi ika pegaruh satu faktor tergatug pada tigkat pegaruh faktor lai Jika pegaruh iteraksi sigifika maka iteroretasi pegaruh utama (A & B) meadi

Lebih terperinci

III. METODE PENELITIAN. Pembangunan Daerah (BAPPEDA) Provinsi NTB, BPS pusat, dan instansi lain

III. METODE PENELITIAN. Pembangunan Daerah (BAPPEDA) Provinsi NTB, BPS pusat, dan instansi lain III. METODE PENELITIAN 3.1 Jeis da Sumber Data Data yag diguaka pada peelitia ii merupaka data sekuder yag diperoleh dari Bada Pusat Statistik (BPS) Provisi NTB, Bada Perecaaa Pembagua Daerah (BAPPEDA)

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

Analisis Faktor Sanitasi dan Sumber Air Minum yang Mempengaruhi Insiden Diare pada Balita di Jawa Timur dengan Regresi Logistik Biner

Analisis Faktor Sanitasi dan Sumber Air Minum yang Mempengaruhi Insiden Diare pada Balita di Jawa Timur dengan Regresi Logistik Biner JURNAL SAINS DAN SENI ITS Vol. 4, No., (015) 337-350 (301-98X Prit) D-3 Aalisis Faktor Saitasi da Sumber Air Mium yag Memegaruhi Iside Diare ada Balita di Jawa Timur dega Regresi Logistik Bier Feby Victiai

Lebih terperinci

PERTEMUAN 6-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK

PERTEMUAN 6-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK PERTEMUAN 6-MPC 2 PRAKTIK Oleh: Adhi Kuriawa SEKOLAH TINGGI ILMU STATISTIK PPS Cluster Samplig Misalka suatu daerah terdiri dari N cluster yag masig-masig cluster terdiri dari eleme. Dari populasi tersebut,

Lebih terperinci

PERSAMAAN DIFERENSIAL

PERSAMAAN DIFERENSIAL PERSAMAAN DIFERENSIAL A. Persamaa Diferesial Liier Tigkat Satu Betuk umum ersamaa diferesial liier tigkat satu adalah sebagai berikut: P( ) y Q( ) d atau y P( ) y Q( ) Rumus eyelesaia umum utuk ersamaa

Lebih terperinci

ANUITAS. 9/19/2012 MK. Aktuaria Darmanto,S.Si.

ANUITAS. 9/19/2012 MK. Aktuaria Darmanto,S.Si. ANUITAS 9/19/2012 MK. Aktuaria Darmato,S.Si. 1 OVERVIEW Auitas adl suatu pembayara dalam jumlah tertetu, yag dilakuka setiap selag waktu da lama tertetu, secara berkelajuta. Suatu auitas yg pasti dilakuka

Lebih terperinci

Teori Penaksiran. Oleh : Dewi Rachmatin

Teori Penaksiran. Oleh : Dewi Rachmatin Teori Peakira Oleh : Dewi Rachmati Pedahulua Ada metode iferei : metode klaik da metode Baye dalam meakir arameter oulai Dalam metode klaik iferei didaarka ada iformai yag dieroleh melalui amel acak Dalam

Lebih terperinci

KLASIFIKASI KARAKTERISTIK KECELAKAAN LALU LINTAS DI KOTA DENPASAR DENGAN PENDEKATAN CLASSIFICATION AND REGRESSION TREES (CART)

KLASIFIKASI KARAKTERISTIK KECELAKAAN LALU LINTAS DI KOTA DENPASAR DENGAN PENDEKATAN CLASSIFICATION AND REGRESSION TREES (CART) E-Jural Matematia Vol. 4 (4), November 2015, pp. 146-151 ISSN: 2303-1751 KLASIFIKASI KAAKTEISTIK KECELAKAAN LALU LINTAS DI KOTA DENPASA DENGAN PENDEKATAN CLASSIFICATION AND EGESSION TEES (CAT) I Gede Agus

Lebih terperinci