Soal-soal Latihan: jika Misalkan n adalah bilangan genap. Buktikan bahwa

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Soal-soal Latihan: jika Misalkan n adalah bilangan genap. Buktikan bahwa"

Transkripsi

1 Soal-soal Latiha:. Misalka kita aka meyusu kata-kata yag dibetuk dari huru-huru dalam kata SIMALAKAMA, jika a. huru S mucul setelah huru K (misalya, ALAMAKSIM). b. huru A mucul berdekata. c. tidak memuat pola MASAM atau MAKAM. d. tidak memuat pola MALAS da SIAL. e. memuat pola KAMIS atau KALAM.. memuat pola KAMAL tapi tak memuat pola MALAKA.. Dalam kita dapat memilih pegirima chip komputer, terdapat 8 yag rusak. Ada berapa cara kita dapat memilih, jika kita dapat memilih 4 buah chip yag a. semuaya tidak rusak? b. terdiri atas chip yag rusak da chip yag baik? c. terdiri atas tepat chip yag rusak?. Misalka i,j) adalah bayakya himpua bagia dega j aggota dari himpua dega i aggota. Tujukka bahwa, =, Buktika bahwa berlaku a. C (,, k ) jika b. C (,,. k. c.,. d.,, ). e., 8. Misalka adalah bilaga geap. Buktika bahwa C (, k,k 9. Dalam berapa cara buku yag berbeda satu sama lai, dapat dibagika kepada mahasiswa, jika mahasiswa pertama medapat 8 buku, yag ke- medapat 7 buku, da yag ke- medapat 5 buku? )

2 . Dalam sebuah kerajag terdapat beberapa buah bola, masig-masig berwara merah, biru, da hijau. Ada berapa cara bola dapat dipilih, a. jika palig sedikit terdapat bola berwara merah harus terpilih? b. Jika palig sedikit bola merah, palig sedikit bola biru, da palig sedikit bola hijau mesti terpilih? c. Jika palig bayak bola merah terpilih? d. Jika tepat bola merah da palig sedikit bola hijau mesti terpilih? 7. Misalka dalam sebuah grup yag terdiri atas 6 orag, masig-masig pasaga idividu terdiri atas tema atau musuh. Perlihatka bahwa terdapat orag yag salig merupaka tema satu sama lai atau orag yag salig merupaka musuh satu sama lai. 8. Susulah bayakya cara 8 buah buku yag berbeda dibagika kepada orag siswa, jika siswa pertama memperoleh buah buku, siswa ke-dua memperoleh buku, da siswa ke-tiga memperoleh buku. 9. Ada berapa bayak bilaga bulat atara da.. yag jumlah bilaga dari digit-digitya sama dega 5?. Tetuka bayakya peyelesaia bilaga bulat bagi persamaa x x, jika a. x 4, x,. b. x 5, x 8,.. Tetuka bayakya peyelesaia bilaga bulat bagi persamaa y yag memeuhi y y y4. Tetuka koeisie suku 6, x 5, x 6, 7, y4 4 x y z dari perluasa betuk 8. ( y z) 9 x.. Tetuka ada berapa suku yag terdapat dalam perluasa betuk ekspresi a. (x+y+z). b. (a+b+c+d) 8. c. (x+y+z) (a+b+c+d) Tetuka koeisie utuk x 4 y 4 z dari (x+y+z). Relasi Berulag. Selesaika relasi berulag berikut ii: a. a =a - + a -, a = a =.

3 b. a =a - +, a =.. Sebuah robot dapat melagkah dega jarak atau meter. Jika C meyataka bayakya cara robot melagkah dalam meter, susulah relasi berulag utuk C. 5. Seorag pebisis berivestasi dega modal sebesar Rp...,- da medapat buga sebesar perse per tahu. Jika A meyataka bayakya uag di akhir dari tahu, tetuka suatu relasi berulag da syarat awal bagi barisa A, A, A,.... Tuliska pula rumus eksplisit bagi A. 8. Misalka seorag aak memiliki rupiah da setiap hariya dia membeli jus jeruk seharga Rp. 8.,-, jus tomat seharga Rp. 7.,-, atau jus alpuket seharga Rp..,-. Jika H meyataka bayakya cara aak tersebut membelajaka uagya, perlihatka bahwa H H H. 9. Diketahui A =, da A =. Tetuka A 5 da A jika A ( A A ).. Sebuah barisa Fiboacci diyataka dega. Tujukka bahwa,,,,.. Jika meyataka barisa Fiboacci utuk =,,,..., tujukka bahwa C k,,,, (. Misalka P P meyataka bayakya partisi dari suatu himpua yag memiliki aggota. Tujuka bahwa barisa P P,, memeuhi relasi berulag, P P, i) P i i. Misaka A(, meyataka bayakya ugsi oto dari himpua dega aggota ke himpua dega k aggota. Tujukka bahwa A(, memeuhi relasi berulag k A (, k k, i) A(, i). i. Tetuka peyelesaia eksplisit bagi persoala Meara Haoi utuk Selesaikalah relasi berulag berikut sesuai dega syarat awalya. d. a a a, a. a e. a a a, a,. 8. Buktika bahwa a

4 a. a adalah peyelesaia eksplisit bagi relasi berulag a a a 9. b. a ( ) adalah peyelesaia eksplisit bagi relasi berulag a a a Tetuka peyelesaia eksplisit bagi relasi berulag berikut dega tekik pedekata iterati. a. a a., a b. a a,. a c. a a,. a d. a a,. 5 a Soal-soal Latiha:. Buktika bahwa dalam tiap kumpula 6 mata pelajara pasti ada dua mata pelajara yag terjadwal pada hari yag sama, jika tak ada pelajara yag diseleggaraka di hari Sabtu.. Sebuah laci lemari diisi selusi kaus kaki berwara biru da selusi kaus kaki berwara coklat yag bercampur tidak berpasaga. Seorag aak megambil beberapa kaus kaki tersebut dalam kegelapa malam. a. Berapa kaus kaki harus diambil agar dia yaki bahwa palig sedikit dia memperoleh dua kaus kaki yag berwara sama? b. Berapa kaus kaki harus dia ambil agar palig sedikit diperoleh dua kaus kaki 9. Misalka dari 8 bilaga bulat positi pertama diambil 4 bilaga. Apakah pasti terdapat sepasag bilaga bulat positi yag jumlahya 9?. Perlihatka bahwa jika 7 bilaga dipilih dari bilaga asli pertama, maka pasti terdapat palig sedikit dua pasag bilaga yag jumlahya.. Misalka 6 bilaga dipilih dari bilaga asli pertama. Apakah pasti terdapat palig sedikit dua pasag bilaga yag jumlahya?

5 5. Di sebuah perkuliaha matematika kombiatorik terdapat sembila mahasiswa. Perlihatka bahwa di perkuliaha tersebut palig sedikit terdapat palig sedikit lima mahasiswa pria atau palig sedikit lima mahasiswa waita. Tujukka pula bahwa di perkuliaha tersebut terdapat palig sedikit tiga mahasiswa pria atau palig sedikit tujuh mahasiswa waita. 6. Misalka bahwa tiap-tiap mahasiswa yag megotrak mata kuliah persamaa dieresial yag jumlahya mecapai dua puluh lima orag adalah mahasiswa asal Pulau Jawa, Pulau Sumatra, atau Pulau Kalimata. Perlihatka bahwa terdapat palig sedikit sembila mahasiswa asal Pulau Jawa, palig sedikit sembila mahasiswa asal Pulau Sumatra, atau palig sedikit sembila mahasiswa asal Pulau Kalimata. Tujukka pula bahwa terdapat palig sedikit tiga mahasiswa asal Pulau Jawa, palig sedikit sembila belas mahasiswa asal Pulau Sumatra, atau palig sedikit lima mahasiswa asal Pulau Kalimata. 8. Perlihatka bahwa di atara peserta semiar yag tiggi badaya semuaya berbeda, terdapat sebelas orag yag dapat dimita berdiri dalam satu barisa dega tiggi bada dari terkecil ke terbesar atau sebalikya.. Dalam sebuah kelompok yag terdiri atas orag, di atara dua orag dalam kelompok tersebut salig merupaka tema atau salig merupaka musuh. Perlihatka bahwa pasti terdapat tiga orag dalam kelompok tersebut yag salig merupaka musuh satu sama lai, atau empat orag yag salig merupaka tema satu sama lai, da tiga orag yag salig merupaka musuh satu sama lai atau empat orag yag satu sama laiya merupaka tema.. Di tepi sebelah kiri sepajag jala raya sebuah kota terdapat rumah. Tiap-tiap rumah mempuyai omor mulai dari higga 4. Perlihatka bahwa ada palig sedikit rumah yag mempuyai omor beruruta.

SOAL-SOAL. 1. UN A Jumlah n suku pertama deret aritmetika dinyatakan dengan S n n

SOAL-SOAL. 1. UN A Jumlah n suku pertama deret aritmetika dinyatakan dengan S n n Husei Tampomas, Barisa da Deret, 06 SOAL-SOAL. UN A 0 Jumlah suku pertama deret aritmetika diyataka dega S. Suku ke-0 A. B. C. 0 D. 8 E. 6. UN A, D7, da E8 0 Sebuah pabrik memproduksi barag jeis A pada

Lebih terperinci

Kompetisi Statistika Tingkat SMA

Kompetisi Statistika Tingkat SMA . Arya da Bombom melakuka tos koikoi yag seimbag yag mempuyai sisi, agka da gambar Arya melakuka tos terhadap 6 koi, sedagka Bombom melakuka tos terhadap koi, maka peluag Arya medapatka hasil tos muka

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang II. LANDASAN TEORI Pada bab ii aka diberika beberapa istilah, defiisi serta kosep-kosep yag medukug dalam peelitia ii. 2.1 Kosep Dasar Teori Graf Berikut ii aka diberika kosep dasar teori graf yag bersumber

Lebih terperinci

Oleh: Yunissa Rara Fahreza Akuntansi Teknologi Sistem Informasi KOMBINATORIAL & PELUANG DISKRIT : PERMUTASI MATEMATIKA DISKRIT

Oleh: Yunissa Rara Fahreza Akuntansi Teknologi Sistem Informasi KOMBINATORIAL & PELUANG DISKRIT : PERMUTASI MATEMATIKA DISKRIT Oleh: Yuissa Rara Fahreza Akutasi Tekologi Sistem Iformasi KOMBINATORIAL & PELUANG DISKRIT : PERMUTASI MATEMATIKA DISKRIT ILUSTRASI 1 Misal ada 3 buah kelereg yag berbeda wara : merah (m), kuig (k) da

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN

Lebih terperinci

SOAL-SOAL LATIHAN BARISAN DAN DERET ARITMETIKA DAN GEOMETRI UJIAN NASIONAL

SOAL-SOAL LATIHAN BARISAN DAN DERET ARITMETIKA DAN GEOMETRI UJIAN NASIONAL SOAL-SOAL LATIHAN BARISAN DAN DERET ARITMETIKA DAN GEOMETRI UJIAN NASIONAL Peserta didik memiliki kemampua memahami kosep pada topik barisa da deret aritmetika da geometri. Peserta didik memilki kemampua

Lebih terperinci

Matematika Diskret (Kombinatorial - Permutasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs

Matematika Diskret (Kombinatorial - Permutasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs Matematika Diskret (Kombiatorial - Permutasi) Istruktur : Ferry Wahyu Wibowo, S.Si., M.Cs Pedahulua Sebuah sadi-lewat (password) pajagya 6 sampai 8 karakter. Karakter boleh berupa huruf atau agka. Berapa

Lebih terperinci

ISIAN SINGKAT! 1. Diberikan hasil kali digit digit dari n harus sama dengan 25

ISIAN SINGKAT! 1. Diberikan hasil kali digit digit dari n harus sama dengan 25 head office : Kompleks Sawaga Permai Blok A5 No.1A, Sawaga, Depok 16511 Telp.01-951 1160. cotact perso : 0-878787-1-8585 / 081-8691-10 Bidag Studi Kode Berkas Waktu : Matematika : MA-L01 (solusi) : 90

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu

Lebih terperinci

BARISAN DAN DERET. Materi ke 1

BARISAN DAN DERET. Materi ke 1 BARISAN DAN DERET Materi ke 1 Pola Bilaga adalah? Susua bilaga yag disusu meurut atura tertetu. Cotoh : 1. Pola Bilaga Gajil 1, 3, 5,... 2. Pola Bilaga Geap 2, 4, 6,... PERHATIKAN SSNAN BILANGAN DI BAWAH

Lebih terperinci

Induksi Matematika. Pertemuan VII Matematika Diskret Semester Gasal 2014/2015 Jurusan Teknik Informatika UPN Veteran Yogyakarta

Induksi Matematika. Pertemuan VII Matematika Diskret Semester Gasal 2014/2015 Jurusan Teknik Informatika UPN Veteran Yogyakarta Iduksi Matematika Pertemua VII Matematika Diskret Semester Gasal 2014/2015 Jurusa Tekik Iformatika UPN Vetera Yogyakarta Metode pembuktia utuk peryataa perihal bilaga bulat adalah iduksi matematik. Cotoh

Lebih terperinci

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi 6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0

Lebih terperinci

UKURAN PEMUSATAN UKURAN PENYEBARAN

UKURAN PEMUSATAN UKURAN PENYEBARAN UKURAN PEMUSATAN DATA TUNGGAL DATA KELOMPOK. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL UKURAN PENYEBARAN JANGKAUAN HAMPARAN RAGAM / VARIANS SIMPANGAN BAKU

Lebih terperinci

SOAL PENYISIHAN =. a. 11 b. 12 c. 13 d. 14 e. 15

SOAL PENYISIHAN =. a. 11 b. 12 c. 13 d. 14 e. 15 SOAL PENYISIHAN Petujuk pegerjaa soal : Jumlah soal 0 soal Piliha Gada da Uraia Utuk piliha gada diberi peilaia bear +, salah -, tidak diisi 0 Lama pegerjaa soal adalah 0 meit Kalau berai, silaka pilih

Lebih terperinci

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 <

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 < II. TINJAUAN PUSTAKA 2.1 Keterbagia Secara umum apabila a bilaga bulat da b bilaga bulat positif, maka ada tepat satu bilaga bulat q da r sedemikia sehigga : = +, 0 < dalam hal ii b disebut hasil bagi

Lebih terperinci

BARISAN DAN DERET. Bentuk deret Aritmatika: a, ( a + b ), ( a + 2b ) ( a + ( n 1 ) b a = suku pertama b = beda n = banyaknya suku.

BARISAN DAN DERET. Bentuk deret Aritmatika: a, ( a + b ), ( a + 2b ) ( a + ( n 1 ) b a = suku pertama b = beda n = banyaknya suku. BARISAN DAN DERET Bab 9 Deret Aritmatika (Deret Hitug) o o o Betuk deret Aritmatika: a, ( a + b ), ( a + b ) +...+ ( a + ( ) b a = suku pertama b = beda = bayakya suku Suku ke- : U = a + (-)b Jumlah suku

Lebih terperinci

BAB VIII KONSEP DASAR PROBABILITAS

BAB VIII KONSEP DASAR PROBABILITAS BAB VIII KONSEP DASAR PROBABILITAS 1.1. Pedahulua Dalam pertemua ii Ada aka mempelajari beberapa padaga tetag permutasi da kombiasi, fugsi da metode perhituga probabilitas, da meghitug probabilitas. Pada

Lebih terperinci

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas.

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas. 4 D E R E T Kosep deret merupaka kosep matematika yag cukup populer da aplikatif khusuya dalam kasus-kasus yag meyagkut perkembaga da pertumbuha suatu gejala tertetu. Apabila perkembaga atau pertumbuha

Lebih terperinci

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu Secara umum persamaa rekursif liier tigkat-k bisa dituliska dalam betuk: dega C 0 0. C 0 x + C 1 x 1 + C 2 x 2 + + C k x k = b, Jika b = 0 maka persamaa rekursif tersebut diamaka persamaa rekursif liier

Lebih terperinci

Projek. Contoh Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri. Perhatikan barisan bilangan 2, 4, 8, 16,

Projek. Contoh Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri. Perhatikan barisan bilangan 2, 4, 8, 16, Projek Himpulah miimal tiga masalah peerapa barisa da deret aritmatika dalam bidag fisika, tekologi iformasi, da masalah yata di sekitarmu. Ujilah berbagai kosep da atura barisa da deret aritmatika di

Lebih terperinci

MATEMATIKA EKONOMI 1 Deret. DOSEN Fitri Yulianti, SP, MSi.

MATEMATIKA EKONOMI 1 Deret. DOSEN Fitri Yulianti, SP, MSi. MATEMATIKA EKONOMI 1 Deret DOSEN Fitri Yuliati, SP, MSi. Deret Deret ialah ragkaia bilaga yag tersusu secara teratur da memeuhi kaidah-kaidah tertetu. Bilaga-bilaga yag merupaka usur da pembetuk sebuah

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET Pertemua 7. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuaku Tambusai Bagkiag 5. da kekovergeaya 5. DERET Diberika sebuah barisa a, dapat didefeisika barisa bilaga real S N dega S N := N a = a + a 2 +...

Lebih terperinci

SOAL-SOAL SPMB 2006 MATEMATIKA DASAR (MAT DAS) 63 n, maka jumlah n suku. D n n 2. f n log3 log 4 log5... log n, maka f 2...

SOAL-SOAL SPMB 2006 MATEMATIKA DASAR (MAT DAS) 63 n, maka jumlah n suku. D n n 2. f n log3 log 4 log5... log n, maka f 2... SOAL-SOAL SPMB 006 MATEMATIKA DASAR (MAT DAS). SPMB, MAT DAS, Regioal I, 006 Tiga bilaga membetuk suatu deret geometri aik. Jika jumlahya 6 da hasikaliya 6, maka rasio deretya adalah A. B. C. D. 4 E. 5.

Lebih terperinci

Kombinatorial dan Peluang. Adri Priadana ilkomadri.com

Kombinatorial dan Peluang. Adri Priadana ilkomadri.com Kombiatorial da Peluag Adri Priadaa ilkomadri.com Pedahulua Sebuah kata-sadi (password) pajagya 6 sampai 8 karakter. Karakter boleh berupa huruf atau agka. Berapa bayak kemugkia kata-sadi yag dapat dibuat?

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

BARISAN FIBONACCI DAN BILANGAN PHI

BARISAN FIBONACCI DAN BILANGAN PHI BARISAN FIBONACCI DAN BILANGAN PHI Fiboacci Matematikawa terbesar pada abad pertegaha adalah Leoardo dari Pisa, Italia (80 0). Ia lebih dikeal dega ama Fibo-acci. Artiya, aak Boaccio. Meara Pisa yag terkeal

Lebih terperinci

PEMBEKALAN OSN-2011 SMP STELA DUCE I YOGYAKARTA MATA PELAJARAN: MATEMATIKA Pemateri: Murdanu

PEMBEKALAN OSN-2011 SMP STELA DUCE I YOGYAKARTA MATA PELAJARAN: MATEMATIKA Pemateri: Murdanu Pemateri: Murdau 1 BAGIAN A 1. Carilah dua bilaga yag hasilkali da jumlahya berilai sama!. Carilah dua bilaga yag perbadiga da selisihya berilai sama! 3. Diketahui: ab = 84, bc = 76, ac = 161. Berapakah

Lebih terperinci

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia Himpua Suatu himpua atau gugus adalah merupaka sekumpula obyek. Pada umumya aggota dari gugus tersebut memiliki suatu sifat yag sama. Suatu himpua bagia atau aak gugus merupaka sekumpula obyek yag aggotaya

Lebih terperinci

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Prosidig Semiar Nasioal Matematika da Terapaya 06 p-issn : 0-0384; e-issn : 0-039 PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Liatus

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 010 TIM OLIMPIADE MATEMATIKA INDONESIA 0 Prestasi itu diraih buka didapat!!! SOLUSI SOAL Bidag Matematika Disusu oleh : Eddy Hermato, ST Olimpiade Matematika Tk

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 BAB XII. SUKU BANYAK A = a Pegertia: f(x) = a x + a x + a x + + a x +a adalah suku bayak (poliom) dega : - a, a, a,.,a, a, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

1 4 A. 1 D. 4 B. 2 E. -5 C. 3 A.

1 4 A. 1 D. 4 B. 2 E. -5 C. 3 A. . Seorag pedagag membeli barag utuk dijual seharga Rp. 0.000,00. Bila pedagag tersebut meghedaki utug 0 %, maka barag tersebut harus dijual dega harga A. Rp. 00.000,00 D. Rp. 600.000,00 B. Rp. 00.000,00

Lebih terperinci

Solusi Pengayaan Matematika

Solusi Pengayaan Matematika Solusi Pegayaa Matematika Edisi 11 Maret Peka Ke-, 2007 Nomor Soal: 101-110 101. Bilaga desimal 0,7777 diyataka dalam hasil bagi bilaga rasioal sebagai a b, dega a da b relatif prima. Nilai dari ab A.

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM

MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM MATEMATIKA BISNIS OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM BAB BARISAN DAN DERET A. BARISAN Barisa bilaga adalah susua bilaga yag diurutka meurut atura tertetu.betuk umum barisa bilaga a,

Lebih terperinci

PELUANG KEJADIAN. 3. Permutasi siklis adalah permutasi yang susunannya melingkar.

PELUANG KEJADIAN. 3. Permutasi siklis adalah permutasi yang susunannya melingkar. PELUANG KEJADIAN A. Atura Perkalia/Pegisia Tempat Jika kejadia pertama dapat terjadi dalam a cara berbeda, kejadia kedua dapat terjadi dalam b cara berbeda, kejadia ketiga dapat terjadi dalam c cara berbeda,

Lebih terperinci

E-learning matematika, GRATIS 1

E-learning matematika, GRATIS 1 E-learig matematika, GRATIS Peyusu Editor : Teag Idriyai, S.P ; Taufiq Rahma, S.P : Drs. Keto Susato, M.Si. M.T. ; Istijab, S.H. M.Hum. Imam Idra Guawa, S.Si.. Pegertia Barisa da Deret Barisa bilaga adalah

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b.

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b. Didowload dari ririez.blog.us.ac.id HALAMAN 36 37 5. Dega defiisi limit barisa buktika limit berikut ii : a. lim = 0 lim 1 2 + 3 = 0 > 0 h 1 = 2 + 3 0 = 1 2 + 3 1 2 1 2 1 2 < jadi terbukti bahwa lim =

Lebih terperinci

III BAB BARISAN DAN DERET. Tujuan Pembelajaran. Pengantar

III BAB BARISAN DAN DERET. Tujuan Pembelajaran. Pengantar BAB III BARISAN DAN DERET Tujua Pembelajara Setelah mempelajari materi bab ii, Ada diharapka dapat:. meetuka suku ke- barisa da jumlah suku deret aritmetika da geometri,. meracag model matematika dari

Lebih terperinci

MATEMATIKA DISKRIT FUNGSI

MATEMATIKA DISKRIT FUNGSI 1 MATEMATIKA DISKRIT FUNGSI Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari

Lebih terperinci

1 n MODUL 5. Peubah Acak Diskret Khusus

1 n MODUL 5. Peubah Acak Diskret Khusus ODUL 5 Peubah Acak Diskret Khusus Terdapat beberapa peubah acak diskret khusus yag serig mucul dalam aplikasi. Peubah Acak Seragam ( Uiform) Bila X suatu peubah acak diskret dimaa setiap eleme dari X mempuyai

Lebih terperinci

SOAL DAN PEMBAHASAN TRY OUT MATEMATIKA SMP/MTS KABUPATEN LEMBATA TAHUN PELAJARAN 2014/2015

SOAL DAN PEMBAHASAN TRY OUT MATEMATIKA SMP/MTS KABUPATEN LEMBATA TAHUN PELAJARAN 2014/2015 SOAL DAN PEMBAHASAN TRY OUT MATEMATIKA SMP/MTS KABUPATEN LEMBATA TAHUN PELAJARAN 4/5 3. Hasil dari 3 : adalah... 4 4 A. B. C. 7 D. 5 3 3 3 5 3 : = : 4 4 4 4 3 4 5 = 4 3 5 = 6 55 = 8 = 5 = 3. Dalam try

Lebih terperinci

SMA NEGERI 5 BEKASI UJIAN SEKOLAH

SMA NEGERI 5 BEKASI UJIAN SEKOLAH PEMERINTAH KOTA BEKASI DINAS PENDIDIKAN SMA NEGERI BEKASI Jl. Gamprit Jatiwarigi Asri Podok Gede -88 UJIAN SEKOLAH TAHUN PELAJARAN / L E M B A R S O A L Mata Pelajara : Matematika Kelas/Program : IPA Hari/Taggal

Lebih terperinci

BAB I INDUKSI MATEMATIK. Beberapa Prinsip Induksi Matematik (PIM) yang perlu diketahui: 1. Sederhana 2. Yang dirampatkan (generalized) 3.

BAB I INDUKSI MATEMATIK. Beberapa Prinsip Induksi Matematik (PIM) yang perlu diketahui: 1. Sederhana 2. Yang dirampatkan (generalized) 3. BAB I INDUKSI MATEMATIK Iduksi matematik merupaka salah satu metode pembuktia yag baku di dalam matematika, yag meyataka kebeara dari suatu peryataa tetag semua bilaga asli atau kadag-kadag semua bilaga

Lebih terperinci

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0.

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0. PROGRAM STUDI PENDIDIKAN MATEMATIKA FKIP UNMUH PONOROGO SOAL UJIAN TENGAH SEMESTER GENAP TA 03/04 Mata Ujia : Aalisis Real Tipe Soal : REGULER Dose : Dr. Jula HERNADI Waktu : 90 meit Hari, Taggal : Selasa,

Lebih terperinci

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2 Bab Bilaga kompleks BAB BILANGAN KOMPLEKS Defiisi Bilaga Kompleks Sebelum medefiisika bilaga kompleks, pembaca diigatka kembali pada permasalah dalam sistem bilaga yag telah dikeal sebelumya Yag pertama

Lebih terperinci

Induksi matematik untuk memecahkan problema deret dan bilangan bulat bentuk kuadrat sempurna

Induksi matematik untuk memecahkan problema deret dan bilangan bulat bentuk kuadrat sempurna Iduksi matematik utuk memecahka problema deret da bilaga bulat betuk kuadrat sempura Oleh: Sutopo Jurusa Fisika FMIPA UM sutopo@fisika.um.ac.id Ditulis pada sekitar bula Februari 2011. Diuggah pada 3 Desember

Lebih terperinci

PENGANTAR MATEMATIKA DISKRIT

PENGANTAR MATEMATIKA DISKRIT PENGANTAR MATEMATIKA DISKRIT DIKTAT Oleh: Rippi Maya Eliva Sukma Cipta PROGRAM STUDI PENDIDIKAN MATEMATIKA UNIVERSITAS ISLAM NEGERI SUNAN GUNUNG DJATI BANDUNG 016 Kata Pegatar Diktat ii disusu sebagai

Lebih terperinci

theresiaveni.wordpress.com NAMA : KELAS :

theresiaveni.wordpress.com NAMA : KELAS : theresiaveiwordpresscom NAMA : KELAS : 1 theresiaveiwordpresscom BARISAN DAN DERET Barisa da deret dapat diguaka utuk memudahka peyelesaia perhituga, misalya buga bak, keaika produksi, da laba/rugi suatu

Lebih terperinci

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut:

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut: Statistik da Peluag A. Statistik Statistik adalah metode ilmiah yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis data, serta cara pegambila kesimpula berdasarka data-data tersebut. Data ialah

Lebih terperinci

Modul Kuliah statistika

Modul Kuliah statistika Modul Kuliah statistika Dose: Abdul Jamil, S.Kom., MM SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER MUHAMMADIYAH JAKARTA Bab 2 Populasi da Sampel 2.1 Populasi Populasi merupaka keseluruha pegamata

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

PEMBAHASAN SALAH SATU PAKET SOAL UN MATEMATIKA SMA PROGRAM IPS TAHUN PELAJARAN 2012/2013

PEMBAHASAN SALAH SATU PAKET SOAL UN MATEMATIKA SMA PROGRAM IPS TAHUN PELAJARAN 2012/2013 http://asyikyabelajar.wordpress.com PEMBAHAAN ALAH ATU PAKET OAL UN MATEMATIKA MA PROGRAM IP TAHUN PELAJARAN 0/0. Igkara dari peryataa emua makhluk hidup memerluka air da oksige adalah... A. emua makhluk

Lebih terperinci

Barisan, Deret, dan Notasi Sigma

Barisan, Deret, dan Notasi Sigma Barisa, Deret, da Notasi Sigma B A B 5 A. Barisa da Deret Aritmetika B. Barisa da Deret Geometri C. Notasi Sigma da Iduksi Matematika D. Aplikasi Barisa da Deret Sumber: http://jsa007.tripod.com Saat megedarai

Lebih terperinci

Distribusi Peluang BERBAGAI MACAM DISTRIBUSI SAMPEL. Distribusi Peluang 5/6/2012

Distribusi Peluang BERBAGAI MACAM DISTRIBUSI SAMPEL. Distribusi Peluang 5/6/2012 5/6/0 Distribusi Peluag BERBAGAI MACAM DISTRIBUSI SAMPEL Distribusi peluag, P( x), adalah kumpula pasaga ilai-ilai variabel acak Cotoh: Jika dua buah koi dilempar bersamaa. Kejadia bayakya mucul agka.

Lebih terperinci

BARISAN TAK HINGGA DAN DERET TAK HINGGA

BARISAN TAK HINGGA DAN DERET TAK HINGGA BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { } adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila.. maka fugsi

Lebih terperinci

Barisan Dan Deret Arimatika

Barisan Dan Deret Arimatika Barisa Da Deret Arimatika A. Barisa Aritmatika Niko etera memiliki sebuah peggaris ukura 0 cm. Ia megamati bilaga-bilaga pada peggarisya ii. Bilaga-bilaga tersebut beruruta 0, 1,, 3,, 0. etiap bilaga beruruta

Lebih terperinci

Prinsip Rumah Merpati dalam Penyelesaian Permasalahan Matematika

Prinsip Rumah Merpati dalam Penyelesaian Permasalahan Matematika Prisip Rumah Merpati dalam Peyelesaia Permasalaha Matematika Aditya Agug Putra 5000) Program Studi Tekik Iformatika Sekolah Tekik Elektro da Iformatika Istitut Tekologi Badug, Jl. Gaesha 0 Badug 402, Idoesia

Lebih terperinci

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari A ke B kita meuliska f : A

Lebih terperinci

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari A ke B kita meuliska f : A

Lebih terperinci

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand TEKIK SAMPLIG PCA SEDERHAA Hazmira Yozza Izzati Rahmi HG Jurusa Matematika FMIPA Uad Defiisi : Jika suatu cotoh berukura diambil dari suatu populasi berukura sedemikia rupa sehigga setiap kemugkia cotoh

Lebih terperinci

Solusi Soal OSN 2012 Matematika SMA/MA Hari Pertama

Solusi Soal OSN 2012 Matematika SMA/MA Hari Pertama Solusi Soal OSN Matematika SMA/MA Hari Pertama Soal 1. Buktika bahwa utuk sebarag bilaga asli a da b, bilaga adalah bilaga bulat geap tak egatif. = F P B (a, b) + KP K (a, b) a b Solusi. Pertama aka dibuktika

Lebih terperinci

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum BAB II TEORI DASAR 2.1 Aljabar Liier Defiisi 2. 1. 1 Grup Himpua tak kosog G disebut grup (G, ) jika pada G terdefiisi operasi, sedemikia rupa sehigga berlaku : a. Jika a, b eleme dari G, maka a b eleme

Lebih terperinci

DERET TAK HINGGA (INFITITE SERIES)

DERET TAK HINGGA (INFITITE SERIES) MATEMATIKA II DERET TAK HINGGA (INFITITE SERIES) sugegpb.lecture.ub.ac.id aada.lecture.ub.ac.id BARISAN Barisa merupaka kumpula suatu bilaga (atau betuk aljabar) yag disusu sehigga membetuk suku-suku yag

Lebih terperinci

Soal dan Pembahasan. Ujian Nasional Matematika Teknik SMK matematikamenyenangkan.com

Soal dan Pembahasan. Ujian Nasional Matematika Teknik SMK matematikamenyenangkan.com Soal da Pembahasa jia Nasioal 06 Matematika Tekik SMK matematikameyeagka.com . pqr Betuk sederhaa dari p q r A. p 8 q r adalah... B. p q 0 r 0 D. p q 0 r 0 C. p 8 q r 0 E. p 6 q r Igat rumus berikut m

Lebih terperinci

MODUL MATEMATIKA SMA IPA Kelas 10

MODUL MATEMATIKA SMA IPA Kelas 10 SMA IPA Kelas 0 A. BARISAN DAN DERET ARITMATIKA. Betuk umum: a, ( a b), ( a b) ( a b). Rumus suku ke- (U ) U a ( ) b a : suku pertama b : beda. Jumlah suku pertama (S ) S ( a U ) atau S (a ( ) b) Dega

Lebih terperinci

Aturan Pencacahan. Contoh: Berapa banyak kemungkinan jalur yang dapat dilalui dari Kota A ke Kota D?

Aturan Pencacahan. Contoh: Berapa banyak kemungkinan jalur yang dapat dilalui dari Kota A ke Kota D? Atura Pecacaha A. Atura Perkalia Jika terdapat k usur yag tersedia, dega: = bayak cara utuk meyusu usur pertama 2 = bayak cara utuk meyusu usur kedua setelah usur pertama tersusu 3 = bayak cara utuk meyusu

Lebih terperinci

BAB II KAIDAH PENCACAHAN DAN PELUANG

BAB II KAIDAH PENCACAHAN DAN PELUANG 1 BAB II KAIDAH PENCACAHAN DAN PELUANG Dalam kehidupa sehari hari kita serig dihadapka pada persoala yag berkaita dega peluag. Baik mecari kemugkia, kesempata, bayak cara, harapa da sebagaiya. Dalam Materi

Lebih terperinci

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu

Lebih terperinci

STATISTIKA SMA (Bag.1)

STATISTIKA SMA (Bag.1) SMA - STATISTIKA SMA (Bag. A. DATA TUNGGAL. Ukura Pemusata : Terdapat ilai statistika yag dapat dimiliki oleh sekumpula data yag diperoleh yaitu : a. Rata-rata Rata-rata jumlah seluruh data bayakya data

Lebih terperinci

4. KOMBINATORIKA ... S 1. S n S 2. Gambar 4.1

4. KOMBINATORIKA ... S 1. S n S 2. Gambar 4.1 4. KOMBINATORIKA 4. Atua Utuk Suatu Peistiwa Evet sesuatu yag tejadi. Jika peistiwa A dapat tejadi dalam m caa da peistiwa B dapat tejadi dalam N caa, maka tedapat (m, ) caa kedua peistiwa tejadi besama-sama.

Lebih terperinci

PELUANG. Kegiatan Belajar 1 : Kaidah Pencacahan, Permutasi dan kombinasi

PELUANG. Kegiatan Belajar 1 : Kaidah Pencacahan, Permutasi dan kombinasi PELUANG Kegiata Belajar : Kaidah Pecacaha, Permutasi da kombiasi A. Kaidah Pecacaha. Prisip Dasar Membilag Jika suatu operasi terdiri dari tahap, tahap pertama dapat dilakuka dega m cara yag berbeda da

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

Kalkulus Rekayasa Hayati DERET

Kalkulus Rekayasa Hayati DERET Kalkulus Rekayasa Hayati DERET 1 Isi Bab Pedahulua Barisa tak-higga Deret tak-higga Deret Positif : Uji kekovergea Deret Gati Tada Deret Pagkat Deret Taylor da Maclauri 2 Kompetesi Dasar Setelah megikuti

Lebih terperinci

Barisan Aritmetika dan deret aritmetika

Barisan Aritmetika dan deret aritmetika BARISAN DAN DERET BILANGAN Peyusu: Atmii Dhoruri, MS Kode: Jejag: SMP T/P: / A. Kompetesi yag diharapka. Meetuka suku ke- barisa aritmatika da barisa geometri. Meetuka jumlah suku pertama deret aritmatika

Lebih terperinci

STATISTIKA DAN PELUANG BAB III STATISTIKA

STATISTIKA DAN PELUANG BAB III STATISTIKA Matematika Kelas IX Semester BAB Statistika STATISTIKA DAN PELUANG BAB III STATISTIKA A. Statistika Pegertia Statistika Statistika adalah ilmu yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis

Lebih terperinci

CATATAN KULIAH Pertemuan I: Pengenalan Matematika Ekonomi dan Bisnis

CATATAN KULIAH Pertemuan I: Pengenalan Matematika Ekonomi dan Bisnis CATATAN KULIAH Pertemua I: Pegeala Matematika Ekoomi da Bisis A. Sifat-sifat Matematika Ekoomi 1. Perbedaa Matematika vs. Nomamatematika Ekoomi Keutuga pedekata matematika dalam ilmu ekoomi Ketepata (Precise),

Lebih terperinci

Kombinatorik: Prinsip Dasar dan Teknik

Kombinatorik: Prinsip Dasar dan Teknik Kombiatorik: Prisip Dasar da Tekik Drs. Sahid, MSc. Jurusa Pedidika Matematika FMIPA Uiversitas Negeri Yogyakarta sahidyk@gmail.com March 27, 2009 1 Atura Pejumlaha (Atura Disjugtif) Jika utuk melakuka

Lebih terperinci

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN KALKULUS Dra. D. L. Crispia Pardede DEA. SARMAG TEKNIK MESIN KALKULUS - SILABUS. Deret Fourier.. Fugsi Periodik.2. Fugsi Geap da Gajil.3. Deret Trigoometri.. Betuk umum Deret Fourier.. Kodisi Dirichlet.6.

Lebih terperinci

Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N,

Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N, DISTRIBUSI SAMLING opulasi da Sampel opulasi : totalitas dari semua objek/ idividu yg memiliki karakteristik tertetu, jelas da legkap yag aka diteliti Sampel : bagia dari populasi yag diambil melalui cara-cara

Lebih terperinci

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.

Lebih terperinci

DIKTAT PEMBINAAN OLIMPIADE MATEMATIKA TAHUN PELAJARAN 2005/2006 MATERI DASAR

DIKTAT PEMBINAAN OLIMPIADE MATEMATIKA TAHUN PELAJARAN 2005/2006 MATERI DASAR DIKTAT PEMBINAAN OLIMPIADE MATEMATIKA TAHUN PELAJARAN 005/006 MATERI DASAR DISUSUN OLEH : EDDY HERMANTO, ST SMAN 5 BENGKULU JALAN CENDANA NOMOR 0 BENGKULU 005 GARIS BESAR MATERI DAN SUB MATERI PADA PEMBINAAN

Lebih terperinci

: XII (Dua Belas) Semua Program Studi. : Gisoesilo Abudi, S.Pd

: XII (Dua Belas) Semua Program Studi. : Gisoesilo Abudi, S.Pd R e f r e s h Program Diklat K e l a s M a t e r i Pegajar : M A T E M A T I K A : XII (Dua Belas) Semua Program Studi : S t a t i s t i k a : Gisoesilo Abudi, S.Pd Kajia Materi Peyampaia Data Diagram

Lebih terperinci

EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI

EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI Oleh: Sutopo Jurusa Fisika FMIPA UM sutopo@fisika.um.ac.id Ditulis pada sekitar bula Maret 2011. Diuggah pada 3 Desember 2011 PROBLEM Gambar di bawah ii meyataka

Lebih terperinci

Teorema Nilai Rata-rata

Teorema Nilai Rata-rata Nilai Kus Prihatoso April 27, 2012 Yogyakarta Nilai Suatu Fugsi Masih igatkah ada tetag ilai rata-rata dari sekmpula bilaga? Berapakah ilai rata-rata dari sebayak bilaga y 1, y 2,..., y? Nilai Suatu Fugsi

Lebih terperinci

Himpunan Kritis Pada Graph Caterpillar

Himpunan Kritis Pada Graph Caterpillar 1 0 Himpua Kritis Pada Graph Caterpillar Chairul Imro, Budi Setiyoo, R. Simajutak, Edy T. Baskoro {imro-its,budi}@matematika.its.ac.id, {rio,ebaskoro}@ds.math.itb.ac.id Ues, Semarag, 4 7 Juli 006 Abstrak

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 SUKU BANYAK A Pegertia: f(x) x + a 1 x 1 + a 2 x 2 + + a 2 +a 1 adalah suku bayak (poliom) dega : - a, a 1, a 2,.,a 2, a 1, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL

SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL Riza Febri Yusma Sri Gemawati Asli Sirait *riza_febri@yahoo.com Mahasiswa Program S Matematika Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua Alam Uiveritas

Lebih terperinci

MATHunesa (Volume 3 No 3) 2014

MATHunesa (Volume 3 No 3) 2014 MATHuesa (Volume 3 No 3) 014 MINIMUM PENUTUP TITIK DAN MINIMUM PENUTUP SISI PADA GRAF KOMPLIT DAN GRAF BIPARTIT KOMPLIT Yessi Riskiada Kusumawardai Program Studi S1 Matematika, Fakultas Matematika da Ilmu

Lebih terperinci

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas II. TINJAUAN PUSTAKA 2.1 Ruag Vektor Defiisi 2.1.1 (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da (F,,. ) lapaga dega eleme idetitas 1. V disebut ruag vektor (vector space) atas F jika ada operasi

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan Istitut Tekologi Sepuluh Nopember Surabaya Model Sistem dalam Persamaa Keadaa Pegatar Materi Cotoh Soal Rigkasa Latiha Pegatar Materi Cotoh Soal Rigkasa Istilah-istilah Dalam Persamaa Keadaa Aalisis Sistem

Lebih terperinci

RENCANA PROGRAM PEMBELAJARAN KE - 1. : 6 jam pelajaran

RENCANA PROGRAM PEMBELAJARAN KE - 1. : 6 jam pelajaran RENCANA PROGRAM PEMBELAJARAN KE - 1 Satua Pedidika Mata Pelajara Kelas/Semester Materi Pokok Waktu : SMA N 6 YOGYAKARTA : Matematika : XII IPS/ : Barisa da Deret : 6 jam pelajara 1. Stadar Kompetesi 4.

Lebih terperinci

Jika dibandingkan dengan bulan sebelumnyakenaikan curah hujan terbesar terjadi pada bulan A. Oktober D. Januari B. November E. Februari C.

Jika dibandingkan dengan bulan sebelumnyakenaikan curah hujan terbesar terjadi pada bulan A. Oktober D. Januari B. November E. Februari C. Page of. Diatara data berikut, yag merupaka data kualitatif adalah Tiggi hotel-hotel di Yogyakarta B. Bayakya mobil yag melewati jala Mawar C. Kecepata sepeda motor per jam D. Luas huta di Sumatra E. Meigkatya

Lebih terperinci

Deret Fourier. Modul 1 PENDAHULUAN

Deret Fourier. Modul 1 PENDAHULUAN Modul Deret Fourier Prof. Dr. Bambag Soedijoo P PENDAHULUAN ada modul ii dibahas masalah ekspasi deret Fourier Sius osius utuk suatu fugsi periodik ataupu yag diaggap periodik, da dibahas pula trasformasi

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci

Hendra Gunawan. 14 Februari 2014

Hendra Gunawan. 14 Februari 2014 MA20 MATEMATIKA 2A Hedra Guawa Semester II, 203/204 4 Februari 204 Sasara Kuliah Hari Ii 9. Barisa Tak Terhigga Memeriksa kekovergea suatu barisa da, bila mugki, meghitug limitya 9.2 Deret Tak Terhigga

Lebih terperinci

Barisan ini adalah contoh dari barisan aritmatika U 1. ialah barisan aritmatika,jika: -U 2. =.= U n

Barisan ini adalah contoh dari barisan aritmatika U 1. ialah barisan aritmatika,jika: -U 2. =.= U n BARIAN DAN DERET A. BARIAN DAN DERET ARITMATIKA I. TJAN etelah mempelaji topik siswa dapat:. Meetuka suku ke suatu bisa itmatika. Meetuka rumus suku ke di bisa itmatika. Meetuka suku pertama da beda suatu

Lebih terperinci

SILABUS PEMBELAJARAN

SILABUS PEMBELAJARAN SILABUS PEMBELAJARAN Sekolah :... Kelas : IX (Sembila) Mata Pelajara : Matematika Semester : II (dua) BILANGAN Stadar : 5. Memahami sifat-sifat da betuk akar serta pegguaaya dalam pemecaha masalah sederhaa

Lebih terperinci