INTERVAL KEPERCAYAAN

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "INTERVAL KEPERCAYAAN"

Transkripsi

1 INTERVAL KEPERCAYAAN Tujua utama diambil ebuah ampel dari ebuah populai adalah utuk memperoleh iformai megeai parameter populai.. Ada cara meetuka parameter populai yaitu peakira da pegujia hipotei. Peakira parameter JIka peakir θ = X,,, p da parameter yag aka ditakir adalah θ = μ, σ, σ, π, maka θ yag baik memiliki beberapa ifat yaitu: 1. θ merupaka peduga tak bia, artiya harapa E θ = θ. θ merupaka peakir yag efiie, artiya bila ada lebih dari atu peakir, maka peduga yag efiie adalah peduga yag mempuyai varia palig kecil. 3. θ merupaka peakir yag koite, artiya bila ampel yag diambil meki bear, maka ilai θ aka emaki medekati ilai θ. Peakira parameter dapat dilakuka DUA cara yaitu dega peakira titik da peakira iterval. Peakira titik jika megambil Statitik θ = X dipakai utuk meakir parameter θ = μ. Statitik θ = S dipakai utuk meakir parameter θ = σ. Statitik θ = p dipakai utuk meakir parameter θ = π. Utuk meakir iterval takira parameter θ dega koefiie kepercayaa γ, maka ebuah ampel acak diambil, lalu hitug ilai-ilai tatitik yag diperluka. Perumua dalam betuk peluag utuk parameter θ atara A da B: P A < θ < B = γ dega A da B fugi dari tatitik, jadi merupaka variabel acak, tidak bergatug pada θ. Arti dari formula di ata adalah ecara γ% percaya bahwa parameter θ aka ada didalam iterval A, B. Jadi tidaklah dikataka: peluagya ama dega γ bahwa θ terletak A da B, melaika eeorag hamya yaki γ% bahwa θ itu terletak atara A da B. 1. Iterval Kepercayaa Bagi Rata-Rata Mialka ebuah populai berukura N dega rata-rata μ da impaga baku σ. Dari populai ii parameter μ aka ditakir. Utuk keperlua ii, diambil ampel acak berukura, lalu dihitug tatitik

2 yag perlu, ialah x da. Titik takira utuk rata-rata μ ialah x. Dega kata lai, ilai μ bearya ditakir oleh harga x yag didapat dari ampel. Utuk memperoleh takira yag lebih tiggi derajat kepercayaa, diguaka iterval takira atau elag takira diertai ilai koefiie kepercayaa yag dikehedaki. Dibedaka mejadi tiga hal a. Simpaga baku σ diketahui da populaiya berditribui ormal P x z1 γ. σ < μ < x + z1 γ. σ = γ Dega γ = koefiie kepercayaa da z1 = bilaga z didapat dari tabel ormal baku utuk γ peluag 1 γ. Utuk iterval kepercayaaya: x z1 γ. σ < μ < x + z1 γ. σ b. Simpaga baku σ tidak diketahui da populai berditribui ormal P x t p. < μ < x + t p. = γ dega γ = koefiie kepercayaa da t p = ilai t didapat dari daftar ditribui tudet dega p = γ da dk = 1 Utuk iterval kepercayaaya: x t p. < μ < x + t p. c. Simpaga baku σ tidak diketahui da populai tidak berditribui ormal Jika cukup bear maka dalil limit puat berlaku maka dapat diguaka cara a. dega megguaka kekelirua yag agat kecil. Jika populai agat meyimpag dari ormal da ukura ampel kecil ekali maka teoriya haru dipecahka dega megguaka betuk ditribui ali dari populai beragkuta. Cotoh: Sebuah ampel acak terdiri dari 100 mahaiwa tealh diambil dari ebuah Uiverita lai ilai-ilai IQya dicatat. Didapat x = 11 da = 10. Kita dapat megataka: IQ rata-rata utuk mahaiwa Uiverita itu = 11

3 Dalam hal ii diguaka titik takira. Jika dikehedaki iterval takira IQ rata-rata dega koefiie kepercayaa 0,95 maka p = ,95 = 0,975 da dk = = 99 dega megguaka iterpolai dari Daftar G dalam lampira didapat t p = 1,987. Maka iterval kepercayaa 11 1, < μ < , Atau: 110 < μ < 114 Jadi didapat 95% iterval kepercayaa utuk IQ rata-rata mahaiwa ialah 110 < μ < 114. Iterval Kepercayaa bagi eliih rata-rata Mialka terdapat dua populai, kedua-duaya berditribui ormal. Rata-rata da impaga bakuya maig-maig μ 1 da σ 1 utuk populai keatu, μ da σ utuk populai kedua. Dari maig-maig populai ecara idepedet diambil ebuah ampel acak dega ukura 1 da. Rata-rata da impaga baku dari ampel-ampel itu berturut-turut x 1, 1 da x,. Aka ditakir eliih rata-rata μ 1 μ. Jela bahwa titik takira utuk μ 1 μ adalah x 1 x. Utuk memperoleh takira yag lebih tiggi derajat kepercayaa, diguaka iterval takira atau elag takira diertai ilai koefiie kepercayaa yag dikehedaki. Dibedaka mejadi tiga hal a. σ 1 = σ Jika kedua populai ormal itu mempuyai σ 1 = σ = σ da bearya diketahui, maka dega iterval kepercayaa γ% utuk μ 1 μ ditetuka oleh rumu: x 1 x z1 γ. σ < μ 1 μ < x 1 x + z1 γ. σ Dega z1 γ didapat dari ditribui ormal baku dega peluag 1 γ. b. Dalam hal σ 1 = σ = σ tetapi tidak diketahui bearya, pertama-tama dari ampel-ampel perlu ditetuka varia gabugaya, diyataka dega, bearya diberika oleh rumu: =

4 Iterval kepercayaaya ditetuka dega megguaka ditribui tudet. Formula dega iterval kepercayaa γ% utuk μ 1 μ adalah x 1 x t p < μ 1 μ < x 1 x + t p dega t p didapat dari daftar ditribui tudet dega p = γ da dk = 1 + c. σ 1 σ Dega memialka 1 = σ 1 da = σ, utuk ampel-ampel acak berukura cukup bear, dapt dilakuka pedekata kepada ditribui ormal. Formula iterval kepercayaaya ditetuka oleh: Cotoh: x 1 x z < μ γ 1 1 μ < x 1 x + z γ 1 Ada dua cara pegukura utuk megukur kelembama uatu zat. Cara I dilakuka 50 kali yag meghailka x 1 = 60, da 1 = 4,7. Cara II dilakuka 60 kali dega x = 70,4 da = 37,. Supaya ditetuka iterval kepercayaa 95% megeai perbedaa rata-rata pegukura dari kedua cara itu Jawab: Jika dimialka hail kedua cara pegukura berditribui ormal, maka didapat varia gabuga: = , , = 31,53 Selajutya dihitug dulu: = 1 31, ,53 = 1, Dega p = 0,975 da dk = 108, dari daftar ditribui t didapat t = 1,984. Maka iterval kepercayaa: 70,4 60, 1,984 1,08 < μ 1 μ < 70,4 60, + 1,984 1,08 Atau 8,06 < μ 1 μ < 1,34

5 d. Obervai berpaaga Mialka populai keatu mempuyai variabel acak X da populai kedua mempuyai variabel acak Y. Rata-rataya maig-maig μ x da μ y. Diambil dua ampel acak maig-maig ebuah dari tiap populai, yag berukura ama, jadi 1 = =. Didapat data ampel: x 1, x,, x da y 1, y,, y. Kedua data hail obervai ii dimialka berpaaga ebagai berikut: x 1 berpaaga dega y 1 x berpaaga dega y x berpaaga dega y Dalam hal paaga data eperti ii, maka meakir eliih atau beda rata-rata μ B = μ x μ y, dapat pula dibetuk eliih atau beda tiap paaga data. Jadi dicari B 1 = x 1 y 1, B = x y,, B = x y. Dari ampel berukura yag dataya terdiri dari B 1, B,, B upaya dihitug rata-rata B da impaga baku B, dega megguaka: B = B i da B = B i B i 1 Maka iterval kepercayaa utuk μ B dega koefiie kepercayaa γ% yaitu: B t p. B < μ B < B + t p. B Dega t p didapat dari daftar ditribui tudet utuk p = γ da dk = 1 3. Iterval Kepercayaa bagi propori Mialka populai berditribui biom berukura N, terdapat propori π utuk uatu kejadia A dalam populai terebut. Diambil ampel acak berukura dari populai itu dega propori kejadia A dalam ampel terebut. Jadi takira titik utuk π adalah utuk takira π dega koefiie kepercayaa γ% yaitu: x x utuk. Maka iterval kepercayaa y=x y π y 1 π y = 1 1 γ (A) x y=0 y π y 1 π y = 1 1 γ...(b)

6 Formula (A) merupaka bata bawah iterval kepercayaa da formula (B) merupaka bata ata iterval kepercayaa. Rumu diata tidak prakti, ehigga erig kali diguaka pedekata ditribui ormal kepada biom utuk ukura ampel cukup bear. Maka iterval kepercayaa π, dega koefiie kepercayaa γ% adalah: p z1 γ pq < π < p + z1 γ pq Dega p = x da q = 1 p Cotoh Mialka kita igi meakir ada berapa pere aggota mayarakat berumur 15 tahu ke ata yag termauk ke dalam gologa A. Utuk ii ampel acak berukura acak = 100 diambil yag meghailka 504 tergolog kategori A. Jawab: Peretae gologa A dalam ampel = % = 4% 100 Jika ditakir ada 4% aggota mayarakat berumur 15 tahu ke ata yag termauk gologa A, maka dalam hal ii telah diguaka titik takira. Utuk meetuka 95% iterval kepercayaa parameter π, utuk yag cukup bear, dega p = 0,4; q = 0,58; z 0,475 = 1,96, maka: 0,4 1,96 0,4 0, < π < 0,4 + 1,96 0,4 0, Atau: 0,39 < π < 0,45 4. Iterval Kepercayaa bagi eliih propori Mial terdapat dua populai berditribui biom dega parameter utuk peritiwa yag ama maigmaig π 1 da π. Dari populai ii ecara idepedet maig-maig diambil ebuah ampel acak berukura 1 dari populai keatu da dari populai kedua. Propori utuk peritiwa yag

7 diperhatika dari ampel-ampel itu adalah p 1 = x 1 da p = x dega x 1 1 da x berturut-turut meyataka bayakya peritiwa yag diperhatika yag terdapat pada ampel keatu da ampel kedua. Peetua iterval kepercayaa utuk π 1 π aka diguaka pedekata oleh ditribui ormal dega koefiie kepercayaa γ%, yaitu: p 1 q 1 p 1 p z1 + p q p 1 q 1 < π γ 1 1 π < p 1 p + z1 + p q γ 1 Dega q i = 1 p i Cotoh Mial ampel acak atu terdiri 500 waita da ampel acak kedua 700 laki-laki yag megujugi ebuah pamera telah diambil. Teryata bahwa 35 waita da 400 laki-laki meyeagi pamera itu. Tetuka iterval kepercayaa 95% utuk perbedaa peretae laki-laki da waita yag megujugi pamera da meyeagiya. Jawab: Peretae waita yag meyukai pamera p 1 = % = 65% da utuk laki-laki p = % = 57% Jadi q 1 = 35% da q = 43% Dega 1 = 500 da = 700, didapat p 1 q p q = = Dega z = 1,96 diperoleh: < π 1 π < Atau: 0.04 < π 1 π < INTERPOLASI Jika diketahui t 0,975,60 = da t 0,975,10 = 1,98, tetuka t 0,975,99? Jawab: Guaka peramaa gari:

8 y y 1 y y 1 = x x 1 x x 1 Dega x 1, y 1 = 60, da x, y = 10,1.98 maka diperoleh Subtitui x = 99, maka diperoleh y x 60 = y x 60 = y = 0,0 x + 0,0 60 y = 0,0 x +,0 60 y = 0, ,0 = Maka t 0,975,99 = 1.987

PENDUGAAN PARAMETER. Ledhyane Ika Harlyan

PENDUGAAN PARAMETER. Ledhyane Ika Harlyan PENDUGAAN PARAMETER Ledhyae Ika Harlya Jurua Pemafaata Sumberdaya Perikaa da Kelauta Uiverita Brawijaya 03 Statitik Ifereia Mecakup emua metode yag diguaka dalam pearika keimpula atau geeraliai megeai

Lebih terperinci

Pedahulua Pedugaa Parameter Pedugaa Parameter Populai dilakuka dega megguaka ilai Statitik Sampel, Mial :. x diguaka ebagai peduga bagi µ. diguaka ebagai peduga bagi σ 3. p atau p$ diguaka ebagai peduga

Lebih terperinci

ESTIMASI. Jika parameter populasi disimbolkan dengan θ maka θ yang tidak diketahui harganya ditaksir oleh harga

ESTIMASI. Jika parameter populasi disimbolkan dengan θ maka θ yang tidak diketahui harganya ditaksir oleh harga ESTIMASI Salah atu aek utuk mearik keimula megeai uatu oulai dega memakai amel yag diambil dari oulai terebut megguaka etimai (eakira) Jika arameter oulai diimbolka dega θ maka θ yag tidak diketahui hargaya

Lebih terperinci

Bab6 PENAKSIRAN PARAMETER

Bab6 PENAKSIRAN PARAMETER Bab6 PENAKSIRAN PARAMETER MENAKSIR RATARATA μ Mialka kita memuyai ebuah oulai berukura N dega ratarata µ da imaga baku σ Dari oulai ii arameter ratarata µ aka ditakir Utuk keerlua ii,ambil ebuah amel acak

Lebih terperinci

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval Pedugaa Parameter Pedahulua Pedugaa Parameter Populai dilakuka dega megguaka ilai Statitik Sampel Mial :. x diguaka ebagai peduga bagi. diguaka ebagai peduga bagi 3. p atau p diguaka ebagai peduga bagi

Lebih terperinci

Pendugaan Parameter 1

Pendugaan Parameter 1 Topik Bahaa: Pedugaa Parameter 1 (Selag Pedugaa, Pedugaa Selag 1 Rata-Rata) Pertemua ke II 1 Ilutrai Statitika Ifereia : Mecakup emua metode yag diguaka utuk pearika keimpula atau geeraliai megeai populai

Lebih terperinci

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval Pedugaa Parameter. Pedahulua Pedugaa Parameter Popoulai dilakuka dega megguaka ilai Statitik Sampel Mial :. x diguaka ebagai peduga bagi. diguaka ebagai peduga bagi 3. p atau p diguaka ebagai peduga bagi

Lebih terperinci

Metode Statistika Pertemuan IX-X

Metode Statistika Pertemuan IX-X /7/0 Metode Statitika Pertemua IX-X Statitika Ifereia: Pedugaa Parameter Populai : Parameter Cotoh : Statitik Statitik merupaka PENDUGA bagi parameter populai Pegetahua megeai ditribui amplig PENDUGA TAK

Lebih terperinci

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.

Lebih terperinci

Pendugaan. Parameter HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNIV. ANDALAS LOGO

Pendugaan. Parameter HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNIV. ANDALAS LOGO Pedugaa Parameter HAZMIRA YOZZA JURUSAN MATEMATIKA FMIPA UNIV. ANDALAS LOGO Kompetei meyebutka klp ifereia tatitika & ruag ligkupya mejelaka metode pedugaa klaik da yarat-yarat peduga yag baik pada pedugaa

Lebih terperinci

Pendugaan Parameter. Selang Kepercayaan dengan Distribusi z (Tabel hal 175) Nilai α dan Selang kepercayaan yang lazim digunakan antara lain:

Pendugaan Parameter. Selang Kepercayaan dengan Distribusi z (Tabel hal 175) Nilai α dan Selang kepercayaan yang lazim digunakan antara lain: Peahulua Peugaa Parameter Peugaa Parameter Populai ilakuka ega megguaka ilai Statitik Sampel, Mial :. x iguaka ebagai peuga bagi µ. iguaka ebagai peuga bagi σ 3. p atau p$ iguaka ebagai peuga bagi π Peugaa

Lebih terperinci

A.Interval Konfidensi pada Selisih Rata-rata

A.Interval Konfidensi pada Selisih Rata-rata A.Iterval Kofidei pada Seliih Rata-rata. Bila kita mempuyai da maig-maig adalah mea ample acak beba berukura da yag diambil dari populai dega ragam da diketahui, maka elag kepercayaa 00-% bagi - adalah

Lebih terperinci

A. PENGERTIAN DISPERSI

A. PENGERTIAN DISPERSI UKURAN DISPERSI A. PENGERTIAN DISPERSI Ukura diperi atau ukura variai atau ukura peyimpaga adalah ukura yag meyataka eberapa jauh peyimpaga ilai-ilai data dari ilaiilai puatya atau ukura yag meyataka eberapa

Lebih terperinci

Teori Penaksiran. Oleh : Dadang Juandi

Teori Penaksiran. Oleh : Dadang Juandi Teori Peakira Oleh : Dadag Juadi Pedahulua Ada metode iferei : metode klaik da metode Baye dalam meakir arameter oulai Dalam metode klaik iferei didaarka ada iformai yag dieroleh melalui amel acak Dalam

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu

Lebih terperinci

BAB IV DESKRIPSI ANALISIS DATA

BAB IV DESKRIPSI ANALISIS DATA BAB IV DESKRIPSI ANALISIS DATA A. Dekripi Data Peelitia ii megguaka peelitia ekperime, ubyek peelitiaya dibedaka mejadi dua kela, yaitu kela kotrol da kela ekperime. Kela kotrol pada peelitia ii merupaka

Lebih terperinci

JURUSAN PENDIDIKAN FISIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA

JURUSAN PENDIDIKAN FISIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA Achmad Samudi, M.Pd. JURUSAN PENDIDIKAN FISIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA 6. MENGUJI PROPORSI π : UJI DUA PIAK Mialka kia mempuyai populai biom dega propori periiwa A π Berdaarka ebuah ampel

Lebih terperinci

BAB III METODE PENELITIAN. dengan kemampuan berpikir kreatif dengan menggunakan dua model

BAB III METODE PENELITIAN. dengan kemampuan berpikir kreatif dengan menggunakan dua model 3 BAB III METODE PENELITIAN A. Jei Peelitia Tujua peelitia ii yaki membadigka kemampua berpikir kriti dega kemampua berpikir kreatif dega megguaka dua model pembelajara yaitu model pembelajara berbai maalah

Lebih terperinci

Teori Penaksiran. Oleh : Dewi Rachmatin

Teori Penaksiran. Oleh : Dewi Rachmatin Teori Peakira Oleh : Dewi Rachmati Pedahulua Ada metode iferei : metode klaik da metode Baye dalam meakir arameter oulai Dalam metode klaik iferei didaarka ada iformai yag dieroleh melalui amel acak Dalam

Lebih terperinci

Metode Statistika Pertemuan XI-XII

Metode Statistika Pertemuan XI-XII /4/0 Metode Statitika Pertemua XI-XII Statitika Ifereia: Pegujia Hipotei Populai : = 0 Butuh pembuktia berdaarka cotoh!!! Apa yag diperluka? > 0? Maa yag bear? Sampel : 5 Ok, itu adalah pegujia hipotei,

Lebih terperinci

Mata Kuliah: Statistik Inferensial

Mata Kuliah: Statistik Inferensial STATISTIK INFERENSIAL Prof. Dr. H. Almadi Syahza, SE., MP Email: ayahza@yahoo.co.id PROGRAM STUDI PENDIDIKAN EKONOMI FKIP UNIVERSITAS RIAU DISTRIBUSI SAMPLING 2 Bagia I Statitik Iduktif Metode da Ditribui

Lebih terperinci

Diagram Kendali Simpangan Baku Eksak untuk Proses Berdistribusi Normal dengan Parameter σ Diketahui

Diagram Kendali Simpangan Baku Eksak untuk Proses Berdistribusi Normal dengan Parameter σ Diketahui Statitika, Vol. No., 5 6 Mei Diagram Kedali Simpaga Baku Ekak utuk Proe Berditribui Normal dega Parameter Diketahui Aceg Komarudi Mutaqi, Suwada Program Studi Statitika Fakulta MIPA Uiverita Ilam Badug,

Lebih terperinci

MINGGU KE XII PENDUGAAN INTERVAL

MINGGU KE XII PENDUGAAN INTERVAL MINGGU KE XII PENDUGAAN INTERVAL Tujua Itrukioal Umum :. Mahaiwa mampu memahami apa yag dimakud dega pedugaa iterval. Mahaiwa mampu memahami pedugaa iterval utuk ample bear da utuk ample kecil 3. Mahaiwa

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto Tue 0/04/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato Estimasi : salah satu cara megemukaka peryataa iduktif (meyataka karakteristik populasi dega meggu aka karakteristik yag didapat dari cuplika).

Lebih terperinci

Pengujian Hipotesis untuk selisih dua nilai tengah populasi

Pengujian Hipotesis untuk selisih dua nilai tengah populasi Pegujia Hipotei utuk eliih dua ilai tegah populai Hipotei Hipotei atu arah: H 0 : - 0 v H : - < 0 H 0 : - 0 v H : - > 0 Hipotei dua arah: H 0 : - = 0 v H : - 0 Statitik uji z h ( ( ) ) 0 Formula klik diketahui

Lebih terperinci

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin DISTRIBUSI SAMPLING Oleh : Dewi Rachmati Distribusi Rata-rata Misalka sebuah populasi berukura higga N dega parameter rata-rata µ da simpaga baku. Dari populasi ii diambil sampel acak berukura, jika tapa

Lebih terperinci

PENDUGAAN PARAMETER METSTAT ANIK DJURAIDAH

PENDUGAAN PARAMETER METSTAT ANIK DJURAIDAH PENDUGAAN PARAMETER METSTAT ANIK DJURAIDAH PENDUGAAN PARAMETER Populai : Parameter Sampel : Statitik Statitik merupaka PENDUGA bagi parameter populai Pegetahua megeai ebara cotoh PENDUGA TAK BIAS DAN MEMPUNYAI

Lebih terperinci

--Fisheries Data Analysis-- Perbandingan ragam. By. Ledhyane Ika Harlyan. Faculty of Fisheries and Marine Science Brawijaya University

--Fisheries Data Analysis-- Perbandingan ragam. By. Ledhyane Ika Harlyan. Faculty of Fisheries and Marine Science Brawijaya University --Fiherie Data Aalyi-- Perbadiga ragam By. Ledhyae Ika Harlya Faculty of Fiherie ad Marie Sciece Brawijaya Uiverity Tujua Itrukioal Khuu Mahaiwa dapat megguaka aalii tatitika ederhaa dega berfoku ukura

Lebih terperinci

A. Interval Konfidensi untuk Mean

A. Interval Konfidensi untuk Mean ESTIMASI INTERVAL A. Iterval Kofidei utuk Mea Defiii Jika ˆ merupaka etimator utuk parameter da P ˆ ˆ, maka ˆ ˆ diebut Dimaa iterval kofidei(-)00% utuk. :- koefiie kofidei ˆ, ˆ bata iterval tigkat kealaha

Lebih terperinci

STATISTICS. Confidence Intervals (Rentang Keyakinan) Confidence Intervals (1)

STATISTICS. Confidence Intervals (Rentang Keyakinan) Confidence Intervals (1) STATISTICS Cofidece Iterval (Retag Keyakia) Cofidece Iterval () Etimai Parameter Ditribui abilita memiliki ejumlah parameter. Parameter-parameter tb umumya tak diketahui. Nilai parameter terebut diperkiraka

Lebih terperinci

SOAL PELATIHAN 1. File_Imamgun_Statistik Inferensial

SOAL PELATIHAN 1. File_Imamgun_Statistik Inferensial SOAL PELATIHAN. Jelaka pegertia hipotei?. Seorag peeliti biaaya tertarik meguji atu hipotei dari eam alteratif hipotei. Sebutka eam alteratif hipotei terebut? 3. Apa yag dimakud dega pegujia hipotei? 4.

Lebih terperinci

INFERENSI STATISTIK Inferensi statistik mencakup semua metode yang digunakan dalam penarikan kesimpulan atau generalisasi mengenai populasi.

INFERENSI STATISTIK Inferensi statistik mencakup semua metode yang digunakan dalam penarikan kesimpulan atau generalisasi mengenai populasi. INFERENSI STATISTIK Iferei tatitik mecakup emua metode yag diguaka dalam pearika keimpula atau geeraliai megeai populai. Iferei Statitik Pedugaa Parameter Pegujia Hipotei PENDUGAAN PARAMETER Pedugaa parameter

Lebih terperinci

Selang Kepercayaan dari Parameter Distribusi Log-Normal Menggunakan Metode Bootstrap Persentil

Selang Kepercayaan dari Parameter Distribusi Log-Normal Menggunakan Metode Bootstrap Persentil Statitika, Vol. 8 No. 1, 13 17 Mei 008 Selag Kepercayaa dari Parameter Ditribui Log-Normal Megguaka Metode Boottrap Peretil Akhmad Fauzy Jurua Statitika FMIPA Uiverita Ilam Idoeia Yogyakarta Abtract I

Lebih terperinci

BAB III ANALISIS PEMODELAN ANTRIAN HAULER PENGANGKUTAN OVERBURDEN PADA JALAN 7F

BAB III ANALISIS PEMODELAN ANTRIAN HAULER PENGANGKUTAN OVERBURDEN PADA JALAN 7F BAB III AALISIS EMODELA ATRIA HAULER EGAGKUTA OVERBURDE ADA JALA 7F 3.. edahulua ada Bab II telah dijelaka beberapa teori yag diguaka utuk melakuka aalii yag tepat dalam memecahka maalah yag ada. ada bab

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN A III METODOLOGI PENELITIAN A. Jei da Deai Peelitia. Jei Peelitia Jei peelitia ii adalah peelitia ekperime. Metode peelitia ekperime merupaka metode peelitia yag diguaka utuk mecari treatmet (perlakua)

Lebih terperinci

Bab 6 PENAKSIRAN PARAMETER

Bab 6 PENAKSIRAN PARAMETER Bab 6 PENAKSIRAN PARAMETER Stadar Kompetesi : Setelah megikuti kuliah ii, mahasiswa dapat memahami hubuga ilai sampel da populasi da meetuka distribusi samplig yag tepat utuk diguaka Kompetesi Dasar :

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

1. Ilustrasi. Materi 2 Pendugaan Parameter

1. Ilustrasi. Materi 2 Pendugaan Parameter Materi Pedugaa Parameter. Ilutrai Ifereia Statitika : Mecaku emua metode yag diguaka utuk earika keimula atau geeraliai megeai oulai dega melakuka egambila amel (amlig) Etimai / Pedugaa Parameter Yaitu

Lebih terperinci

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Jei Peelitia Peelitia ii merupaka peelitia ekperime. Peelitia ekperime yaitu peelitia yag egaja membagkitka timbulya uatu kejadia atau keadaa, kemudia diteliti bagaimaa akibatya

Lebih terperinci

III. METODE PENELITIAN. Populasi penelitian ini yaitu seluruh siswa kelas X SMA Negeri 2 Bandar

III. METODE PENELITIAN. Populasi penelitian ini yaitu seluruh siswa kelas X SMA Negeri 2 Bandar 7 III. METDE PENELITIAN A. Populai Peelitia Populai peelitia ii yaitu eluruh iwa kela MA Negeri Badar Lampug dega ampel kela, pada emeter geap Tahu Pelajara 0/0. B. ampel Peelitia Tekik pegambila ampel

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi.

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi. Distribusi Samplig (Distribusi Pearika Sampel). Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

Statistika 2. Pendugaan Parameter. 1. Ilustrasi. Topik Bahasan: Oleh : Edi M. Pribadi, SP., MSc.

Statistika 2. Pendugaan Parameter. 1. Ilustrasi. Topik Bahasan: Oleh : Edi M. Pribadi, SP., MSc. Statitika Toik Bahaa: Pedugaa Parameter Oleh : Edi M Pribadi, SP, MSc E-mail: edi_m@taffguadarmaacid edi_m@ymailcom Ilutrai Statitika Ifereia : Mecaku emua metode yag diguaka utuk earika keimula atau geeraliai

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas dasar-dasar teori yang akan digunakan

BAB II LANDASAN TEORI. Pada bab ini akan dibahas dasar-dasar teori yang akan digunakan BAB II LANDASAN TEORI Pada bab ii aka dibaa daar-daar teori yag aka diguaka dalam peulia kripi ii, yaitu megeai metode peakira maximum likeliood, metode peakira oit maximum likeliood da fier iformatio..1

Lebih terperinci

ESTIMASI TITIK DAN INTERVAL KEPERCAYAAN

ESTIMASI TITIK DAN INTERVAL KEPERCAYAAN 8/8/0 IE 305 tatistika Idustri LOGO ETIMAI TITIK DAN INTERVAL KEPERCAYAAN Elty arvia, T.,MT. Fakultas Tekik Jurusa Tekik Idustri Uiversitas Kriste Maraatha Badug LT arvia/esi Tujua 3 4 5 6 Medefiisika

Lebih terperinci

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel)

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel) DISTRIBUSI SAMPLING (Distribusi Pearika Sampel) I. PENDAHULUAN Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

Pendugaan Parameter: Kasus Dua sampel saling bebas. Selisih rataan dua populasi

Pendugaan Parameter: Kasus Dua sampel saling bebas. Selisih rataan dua populasi Pedugaa Parameter: Kau Dua amel alig beba Seliih rataa dua oulai - x x.96 x x.96 x x - SAMPLING ERROR Dugaa Selag bagi µ - µ ( x x z ( x x z Formula klik diketahui ama & Syarat : & Tidak ama Formula klik

Lebih terperinci

BAB VII DISTRIBUSI SAMPLING DAN DESKRIPSI DATA

BAB VII DISTRIBUSI SAMPLING DAN DESKRIPSI DATA BAB VII DITRIBUI AMPLING DAN DEKRIPI DATA 7. Distribusi amplig (samplig distributio) amplig distributio adalah distribusi probabilitas dari suatu statistik. amplig distributio tergatug dari ukura populasi,

Lebih terperinci

JENIS PENDUGAAN STATISTIK

JENIS PENDUGAAN STATISTIK ENDUGAAN STATISTIK ENDAHULUAN Kosep pedugaa statistik diperluka utuk membuat dugaa dari gambara populasi. ada pedugaa statistik dibutuhka pegambila sampel utuk diaalisis (statistik sampel) yag ati diguaka

Lebih terperinci

PENDAHULUAN INTERVAL KEPERCAYAAN PENAKSIRAN TITIK PENAKSIRAN INTERVAL 5/14/2012 KANIA EVITA DEWI

PENDAHULUAN INTERVAL KEPERCAYAAN PENAKSIRAN TITIK PENAKSIRAN INTERVAL 5/14/2012 KANIA EVITA DEWI 5/4/0 INTERVAL KEPERCAYAAN Poulai θ= μ,, π PENDAHULUAN amlig amel θˆ=,, KANIA EVITA DEWI Peakira arameer ada cara:. Peakira iik. Peakira ierval aau ierval keercayaa PENAKSIRAN TITIK Peakira iik -> Jika

Lebih terperinci

Statistika. Besaran Statistik

Statistika. Besaran Statistik Statitika Beara Statitik Itiarto Statitical Meaure Commo tatitical meaure Meaure of cetral tedecy Mea Mode Media Meaure of variability Rage Variace Stadard deviatio Meaure of a idividual i a populatio

Lebih terperinci

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab

Lebih terperinci

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu:

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu: Peaksira Parameter Statistika dibagi mejadi dua yaitu:. Statistika Deskriftif 2. Statistik Iferesial Pearika kesimpula dapat dilakuka dega dua cara yaitu:. Peaksira Parameter 2. Pegujia Hipotesis Peaksira

Lebih terperinci

Distribusi Peluang BERBAGAI MACAM DISTRIBUSI SAMPEL. Distribusi Peluang 5/6/2012

Distribusi Peluang BERBAGAI MACAM DISTRIBUSI SAMPEL. Distribusi Peluang 5/6/2012 5/6/0 Distribusi Peluag BERBAGAI MACAM DISTRIBUSI SAMPEL Distribusi peluag, P( x), adalah kumpula pasaga ilai-ilai variabel acak Cotoh: Jika dua buah koi dilempar bersamaa. Kejadia bayakya mucul agka.

Lebih terperinci

PENAKSIRAN METODE PENAKSIRAN CONTOH. Kasus 1: taksiran titik IP = 3,5 Kasus 2: taksiran selang IP = [3,4]

PENAKSIRAN METODE PENAKSIRAN CONTOH. Kasus 1: taksiran titik IP = 3,5 Kasus 2: taksiran selang IP = [3,4] PENAKIRAN Peaksira Titik Peaksira elag elag Kepercayaa utuk µ elag Kepercayaa utuk σ MA 8 Aalisis Data Utriwei Mukhaiyar Oktober 00 008 by UP & UM METODE PENAKIRAN. Peaksira Titik Nilai tuggal dari suatu

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Jei Peelitia Metode peelitia yag diguaka dalam kripi ii adalah metode peelitia kuatitatif ekperime yag berdeai pottet-oly cotrol deig, karea tujua dalam peelitia ii utuk mecari

Lebih terperinci

Distribusi Sampling (Distribusi Penarikan Sampel)

Distribusi Sampling (Distribusi Penarikan Sampel) Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Tujua Peelitia Berdaarka rumua maalah pada BAB I, peelitia kuatitatif ii bertujua utuk megetahui efektivita metode pembelajara dicovery dega megguaka Papa Tempel egi Empat

Lebih terperinci

Proses Pendugaan. 95% yakin bahwa diantara 40 & 60. Mean X = 50. Mean,, tdk diketahui. Contoh Prentice-Hall, Inc. Chap. 7-1

Proses Pendugaan. 95% yakin bahwa diantara 40 & 60. Mean X = 50. Mean,, tdk diketahui. Contoh Prentice-Hall, Inc. Chap. 7-1 Proses Pedugaa Populasi Mea,, tdk diketahui Cotoh Acak Mea = 50 95% yaki bahwa diatara 40 & 60. Cotoh 1999 Pretice-Hall, Ic. Chap. 7-1 Pedugaa Parameter Populasi Meduga Parameter Populasi... Mea dg Statistik

Lebih terperinci

BAB 6: ESTIMASI PARAMETER (2)

BAB 6: ESTIMASI PARAMETER (2) Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara

Lebih terperinci

SEBARAN t dan SEBARAN F

SEBARAN t dan SEBARAN F SEBARAN t da SEBARAN F 1 Tabel uji t disebut juga tabel t studet. Sebara t pertama kali diperkealka oleh W.S. Gosset pada tahu 1908. Saat itu, Gosset bekerja pada perusahaa bir Irladia yag melarag peerbita

Lebih terperinci

9 Departemen Statistika FMIPA IPB

9 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351 9 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Pegatar Aalisis utuk Data Respo Kategorik Data respo kategorik Sebara

Lebih terperinci

BAB 7 PEN P GUJ GU IAN HIPO P T O ES T A

BAB 7 PEN P GUJ GU IAN HIPO P T O ES T A BAB 7 PENGUJIAN HIPOTESA Meguji Rata-rata µ Umpamakalah kita mempuyai sebuah populasi berdistribusi ormal dega rata-rata µ da simpaga baku σ. Aka diuji megeai parameter rata-rata µ Utuk pasaga hipotesa

Lebih terperinci

Jurusan Matematika Universitas Riau, Riau 1 Kampus Binawidya Pekanbaru 28293, Indonesia Jurusan Matematika Universitas Riau, Riau 2 ABSTRACT

Jurusan Matematika Universitas Riau, Riau 1 Kampus Binawidya Pekanbaru 28293, Indonesia Jurusan Matematika Universitas Riau, Riau 2 ABSTRACT Proidig emirata05 bidag MIPA BK-PT Barat Uiverita Tajugpura Potiaak PEAKIR RAIO DA PRODUK EKPOEIAL YAG EFIIE UTUK VARIAI POPULAI PADA AMPLIG ACAK EDERHAA EXPOETIAL RATIO AD PRODUCT ETIMATIO FOR POPULATIO

Lebih terperinci

x = μ...? 2 2 s = σ...? x x s = σ...?

x = μ...? 2 2 s = σ...? x x s = σ...? Pedugaa Parameter x 2 sx s = μ...? 2 = σ x...? = σ...? Peduga Parameter Peduga titik yaitu parameter populasi p diduga dega suatu besara statistik, misal: rata-rata, proporsi, ragam, dll Peduga Selag (Iterval)

Lebih terperinci

PENAKSIR RASIO UNTUK VARIANSI POPULASI MENGGUNAKAN KUARTIL DARI KARAKTER TAMBAHAN PADA SAMPLING ACAK SEDERHANA

PENAKSIR RASIO UNTUK VARIANSI POPULASI MENGGUNAKAN KUARTIL DARI KARAKTER TAMBAHAN PADA SAMPLING ACAK SEDERHANA PEAKIR RAIO UTUK VARIAI POPULAI MEGGUAKA KUARTIL DARI KARAKTER TAMBAHA PADA AMPLIG ACAK EDERHAA Ari Elvita *, Arima Ada, Hapoa irait Mahaiwa Program Matematika Doe Jurua Matematika Fakulta Matematika da

Lebih terperinci

BAB III METODE PENELITIAN. Jenis penelitian yang digunakan adalah quasi experimental research

BAB III METODE PENELITIAN. Jenis penelitian yang digunakan adalah quasi experimental research BAB III METODE PENELITIAN A. Jei da Deai Peelitia Jei peelitia yag diguaka adalah quai experimetal reearch atau peelitia ekperime emu. Peelitia dilakuka dega cara medekripika keefektifa kelompok ekperime

Lebih terperinci

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut:

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut: Statistik da Peluag A. Statistik Statistik adalah metode ilmiah yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis data, serta cara pegambila kesimpula berdasarka data-data tersebut. Data ialah

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari.

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari. Selag Kepercayaa Cotoh Besar Jika ukura cotoh (sample size) besar, maka meurut Teorema Limit Pusat, bayak statistik megikuti/mempuyai sebara yag medekati ormal (dapat diaggap ormal). Artiya jika adalah

Lebih terperinci

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu

Lebih terperinci

ANALISIS REGRESI DAN KORELASI SEDERHANA

ANALISIS REGRESI DAN KORELASI SEDERHANA LATAR BELAKANG DAN KORELASI SEDERHANA Aalisis regresi da korelasi megkaji da megukur keterkaita seara statistik atara dua atau lebih variabel. Keterkaita atara dua variabel regresi da korelasi sederhaa.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Aalisis Regresi Istilah regresi pertama kali diperkealka oleh seorag ahli yag berama Facis Galto pada tahu 1886. Meurut Galto, aalisis regresi berkeaa dega studi ketergatuga dari suatu

Lebih terperinci

BAB IV SEBARAN ASIMTOTIK PENDUGA DENGAN MENGGUNAKAN KERNEL SERAGAM. ) menyatakan banyaknya kejadian pada interval [ 0, n ] dan h

BAB IV SEBARAN ASIMTOTIK PENDUGA DENGAN MENGGUNAKAN KERNEL SERAGAM. ) menyatakan banyaknya kejadian pada interval [ 0, n ] dan h BAB IV SEBARAN ASIMTOTIK PENDUGA DENGAN MENGGUNAKAN KERNEL SERAGAM 4.1 Peduga dega Kerel Seragam Pada bab ii diguaka peduga dega kerel eragam. Hal ii karea aya belum berail memperole ebara aimtotik dari

Lebih terperinci

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd Pertemua Ke- Komparasi berasal dari kata compariso (Eg) yag mempuyai arti perbadiga atau pembadiga. Tekik aalisis komparasi yaitu salah satu tekik aalisis kuatitatif yag diguaka utuk meguji hipotesis tetag

Lebih terperinci

Statistika Inferensial

Statistika Inferensial Cofidece Iterval Ara Fariza Statistika Iferesial Populasi Sampel Simpulka (estimasi) tetag parameter Medapatka statistik Estimasi: estimasi titik, estimasi iterval, uji hipotesa 2 1 Proses Estimasi Populasi

Lebih terperinci

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang 2 LANDASAN TEORI Ruag Cotoh, Kejadia, da Peluag Percobaa acak adalah suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak dapat diprediksi secara tepat tetapi dapat diketahui semua

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

BAB 6. Penggunaan SPSS dalam STATISTIK INFERENSI

BAB 6. Penggunaan SPSS dalam STATISTIK INFERENSI 54 Modul Statitika TI oleh Hartatik,M.Si BAB 6 Pegguaa SPSS dalam STATISTIK INFERENSI Tujua : a. Mahaiwa mampu melakuka uji beda mea dua ample b. Mahaiwa mampu melakuka uji beda propori c. Mahaiwa mampu

Lebih terperinci

BAB V ANALISA PEMECAHAN MASALAH

BAB V ANALISA PEMECAHAN MASALAH 89 BAB V ANALISA PEMECAHAN MASALAH Dalam upaya mearik kesimpula da megambil keputusa, diperluka asumsi-asumsi da perkiraa-perkiraa. Secara umum hipotesis statistik merupaka peryataa megeai distribusi probabilitas

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Didalam melakuka kegiata suatu alat atau mesi yag bekerja, kita megeal adaya waktu hidup atau life time. Waktu hidup adalah lamaya waktu hidup suatu kompoe atau uit pada

Lebih terperinci

UJI KUALITAS MINYAK GORENG BERDASARKAN INDEKS BIAS CAHAYA MENGGUNAKAN ALAT REFRAKTOMETER SEDERHANA

UJI KUALITAS MINYAK GORENG BERDASARKAN INDEKS BIAS CAHAYA MENGGUNAKAN ALAT REFRAKTOMETER SEDERHANA 48 D. R. Praetyo et al. Uji Kualita Miyak Goreg Berdaarka Idek Bia Cahaya UJI KUALITAS MINYAK GORENG BERDASARKAN INDEKS BIAS CAHAYA MENGGUNAKAN ALAT REFRAKTOMETER SEDERHANA Dody Rahayu Praetyo * Mahardika

Lebih terperinci

Statistika Inferensia: Pendugaan Parameter. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015

Statistika Inferensia: Pendugaan Parameter. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015 Statistika Iferesia: Pedugaa Parameter Dr. Kusma Sadik, M.Si Dept. Statistika IPB, 05 Populasi : Parameter Sampel : Statistik Statistik merupaka PENDUGA bagi parameter populasi Pegetahua megeai distribusi

Lebih terperinci

BAB IV ENTROPI GAS SEMPURNA

BAB IV ENTROPI GAS SEMPURNA BAB IV ENROPI GAS SEMPURNA Itilah etroi ecara literatur berarti traformai, da dierkealka oleh lauiu. Etroi adalah ifat termodiamika yag etig dari ebuah zat, dimaa hargaya aka meigkat ketika ada eambaha

Lebih terperinci

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus -Mar- Ukura Pemusata Pertemua STATISTIKA DESKRIPTIF Statistik deskripti adalah pegolaha data utuk tujua medeskripsika atau memberika gambara terhadap obyek yag diteliti dega megguaka sampel atau populasi.

Lebih terperinci

PENAKSIRAN. Penaksiran Titik. Selang Kepercayaan untuk VARIANSI. MA2181 ANALISIS DATA Utriweni Mukhaiyar 17 Oktober 2011

PENAKSIRAN. Penaksiran Titik. Selang Kepercayaan untuk VARIANSI. MA2181 ANALISIS DATA Utriweni Mukhaiyar 17 Oktober 2011 PENAKSIRAN Peaksira Titik Peaksira Selag Selag Kepercayaa utuk RATAAN Selag Kepercayaa utuk VARIANSI MA8 ANALISIS DATA Utriwei Mukhaiyar 7 Oktober 0 Metode Peaksira Peaksira Titik Peaksira Selag Nilai

Lebih terperinci

MODEL PEMBELAJARAN DRAMA DENGAN MENGGUNAKAN TEKNIK GANTI TOKOH PADA SISWA KELAS XI SMAN 1 KARANGPAWITAN GARUT TAHUN PELAJARAN 2011/2012

MODEL PEMBELAJARAN DRAMA DENGAN MENGGUNAKAN TEKNIK GANTI TOKOH PADA SISWA KELAS XI SMAN 1 KARANGPAWITAN GARUT TAHUN PELAJARAN 2011/2012 MODEL PEMBELAJARAN DRAMA DENGAN MENGGUNAKAN TEKNIK GANTI TOKOH PADA IWA KELA XI MAN KARANGPAWITAN GARUT TAHUN PELAJARAN 0/0 EMA ROHMAWATI NPM. 0.0499 Program tudi PB Idoeia ekolah Tiggi Kegurua da Ilmu

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemua VI Sebara Pearika Cotoh Septia Rahardiatoro - STK IPB 1 Sebara Pearika Cotoh Megidetifikasi sebara suatu fugsi dari cotoh ketika diambil dari suatu populasi X

Lebih terperinci

A. Pengertian Hipotesis

A. Pengertian Hipotesis PENGUJIAN HIPOTESIS A. Pegertia Hipotesis Hipotesis statistik adalah suatu peryataa atau dugaa megeai satu atau lebih populasi Ada macam hipotesis:. Hipotesis ol (H 0 ), adalah suatu hipotesis dega harapa

Lebih terperinci

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL)

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) Setiap peelitia selalu berkeaa dega sekelompok data. Yag dimaksud kelompok disii adalah: Satu orag mempuyai sekelompok data, atau sekelompok orag mempuyai satu

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

STATISTIK PERTEMUAN VIII

STATISTIK PERTEMUAN VIII STATISTIK PERTEMUAN VIII Pegertia Estimasi Merupaka bagia dari statistik iferesi Estimasi = pedugaa, atau meaksir harga parameter populasi dega harga-harga statistik sampelya. Misal : suatu populasi yag

Lebih terperinci

Pendugaan Parameter. Debrina Puspita Andriani /

Pendugaan Parameter. Debrina Puspita Andriani    / Pedugaa Parameter 7 Debria Puspita Adriai E-mail : debria.ub@gmail.com / debria@ub.ac.id Outlie Pedahulua Pedugaa Titik Pedugaa Iterval Pedugaa Parameter: Kasus Sampel Rataa Populasi Pedugaa Parameter:

Lebih terperinci

IR. STEVANUS ARIANTO 1

IR. STEVANUS ARIANTO 1 OPTIKA GEOMETRI Oleh : Ir. ARIANTO PEMANTULAN PEMBIASAN BERKAS CAHAYA CONTOH SOAL CONTOH SOAL INDEX BIAS INDEX BIAS RELATIF HUKUM PEMBIASAN MACAM PEMANTULAN HUKUM PEMANTULAN CONTOH SOAL CONTOH SOAL HUKUM

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Metode Peelitia Peelitia ii megguaka metode peelitia Korelasioal. Peelitia korelasioaal yaitu suatu metode yag meggambarka secara sistematis da obyektif tetag hubuga atara

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian ini dilaksanakan di kelas XI MIA SMA Negeri 1 Kampar,

BAB III METODE PENELITIAN. Penelitian ini dilaksanakan di kelas XI MIA SMA Negeri 1 Kampar, 45 BAB III METODE PENELITIAN A. Tempat da Waktu Peelitia Peelitia ii dilaksaaka di kelas I MIA MA Negeri Kampar, pada bula April-Mei 05 semester geap Tahu Ajara 04/05 B. ubjek da Objek Peelitia ubjek dalam

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di MTs Muhammadiyah 1 Natar Lampung Selatan.

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di MTs Muhammadiyah 1 Natar Lampung Selatan. 9 III. METODOLOGI PENELITIAN A. Populasi Da Sampel Peelitia ii dilaksaaka di MTs Muhammadiyah Natar Lampug Selata. Populasiya adalah seluruh siswa kelas VIII semester geap MTs Muhammadiyah Natar Tahu Pelajara

Lebih terperinci