BAB 4: PELUANG DAN DISTRIBUSI NORMAL.

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 4: PELUANG DAN DISTRIBUSI NORMAL."

Transkripsi

1 BAB 4: PELUANG DAN DISTRIBUSI NORMAL. PELUANG Peluag atau yag biasa juga disebut dega istilah keugkia, probablilitas, atau kas eujukka suatu tigkat keugkia terjadiya suatu kejadia yag diyataka dala betuk agka. Peerapa teori peluag ejadi suatu yag sagat petig pada hubugaya dega asalah ketidakpastia. TEORI PELUANG (KLASIK): Dala koteks ii berlaku aggapa bahwa seua keugkia kejadia dala suatu percobaa epuyai kesepata yag saa utuk terjadi. Ruus peluag klasik adalah: Diaa: P(E) peluag terjadiya kejadia E bayakya kejadia E bayakya seua keugkia CONTOH 1: Dari percobaa pelepara sebuah koi uag loga satu kali, berapa peluag uculya sisi gabar? Apabila: E uculya sisi gabar bayakya sisi gabar dari sebuah koi uag 1 Bayakya sisi dari sebuah koi uag 2 Maka : ½ 0.5 Jadi, peluag uculya sisi gabar dari pelepara sebuah koi uag satu kali adalah 0.5 CONTOH 2: Dari percobaa pelepara sebuah dadu satu kali, berapa peluag uculya sisi agka 6? - 1

2 Apabila: E uculya sisi agka 6 bayakya sisi agka 6 dari sebuah dadu 1 Bayakya sisi dari sebuah dadu 6 Maka : 1/ Jadi, peluag uculya sisi agka dari pelepara sebuah dadu satu kali adalah CONTOH 3: Dari percobaa pegabila sebuah kartu dari set kartu rei (bridge), berapa peluag didapatkaaya kartu diaod? Apabila: E terabilya kartu diaod. bayakya kartu diaod dari satu set kartu rei 13 bayakya kartu dari satu set kartu rei 54 Maka : 13/ Jadi, peluag terabilya kartu diaod dari pegabila sebuah kartu dari satu set kartu rei adalah 0.25 CONTOH 4: Dari percobaa pelepara dua buah koi uag satu kali, berapa peluag bahwa kedua koi eujukka sisi gabar? Apabila: E uculya sisi Gabar-Gabar (GG) bayakya sisi GG dari dua koi uag 1 Bayakya kobiasi sisi yag ada dari dua koi uag 4 (GG; GA; AG; AA) Maka : 1/ Jadi, peluag uculya sisi GG dari pelepara dua koi uag adalah

3 CONTOH 5: Dari percobaa pelepara dua buah dadu satu kali, berapa peluag bahwa kedua dadu eujukka sisi agka 6? Apabila: E uculya sisi agka 6 pada kedua dadu (6-6) bayakya sisi 6-6- dari dua buah dadu 1 Bayakya kobiasi ata dadu yag ada dari dua dadu 36 (1-1; 1-2; 1-3;... ; 6-6) Maka : 1/ Jadi, peluag uculya sisi agka 6-6 dari pelepara dua buah dadu adalah 0.03 Dari beberapa cotoh di atas, salah satu lagkah yag harus dicerati adalah eghitug besarya ilai (julah segala keugkia dari sebuah kejadia/percobaa). Dala teori peluag, ilai kita sebut dega julah ruag sapel. Tersedia beberapa cara utuk eghitug ruag sapel, yaitu: etode perkalia, perutasi, da kobiasi. 1. Metode Perkalia Utuk seuatu percobaa dega sejulah k kegiata, da asig-asig kegiata epuyai sejulah keugkia kejadia, aka ukura ruag sapelya adalah 1 x 2 x 3 x... x k Cotoh: Pak Joi igi ebeli tiga barag elektroik, asig-asig Televisi, Radio, da VCD Player. Tersedia 4 erk televisi, 3 erk Radio, da 2 erk VCD aka ada berapa cara keugia erk-erk elektroik yag dibeli Pak Joi. Peyelesaia: Dala kasus ii k 3; 1 4; 2 3; 3 2 Maka keseluruha cara yag ugki adalah 4 x 3 x 2 24 cara 2. Metode Perutasi Adalah etode perhituga julah segala keugkia dari kejadia gabuga, diaa dala perutasi letak susua obyek aka eberika arti yag berbeda. Dala hal ii susua AB tidak saa dega BA. Ruus perutasi: - 3

4 Pr! / (-r)! Cotoh: Apabila dari sebuah kelopok belajar yag terdiri dari 5 orag, aka dipilih dua orag, sebagai ketua da wakil ketua kelopok. Dala berapa carakah ketua da wakil ketyua bisa disusu? Peyelesaia: Karea dala kasus ii AB BA, aka susua dua orag yag bisa dibetuk dari lia orag egikuti ruus perutasi: Pr! / (-r)! 5P 2 5! / (5-2)! (5x4x3x2x1) / 3x2x1 5 x Metode Kobiasi Adalah julah seua keugkia yag terjadi pada percobaa dega pegabia r obyek dari obyek diaa atar elee tidak dibedaka. Dala hal ii AB BA Ruus utuk kobiasi: Cr! / (r!(-r)!) Cotoh: Apabila dari 5 orag tersebut aka dipilih dua orag sebagai utusa kelopok, aka dala berapa carakah wakil tersebut dapat disusu? (NB: dala hal ii AB BA) Peyelesaia: Karea dala kasus ii AB BA, aka susua dua orag utusa yag bisa dibetuk dari lia orag egikuti ruus kobiasi: Cr! / (r!(-r)!) 5C2 5! / (2! x (5-2)!) 5! / (2! x 3!) (5x4x3x2x1) / 2x1 x 3x2x1 5x4 / 2x

5 BEBERAPA SIFAT PELUANG Apabila A adalah peluag utuk kejadia A, aka: 1. Peluag Terjadiya A adalah sebesar atara 0 sapai dega 1. 0 P(A) 1. Apabila Peluag terjadiya A edekati NOL, pada kejadia tersebut kecil keugkia utuk terjadi. Sedagka apabila peluagya edekati 1, berarti bahwa kejadia tersebut hapir pasti utuk terjadi. 2. Nilai Peluag koplee dari suatu kejadia adalah satu dikuragi peluag kejadia tersebut. P(Á) 1 P(A). Misal peluag uculya ata dadu satu pada pelepara sebuah dadu adalah 1/6, aka...peluag uculya ata dadu buka satu adalah 1 1/6 5/6. 3. Julah dari seua peluag yag ugki terjadi dari suatu peritiwa adalah P(A B) P(A) + P(B) P(A B) PELUANG DALAM DISTRIBUSI NORMAL Adalah betuk distribusi (persebara) ilai-ilai suatu variabel yag berbetuk oral. Suatu sebara data diaggap oral apabila eeuhi beberapa kriteria: 1. Distribusi data berbetuk loceg. 2. Rata-rata (ea) ada pada tegah da ebagi distribusi ilai ejadi dua bagia saa besar. 3. Terdapat 50% data di sebelah kaa ea da 50% di sebelah kiri ea Betuk uu dari distribusi oral adalah sebagai berikut: 50% 50% µ KAIDAH EMPIRIS - 5

6 Para ahli statistik telah eyelidiki betuk distribusi oral dega epelajari fugsi tersebut, da didapatka sifat-sifat sebagai berikut: 1. Mea distribusi terletak di tegah dega luas bagia sebelah kiri saa dega luas bagia sebelah kaa, sehigga total luas daerah di sebelah kaa kurva total luas daerah di bawah kurva sebelah kaa 50% % dari ilai variabel terletak dala jarak µ ± 1σ % dari ilai variabel terletak dala jarak µ ± 2σ % dari ilai variabel terletak dala jarak µ ± 3σ -3δ -2δ -1δ µ 68 % 95 % +1δ +2δ +3δ 99 % Selai egguaka kaidah epiris di atas, eghitug probabilitas distribusi oral juga bisa dilakuka dega egguaka tabel distribusi oral, terlebih utuk eghitug ilaiilai X yag tidak tepat sebesar ± 1σ, ±2σ, atau ±3σ. Tabel distribusi oral: Berikut beberapa hal tetag distribusi oral: Tabel distribusi oral disusu utuk eghitug probabilitas ilai-ilai variabel oral stadar, yaitu distribusi oral dega ea ol (µ0) da stadar deviasi satu (σ 1). Karea distribusi oral stadar bersifat sietris, ak tabel distribusi oral stadar dibuat haya utuk eghitug bagiasebelah kaa ea dari distribusi tersebut. Utuk eghitug ilai di sebelah kiri ea, ilai z yag egatif diaggap saa dega z positif. Nilai-ilai probabilitas adalah ilai atara µ 0 da sebuah ilai z tertetu. (BUKAN ANTARA SEMBARANG DUA NILAI Z) Cotoh 1: - 6

7 Suatu variabel berdistribusi oral dega µ 0 da σ 1. Hituglah probabilitas ilai z atara: a. 0 sapai dega 1 b. 0 sapai dega 1 c. 1 sapai dega 2 d. 1 sapai dega 2 a. Probabilitas ilai z atara µ 0 sapai dega X 1: Pertaa, kita cari ilai Z dega ruus: Z Z x-µ δ Z 1 Luas daerah di bawah kurva oral yag dibatas ilai ea oleh z 1 adalah (lihat di tabel kurva oral.) Jadi, probabiliotas ilai z atara 0 sapai dega 1 adalah µ 0 1 b. Probabilitas ilai z atara µ 0 sapai dega X -1: Nilai z atara ea sapai dega 1 adalah 1. Dala ebaca tabel distribusi oral, ilai z -1 kita baca sebagai z 1, sehigga probablitasya adalah Jadi, probabilitas ilai z atara 0 sapai dega -1 adalah µ 0 - 7

8 c. Probabilitas ilai z atara X 1 sapai dega X 2: Karea ilai 1 da 2 buka ilai ea, aka utuk ecari probabilitas ii kita harus elakukaya elalui dua tahap. Pertaa, kita ecari probabilitas atara ea 0 sapai dega 1, da kedua kita cari probabilitas atara ea 0 sapai dega 2. Keudia hasilya dikuragka Dari tabel, ilai distribusi oral atara 0 sapai dega 1 adalah sedagka ilai distribusi oral atara 0 sapai dega 2 adalah Maka, probabilitas atara 1 da 2 adalah µ d. Probabilitas ilai z atara X -1 sapai dega X 2: coba saudara cari sediri. MENGHITUNG PROBABILITAS NILAI-NILAI DALAM DISTRIBUSI NORMAL NON-STANDAR Distribusi oral o-stadar adalah distribusi oral dega µ 0 da σ 1. Utuk ecari probabilitas dala distribusi oral o-stadar, ilai X harus kita koversi ke ilai Z dega ruus: x - µ Z σ Diaa: x variabel yag hedak kita cari probabilitasya; µ da σ asig-asig adalah rata-rata da stadar deviasi dari varaibel x. Cotoh 2: Diketahui suatu distribusi oral dega µ 10 da σ 3. Hituglah ilai-ilai: a. atara 10 sapai dega 13 b. Atara 8 sapai dega 15 c. Atara 6 sapai dega 9 - 8

9 a. Atara 10 da 13. Karea 10 adalah ilai ea, aka kita cukup ecari ilai z utuk x 13. z (x-µ)/σ (13 10) / 3 1 Nilai z 1, probabilitasya adalah Maka, probabilitas ilai-ilai atara 10 sapai dega 13 adalah Perbadiga atara distribusi oral stadar dega distribusi oral o-stadar. σ µ X σ Z Dari gabar di atas, kita lihat bahwa: Jarak atara µ 10 sapai dega x 13, adalah saa dega 1 kali stadar deviasi. Agka 1 kali stadar deviasi ii ditujukka dega z 1. NB: utuk visual selajutya, kurva distribusi oral stadar diatas aka kita gabarka subu Z-ya saja da kita letakka di bawah subu X dari distribusi oral yag kita cari. b. Atara 8 sapai dega 15 Karea 8 da 15 buka ilai ea, aka harus kita selesaika dega tiga tahap: Pertaa, kita cari probabilitas atara µ 10 sapai dega x 8; kedua, kita cari probabilitas atara µ 10 sapai dega 15; ketiga probabilitas atara X 8 sapai dega x 15 adalah pejulaha dari kedua probabilitas tersebut. 1) atara µ 10 sapai dega x 8. z (x - µ) / σ (8 10) / Utuk z 0.67, probabilitasya adalah: ) atara µ 10 sapai dega x

10 z (x - µ) / σ (15 10) / Utuk z 1.67, probabilitasya adalah: ) Maka ilai probabilitas atara x 8 sapai dega x 15 adalah X Z c. Atara 6 sapai dega 9 Karea 6 da 9 buka ilai ea, aka utuk ecri ilai ii juga harus dega tiga tahap 1) atara µ 10 sapai dega x 6. z (x - µ) / σ (6 10) / Utuk z 1.33, probabilitasya adalah: ) atara µ 10 sapai dega x 9. z (x - µ) / σ (9 10) / Utuk z 0.33, probabilitasya adalah: ) Maka ilai probabilitas atara x 6 sapai dega x 9 adalah X Z SOAL-SOAL UNTUK LATIHAN: 1. PT Valetio Rossi eproduksi sepeda otor yag epuyai uur ekoois selaa 10 tahu dega stadar deviasi 1.5 tahu, da diasusika bahwa uur ekooi sepeda otor tersebut berdistribusi oral. Apabila saudara eutuska - 10

11 utuk ebeli sepeda otor buata PT Valetio Rossi tersebut, aka berapa peluag saudara edapatka sepeda otor yag: a. uur ekooisya lebih dari 8 tahu b. uur ekooisya kurag dari 8 tahu. 2. Biro pusat statistik egadaka survey utuk egetahui tigkat belaja pedudukya. Meurut survey tersebut, belaja peduduk berdistribusi oral dega ea sebesar Rp ,- da stadar deviasi Rp ,- a. berapa probabilitas bahwa sebuah keluarga yag diabil secara acak aka epuyai pedapata lebih dari Rp ,- b. Berapakah perse keluarga yag tigkat belajaya kurag dari Rp ,- - 11

DISTRIBUSI BINOMIAL. (sukses sebanyak x kali, gagal sebanyak n x kali)

DISTRIBUSI BINOMIAL. (sukses sebanyak x kali, gagal sebanyak n x kali) DISTRIBUSI BINOMIAL Distribusi bioial berasal dari percobaa bioial yaitu suatu proses Beroulli yag diulag sebayak kali da salig bebas. Distribusi Bioial erupaka distribusi peubah acak diskrit. Secara lagsug,

Lebih terperinci

MENENTUKAN PENYELESAIAN PERTIDAKSAMAAN DENGAN METODE TITIK PEMECAH. Warsito. Program Studi Matematika FMIPA Universitas Terbuka.

MENENTUKAN PENYELESAIAN PERTIDAKSAMAAN DENGAN METODE TITIK PEMECAH. Warsito. Program Studi Matematika FMIPA Universitas Terbuka. MENENTUKAN PENYELESAIAN PERTIDAKSAMAAN DENGAN METODE TITIK PEMECAH Warsito Progra Studi Mateatika FMIPA Uiversitas Terbuka warsito@ut.ac.id Abstrak Peyelesaia pertidaksaaa ( x- a, a Î R adalah x a (egguaka

Lebih terperinci

BAB 6: ESTIMASI PARAMETER (2)

BAB 6: ESTIMASI PARAMETER (2) Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara

Lebih terperinci

Definisi 2.3 : Jika max min E(X,Y) = min

Definisi 2.3 : Jika max min E(X,Y) = min Teori Peraia 22 Peelitia Operasioal II Defiisi 23 : Jika ax i E(X,Y) = z y i y ax E(X,Y) =E(x 0, y 0 ), aka (x 0, y 0 ) didefiisika z sebagai strategi uri dari peraia itu dega x 0 sebagai strategi optiu

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1 Lokasi da Waktu peelitia Peelitia dilakuka pada budidaya jamur tiram putih yag dimiliki oleh usaha Yayasa Paguyuba Ikhlas yag berada di Jl. Thamri No 1 Desa Cibeig, Kecamata Pamijaha,

Lebih terperinci

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data IV METODE PENELITIAN 4.1 Lokasi da waktu Peelitia ii dilakuka di PD Pacet Segar milik Alm Bapak H. Mastur Fuad yag beralamat di Jala Raya Ciherag o 48 Kecamata Cipaas, Kabupate Ciajur, Propisi Jawa Barat.

Lebih terperinci

BAB III ANUITAS DENGAN BEBERAPA KALI PEMBAYARAN SETAHUN TERHADAP TABUNGAN PENDIDIKAN

BAB III ANUITAS DENGAN BEBERAPA KALI PEMBAYARAN SETAHUN TERHADAP TABUNGAN PENDIDIKAN BAB III ANUITAS DNGAN BBRAPA KALI PMBAYARAN STAHUN TRHADAP TABUNGAN PNDIDIKAN. Tabuga Pedidika Aak Tabuga erupaka salah satu produk yag ditawarka oleh bak utuk eyipa uag. Utuk epersiapka daa pedidika aak,

Lebih terperinci

1 n MODUL 5. Peubah Acak Diskret Khusus

1 n MODUL 5. Peubah Acak Diskret Khusus ODUL 5 Peubah Acak Diskret Khusus Terdapat beberapa peubah acak diskret khusus yag serig mucul dalam aplikasi. Peubah Acak Seragam ( Uiform) Bila X suatu peubah acak diskret dimaa setiap eleme dari X mempuyai

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 010 TIM OLIMPIADE MATEMATIKA INDONESIA 0 Prestasi itu diraih buka didapat!!! SOLUSI SOAL Bidag Matematika Disusu oleh : Eddy Hermato, ST Olimpiade Matematika Tk

Lebih terperinci

Distribusi Sampling (Distribusi Penarikan Sampel)

Distribusi Sampling (Distribusi Penarikan Sampel) Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

BAB 2 DASAR TEORI. 2.1 Probabilitas

BAB 2 DASAR TEORI. 2.1 Probabilitas BAB DASAR TEORI. Probabilitas Probabilitas epuyai bayak persaaa seperti keugkia, kesepata da kecederuga. Probabilitas eujukka keugkia terjadiya suatu peristiwa yag bersifat acak. Suatu peristiwa disebut

Lebih terperinci

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia Himpua Suatu himpua atau gugus adalah merupaka sekumpula obyek. Pada umumya aggota dari gugus tersebut memiliki suatu sifat yag sama. Suatu himpua bagia atau aak gugus merupaka sekumpula obyek yag aggotaya

Lebih terperinci

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel)

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel) DISTRIBUSI SAMPLING (Distribusi Pearika Sampel) I. PENDAHULUAN Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas.

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas. 4 D E R E T Kosep deret merupaka kosep matematika yag cukup populer da aplikatif khusuya dalam kasus-kasus yag meyagkut perkembaga da pertumbuha suatu gejala tertetu. Apabila perkembaga atau pertumbuha

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah:

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah: BAB III METODOLOGI PENELITIAN 3. Variabel da Defiisi Operasioal Variabel-variabel yag diguaka pada peelitia ii adalah: a. Teaga kerja, yaitu kotribusi terhadap aktivitas produksi yag diberika oleh para

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

Peubah Acak. Peubah Acak Diskrit dan Distribusi Peluang. Peubah Acak. Peubah Acak

Peubah Acak. Peubah Acak Diskrit dan Distribusi Peluang. Peubah Acak. Peubah Acak Peubah Acak Peubah Acak Diskrit da Distribusi Peluag Peubah Acak (Radom Variable): Sebuah keluara umerik yag merupaka hasil dari percobaa (eksperime) Utuk setiap aggota dari ruag sampel percobaa, peubah

Lebih terperinci

BAB VII DISTRIBUSI SAMPLING DAN DESKRIPSI DATA

BAB VII DISTRIBUSI SAMPLING DAN DESKRIPSI DATA BAB VII DITRIBUI AMPLING DAN DEKRIPI DATA 7. Distribusi amplig (samplig distributio) amplig distributio adalah distribusi probabilitas dari suatu statistik. amplig distributio tergatug dari ukura populasi,

Lebih terperinci

UKURAN TENDENSI SENTRAL

UKURAN TENDENSI SENTRAL BAB 3 UKURAN TENDENSI SENTRAL Kompetesi Mampu mejelaska da megaalisis kosep dasar ukura tedesi setral. Idikator 1. Mejelaska da megaalisis mea.. Mejelaska da megaalisis media. 3. Mejelaska da megaalisis

Lebih terperinci

PELUANG. Kegiatan Belajar 1 : Kaidah Pencacahan, Permutasi dan kombinasi

PELUANG. Kegiatan Belajar 1 : Kaidah Pencacahan, Permutasi dan kombinasi PELUANG Kegiata Belajar : Kaidah Pecacaha, Permutasi da kombiasi A. Kaidah Pecacaha. Prisip Dasar Membilag Jika suatu operasi terdiri dari tahap, tahap pertama dapat dilakuka dega m cara yag berbeda da

Lebih terperinci

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand TEKIK SAMPLIG PCA SEDERHAA Hazmira Yozza Izzati Rahmi HG Jurusa Matematika FMIPA Uad Defiisi : Jika suatu cotoh berukura diambil dari suatu populasi berukura sedemikia rupa sehigga setiap kemugkia cotoh

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu

Lebih terperinci

MODUL BEBERAPA MACAM SEBARAN TEORITIS BEBERAPA MACAM SEBARAN TEORITIS

MODUL BEBERAPA MACAM SEBARAN TEORITIS BEBERAPA MACAM SEBARAN TEORITIS MODUL 7 BEBERAPA MACAM SEBARAN TEORITIS Pedahulua Dibedaka sebara probabilitas yag diskrit dega sebara yag kotiyu Keduaya bukalah sebara yag berasal dari pegalama, melaika berasal dari pertimbaga-pertimbaga

Lebih terperinci

UJIAN TENGAH SEMESTER STATISTIKA

UJIAN TENGAH SEMESTER STATISTIKA UJIAN TENGAH SEMESTER STATISTIKA Sei, 5 Jui 9 Ope Book meit ATATAN Dr. Ir. Istiarto, M.Eg. Soal ujia ii utuk dikerjaka sediri tapa kerjasama dega orag lai. Tidak ada pegawasa oleh petugas jaga selama ujia

Lebih terperinci

Modul Kuliah statistika

Modul Kuliah statistika Modul Kuliah statistika Dose: Abdul Jamil, S.Kom., MM SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER MUHAMMADIYAH JAKARTA Bab 2 Populasi da Sampel 2.1 Populasi Populasi merupaka keseluruha pegamata

Lebih terperinci

: XII (Dua Belas) Semua Program Studi. : Gisoesilo Abudi, S.Pd

: XII (Dua Belas) Semua Program Studi. : Gisoesilo Abudi, S.Pd R e f r e s h Program Diklat K e l a s M a t e r i Pegajar : M A T E M A T I K A : XII (Dua Belas) Semua Program Studi : S t a t i s t i k a : Gisoesilo Abudi, S.Pd Kajia Materi Peyampaia Data Diagram

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu

Lebih terperinci

SEBARAN t dan SEBARAN F

SEBARAN t dan SEBARAN F SEBARAN t da SEBARAN F 1 Tabel uji t disebut juga tabel t studet. Sebara t pertama kali diperkealka oleh W.S. Gosset pada tahu 1908. Saat itu, Gosset bekerja pada perusahaa bir Irladia yag melarag peerbita

Lebih terperinci

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan Selag Kepercayaa (Cofidece Iterval) Pegatar Peduga titik (poit estimator) telah dibahas pada kuliah-kuliah sebelumya. Walau statistikawa telah berusaha memperoleh peduga titik yag baik, amu hampir bisa

Lebih terperinci

Kuliah : Rekayasa Hidrologi II TA : Genap 2015/2016 Dosen : 1. Novrianti.,MT. Novrianti.,MT_Rekayasa Hidrologi II 1

Kuliah : Rekayasa Hidrologi II TA : Genap 2015/2016 Dosen : 1. Novrianti.,MT. Novrianti.,MT_Rekayasa Hidrologi II 1 Kuliah : Rekayasa Hidrologi II TA : Geap 2015/2016 Dose : 1. Novriati.,MT 1 Materi : 1.Limpasa: Limpasa Metoda Rasioal 2. Uit Hidrograf & Hidrograf Satua Metoda SCS Statistik Hidrologi Metode Gumbel Metode

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat

Lebih terperinci

Kompetisi Statistika Tingkat SMA

Kompetisi Statistika Tingkat SMA . Arya da Bombom melakuka tos koikoi yag seimbag yag mempuyai sisi, agka da gambar Arya melakuka tos terhadap 6 koi, sedagka Bombom melakuka tos terhadap koi, maka peluag Arya medapatka hasil tos muka

Lebih terperinci

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari.

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari. Selag Kepercayaa Cotoh Besar Jika ukura cotoh (sample size) besar, maka meurut Teorema Limit Pusat, bayak statistik megikuti/mempuyai sebara yag medekati ormal (dapat diaggap ormal). Artiya jika adalah

Lebih terperinci

Statistika 2. Pengujian Hipotesis. 1. Pendahuluan. Topik Bahasan: Oleh : Edi M. Pribadi, SP., MSc.

Statistika 2. Pengujian Hipotesis. 1. Pendahuluan. Topik Bahasan: Oleh : Edi M. Pribadi, SP., MSc. Statistika Toik Bahasa: Pegujia Hiotesis Oleh : Edi M. Pribadi, SP., MSc. E-mail: edi_m@staff.guadarma.ac.id. Pedahulua Hiotesis eryataa yag meruaka edugaa berkaita dega ilai suatu arameter oulasi (satu

Lebih terperinci

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin DISTRIBUSI SAMPLING Oleh : Dewi Rachmati Distribusi Rata-rata Misalka sebuah populasi berukura higga N dega parameter rata-rata µ da simpaga baku. Dari populasi ii diambil sampel acak berukura, jika tapa

Lebih terperinci

Statistika Inferensial

Statistika Inferensial Cofidece Iterval Ara Fariza Statistika Iferesial Populasi Sampel Simpulka (estimasi) tetag parameter Medapatka statistik Estimasi: estimasi titik, estimasi iterval, uji hipotesa 2 1 Proses Estimasi Populasi

Lebih terperinci

MODUL BARISAN DAN DERET

MODUL BARISAN DAN DERET MODUL BARISAN DAN DERET KELAS XII. IPS SEMESTER I Oleh : Drs. Pudjul Prijoo ( http://vidyagata.wordpress.co ) SMA NEGERI 6 Jala Mayje Sugoo 58 Malag Telp./Fax : (034) 75036 E-Mail : sa6_alag@yahoo.co.id

Lebih terperinci

Proses Pendugaan. 95% yakin bahwa diantara 40 & 60. Mean X = 50. Mean,, tdk diketahui. Contoh Prentice-Hall, Inc. Chap. 7-1

Proses Pendugaan. 95% yakin bahwa diantara 40 & 60. Mean X = 50. Mean,, tdk diketahui. Contoh Prentice-Hall, Inc. Chap. 7-1 Proses Pedugaa Populasi Mea,, tdk diketahui Cotoh Acak Mea = 50 95% yaki bahwa diatara 40 & 60. Cotoh 1999 Pretice-Hall, Ic. Chap. 7-1 Pedugaa Parameter Populasi Meduga Parameter Populasi... Mea dg Statistik

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

BAB III BASIS DATA UNTUK IDENTIFIKASI DAERAH RAWAN BANJIR DAN KEBERADAAN DATA SPASIAL YANG DIPERLUKAN

BAB III BASIS DATA UNTUK IDENTIFIKASI DAERAH RAWAN BANJIR DAN KEBERADAAN DATA SPASIAL YANG DIPERLUKAN BAB III BASIS DATA UNTUK IDENTIFIKASI DAERAH RAWAN BANJIR DAN KEBERADAAN DATA SPASIAL YANG DIPERLUKAN Siste idetifikasi daerah rawa bajir ebutuhka adaya data spasial yag diolah dega eafaatka tekologi Siste

Lebih terperinci

PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart

PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA, Fakultas MIPA, Uiversitas Negeri Yogyakarta, 2 Jui 2012 PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart Adi Setiawa

Lebih terperinci

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu Secara umum persamaa rekursif liier tigkat-k bisa dituliska dalam betuk: dega C 0 0. C 0 x + C 1 x 1 + C 2 x 2 + + C k x k = b, Jika b = 0 maka persamaa rekursif tersebut diamaka persamaa rekursif liier

Lebih terperinci

Penyelesaian Persamaan Non Linier

Penyelesaian Persamaan Non Linier Peyelesaia Persamaa No Liier Metode Iterasi Sederhaa Metode Newto Raphso Permasalaha Titik Kritis pada Newto Raphso Metode Secat Metode Numerik Iterasi/NewtoRaphso/Secat - Metode Iterasi Sederhaa- Metode

Lebih terperinci

EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI

EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI Oleh: Sutopo Jurusa Fisika FMIPA UM sutopo@fisika.um.ac.id Ditulis pada sekitar bula Maret 2011. Diuggah pada 3 Desember 2011 PROBLEM Gambar di bawah ii meyataka

Lebih terperinci

BAB 4 LIMIT FUNGSI Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah

BAB 4 LIMIT FUNGSI Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah BAB LIMIT FUNGSI Stadar Kompetesi Megguaka kosep it ugsi da turua ugsi dalam pemecaha masalah Kompetesi Dasar. Meghitug it ugsi aljabar sederhaa di suatu titik. Megguaka siat it ugsi utuk meghitug betuk

Lebih terperinci

BAB VI PELUANG DAN STATISTIKA DASAR

BAB VI PELUANG DAN STATISTIKA DASAR BB VI PELUNG DN STTISTIK DSR. Kosep Peluag da Pegelolaa Data Peluag serigkali diperluka oleh seseorag utuk melihat besarya kemugkia atau kesempata utuk terjadiya sesuatu. Sebagai cotoh, coba ada perhatika

Lebih terperinci

1 Departemen Statistika FMIPA IPB

1 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351) 1 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Metode Noparametrik Skala Pegukura Metode Noparameterik Uji Hipotesis

Lebih terperinci

PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA

PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA Cara Peyajia Data dega Tabel Distribusi Frekuesi Distribusi Frekuesi adalah data yag disusu dalam betuk kelompok baris berdasarka

Lebih terperinci

- Yadi Nurhayadi - M O D U L S T A T I S T I K A BAB 2 DISTRIBUSI FREKUENSI

- Yadi Nurhayadi - M O D U L S T A T I S T I K A BAB 2 DISTRIBUSI FREKUENSI - Yadi Nurhayadi - M O D U L S T A T I S T I K A BAB DISTRIBUSI FREKUENSI A. Review Pelajara SMA A. Pegumpula Data. Peelitia lapaga (Pegamata Lagsug). Wawacara (Iterview). Agket (Kuisioer) 4. Berdasarka

Lebih terperinci

STATISTIKA NON PARAMETRIK

STATISTIKA NON PARAMETRIK . PENDAHULUAN STATISTIKA NON PARAMETRIK Kelebiha Uji No Parametrik: - Perhituga sederhaa da cepat - Data dapat berupa data kualitatif (Nomial atau Ordial) - Distribusi data tidak harus Normal Kelemaha

Lebih terperinci

Distribusi Sampel Sampling Distribution

Distribusi Sampel Sampling Distribution Chapter 5 Studet Lecture otes 5-1 Samplig Distributio Pegatar Distribusi mea Sampel dari ilai Rata-rata Distribusi mea Sampel dari ilai Proporsi Chap 5-1 Distribusi sampel adalah f() distribusi dari ratarata

Lebih terperinci

TEORI PENAKSIRAN. Bab 8. A. Pendahuluan. Kompetensi Mampu menjelaskan dan menganalisis teori penaksiran

TEORI PENAKSIRAN. Bab 8. A. Pendahuluan. Kompetensi Mampu menjelaskan dan menganalisis teori penaksiran Bab 8 TEORI PENAKSIRAN Kompetesi Mampu mejelaska da megaalisis teori peaksira Idikator 1. Mejelaska da megaalisis data dega megguaka peaksira titik 2. Mejelaska da megaalisis data dega megguaka peaksira

Lebih terperinci

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab

Lebih terperinci

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model.

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model. BAB II LANDASAN TEORI Pada bagia ii aka dibahas tetag teori-teori dasar yag diguaka utuk dalam megestimasi parameter model.. MATRIKS DAN VEKTOR Defiisi : Trace dari matriks bujur sagkar A a adalah pejumlaha

Lebih terperinci

Geometri Analitika Ruang. Semester IV (3 SKS)

Geometri Analitika Ruang. Semester IV (3 SKS) Geoetri Aalitika Ruag Seester IV ( SKS rofil Dose Naa Alaat : Ilha Rais Arviato M.d : Grha urwoukti A RT 7 RW Radusari urwoartai Kalasa Slea Yogakarta. 5557 No. H : 08 480 488 Eail Blog : ilha.arviato@ahoo.co

Lebih terperinci

Yang biasa dinamakan test komposit lawan komposit. c. Hipotesis mengandung pengertian minimum. Perumusan H 0 dan H 1 berbentuk :

Yang biasa dinamakan test komposit lawan komposit. c. Hipotesis mengandung pengertian minimum. Perumusan H 0 dan H 1 berbentuk : PARAMETER PENGJIAN HIPOTESIS MODL PARAMETER PENGJIAN HIPOTESIS. Pedahulua Kalau yag sedag ditest atau diuji itu parameter θ dalam hal ii pegguaaya ati bias rata-rata µ prprsi p, simpaga baku σ da lai-lai,

Lebih terperinci

Pokok Bahasan Return dan Risiko. Return. Klasifikasi Return. Return PENDAHULUAN AIMP. Trisnadi Wijaya, S.E., S.Kom.

Pokok Bahasan Return dan Risiko. Return. Klasifikasi Return. Return PENDAHULUAN AIMP. Trisnadi Wijaya, S.E., S.Kom. Pokok Bahasa -9. Retur da Risiko Lecture Note: Defiisi retur da risiko Klasifikasi retur da risiko Hubuga retur da risiko Retur da Risiko Aktiva Tuggal Abormal Retur Retur da Risiko Portofolio 1 2 Retur

Lebih terperinci

Perilaku Distribusi Bernoulli. Definisi: Bernoulli. Contoh Binomial. Contoh Binomial

Perilaku Distribusi Bernoulli. Definisi: Bernoulli. Contoh Binomial. Contoh Binomial Defiisi: Beroulli ercobaa Beroulli: Haya terdaat satu kali ercobaa dega eluag sukses da eluag gagal - eluag Sukse: eluag Gagal: ( = ) = ( = 0 ( = 0) = ( 0 0 = erilaku Distribusi Beroulli E() = Var () =

Lebih terperinci

BAB II CICILAN DAN BUNGA MAJEMUK

BAB II CICILAN DAN BUNGA MAJEMUK BAB II CICILAN DAN BUNGA MAJEMUK 2.1. Buga Majemuk Ada sedikit perbedaa atara suku buga tuggal da suku buga majemuk. Pada suku buga tuggal, besarya buga B = Mp tidak perah digabugka dega modal M. Sebalikya

Lebih terperinci

Matematika Diskret (Kombinatorial - Permutasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs

Matematika Diskret (Kombinatorial - Permutasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs Matematika Diskret (Kombiatorial - Permutasi) Istruktur : Ferry Wahyu Wibowo, S.Si., M.Cs Pedahulua Sebuah sadi-lewat (password) pajagya 6 sampai 8 karakter. Karakter boleh berupa huruf atau agka. Berapa

Lebih terperinci

PENGARUH INFLASI TERHADAP KEMISKINAN DI PROPINSI JAMBI

PENGARUH INFLASI TERHADAP KEMISKINAN DI PROPINSI JAMBI Halama Tulisa Jural (Judul da Abstraksi) Jural Paradigma Ekoomika Vol.1, No.5 April 2012 PENGARUH INFLASI TERHADAP KEMISKINAN DI PROPINSI JAMBI Oleh : Imelia.,SE.MSi Dose Jurusa Ilmu Ekoomi da Studi Pembagua,

Lebih terperinci

REGRESI DAN KORELASI SEDERHANA

REGRESI DAN KORELASI SEDERHANA REGRESI DAN KORELASI SEDERHANA Apa yag disebut Regresi? Korelasi? Aalisa regresi da korelasi sederhaa membahas tetag keterkaita atara sebuah variabel (variabel terikat/depede) dega (sebuah) variabel lai

Lebih terperinci

BAB 2 SISTEM DETEKSI DAN PENGHITUNG OBYEK

BAB 2 SISTEM DETEKSI DAN PENGHITUNG OBYEK BAB 2 SISTEM DETEKSI DAN PENGHITUNG OBYEK Bab ii ebahas egeai aalisis siste yag dibutuhka, keudia arsitektur siste, serta tahapa deteksi da peghitug obyek. Pada tahapa deteksi obyek, terdapat beberapa

Lebih terperinci

Pendahuluan. Tujuan MODUL

Pendahuluan. Tujuan MODUL DATABASE Etity Relasiosip Diagra Satrio Agug W, Ari Kusyati da Mahedra Data Tekik Iforatika, Fakultas Tekik, Uiversitas Brawijaya, Eail : iforatika@ub.ac.id Pedahulua Etity Relasioalship Diagra adalah

Lebih terperinci

Model Pertumbuhan BenefitAsuransi Jiwa Berjangka Menggunakan Deret Matematika

Model Pertumbuhan BenefitAsuransi Jiwa Berjangka Menggunakan Deret Matematika Prosidig Semirata FMIPA Uiversitas Lampug, 0 Model Pertumbuha BeefitAsurasi Jiwa Berjagka Megguaka Deret Matematika Edag Sri Kresawati Jurusa Matematika FMIPA Uiversitas Sriwijaya edagsrikresawati@yahoocoid

Lebih terperinci

--Fisheries Data Analysis-- Perbandingan ragam. By. Ledhyane Ika Harlyan. Faculty of Fisheries and Marine Science Brawijaya University

--Fisheries Data Analysis-- Perbandingan ragam. By. Ledhyane Ika Harlyan. Faculty of Fisheries and Marine Science Brawijaya University --Fisheries Data Aalysis-- Perbadiga ragam By. Ledhyae Ika Harlya Faculty of Fisheries ad Marie Sciece Brawijaya Uiversity Tujua Istruksioal Khusus Mahasiswa dapat megguaka aalisis statistika sederhaa

Lebih terperinci

Statistika MAT 2 A. PENDAHULUAN NILAI MATEMATIKA B. PENYAJIAN DATA NILAI MATEMATIKA NILAI MATEMATIKA STATISTIKA. materi78.co.nr

Statistika MAT 2 A. PENDAHULUAN NILAI MATEMATIKA B. PENYAJIAN DATA NILAI MATEMATIKA NILAI MATEMATIKA STATISTIKA. materi78.co.nr materio.r Statistika A. PENDAHULUAN Statistika adalah ilmu yag mempelajari pegambila, peyajia, pegolaha, da peafsira data. Data terdiri dari dua jeis, yaitu data kualitatif (sifat) da data kuatitatif (agka).

Lebih terperinci

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR Dose Pegampu : Darmadi, S.Si, M.Pd Disusu : Kelas 5A / Kelompok 5 : Dia Dwi Rahayu (084. 06) Hefetamala (084. 4) Khoiril Haafi (084. 70) Liaatul Nihayah (084. 74)

Lebih terperinci

Kekeliruan dalam Perhitungan Numerik dan Selisih Terhingga Biasa

Kekeliruan dalam Perhitungan Numerik dan Selisih Terhingga Biasa Modul 1 Kekelirua dalam Perhituga Numerik da Selisih Terhigga Biasa D PENDAHULUAN Dr. Wahyudi, M.Pd. i dalam pemakaia praktis, peyelesaia akhir yag diigika dari solusi suatu permasalaha (soal) dalam matematika

Lebih terperinci

ANUITAS. 9/19/2012 MK. Aktuaria Darmanto,S.Si.

ANUITAS. 9/19/2012 MK. Aktuaria Darmanto,S.Si. ANUITAS 9/19/2012 MK. Aktuaria Darmato,S.Si. 1 OVERVIEW Auitas adl suatu pembayara dalam jumlah tertetu, yag dilakuka setiap selag waktu da lama tertetu, secara berkelajuta. Suatu auitas yg pasti dilakuka

Lebih terperinci

BAB X. PELUANG. Terjadinya 2 kemungkinan kejadian yaitu : AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC = 12 kemungkinan. Prinsip/kaidah perkalian:

BAB X. PELUANG. Terjadinya 2 kemungkinan kejadian yaitu : AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC = 12 kemungkinan. Prinsip/kaidah perkalian: isip/kaidah pekalia: BAB X. ELUANG Jika posisi /tempat petama dapat diisi dega caa yag bebeda, tempat kedua dea caa, da seteusya, sehigga lagkah ke ada caa maka bayakya caa utuk megisi tempat yag tesedia

Lebih terperinci

BAB II KAIDAH PENCACAHAN DAN PELUANG

BAB II KAIDAH PENCACAHAN DAN PELUANG 1 BAB II KAIDAH PENCACAHAN DAN PELUANG Dalam kehidupa sehari hari kita serig dihadapka pada persoala yag berkaita dega peluag. Baik mecari kemugkia, kesempata, bayak cara, harapa da sebagaiya. Dalam Materi

Lebih terperinci

Chapter 7 Student Lecture Notes 7-1

Chapter 7 Student Lecture Notes 7-1 Chapter 7 Studet Lecture Notes 7-1 DASAR-DASAR UJI Hipotesis: Hipo (di bawah) da Tesis (peryataa yag telah diuji) Hipotesis Statistik:suatu proposisi atau aggapa megeai parameter populasi yag dapat diuji

Lebih terperinci

METODOLOGI PENELITIAN. penggunaan metode penelitian. Oleh karena itu, metode yang akan digunakan

METODOLOGI PENELITIAN. penggunaan metode penelitian. Oleh karena itu, metode yang akan digunakan 47 III. METODOLOGI PENELITIAN A. Metodelogi Peelitia Keberhasila dalam suatu peelitia sagat ditetuka oleh ketepata pegguaa metode peelitia. Oleh karea itu, metode yag aka diguaka haruslah sesuai dega data

Lebih terperinci

BARISAN FIBONACCI DAN BILANGAN PHI

BARISAN FIBONACCI DAN BILANGAN PHI BARISAN FIBONACCI DAN BILANGAN PHI Fiboacci Matematikawa terbesar pada abad pertegaha adalah Leoardo dari Pisa, Italia (80 0). Ia lebih dikeal dega ama Fibo-acci. Artiya, aak Boaccio. Meara Pisa yag terkeal

Lebih terperinci

Bab IV. Penderetan Fungsi Kompleks

Bab IV. Penderetan Fungsi Kompleks Bab IV Pedereta Fugsi Kompleks Sebagaimaa pada fugsi real, fugsi kompleks juga dapat dideretka pada daerah kovergesiya. Semua watak kajia kovergesi pada fugsi real berlaku pula pada fugsi kompleks. Secara

Lebih terperinci

Pengertian Estimasi Titik. Estimasi (Pendugaan) Estimasi (Pendugaan) Estimasi (Pendugaan) Populasi dan Sampel. Mean Proporsi

Pengertian Estimasi Titik. Estimasi (Pendugaan) Estimasi (Pendugaan) Estimasi (Pendugaan) Populasi dan Sampel. Mean Proporsi Chapter 6 Studet Lecture Notes 6-1 Hal-1 Hal-2 Estimasi (Pedugaa) Estimasi (Pedugaa) TOPIK Pegertia Estimasi Estimasi titik Nilai rata-rata populasi Nilai proporsi populasi Estimasi Iterval Estimasi iterval

Lebih terperinci

BAB III METODE PENELITIAN. penelitian ini adalah penelitian diskriptif kuantitatif. Dalam hal ini peneliti akan

BAB III METODE PENELITIAN. penelitian ini adalah penelitian diskriptif kuantitatif. Dalam hal ini peneliti akan BAB III METODE PENELITIAN A. Jeis Peelitia Berdasarka pertayaa peelitia yag peeliti ajuka maka jeis peelitia ii adalah peelitia diskriptif kuatitatif. Dalam hal ii peeliti aka mediskripsika kemampua relatig,

Lebih terperinci

PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK. Sutikno

PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK. Sutikno sutiko PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK Sutiko Program Studi Tekik Iformatika Fakultas Sais da Matematika UNDIP tik@udip.ac.id

Lebih terperinci

theresiaveni.wordpress.com NAMA : KELAS :

theresiaveni.wordpress.com NAMA : KELAS : theresiaveiwordpresscom NAMA : KELAS : 1 theresiaveiwordpresscom BARISAN DAN DERET Barisa da deret dapat diguaka utuk memudahka peyelesaia perhituga, misalya buga bak, keaika produksi, da laba/rugi suatu

Lebih terperinci

BAB I TEORI PELUANG. Pengantar Statistika Matematis

BAB I TEORI PELUANG. Pengantar Statistika Matematis H. Mama Suherma,Drs.,M.Si I TEORI PELUNG. Ruag Sampel da Peristiwa Dari masa ke masa terjadi perkembaga dalam teori peluag, baik dalam hal kosep maupu pedekataya. aragkali pembaca megeal apa yag diamaka

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakag Dalam keadaa dimaa meghadapi persoala program liier yag besar, maka aka berusaha utuk mecari peyelesaia optimal dega megguaka algoritma komputasi, seperti algoritma

Lebih terperinci

4. KOMBINATORIKA ... S 1. S n S 2. Gambar 4.1

4. KOMBINATORIKA ... S 1. S n S 2. Gambar 4.1 4. KOMBINATORIKA 4. Atua Utuk Suatu Peistiwa Evet sesuatu yag tejadi. Jika peistiwa A dapat tejadi dalam m caa da peistiwa B dapat tejadi dalam N caa, maka tedapat (m, ) caa kedua peistiwa tejadi besama-sama.

Lebih terperinci

STATISTIKA DAN PELUANG BAB III STATISTIKA

STATISTIKA DAN PELUANG BAB III STATISTIKA Matematika Kelas IX Semester BAB Statistika STATISTIKA DAN PELUANG BAB III STATISTIKA A. Statistika Pegertia Statistika Statistika adalah ilmu yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis

Lebih terperinci

BAGIAN 2 TOPIK 5. andhysetiawan

BAGIAN 2 TOPIK 5. andhysetiawan BAGIAN OIK 5 adhyseiawa Isi Maeri Modulasi Aliudo AM Modulasi Frekuesi FM adhyseiawa MODULASI AMLIUDO DAN MODULASI ANGULAR SUDU Modulasi roses erubaha karakerisik aau besara gelobag ebawa, euru ola gelobag

Lebih terperinci

Barisan Dan Deret Arimatika

Barisan Dan Deret Arimatika Barisa Da Deret Arimatika A. Barisa Aritmatika Niko etera memiliki sebuah peggaris ukura 0 cm. Ia megamati bilaga-bilaga pada peggarisya ii. Bilaga-bilaga tersebut beruruta 0, 1,, 3,, 0. etiap bilaga beruruta

Lebih terperinci

Contoh Produksi dua jenis sepatu A dan B memberikan fungsi keuntungan bulanan sebagai berikut :

Contoh Produksi dua jenis sepatu A dan B memberikan fungsi keuntungan bulanan sebagai berikut : I. OPTIMISASI FUNGSI TANPA KENDALA Utuk fugsi dua peubah ) f ag terdiferesial dua kali. Jika di titik ) P dipeuhi :. sarat stasioer)... > maka mecapai ekstrim di ) P. Jika : ekstrim maksimum mecapai maka

Lebih terperinci

Kuliah 3.Ukuran Pemusatan Data

Kuliah 3.Ukuran Pemusatan Data Kuliah 3.Ukura Pemusata Data Mata Kuliah Statistika Dr. Ir. Rita Rostika MP. Prodi Perikaa Fakultas Perikaa da Ilmu Kelauta Uiversitas Padjadjara Cotet (1) modus Media Rata-rata Telada peerapa Cotet (2)

Lebih terperinci

PENDUGAAN PARAMETER. Ledhyane Ika Harlyan

PENDUGAAN PARAMETER. Ledhyane Ika Harlyan PENDUGAAN PARAMETER Ledhyae Ika Harlya Jurua Pemafaata Sumberdaya Perikaa da Kelauta Uiverita Brawijaya 03 Statitik Ifereia Mecakup emua metode yag diguaka dalam pearika keimpula atau geeraliai megeai

Lebih terperinci

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015 RESPONSI STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 015 A. PENYAJIAN DAN PERINGKASAN DATA 1. PENYAJIAN DATA a. Sebutka tekik peyajia data utuk data kualitatif! Diagram kueh, diagram batag, distribusi

Lebih terperinci

Formula Multiplier Output

Formula Multiplier Output Formula Multiplier Output Utuk meghitug agka multiplier atau peggada output diperoleh dega rumus: 1 M K = [ I A] dimaa M K = matriks multiplier/peggada output berukura x ; dapat diterapka utuk I = matriks

Lebih terperinci

Buku Padua Belajar Maajeme Keuaga Chapter 0 KONSEP NILAI WAKTU UANG. Pegertia. Nilai Uag meurut waktu, berarti uag hari ii lebih baik / berharga dari pada ilai uag dimasa medatag pada harga omial yag sama.

Lebih terperinci

ANALISIS DAN PEMODELAN KETERGANTUNGAN INDEKS BIAS LARUTAN TERHADAP KONSENTRASI ZAT TERLARUT

ANALISIS DAN PEMODELAN KETERGANTUNGAN INDEKS BIAS LARUTAN TERHADAP KONSENTRASI ZAT TERLARUT Roiyus MS, Aalisis da Peodela Ketergatuga ANALISIS DAN PEMODELAN KETERGANTUNGAN INDEKS BIAS LARUTAN TERHADAP KONSENTRASI ZAT TERLARUT ABSTRACT Roiyus M.S. Jurusa Fisika FMIPA Uiersitas Lapug Jl. S. Brojoegoro

Lebih terperinci

STATISTIKA MAT 2 NILAI MATEMATIKA NILAI MATEMATIKA NILAI MATEMATIKA A. PENDAHULUAN B. PENYAJIAN DATA. Diagram garis

STATISTIKA MAT 2 NILAI MATEMATIKA NILAI MATEMATIKA NILAI MATEMATIKA A. PENDAHULUAN B. PENYAJIAN DATA. Diagram garis materio.r A. PENDAHULUAN Statistika adalah ilmu yag mempelajari pegambila, peyajia, pegolaha, da peafsira data. Data terdiri dari dua jeis, yaitu data kualitatif (sifat) da data kuatitatif (agka). B. PENYAJIAN

Lebih terperinci

BAB V. INTEGRAL. Lambang anti-turunan (integral tak-tentu) oleh Leibniz adalah... dx, sehingga

BAB V. INTEGRAL. Lambang anti-turunan (integral tak-tentu) oleh Leibniz adalah... dx, sehingga BAB V. INTEGRAL 5.. Ati Turua (Itegral Tak-tetu) Defiisi: F suatu ati-turua f pada selag I jika da haya jika D F() = f() pada I, yaki F () = f() utuk semua dalam I. (Jika suatu titik ujug I, F () haya

Lebih terperinci

Barisan Aritmetika dan deret aritmetika

Barisan Aritmetika dan deret aritmetika BARISAN DAN DERET BILANGAN Peyusu: Atmii Dhoruri, MS Kode: Jejag: SMP T/P: / A. Kompetesi yag diharapka. Meetuka suku ke- barisa aritmatika da barisa geometri. Meetuka jumlah suku pertama deret aritmatika

Lebih terperinci

Barisan dan Deret. Modul 1 PENDAHULUAN

Barisan dan Deret. Modul 1 PENDAHULUAN Modul Barisa da Deret Reto Wika Tyasig Ada P PENDAHULUAN okok bahasa dalam modul ii terdiri atas dua kegiata belajar. Yag pertama tetag barisa, yag kedua tetag deret da cotoh-cotoh pemakaia deret. Pembahasa

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

MATEMATIKA DISKRIT II ( 2 SKS)

MATEMATIKA DISKRIT II ( 2 SKS) ATEATIKA DISKRIT II ( SKS) Rabu 8.5. Ruag Hard Disk PERTEUAN V & VI RELASI Dose Lie Jasa OS - 6 ateatika Diskrit Relasi da Fugsi Oerip S. Satoso OS - 6 Relasi Defiisi. Relasi bier R atara A da B adalah

Lebih terperinci