BAB II PERSAMAAN DIFFERENSIAL ORDO SATU

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II PERSAMAAN DIFFERENSIAL ORDO SATU"

Transkripsi

1 BAB II PERSAAA DIERESIAL ORDO SATU Tjan Pmblajaran Bab. ini, mrpakan lanjtan dari pmbahasan PD bab, ait jnis-jnis prsamaan diffrnsial ordo sat dan ara-ara pnlsaianna. Diantarana adalah Prsamaan Trpisah, PD Homogn Ordo Sat, PD Ea dan ator Intgrasi, srta ontoh-ontoh soal. Pada tiap sb pokok bahasan dibrikan soal-soal ang diharapkan dapat dikrjakan olh mahasiswa, ssai dngan ontoh-ontoh ang dibrikan pada tiap jnisna masing-masing. A. Prsamaan Diffrnsial Variabl Trpisah d Prsamaan diffrnsial, adalah brordo sat dan drajat d sat. Prsamaan ini dapat dinatakan dalam bntk, d, d. Dngan, dan, dapat dinatakan sbagai fngsi, ata fngsi ata kana, dan ata, dan, hana mrpakan konstanta. Prsamaan, d, d, disbt sbagai prsamaan trpisah apabila dapat dinatakan olh prsamaan : f.g d p. q d dimana f() dan p() mrpakan fngsi dan g() dan q() sbagai fngsi. ngsi dan fngsi dapat dipisahkan dan brada pada klompokna masing-masing. ontoh: d 6 d adalah prsamaan trpisah, sbab dapat dinatakan dalam bntk d 6 d, shingga dapat dilakkan pnglompokan ariabl dalam bntk: 6 d d

2 ontoh: - d - d, bkan prsamaan trpisah, sbab tidak dapat dibat dalam bntk f.g d p. q d. Ata tidak dapat diklompokkan pada ariablna masing-masing. B. Solsi Prsamaan Trpisah Prsamaan trpisah f.g d p. q d dapat dislsaikan dngan prosr sbagai brikt:. Bagi prsamaan dngan g(), p(), shingga didapat: f() p() d g() d q() ; p() ; q(). Lakkan intgrasi prsamaan, shingga didapat () G(),sbagaisolsimmPD. Bila nilai-nilai sarat batas diktahi, maka sbsitsikan nilai trsbt k dalam hasil intgral shingga nilai konstanta didapat. Prsamaan ang didapat adalah solsi khss dari PD. Slanjtna dapat diksprsikan dalam bntk gambar ata grafik. ontoh d d Slsaikan ; bila () Jawab :.d.d Sarat batas (solsimm) (solsikhss) rpakan lingkaran brpsat di p(,) dngan jari-jari r =, dapat di ksprsikan dalam bntk gambar sbagai brikt:

3 - - Gbr.. Lingkaran 6 ontoh Tntkan jawaban khss dari PD brikt : d d, bila () Jawab : ( )d ( )d ( d ) d Intgral langsng, misalna: U ( ) dan V ( ). U jadi ( ln U (.. V Saratbatas : )( )( d ln V ) 5 ) ln (solsimm) 5 (solsikhss)

4 . Soal Tntkan jawaban mm dari PD brikt:. d d. d d. d d. ( ) d d 5. sd d 6. d tan d d. d 9. d ( ) d. d d '. ( ) bila (). ' os bila () '. sin bila ( ) '. 8 bila () ' 5. ( ) tan bila () 8. s d s d D. Prsamaan Diffrnsial Homogn Ordo Sat Prsamaan diffrnsial homogn ordo sat f(,, ) =. Sara mm d ditlis dalam bntk, f (, ) ata (, ) d (, ) d. Prsamaan d ini dinatakan homogn jika f (, ) g( ). ontoh Prsamaan Karna d d d d d d ( ( d d ) ) ( ( ) ) adalah homogn

5 Jadi : d d g ; mrpakan sarat PD homogn Prsamaan homogn dalam bntk prsamaan dan didapat di transformasi (dibah) mnjadi bntk prsamaan dan, shingga mnjadi bntk ariabl trpisah dngan ara mnsbsitsikan, dan d d d Bkti: Bila (,) d + (,) d = maka dapat ditlis sbagai d d g dngan sbsitsi = d an d = d + d shingga:. d Hasil intgralna adalah : ln ln. d d d g( ) d d d d g d d () g g g( ) dimana dapat ditlis d g ( ) ( ) ontoh Tntkan jawaban mm dari ( ) d d Jawab : Sbsitsikan =. dan d = d + d didapat:

6 d d d d d d ln ln Dalam bntk lain d ln - ln d d d ln d : ln ln ln ln d. d ata ln : E. Soal-soal. ( ) d d. d d. d d. ( ) d d 5. ( ) d d 6. ( 6 ) d ( ) d. ( ) d d 8. sin os d os d 9. d ( ) d. ( ) d ( ) d. Prsamaan Diffrnsial Eat dan ator Intgrasi ngsi f(,)=, mrpakan klarga sat kra, mmiliki diffrnsial f f total df(,) adalah df(,) =, d, d ata df,, d, d

7 prsamaan ini mrpakan psamaan diffrnsial at apabila : Bkti: ntk f,, f,,, f,, f, Jadi : mrpakan sarat PD at. Dari d d, d, d Intgral karah adalah, d Bila ditrnkan karah, nilaina hars sama dngan,, jadi,, d ' ',, d, d, d d Jadi : f,, d, d, d d rpakan jawaban dari PD at. ontoh : priksa apakah d d mrpakan PD at dan tntkan jawabanna. Jawab : jadi Eat.

8 Dari : d d d. d f,, Trnanna k arah, hars sama dngan Jadi : ' ' Didapat Ata : adalah solsi mmna. ara lain. Dngan rms : d d d d d. d adalah solsi mm. G. Soal-soal Latihan Priksa PD brikt apakah Eat dan tntkan jawaban mmna. d d 6. d os d. d d. d d. ln d d.. d d 8. d d 5. d d

9 9. d d. os sin d osd H. aktor Intgrasi Bila (, ) d (, ) d, tidak at maka dapat dibat mnjadi PD at dngan ara mngalikan prsamaan dngan sat faktor intgral (, ). Dngan mngalikan (, ) k dalam prsamaan akan didapat:. d. d prsamaan ini mnjadi at dngan sarat: ( ) ( ). ata Dapat dilihat ada bbrapa kass ang mngkin trjadi:. Bila hana sbagai fngsi, maka dan d d shingga: d d. d ln p. d d d mrpakan faktor intgrasi agar PD mnjadi at.. Bila hana sbagai fngsi, maka dan d d, shingga:

10 . d p. d natakan faktor intgral agar PD mnjadi at. Dari ka faktor intgrasi di atas trlihat bahwa(,) sangat ditntkan olh: ata : d. d dimana Z mrpakan sat fngsi dari saja ata dari saja ata dari dan. Bila Z mrpakan fngsi saja, maka α dan β Bila Z mrpakan fngsi saja, maka β dan α Bila Z mrpakan fngsi dan, maka α dan β ontoh : Slsaikan ( ) d + ( ) d = Jawab : ( ( aktor intgrasi: ) ) (Tidak Eat) p d p d

11 p p. ln ( ) d ( ) adalah faktorintgrasi kalikan k dalam prsamaan, didapat: ( ( ( ) d ) ) d ( ( ( ( ( ( ) ) ) d ) ) d ) (,) ( ( ( ( (Eat) ) d ) ) ) () () Trnan k arah, hars sama dngan (,), ait: ( ) '() () jadi (,) ( ( ( ( ( ( ( ( ) ) ) ) ) ) ) ) '() ( ) ( ) adalah jawaban mm dari PD

12 I. Soal-soal Tntkan jawaban dari:. ( + ) d d =. ( + ) d + ( ) d =. (5 + +) d + ( ) d =. ( + ) d + ( ) d = 5. ( + 6) d + (5 + 8) d = 6. ( + + ) d + d =. d + ( +) d = 8. ( + +) d ( +) d = 9. ( + + ) d ( ) d =. ( + ) d + d = J. Prsamaan Diffrnsial Linir Ordo Ksat Prsamaan diffrnsial ang brordo ksat ang linir antara ariabl trikat dan trnan prtamanna dinatakan sbagai PDL ordo ksat. Prsamaan ini dapat ditlis dalam bntk: d d p() Q() Bntk prsamaan mnjadi homogn jika Q() =, pnlsaian slanjtna adalah: ln p() d p() d d ln. p() d trnan dari bntk ini adalah: d. p()d. p()d.p() d p()d d d. p()d p()d p(). d d Bntk ini mmprlihatkan bahwa dngan mngalikan faktor dalam prsamaan, maka bntkna mnjadi Eat. p()d k Artina, p()d Eat, shingga prsamaan mnjadi: adalah faktor intgrasi, ntk mmbat PDL mnjadi

13 p()d p().d d p()d.q() ata d (. dan jawaban slanjtna p()d ) adalah : p()d.q(). p() p()d. Q()d ontoh : Slsaikan : d sin d + d = Jawab : Prsamaan dapat (bagi prsamaan dngan d). d sin. d d sin d d sin d os sin d os (JawabanUmm) d ln K. Soal-soal d. d. ( + ) d ( ) d =. ( - d ) + = a d 6. a = f() d. + = d 8. + ( ). + tan = s d = d d 9. + otg = s d. + f() = f()

14 L. Prsamaan Brnolli Bntk mm dari prsamaan brnolli adalah Prosr pnlsaianna dngan ara sbagai brikt:. Bagi prsamaan dngan n, didapat n d d p(). Q()...( *). isalkan U = -n shingga didapat d n (-n) n d d d d p() n Q()... Kalikan (*) dngan (-n) shingga didapat ( n) -n d + ( n) p() -n = ( n) Q() d ata + p () U = Q () adalah PDL d ang dapat dislsaikan dngan prkalian faktor intgrasi. ontoh : Slsaikan d d Jawab : Bagi prsamaan dngan, didapat : misalkan U d d d d d kali prsamaan dngan ngatif (-) d d

15 ata : d d U U U U d d d d ln ; jawaban mm.. Soal d. d. d d d. ( ) d. ' tan tan d. d. d d 5. ' tan s d 6. d. ' 5 5 d 8. sin d 9. d ( )d d dalam bntk d. d d ( )

16 . Sbsitsi dan Transformasi Prsamaan dngan kofisin linir dalam bntk (a + b+ ) d + (p + q + r) d = ang slit ntk dinatakan ata dislsaikan sprti PD ang tlah dibiarakan didpan, dapat ditransformasikan mnjadi salah sat diantara PD ang dapat dislsaikan. Transformasi dilakkan dngan ara mmbat lang prsamaan dalam bntk ariabl bar ang mngkin dapat mnlsaikan PD. Prosrna adalah sbagai brikt:. Jika = r =, prsamaan brbntk (a + b) d + (p + q) d = prsamaan ini homogn. isalkan =. a b. Slanjtna bila k, maka dapat ditransformasikan Z = a + b dan d p q = a d + b d, ntk mrbah prsamaan awal k bantk ariabl lain.. bila a p b q, maka dapat ditransformasikan; U = a + b + dan = a d + b d = p + q +r shingga: dan d = p d + q d d d d a p a p a p q d d b q b q b sbsitsikan harga d dan d dalam prsamaan shingga diprolh prsamaan homogn, ang dapat dislsaikan. q a q a d a q b d b p p b p

17 ara lain adalah dngan mngambil bntk-bntk a + b + = sbagai prsamaan garis ang brpotongan dngan p + q + r =. dngan mmisalkan prpotonganna dititik (h, k) maka sbstitsikan: h k k dalam prsamaan awal shingga didapat prsamaan homogn ang dapat dislsaikan. ontoh Slsaikan ( + ) d (6 + ) d = Jawab : a b Karna, maka ambil transformasi Z = dan d = d d; p q d = d d d d d Shingga diprolh prsamaan bar: d d d d d d d d d d d d, prsamaantrpisah. d ln 6 d d isal : d d

18 ln Sbstitsikan nilai ln 8 6 ln 8 ln 8 adalah solsi angdiari. ontoh Slsaikan ( ) d + (5 ) d = Jawab : Karna 5 a p b q maka dignakan transformasi: d 5d d d d d d 5 d d 8 d 5 5 d d 5 8 Sbsitsikan k dalam prsamaan awal, dan misalkan = / ata =. ; dngan trnan = d + d dan pnjabaran slanjtna didapat; d 5 d d d d

19 hasil intgral: ln - d - d ln ln ln ( ) ln ( ) ln ln ln ln ln ( ln ( ) ).( )( ) ( ) 9 ( ) 6 ( ) ( ) ( ) adalah solsidari prsamaanawal ara ka : - - d d Titik potong (h, k) = (,-) isal: = + d = = d = d ( ) d + ( ) d =

20 ( -) d (5 - ) d = Prsamaan mnjadi ( ) + (5 ) d = isal : =. d = d + Prsamaan mnjadi : ( ) d + (5 - ) (d + ) = ( + - ) + (5-) d = 5 - d 5 ln ln ln( ) ln ln ln ln - ln ln - ln (jawaban mm), sama sprti ontoh di atas. O. Soal. ( +) d + (6 + ) d =. ( 5 + ) d ( + 6) d =. ( ) d + ( +) d =. ( +) d + ( + 6) d = 5. d d 8

21

MES (Journal of Mathematics Education and Science) ISSN: PERSAMAAN DIFFERENSIAL EKSAK DENGAN FAKTOR INTEGRASI

MES (Journal of Mathematics Education and Science) ISSN: PERSAMAAN DIFFERENSIAL EKSAK DENGAN FAKTOR INTEGRASI ES Jornal of athmatis Edation and Sin ISS: 2528-4363 PERSAAA DIFFERESIAL EKSAK DEGA FAKTOR ITEGRASI Rosliana Sirgar Dosn Kooprtis Wil I Dpk FKIP-UISU Rosliana2012@ahoo.om Abstrak. Pnlitian ini brtjan ntk

Lebih terperinci

8. FUNGSI TRANSENDEN

8. FUNGSI TRANSENDEN 8. FUNGSI TRANSENDEN 8. Fngsi Invrs Misalkan : D R dngan Dinisi 8. Fngsi = disbt sat-sat jika = v maka = v ata jika v maka v v ngsi = sat-sat ngsi =- sat-sat ngsi tidak sat-sat INF8 Kalkls Dasar Scara

Lebih terperinci

BAB 2. TURUNAN PARSIAL

BAB 2. TURUNAN PARSIAL BAB TURUNAN PARSIAL PENDAHULUAN Pada bagian ini akan dilajari rlasan kons trnan ngsi sat bah k trnan ngsi da bah ata lbih Stlah mmlajari bab ini anda akan daat: - Mnntkan trnan arsial ngsi da bah ata lbih

Lebih terperinci

PERTEMUAN-4 dan 5. [PD. Menggunakan faktor Integrasi] (1) ) Tidak Eksak (2)

PERTEMUAN-4 dan 5. [PD. Menggunakan faktor Integrasi] (1) ) Tidak Eksak (2) ERTEUA- an 5. ang apat ibat Eksak [. nggnakan faktor Intgrasi] Jika: Tiak Eksak rsamaan tiak ksak an prsamaan aalah ksak an kana aalah intik ang mmpnai solsi ang sama. Hal ini brarti kofisin ari an ngan

Lebih terperinci

Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika. Persamaan Diferensial Orde I

Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika. Persamaan Diferensial Orde I Univrsitas Indonusa Esa Unggul Fakultas Ilmu Komputr Tknik Informatika Prsamaan Difrnsial Ord I Dfinisi Prsamaan Difrnsial Prsamaan difrnsial adalah suatu prsamaan ang mmuat satu atau lbih turunan fungsi

Lebih terperinci

Ringkasan Materi Kuliah METODE-METODE DASAR PERSAMAAN DIFERENSIAL ORDE SATU

Ringkasan Materi Kuliah METODE-METODE DASAR PERSAMAAN DIFERENSIAL ORDE SATU Ringkasan atri Kuliah ETODE-ETODE DASAR PERSAAAN DIFERENSIAL ORDE SATU Pndahuluan Prsamaan dirnsial adalah prsamaan ang mmuat turunan satu atau bbrapa) ungsi ang takdiktahui skipun prsamaan sprti itu harusna

Lebih terperinci

8. Fungsi Logaritma Natural, Eksponensial, Hiperbolik

8. Fungsi Logaritma Natural, Eksponensial, Hiperbolik 8. Fungsi Logaritma Natural, Eksponnsial, Hiprbolik 8.. Fungsi Logarithma Natural. Sudaratno Sudirham Dfinisi. Logaritma natural adalah logaritma dngan mnggunakan basis bilangan. Bilangan ini, sprti halna

Lebih terperinci

PERTEMUAN-2. Persamaan Diferensial Homogen. Persamaan diferensial yang unsur x dan y tidak dapat dipisah n. Contoh: 1.

PERTEMUAN-2. Persamaan Diferensial Homogen. Persamaan diferensial yang unsur x dan y tidak dapat dipisah n. Contoh: 1. PERTEMUAN- Persamaan Diferensial Homogen Persamaan diferensial ang nsr dan tidak daat diisah n semana. F t, t) t. F, ) Contoh:. F, ) 7 F t, t) t F t, t) t t t 7t 7. F, ) Homogen derajat ). F, ) F t, t)

Lebih terperinci

Bab 6 Sumber dan Perambatan Galat

Bab 6 Sumber dan Perambatan Galat Mtod Pnlitian Suradi Sirgar Bab 6 Sumbr dan Prambatan Galat 6. Sumbr galat. Data masukan, misal hasil pngukuran (galat bawaan). Slama komputasi (galat pross), galat ang timbul akibat komputasi 3. Galat

Lebih terperinci

TINJAUAN ULANG EKSPANSI ASIMTOTIK UNTUK MASALAH BOUNDARY LAYER

TINJAUAN ULANG EKSPANSI ASIMTOTIK UNTUK MASALAH BOUNDARY LAYER TINJAUAN ULANG EKSPANSI ASIMTOTIK UNTUK MASALAH BOUNDARY LAYER HannaA Parhusip Cntr of Applid Mathmatics Program Studi Matmatika Industri dan Statistika Fakultas Sains dan Matmatika Univrsitas Kristn Sata

Lebih terperinci

Oleh : Bustanul Arifin K BAB IV HASIL PENELITIAN. Nama N Mean Std. Deviation Minimum Maximum X ,97 3,

Oleh : Bustanul Arifin K BAB IV HASIL PENELITIAN. Nama N Mean Std. Deviation Minimum Maximum X ,97 3, Kpdulian trhadap sanitasi lingkungan diprdiksi dari tingkat pndidikan ibu dan pndapatan kluarga pada kluarga sjahtra I klurahan Krtn kcamatan Lawyan kota Surakarta Olh : Bustanul Arifin K.39817 BAB IV

Lebih terperinci

BAB III LIMIT DAN FUNGSI KONTINU

BAB III LIMIT DAN FUNGSI KONTINU BAB III LIMIT DAN FUNGSI KONTINU Konsep it mempnyai peranan yang sangat penting di dalam kalkls dan berbagai bidang matematika. Oleh karena it, konsep ini sangat perl ntk dipahami. Meskipn pada awalnya

Lebih terperinci

Aplikasi Integral. Panjang sebuah kurva w(y) sepanjang selang dapat ditemukan menggunakan persamaan

Aplikasi Integral. Panjang sebuah kurva w(y) sepanjang selang dapat ditemukan menggunakan persamaan Aplikasi Intgral Intgral dapat diaplikasikan k dalam banyak hal. Dari yang sdrhana, hingga aplikasi prhitungan yang sangat komplks. Brikut mrupakan aplikasi-aplikasi intgral yang tlah diklompokkan dalam

Lebih terperinci

BAB IV SIMULASI MODEL

BAB IV SIMULASI MODEL BAB IV SIMULASI MODEL Dalam Bab III tlah dilaskan sifat-sifat sistm dinamis dari modl k & t) = yˆ t) k t), =, srta modl k& t) = yˆ k t), k t)) k t) =, khssnya φ η) = 0. Skarang akan dibat simlasi modl

Lebih terperinci

Materike April 2014

Materike April 2014 Matrik-6 Pnggunaan Intgral Tak Tntu 10 April 014 Prsamaan Difrnsial dan Pnggunaanna Prsamaan difrnsial mngaitkan suatu fungsi dngan turunanna ( difrnsial Contoh ' ' '' ' Prsamaan Difrnsial dan Pnggunaanna

Lebih terperinci

Materi ke - 6. Penggunaan Integral Tak Tentu. 30 Maret 2015

Materi ke - 6. Penggunaan Integral Tak Tentu. 30 Maret 2015 Matri k - 6 Pnggunaan Intgral Tak Tntu 30 Mart 015 Industrial Enginring UNS ko@uns.ac.id Prsamaan Difrnsial dan Pnggunaanna Prsamaan difrnsial mngaitkan suatu fungsi dngan turunanna difrnsial Contoh '

Lebih terperinci

PENDEKATAN FUNGSI EI SECARA NUMERIK

PENDEKATAN FUNGSI EI SECARA NUMERIK PENDEKATAN FUNGSI EI SECARA NUMERIK TUGAS AKHIR Olh: SUKANTO NIM 40 Diajkan sbagai salah sat syarat ntk mndapatkan glar SARJANA TEKNIK pada Program Stdi Tknik Prminyakan PROGRAM STUDI TEKNIK PERMINYAKAN

Lebih terperinci

PENELUSURAN LINTASAN DENGAN JARINGAN SARAF TIRUAN

PENELUSURAN LINTASAN DENGAN JARINGAN SARAF TIRUAN Bab 4 PENELUSURAN LINTASAN DENGAN JARINGAN SARAF TIRUAN Tgas mendasar dari robot berjalan ialah dapat bergerak secara akrat pada sat lintasan (trajectory) yang diberikan Ata dengan kata lain galat antara

Lebih terperinci

Transformasi Peubah Acak (Lanjutan)

Transformasi Peubah Acak (Lanjutan) Dpt. Statistika IPB, 0 Transormasi Pubah Acak Lanjutan B. Mtod Pnggantian Pubah Mtod ini mrupakan pngmbangan dari mtod ungsi sbaran. Misalkan diktahui kp bagi p.a. adalah x. Jika didinisikan p.a. lainna

Lebih terperinci

8. FUNGSI TRANSENDEN MA1114 KALKULU I 1

8. FUNGSI TRANSENDEN MA1114 KALKULU I 1 8. FUNGSI TRANSENDEN MA4 KALKULU I 8. Invrs Fungsi Misalkan : D R! y dngan () Dinisi 8. Fungsi y () disbut satu-satu jika (u) (v) maka u v atau jika u v maka ( u) ( v) y y y u v ungsi y satu-satu ungsi

Lebih terperinci

8. FUNGSI TRANSENDEN MA1114 KALKULU I 1

8. FUNGSI TRANSENDEN MA1114 KALKULU I 1 8. FUNGSI TRANSENDEN MA4 KALKULU I 8. Fungsi Invrs Misalkan : D R a y dngan () Dinisi 8. Fungsi y () disbut satu-satu jika (u) (v) maka u v atau jika u v maka ( u) ( v) y y y u v ungsi y satu-satu ungsi

Lebih terperinci

BAB I METODE NUMERIK SECARA UMUM

BAB I METODE NUMERIK SECARA UMUM BAB I METODE NUMERIK SECARA UMUM Aplikasi modl matmatika banyak muncul dalam brbagai disiplin ilmu pngtahuan, sprti isika, kimia, konomi, prsoalan rkayasa (tknik msin, sipil, lktro). Modl matmatika yang

Lebih terperinci

Analisis Rangkaian Listrik

Analisis Rangkaian Listrik Sudaryatno Sudirham Analisis Rangkaian Listrik Mnggunakan Transformasi Fourir - Sudaryatno Sudirham, Analisis Rangkaian Listrik (4) BAB Analisis Rangkaian Mnggunakan Transformasi Fourir Dngan pmbahasan

Lebih terperinci

Bab 1 Ruang Vektor. I. 1 Ruang Vektor R n. 1. Ruang berdimensi satu R 1 = R = kumpulan bilangan real Menyatakan suatu garis bilangan;

Bab 1 Ruang Vektor. I. 1 Ruang Vektor R n. 1. Ruang berdimensi satu R 1 = R = kumpulan bilangan real Menyatakan suatu garis bilangan; Bab Ruang Vktor I. Ruang Vktor R n. Ruang brdimnsi satu R = R = kumpulan bilangan ral Mnyatakan suatu garis bilangan; -3 - - 0. Ruang brdimnsi dua R = bidang datar ; Stiap vktor di R dinyatakan sbagai

Lebih terperinci

URUNAN PARSIAL. Definisi Jika f fungsi dua variable (x dan y) maka: atau f x (x,y), didefinisikan sebagai

URUNAN PARSIAL. Definisi Jika f fungsi dua variable (x dan y) maka: atau f x (x,y), didefinisikan sebagai 6 URUNAN PARSIAL Deinisi Jika ngsi da ariable maka: i Trnan parsial terhadap dinotasikan dengan ata dideinisikan sebagai ii Trnan parsial terhadap dinotasikan dengan ata dideinisikan sebagai Tentkan trnan

Lebih terperinci

Pada gambar 2 merupakan luasan bidang dua dimensi telah mengalami regangan. Salah satu titik yang menjadi titik acuan adalah titik P.

Pada gambar 2 merupakan luasan bidang dua dimensi telah mengalami regangan. Salah satu titik yang menjadi titik acuan adalah titik P. nurunan Kcpatan Glombang dan Glombang S Glombang sismik mrupakan gtaran yang mrambat pada mdium batuan dan mnmbus lapisan bumi. njalaran mnybabkan dformasi batuan.strss atau tkanan didfinisikan gaya prsatuan

Lebih terperinci

Diferensial fungsi sederhana

Diferensial fungsi sederhana Diferensial fngsi sederhana Kaidah-kaidah diferensiasi 1. Diferensiasi konstanta Jika y = k, dimana k adalah konstanta, maka / = 0 contoh : y = 5 / = 0. Diferensiasi fngsi pangkat Jika y = n, dimana n

Lebih terperinci

Pengenalan Pola. Ekstraksi dan Seleksi Fitur

Pengenalan Pola. Ekstraksi dan Seleksi Fitur Pengenalan Pola Ekstraksi dan Seleksi Fitr PTIIK - 4 Corse Contents Collet Data Objet to Dataset 3 Ekstraksi Fitr 4 Seleksi Fitr Design Cyle Collet data Choose featres Choose model Train system Evalate

Lebih terperinci

Pembahasan Soal. Pak Anang SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Disusun Oleh :

Pembahasan Soal. Pak Anang SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Disusun Oleh : Pmbahasan Soal SELEKSI MASUK UNIVERSITAS INDONESIA Disrtai TRIK SUPERKILAT dan LOGIKA PRAKTIS Disusun Olh : Pak Anang Kumpulan SMART SOLUTION dan TRIK SUPERKILAT Pmbahasan Soal SIMAK UI 2011 Matmatika

Lebih terperinci

EKONOMETRIKA PERSAMAAN SIMULTAN

EKONOMETRIKA PERSAMAAN SIMULTAN EKONOMETRIKA PERSAMAAN SIMULTAN OLEH KELOMPOK 5 DEKI D. TAPATAB JUMASNI K. TANEO MERSY C. PELT DELFIANA N. ERO GERARDUS V. META ARMY A. MBATU SILVESTER LANGKAMANG FAKULTAS PERTANIAN UNIVERSITAS NUSA CENDANA

Lebih terperinci

SISTEM PENGOLAHAN ISYARAT. Kuliah 5 Transformasi Fourier

SISTEM PENGOLAHAN ISYARAT. Kuliah 5 Transformasi Fourier TKE 403 SISTEM PENGOLAHAN ISYARAT Kuliah 5 Transformasi Fourir Bagian II Indah Susilawai, S.T., M.Eng. Program Sudi Tknik Elkro Fakulas Tknik dan Ilmu Kompur Univrsias Mrcu Buana Yogyakara 009 KULIAH 5

Lebih terperinci

MODEL MATEMATIKA WAKTU PENGOSONGAN TANGKI AIR

MODEL MATEMATIKA WAKTU PENGOSONGAN TANGKI AIR Prosiding Seinar Nasional Penelitian, Pendidikan dan Penerapan MIPA Fakltas MIPA, Universitas Negeri Yogakarta, 6 Mei 9 MODEL MATEMATIKA WAKTU PENGOSONGAN TANGKI AIR Irawati, Kntjoro Adji Sidarto. Gr SMA

Lebih terperinci

UJI KESELARASAN FUNGSI (GOODNESS-OF-FIT TEST)

UJI KESELARASAN FUNGSI (GOODNESS-OF-FIT TEST) UJI CHI KUADRAT PENDAHULUAN Distribusi chi kuadrat mrupakan mtod pngujian hipotsa trhadap prbdaan lbih dari proporsi. Contoh: manajr pmasaran suatu prusahaan ingin mngtahui apakah prbdaan proporsi pnjualan

Lebih terperinci

Presentasi 2. Isi: Solusi Persamaan Diferensial pada Saluran Transmisi

Presentasi 2. Isi: Solusi Persamaan Diferensial pada Saluran Transmisi Prsntasi Isi: Solusi Prsamaan Difrnsial pada Saluran Transmisi Rprsntasi sinyal dalam bntuk phasor Pmikiran Dasar Sinyal harmonis mudah untuk diturunkan dan diintgralkan Smua sinyal fungsi waktu bisa dirprsntasikan

Lebih terperinci

(x, f(x)) P. x = h. Gambar 4.1. Gradien garis singgung didifinisikan sebagai limit y/ x ketika x mendekati 0, yakni

(x, f(x)) P. x = h. Gambar 4.1. Gradien garis singgung didifinisikan sebagai limit y/ x ketika x mendekati 0, yakni Diktat Klia TK Matematika BAB TURUNAN Graien Garis Singgng Tinja seba krva = f() seperti iperliatkan paa Gambar Garis ang melali titik P(, f( )) an Q( +, f( + )) isebt tali bsr Graien tali bsr tersebt

Lebih terperinci

BUKU AJAR METODE ELEMEN HINGGA

BUKU AJAR METODE ELEMEN HINGGA BUKU AJA ETODE EEEN HINGGA Diringkas oleh : JUUSAN TEKNIK ESIN FAKUTAS TEKNIK STUKTU TUSS.. Deinisi Umm Trss adalah strktr yang terdiri atas batang-batang lrs yang disambng pada titik perpotongan dengan

Lebih terperinci

BAB II PERSAMAAN TINGKAT SATU DERAJAT SATU

BAB II PERSAMAAN TINGKAT SATU DERAJAT SATU BAB II PERSAAA TIGKAT SATU DERAJAT SATU Standar Kompetensi Setelah mempelajari pokok bahasan ini diharapkan mahasiswa dapat memahami ara-ara menentukan selesaian umum persamaan diferensial tingkat satu

Lebih terperinci

lim 0 h Jadi f (x) = k maka f (x)= 0 lim lim lim TURUNAN/DIFERENSIAL Definisi : Laju perubahan nilai f terhadap variabelnya adalah :

lim 0 h Jadi f (x) = k maka f (x)= 0 lim lim lim TURUNAN/DIFERENSIAL Definisi : Laju perubahan nilai f terhadap variabelnya adalah : TURUNAN/DIFERENSIAL Deinisi : Laj perbaan nilai teradap ariabelnya adala : y dy d lim = lim = 0 0 d d merpakan ngsi bar disebt trnan ngsi ata perbandingan dierensial, proses mencarinya disebt menrnkan

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Data penelitian diperoleh dari siswa kelas XII Jurusan Teknik Elektronika

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Data penelitian diperoleh dari siswa kelas XII Jurusan Teknik Elektronika BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. DESKRIPSI DATA Data pnlitian diprolh dari siswa klas XII Jurusan Tknik Elktronika Industri SMK Ma arif 1 kbumn. Data variabl pngalaman praktik industri, kmandirian

Lebih terperinci

Diskritisasi Persamaan Difusi Permanen Satu Dimensi dengan Metode Volume Hingga Istiarto JTSL FT UGM

Diskritisasi Persamaan Difusi Permanen Satu Dimensi dengan Metode Volume Hingga Istiarto JTSL FT UGM Isiaro Jrsan Tknik Sipil dan Lingkngan FT UGM hp://isiaro.saff.gm.ac.id mail: isiaro@gm.ac.id DIFUSI PERMANEN SATU DIMENSI Diskriisasi Prsamaan Difsi Prmann Sa Dimnsi dngan Mod Volm Hingga Isiaro JTSL

Lebih terperinci

Fisika Dasar II Listrik, Magnet, Gelombang dan Fisika Modern

Fisika Dasar II Listrik, Magnet, Gelombang dan Fisika Modern Fisika Dasar II Listrik, Magnt, Glombang dan Fisika Modrn Pokok Bahasan Mdan Listrik dan Dipol Listrik Abdul Waris Rizal Kurniadi Novitrian Sparisoma Viridi Mdan Listrik Artinya daripada ini... Mrka lbih

Lebih terperinci

NAMA : KELAS : theresiaveni.wordpress.com

NAMA : KELAS : theresiaveni.wordpress.com 1 NAMA : KELAS : teresiaeni.wordpress.com TURUNAN/DIFERENSIAL Deinisi : Laj perbaan nilai teradap ariabelnya adala : y dy d ' = = d d merpakan ngsi bar disebt trnan ngsi ata perbandingan dierensial, proses

Lebih terperinci

II. LANDASAN TEORI. digunakan sebagai landasan teori pada penelitian ini. Teori dasar mengenai graf

II. LANDASAN TEORI. digunakan sebagai landasan teori pada penelitian ini. Teori dasar mengenai graf II. LANDASAN TEORI 2.1 Konsp Dasar Graf Pada bagian ini akan dibrikan konsp dasar graf dan dimnsi partisi graf yang digunakan sbagai landasan tori pada pnlitian ini. Tori dasar mngnai graf yang akan digunakan

Lebih terperinci

HASIL DAN PEMBAHASAN. Gambar 3 Proses penentuan perilaku api.

HASIL DAN PEMBAHASAN. Gambar 3 Proses penentuan perilaku api. 6 yang diharapkan. Msin infrnsi disusun brdasarkan stratgi pnalaran yang akan digunakan dalam sistm dan rprsntasi pngtahuan. Msin infrnsi yang digunakan dalam pngmbangan sistm pakar ini adalah FIS. Implmntasi

Lebih terperinci

IV. Konsolidasi. Pertemuan VII

IV. Konsolidasi. Pertemuan VII Prtmuan VII IV. Konsolidasi IV. Pndahuluan. Konsolidasi adalah pross brkurangnya volum atau brkurangnya rongga pori dari tanah jnuh brpmabilitas rndah akibat pmbbanan. Pross ini trjadi jika tanah jnuh

Lebih terperinci

Transformasi Satu Peubah Acak (Lanjutan) Dr. Kusman Sadik, M.Si Departemen Statistika IPB, 2016

Transformasi Satu Peubah Acak (Lanjutan) Dr. Kusman Sadik, M.Si Departemen Statistika IPB, 2016 Transformasi Satu Pubah Acak (Lanjutan) Dr. Kusman Sadik, M.Si Dpartmn Statistika IPB, 06 Transformasi Pubah Acak (Lanjutan) B. Mtod Pnggantian Pubah Mtod ini mrupakan pngmbangan dari mtod fungsi sbaran.

Lebih terperinci

Transformasi Satu Peubah Acak (Bagian II) Dr. Kusman Sadik, M.Si Departemen Statistika IPB, 2017

Transformasi Satu Peubah Acak (Bagian II) Dr. Kusman Sadik, M.Si Departemen Statistika IPB, 2017 Transformasi Satu Pubah Acak Bagian II) Dr. Kusman Sadik, M.Si Dpartmn Statistika IPB, 07 Transformasi Pubah Acak Lanjutan) B. Mtod Pnggantian Pubah Mtod ini mrupakan pngmbangan dari mtod fungsi sbaran.

Lebih terperinci

(a) (b) Gambar 1. garis singgung

(a) (b) Gambar 1. garis singgung BAB. TURUNAN Sebelm membahas trnan, terlebih dahl ditinja tentang garis singgng pada sat krva. A. Garis singgng Garis singgng adalah garis yang menyinggng sat titik tertent pada sat krva. Pengertian garis

Lebih terperinci

Desain Kontrol Vibrasi Semi Aktif Reaksi Fixed Point Menggunakan Pengontrol H

Desain Kontrol Vibrasi Semi Aktif Reaksi Fixed Point Menggunakan Pengontrol H sain Kontrol Vibrasi Smi Aktif Raksi Fixd Point Mnggnakan Pngontrol H Strisno, idowati Jrsan Matmatika FMIPA UNIP ABSTRAK sain kontrol vibrasi strktr tip smi aktif raksi fixd point trdiri dari Massa, Pgas,

Lebih terperinci

Integral Fungsi Eksponen, Fungsi Trigonometri, Fungsi Logaritma

Integral Fungsi Eksponen, Fungsi Trigonometri, Fungsi Logaritma Modul Intgral Fungsi Eksponn, Fungsi Trigonomtri, Fungsi Logaritma Dr. Subanar D PENDAHULUAN alam mata kuliah Kalkulus I Anda tlah mngnal bahwa intgrasi adalah pross balikan dari difrnsiasi. Jadi untuk

Lebih terperinci

BAB RELATIVITAS Semua Gerak adalah Relatif

BAB RELATIVITAS Semua Gerak adalah Relatif BAB RELATIVITAS. Sema Gerak adalah Relatif Sat benda dikatakan bergerak bila keddkan benda it berbah terhadap sat titik aan ata kerangka aan. Seorang penmpang kereta api yang sedang ddk di dalam kereta

Lebih terperinci

Bab 5 RUANG HASIL KALI DALAM

Bab 5 RUANG HASIL KALI DALAM Bab 5 RUANG HASIL KALI DALAM 5 Hasil Kali Dalam Untk memotiasi konsep hasil kali dalam diambil ektor di R dan R sebagai anak panah dengan titik awal di titik asal O = ( ) Panjang sat ektor x di R dan R

Lebih terperinci

MODUL PERKULIAHAN REKAYASA FONDASI 1. Penurunan Tanah pada Fondasi Dangkal. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh

MODUL PERKULIAHAN REKAYASA FONDASI 1. Penurunan Tanah pada Fondasi Dangkal. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh MODUL PERKULIAHAN REKAYASA FONDASI 1 Pnurunan Tanah pada Fondasi Dangkal Fakultas Program Studi Tatap Muka Kod MK Disusun Olh Tknik Prnanaan Tknik A41117AB dan Dsain Sipil 9 Abstrat Modul ini brisi bbrapa

Lebih terperinci

Pengembangan Hasil Kali Titik Pada Vektor

Pengembangan Hasil Kali Titik Pada Vektor Pengembangan Hasil Kali Titik Pada Vektor Swandi *, Sri Gemawati 2, Samsdhha 2 Mahasiswa Program Stdi Magister Matematika, Dosen Pendidikan Matematika Uniersitas Pasir Pengaraian 2 Dosen Jrsan Matematika

Lebih terperinci

Adalah : hubungan antara variabel bebas x, variabel

Adalah : hubungan antara variabel bebas x, variabel Adalah : hubungan antara variabel bebas, variabel Bentuk Umum : bebas dan turunanna. d d F(,,, n d,..., ) n Persamaan differensial (PD) menatakan hubungan dinamik, maksudna hubungan tersebut memuat besaran

Lebih terperinci

DEFERENSIAL Bab 13. u u. u 2

DEFERENSIAL Bab 13. u u. u 2 DEFERENSIAL Bab Laj perbahan nilai f : f() pada = a ata trnan f pada = a adalah Limit ini disebt deriatif ata trnan f pada = a dan dinyatakan dengan f (a) f (a) = f ( a h) f ( a ) lim it h 0 h secara mm

Lebih terperinci

Hendra Gunawan. 29 November 2013

Hendra Gunawan. 29 November 2013 MA1101 MATEMATIKA 1A Hndra Gunawan Smstr I, 013/014 9 Novmbr 013 Latihan (Kuliah yang Lalu) Ssorangygtingginya~1,60 m brdiri ditpiatastbing, mlihat lh k laut yang brada ~18,40 m di bawahnya. Pada saatitu

Lebih terperinci

METODE ITERASI KELUARGA CHEBYSHEV-HALLEY UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Yuli Syafti Purnama 1 ABSTRACT

METODE ITERASI KELUARGA CHEBYSHEV-HALLEY UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Yuli Syafti Purnama 1 ABSTRACT METODE ITERASI KELUARGA CHEBYSHEV-HALLEY UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Yuli Syafti Purnama Mahasiswa Program Studi S Matmatika Fakultas Matmatika dan Ilmu Pngtahuan Alam Univrsitas Riau Kampus

Lebih terperinci

Solusi Sistem Persamaan Linear Fuzzy

Solusi Sistem Persamaan Linear Fuzzy Jrnal Matematika Vol. 16, No. 2, November 2017 ISSN: 1412-5056 / 2598-8980 http://ejornal.nisba.ac.id Diterima: 14/08/2017 Disetji: 20/10/2017 Pblikasi Online: 28/11/2017 Solsi Sistem Persamaan Linear

Lebih terperinci

IDE - IDE DASAR MEKANIKA KUANTUM

IDE - IDE DASAR MEKANIKA KUANTUM IDE - IDE DASAR MEKANIKA KUANTUM A. Radiasi Bnda Hitam 1. Hasil-Hasil Empiris Gambar 1. Grafik fungsi radiasi spktral bnda hitam smpurna a. Hukum Stfan Hukum Stfan dapat dituliskan sbagai total = f df

Lebih terperinci

Pertemuan XIV, XV VII. Garis Pengaruh

Pertemuan XIV, XV VII. Garis Pengaruh ahan jar Statika ulyati, ST., T rtmuan X, X. Garis ngaruh. ndahuluan danya muatan hidup yang brgrak dari satu ujung k ujung lain pada suatu konstruksi disbut bban brgrak. isalkan ada sbuah kndaraan mlalui

Lebih terperinci

Online Jurnal of Natural Science, Vol.3(1): ISSN: March 2014

Online Jurnal of Natural Science, Vol.3(1): ISSN: March 2014 Onlin Jurnal of Natural Scinc, ol.3(1): 65-74 ISSN: 338-0950 March 014 PELABELAN TOTAL SISI AJAIB SUPER (TSAS) PADA GABUNGAN GRAF ULAT BULU DAN BIPARTITE LENGKAP I W. Sudarsana 1, Fitria and S. Musdalifah

Lebih terperinci

II LANDASAN TEORI 2.1 Pengertian Opsi 2.2 Aset yang Mendasari Opsi 2.3 Nilai Opsi

II LANDASAN TEORI 2.1 Pengertian Opsi 2.2 Aset yang Mendasari Opsi 2.3 Nilai Opsi II LANDAAN EORI Pngrtian Opsi alah sat instrn rivatif yang pnyai potnsi ntk ikbangkan aalah opsi Pngrtian ari opsi aalah sat kontrak antara a pihak i ana salah sat pihak (sbagai pbli) pnyai hak ntk bli

Lebih terperinci

Tekanan pra-konsolidasi = 160 kn/m 2

Tekanan pra-konsolidasi = 160 kn/m 2 Soal: Dibrikan suatu lapisan tana sprti trliat pada Gambar 1a. Tbal lapisan pasir 4m dan tbal lapisan lmpung 8m. Muka air tana (MAT) trdapat pada kdalaman 3m dari prmukaan tana. Brat isi pasir di atas

Lebih terperinci

Bab 5 RUANG HASIL KALI DALAM

Bab 5 RUANG HASIL KALI DALAM Bab 5 RUANG HASIL KALI DALAM 5 Hasil Kali Dalam Untk memotiasi konsep hasil kali dalam diambil ektor di R dan R sebagai anak panah dengan titik awal di titik asal O ( ) Panjang sat ektor x di R dan R dinamakan

Lebih terperinci

Session 18 Heat Transfer in Steam Turbine. PT. Dian Swastatika Sentosa

Session 18 Heat Transfer in Steam Turbine. PT. Dian Swastatika Sentosa Session 8 Heat Transfer in Steam Trbine PT. Dian Sastatika Sentosa DSS Head Offie, 3 Oktober 008 Otline. Pendahlan. Skema keepatan, gaya tangensial. 3. Daya yang dihasilkan trbin, panas jath. 4. Trbin

Lebih terperinci

model pengukuran yang menunjukkan ukur Pengukuran dalam B. Model Mode sama indikator dan 1 Pag

model pengukuran yang menunjukkan ukur Pengukuran dalam B. Model Mode sama indikator dan 1 Pag Modl Modl Pngukuran dalam Pmodlan Prsamaan Struktural Wahyu Widhiarso Fakultas Psikologi UGM Tulisan ini akan mmbahas bbrapa modl dalam SEM yang unik. Dikatakan unik karna jarang dipakai. Tulisan hanya

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN. Solusi Numri Modl H-R dngan RKF Modl H-R ang trbntu dari tiga prsamaan diffrnsial ord satu ang saling brhubungan atau tropl. Prsamaan trsbut brsifat autonomous ang brarti brdiri

Lebih terperinci

HUBUNGAN ANTARA KELOMPOK UMUR, JENIS KELAMIN DAN JENIS PEKERJAAN PADA PENDERITA HIV/AIDS DI KABUPATEN BANYUMAS

HUBUNGAN ANTARA KELOMPOK UMUR, JENIS KELAMIN DAN JENIS PEKERJAAN PADA PENDERITA HIV/AIDS DI KABUPATEN BANYUMAS 18Novmbr 17 Tma 7: Ilmu-Ilmu Murni (Matmatika, Fisika, Kimia dan Biologi) HUBUNGAN ANTARA KELOMPOK UMUR, JENIS KELAMIN DAN JENIS PEKERJAAN PADA PENDERITA HIV/AIDS DI KABUPATEN BANYUMAS Olh Agung Prabowo

Lebih terperinci

BAB 4 MODEL MATEMATIKA PENGARUH TERAPI OBAT TERHADAP DINAMIKA VIRUS HIV DALAM TUBUH

BAB 4 MODEL MATEMATIKA PENGARUH TERAPI OBAT TERHADAP DINAMIKA VIRUS HIV DALAM TUBUH BAB 4 MODEL MATEMATIKA PENGARUH TERAPI OBAT TERHADAP DINAMIKA VIRUS HIV DALAM TUBUH Sjak bbrapa ahun yang lalu, ilmuwan asal Amrika Marin Nowak dan Sbasian Bonhoffr mncoba mmplo daa dari pnliian oba ani-hiv.

Lebih terperinci

BAB 1 PERSAMAAN DIFERENSIAL ORDER SATU

BAB 1 PERSAMAAN DIFERENSIAL ORDER SATU BAB PERSAAA DIFERESIAL ORDER SATU PEDAHULUA Persamaan Diferensial adalah salah satu cabang ilmu matematika ang banak digunakan dalam memahami permasalahan-permasalahan di bidang fisika dan teknik Persamaan

Lebih terperinci

Fungsi Peubah Banyak. Modul 1 PENDAHULUAN

Fungsi Peubah Banyak. Modul 1 PENDAHULUAN Modul 1 Fungsi Peubah Banak Prof. Dr. Bambang Soedijono PENDAHULUAN D alam modul ini dibahas masalah Fungsi Peubah Banak. Dengan sendirina para pengguna modul ini dituntut telah menguasai pengertian mengenai

Lebih terperinci

BAB III PENDEKATAN TEORI

BAB III PENDEKATAN TEORI 9 BAB III PENDEKAAN EORI 3.1. eknik Simlasi CFD Comptational Flid Dnamics (CFD) adalah ilm ang mempelajari cara memprediksi aliran flida, perpindahan panas, rekasi kimia, dan fenomena lainna dengan menelesaikan

Lebih terperinci

Pergerakan Tanah Pada Lembah Tertimbun Yang Dipengaruhi Gelombang Permukaan Datar

Pergerakan Tanah Pada Lembah Tertimbun Yang Dipengaruhi Gelombang Permukaan Datar Vol. 3, o., 53-59, Janari 7 Pergerakan Tanah Pada Lebah Tertibn Yang Dipengarhi Gelobang Perkaan Datar Jeffry Ksa Abstrak Tlisan ini ebahas engenai pergerakan tanah pada lebah tertibn yang dipengarhi gelobang

Lebih terperinci

TURUNAN RANGKUMAN MATERI. '( x) lim. '( x) lim lim 0. Turunan fungsi f(x) terhadap x didefinisikan sebagai berikut. f (x+h) f (x) x x + h

TURUNAN RANGKUMAN MATERI. '( x) lim. '( x) lim lim 0. Turunan fungsi f(x) terhadap x didefinisikan sebagai berikut. f (x+h) f (x) x x + h TURUNAN RANGKUMAN MATERI Turunan fungsi f() traap ifinisikan sbagai brikut f f ( ) f ( ) '( ) lim 0 f (+) f () + Scara gomtri turunan fungsi i = mrupakan grain/kmiringan kurva fungsi trsbut i =. Torma:

Lebih terperinci

Skripsi. Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Sains Program Studi Fisika. Oleh: Margareta Inke Mayasari NIM :

Skripsi. Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Sains Program Studi Fisika. Oleh: Margareta Inke Mayasari NIM : PLAGIA MRUPAKAN INAKAN IAK RPUJI PRHIUNGAN BAAS RNAH NILAI PRBANINGAN ANARA SUHU BY AN SUHU KRISAL SCARA NUMRIK UNUK MNNUKAN PNGARUH SUHU RHAAP PANAS JNIS KRISAL Skripsi iajukan untuk Mmnuhi Salah Satu

Lebih terperinci

Analisis Dinamis Portal Bertingkat Banyak Multi Bentang Dengan Variasi Tingkat (Storey) Pada Tiap Bentang

Analisis Dinamis Portal Bertingkat Banyak Multi Bentang Dengan Variasi Tingkat (Storey) Pada Tiap Bentang Analisis Dinamis Portal Brtingkat Banyak Multi Bntang Dngan Variasi Tingkat (Story) Pada Tiap Bntang Hiryco Manalip Rky Stnly Windah Jams Albrt Kaunang Univrsitas Sam Ratulangi Fakultas Tknik Jurusan Sipil

Lebih terperinci

MODUL PERKULIAHAN. Kalkulus. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh

MODUL PERKULIAHAN. Kalkulus. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh MODUL PERKULIAHAN Modl Standar ntk dignakan dalam Perkliahan di Universitas Merc Bana Fakltas Program Stdi Tatap Mka Kode MK Dissn Oleh Ilm Kompter Teknik Informatika 9 Abstract Matakliah Menjadi Dasar

Lebih terperinci

PENYELESAIAN MASALAH KONTROL OPTIMAL KONTINU YANG MEMUAT FAKTOR DISKON

PENYELESAIAN MASALAH KONTROL OPTIMAL KONTINU YANG MEMUAT FAKTOR DISKON Jrnal Matematika UNAND Vol. 2 No. 3 Hal. 157 161 ISSN : 233 291 c Jrsan Matematika FMIPA UNAND PENYELESAIAN MASALAH KONTROL OPTIMAL KONTINU YANG MEMUAT FAKTOR DISKON DALIANI Program Stdi Matematika, Fakltas

Lebih terperinci

BAB NILAI EIGEN DAN VEKTOR EIGEN

BAB NILAI EIGEN DAN VEKTOR EIGEN BAB 8 RUANG EIGEN Masalah nilai dan vkor ign banyak skali dijumpai dalam bidang rkayasa, spri maslah ksabilan sism, opimasi dngan SVD, komprsi pada pngolahan cira, dan lain-lain. Unuk lbih mmahami masalah

Lebih terperinci

Untuk pondasi tiang tipe floating, kekuatan ujung tiang diabaikan. Pp = kekuatan ujung tiang yang bekerja secara bersamaan dengan P

Untuk pondasi tiang tipe floating, kekuatan ujung tiang diabaikan. Pp = kekuatan ujung tiang yang bekerja secara bersamaan dengan P BAB 3 LANDASAN TEORI 3.1 Mekanisme Pondasi Tiang Konvensional Pondasi tiang merpakan strktr yang berfngsi ntk mentransfer beban di atas permkaan tanah ke lapisan bawah di dalam massa tanah. Bentk transfer

Lebih terperinci

KARAKTERISASI ELEMEN IDEMPOTEN CENTRAL

KARAKTERISASI ELEMEN IDEMPOTEN CENTRAL Jurnal Barkng Vol 5 No Hal 33 39 (0) KAAKTEISASI ELEMEN IDEMPOTEN CENTAL HENY W M PATTY, ELVINUS ICHAD PESULESSY, UDI WOLTE MATAKUPAN 3,,3 Staf Jurusan Matmatika FMIPA UNPATTI Jl Ir M Putuhna, Kampus Unpatti,

Lebih terperinci

Muatan Bergerak. Muatan hidup yang bergerak dari satu ujung ke ujung lain pada suatu

Muatan Bergerak. Muatan hidup yang bergerak dari satu ujung ke ujung lain pada suatu Muatan rgrak Muatan hidup yang brgrak dari satu ujung k ujung lain pada suatu konstruksik disbut bb bban brgrak Sbuah kndaraan mlalui suatu jmbatan, maka akan timbul prubahanbh nilai i raksi kimaupun gaya

Lebih terperinci

Seminar Nasional Aplikasi Teknologi Informasi 2004 Yogyakarta, 19 Juni 2004

Seminar Nasional Aplikasi Teknologi Informasi 2004 Yogyakarta, 19 Juni 2004 Seminar asional Aplikasi Teknologi Informasi 004 Yogyakarta 9 Jni 004 Analisis Efisiensi dengan Bantan Sistem Pendkng Keptsan (SPK) Carles Sitompl Jrsan Teknik Indstri Uniersitas Katolik Parahyangan Jl.

Lebih terperinci

MODUL 5 INTEGRAL LIPAT DAN PENGGUNAANNYA

MODUL 5 INTEGRAL LIPAT DAN PENGGUNAANNYA Sei Mol Kliah EL- Matematika Teknik I MOUL 5 INTEGRAL LIPAT AN PENGGUNAANNYA Satan Acaa Pekliahan Mol 5 Integal Lipat an Penggnaanna sebagai beikt Peteman ke- Pokok/Sb Pokok ahasan Tjan Pembelajaan Integal

Lebih terperinci

OLEH: DESTRIYANTI TRI BUDIARTI YULLIA HESTIANA IRWAN SEPTEMBER GUNAWAN

OLEH: DESTRIYANTI TRI BUDIARTI YULLIA HESTIANA IRWAN SEPTEMBER GUNAWAN OLEH: DESTRIYANTI 7 58 TRI BUDIARTI 7 YULLIA HESTIANA 7 5 IRWAN SEPTEBER 7 46 GUNAWAN 7 KELAS : 6. L ATA KULIAH : ATEATIKA LANJUTAN DOSEN PENGASUH : FADLI, S.Si FAKULTAS KEGURUAN DAN ILU PENDIDIKAN UNIVERSITAS

Lebih terperinci

Deret Fourier, Transformasi Fourier dan DFT

Deret Fourier, Transformasi Fourier dan DFT Drt Fourir, Transformasi Fourir dan DFT A. Drt Fourir Drt fourir adalah drt yang digunakan dalam bidang rkayasa. Drt ini prtama kali ditmukan olh sorang ilmuan prancis Jan-Baptist Josph Fourir (1768-18).

Lebih terperinci

1. Proses Normalisasi

1. Proses Normalisasi BAB IV PEMBAHASAN A. Pr-Procssing Pross pngolahan signal PCG sblum dilakukan kstaksi dan klasifikasi adalah pr-procssing. Signal PCG untuk data training dan data tsting trdapat dalam lampiran 5 (halaman

Lebih terperinci

METODE FINITE DIFFERENCE INTERVAL UNTUK MENYELESAIKAN PERSAMAAN PANAS ABSTRACT 1. PENDAHULUAN

METODE FINITE DIFFERENCE INTERVAL UNTUK MENYELESAIKAN PERSAMAAN PANAS ABSTRACT 1. PENDAHULUAN METODE FINITE DIFFERENCE INTERVAL UNTUK MENYELESAIKAN PERSAMAAN PANAS Mardhika WA 1, Syamsdhha 2, Aziskhan 2 mardhikawirahadi@nriacid 1 Mahasiswa Program Stdi S1 Matematika 2 Laboratorim Komptasi Jrsan

Lebih terperinci

MODUL MATEMATIKA II. Oleh: Dr. Eng. LILYA SUSANTI

MODUL MATEMATIKA II. Oleh: Dr. Eng. LILYA SUSANTI MODUL MATEMATIKA II Oleh: Dr. Eng. LILYA SUSANTI DEPARTEMEN RISET TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL KATA PENGANTAR Puji sukur kehadirat Allah SWT

Lebih terperinci

WALIKOTA BANJARMASIN

WALIKOTA BANJARMASIN / WALIKOTA BANJARMASIN PERATURAN WALIKOTA BANJARMASIN NOMOR TAHUN2013 TENTANG PEDOMAN STANDAR KINERJA INDIVIDU PEGAWAI NEGERI SIPIL DILINGKUNGAN PEMERINTAH KOTA BANJARMASIN DENGAN RAHMAT TUHAN YANG MAHA

Lebih terperinci

BAB 2 DISTRIBUSI INDUK DAN DISTRIBUSI SAMPEL

BAB 2 DISTRIBUSI INDUK DAN DISTRIBUSI SAMPEL BAB DISTRIBUSI IDUK DA DISTRIBUSI SAMEL.. EDAHULUA Jika suatu bsaran mmiliki nilai ssungguhnya sdangkan hasil ukurnya adalah maka kita mngharapkan hasil pngamatan mndkati, namun knyataannya tidak slalu

Lebih terperinci

RPKPS (RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER)

RPKPS (RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER) RPKPS (RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER) 1. Nama Matakuliah : FUNGSI VARIABEL KOMPLEKS I 2. Kod/SKS : MMM2112/2 SKS 3. Prasarat : Kalkulus Multivariabl I (prnah mngambil) 4. Status Matakuliah

Lebih terperinci

KOMPUTASI DAN DINAMIKA FLUIDA

KOMPUTASI DAN DINAMIKA FLUIDA KOMPUTASI DAN DINAMIKA FLUIDA TUGAS Olh RIRIN SISPIYATI NIM : 006003 Program Studi Matmatia INSTITUT TEKNOLOGI BANDUNG 009 Ercis 40 Ta as initial spctrum a bloc function nonzro for ½. Animat th initial

Lebih terperinci

Hasil Kali Titik. Dua Operasi Vektor. Sifat-sifat Hasil Kali Titik. oki neswan (fmipa-itb)

Hasil Kali Titik. Dua Operasi Vektor. Sifat-sifat Hasil Kali Titik. oki neswan (fmipa-itb) oki neswan (fmipa-itb) Da Operasi Vektor Hasil Kali Titik Misalkan OAB adalah sebah segitiga, O (0; 0) ; A (a 1 ; a ) ; dan B (b 1 ; b ) : Maka panjang sisi OA; OB; dan AB maing-masing adalah q joaj =

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 7

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 7 Mata Kuliah : Matmatika Diskrit Program Studi : Tknik Informatika Minggu k : 7 MATRIK GRAPH Sbuah graph dapat kita sajikan dalam bntuk matrik, yaitu : a. Matrik titik (Adjacnt Matrix) b. Matrik rusuk (Edg

Lebih terperinci

2.1 Persamaan Gerak Roket dalam Ruang Tiga Dimensi

2.1 Persamaan Gerak Roket dalam Ruang Tiga Dimensi BAB DASAR TEOR. Prsamaan Grak Rok dalam Ruang Tiga Dimnsi Prsamaan grak rok di bidang ruang iga dimnsi pada Taa Acuan Koordina Bnda diurunkan dari Prsamaan Dinamik Rok [Rf. ] sbagai briku: Grak Translasi

Lebih terperinci

DIKTAT. Persamaan Diferensial

DIKTAT. Persamaan Diferensial Diktat Persamaan Diferensial; Dwi Lestari, M.S. 3 DIKTAT Persamaan Diferensial Disusun oleh: Dwi Lestari, M.S email: dwilestari@un.a.id JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

MATEMATIKA TERAPAN I. REVIEW

MATEMATIKA TERAPAN I. REVIEW MATEMATIKA TERAPAN Dafar isi : I. Rviw Dfinisi Dasar Fungsi Variabl Turunan/Drivaif Bbrapa auran pada oprasi urunan Laihan Soal Ingral Bbrapa sifa pada oprasi ingral Bbrapa sifa rigonomri ang prlu diprhaikan

Lebih terperinci

METODE SIMPLEKS PRIMAL-DUAL PADA PROGRAM LINIER FUZZY PENUH DENGAN BILANGAN TRAPEZOIDAL

METODE SIMPLEKS PRIMAL-DUAL PADA PROGRAM LINIER FUZZY PENUH DENGAN BILANGAN TRAPEZOIDAL METODE SIMPLEKS PRIMAL-DUAL PADA PROGRAM LINIER FUZZY PENUH DENGAN BILANGAN TRAPEZOIDAL Bambang Irawanto 1,Djwandi 2, Sryoto 3, Rizky Handayani 41,2,3 Departemen Matematika Faktas Sains dan Matematika

Lebih terperinci