METODE FINITE DIFFERENCE INTERVAL UNTUK MENYELESAIKAN PERSAMAAN PANAS ABSTRACT 1. PENDAHULUAN

Ukuran: px
Mulai penontonan dengan halaman:

Download "METODE FINITE DIFFERENCE INTERVAL UNTUK MENYELESAIKAN PERSAMAAN PANAS ABSTRACT 1. PENDAHULUAN"

Transkripsi

1 METODE FINITE DIFFERENCE INTERVAL UNTUK MENYELESAIKAN PERSAMAAN PANAS Mardhika WA 1, Syamsdhha 2, Aziskhan 2 mardhikawirahadi@nriacid 1 Mahasiswa Program Stdi S1 Matematika 2 Laboratorim Komptasi Jrsan Matematika Fakltas Matematika dan Ilm Pengetahan Alam Universitas Ria Kamps Binawidya Pekanbar (28293), Indonesia ABSTRACT The aim of this paper is to solve a heat eqation by sing Interval Finite Difference method The method is the modified form of Finite Difference Method which incldes the error terms of the corresponding conventional method It gives a soltion in interval form which consists all of the possible nmerical error Keywords: Heat eqation, Finite Difference Method, Finite Difference Interval Method 1 PENDAHULUAN Persamaan panas merpakan persamaan diferensial parsial orde da dengan bentk mm sebagai berikt : dengan syarat awal t (,t) = α2 2 2(,t), a b, t (1) (,) = f(), a b (2) (a,t) = (b,t) =, t > (3) dengan konstanta α merpakan koefisien difsi Penyelesaian dari persamaan (1) merpakan temperatr pada titik disepanjang batang homogen yang panjangnya (b a) pada wakt t Untk memperoleh solsi dari persamaan panas tersebt dapat diselesaikan secara nmerik, salah satnya dengan metode Finite Difference Tetapi pada penggnaannya metode tersebt mengabaikan galat pemotongan(trncation error) Dalam penelitian ini, penlis ingin mengetahi bagaimana jika metode tersebt dikembangkan dengan penerapan analisis interval sehingga tidak mengabaikan galat pemotongan 1

2 Mardhika WA et al Metode Finite Difference Interval 2 2 METODE FINITE DIFFERENCE Untk mendapatkan bentk diskrit persamaan panas pada persamaan (1) dengan syarat awal (2) (3) dengan interval wakt [,T], pilih bilangan blat n dan m sebagai partisi dari dan t Kemdian akan diperolah mesh constant h dan k dengan h = L/n dan k = T/m Maka diperoleh titik grid ( i,t j ), dimana i = ih ntk i =,1,,n dan t j = jk ntk j =,1,,m Dengan menggnakan Teorema Taylor Da Variabel [6], diperoleh formla Backward Difference trnan pertama berorde O(k) pada langkah ke j dalam t sebagai berikt: t ( i,t j ) = ( i,t j ) ( i,t j 1 ) + k k 2 2 t ( i,µ j ), (4) dengan µ i (t j 1,t j ) Karena galat pemotongan diabaikan yait k ( 2 2 t i,µ j ) dan Pendekatan i,t j akan dibentk dalam notasi indeks ganda i,j pendekatan ntk ( i,t j ) dengan i = +ih,t i = t +jk Maka dalam indeks ganda persamaan (4) dapat ditlis sebagai pendekatan diskrit ntk trnan pertama orde O(k) menjadi t i,j i,j 1 (5) i,j k Formla Forward Difference trnan pertama berorde O(k) pada langkah ke j dalam t sebagai berikt: t ( i,t j ) = ( i,t j+1 ) ( i,t j ) k k 2 2 t ( i,µ j ), (6) dengan µ i (t j,t j+1 ) dan karena galat pemotongan diabaikan yait k ( 2 2 t i,µ j ), maka dalam indeks ganda persamaan (6) dapat ditlis sebagai pendekatan diskrit ntk trnan pertama orde O(k) menjadi t i,j+1 i,j (7) i,j k Dan formla Central Difference trnan keda orde O(k 2 ) sebagai berikt : 2( i,t j ) = ( i 1,t j ) 2( i,t j )+( i+1,t j ) h2 4 h (ξ i,t j ) (8) dimana ξ i ( i 1, i+1 ) Karena galat pemotongan yang diabaikan yait h (ξ i,t j ), pendekatan diskrit i,j ntk persamaan (8) yait 2 i 1,j 2 i,j + i+1,j (9) i,j h 2

3 Mardhika WA et al Metode Finite Difference Interval 3 21 Metode Backward Difference ntk Persamaan Panas Dengan mensbtitsi persamaan (5) dan persamaan (9) ke persamaan panas pada persamaan (1), diperoleh i,j i,j 1 k α 2 i 1,j 2 i,j + i+1,j h 2 =, (1) serta Memisalkan λ = α 2 k h2, maka akan diperoleh λ i 1,j +(1+2λ) i,j λ i+1,j = i,j 1, (11) ntk i = 1,2,,n 1, j = 1,2,3,,m dengan syarat awal i, = f( i ), (12),j = n,j =,j = 1,2,,m (13) Persamaan (11) merpakan formla metode Backward Difference yang dignakan ntk menyelesaikan persamaan panas 22 Metode Forward Difference ntk Persamaan Panas Sbtitsi persamaan (7) dan persamaan (9) ke persamaan panas pada persamaan (1), sehingga diperoleh i,j+1 i,j k α 2 i 1,j 2 i,j + i+1,j h 2 =, (14) serta Memisalkan λ = α 2 k h2, maka akan diperoleh i,j+1 = λ i 1,j +(1 2λ) i,j +λ i+1,j, (15) ntk i = 1,2,,n 1, j = 1,2,3,,m dengan syarat awal i, = f( i ), (16),j = n,j = (17) Persamaan (15) merpakan formla metode Forward Difference yang dignakan ntk menyelesaikan persamaan panas

4 Mardhika WA et al Metode Finite Difference Interval 4 3 METODE FINITE DIFFERENCE INTERVAL 31 Metode Backward Difference Interval ntk Persamaan Panas Perhatikan persamaan (4) dan (8), karena galat pemotongan akan dirbah kedalam bentk interval maka perl didapatkan interval yang memat 2 ( 2 t i,µ j ) dan 4 (ξ 4 i,t j ), dengan µ i (t j 1,t j ) dan ξ i ( i 1, i+1 ) Dari persamaan (1) diperolah t 2(,t) = 3 α2 t 2(,t) (18) dan 4 4(,t) = 1 3 α 2 t 2(,t) (19) Dengan mengasmsikan 3 t 2(,t) M, L, t T, (2) maka akan diperoleh t 2( i,µ j ) α 2 [ M,M] (21) dengan µ i (t j 1,t j ) dan 4 4(ξ i,t j ) 1 [ M,M] (22) α2 dengan ξ j ( i 1, i+1 ) Kemdian sbtitsi persamaan (4 dan persamaan (8) ke persamaan (1) serta memisalkan λ = α 2 k akan diperoleh h2 (1+2λ) i,j λ i 1,j λ i+1,j = i,j 1 α 2kh (ξ i,t j ) k2 2 2 t ( i,µ j ) (23) dengan i,j pendekatan ntk ( i,y j ) Kemdian sbtitsi persamaan (21) dan (22) ke persamaan (23) maka diperoleh (1+2λ)U i,j λu i 1,j λu i+1,j = U i,j 1 kh2 12 [ M,M] α2k2 [ M,M] (24) 2 dimana U i,j = [ i,j, i,j ], ntk i = 1,2,,n 1, j = 1,2,3,,m, dengan syarat awal U i, = F([ih,ih]),i =,1,,n, (25) U,j = U n,j = [,],j = 1,2,,m (26) Persamaan(24) merpakan formla metode Backward Difference Interval yang dignakan ntk menyelesaikan persamaan panas Dalam bentk matrik, persamaan (24) dapat ditliskan sebagai berikt AU (j) = U (j 1),j = 1,2,,m, (27)

5 dengan dan Mardhika WA et al Metode Finite Difference Interval 5 1+2λ λ λ 1+2λ λ A =, λ 1+2λ λ λ 1+2λ U 1,j U 1,j 1 +R U 2,j U 2,j 1 +R U 3,j dan U (j 1) = U 3,j 1 +R U (j) = U n 1,j U n 1,j 1 +R R = kh2 12 [ M,M] α2k2 [ M,M] (28) 2 Dengan nilai M adalah sebagai berikt M 15 kh 2maks i=1,,n 1,j=1,,m 1 i 1,j i 1,j 1 2 i,j i,j 1 + i+1,j i+1,j 1 (29) 32 Metode Forward Difference Interval ntk Persamaan Panas Perhatikan persamaan (6) dan (8), karena galat pemotongan akan dirbah kedalam bentk interval maka perl didapatkan interval yang memat 2 ( 2 t i,µ j ) dan 4 (ξ 4 i,t j ), dengan µ i (t j,t j+1 ) dan ξ i ( i 1, i+1 ) Dari persamaan (1) diperoleh t 2(,t) = 3 α2 t 2(,t) (3) dan 4 4(,t) = 1 3 α 2 t 2(,t) (31) Dengan mengasmsikan 3 t 2(,t) M, L, t T (32) sehingga diperoleh dengan µ i (t j,t j+1 ) dan t 2( i,µ j ) α 2 [ M,M] (33) 4 4(ξ i,t j ) 1 [ M,M] (34) α2

6 Mardhika WA et al Metode Finite Difference Interval 6 dengan ξ j ( i 1, i+1 ) Kemdian sbtitsi persamaan (6) dan (8) ke persamaan (1) serta dengan Memisalkan λ = α 2 k akan diperoleh h2 i,j+1 = (1 2λ) i,j +λ i 1,j +λ i+1,j α 2kh (ξ i,t j )+ k2 2 2 t ( i,µ j ) (35) dengan i,j pendekatan ntk ( i,y j ) Kemdian sbtitsi persamaan (33) dan (34) ke persamaan (35)maka diperoleh U i,j+1 = (1 2λ)U i,j +λu i 1,j +λu i+1,j kh2 12 [ M,M]+α2k2 [ M,M] (36) 2 dimana U i,j = [ i,j, i,j ], ntk i = 1,2,,n 1, j = 1,2,3,,m,dengan syarat awal U i, = F([ih,ih]),i =,1,,n, (37) U,j = U n,j = [,],j = 1,2,,m (38) Persamaan (36) merpakan formla metode Forward Difference Interval yang dignakan ntk menyelesaikan persamaan panas Dalam bentk matrik, persamaan (36) dapat ditliskan sebagai berikt dengan dan U (j) = U (j) = AU (j 1) +r,j = 1,2,,m 1, (39) 1 2λ λ λ 1 2λ λ A =, λ 1 2λ λ λ 1 2λ U 1,j U 1,j 1 U 2,j U 2,j 1 U 3,j,U (j 1) = U 3,j 1 dan r = U n 1,j U n 1,j 1 R = α 2k2 kh2 [ M,M] [ M,M] (4) 2 12 Dengan nilai M adalah sebagai berikt M 15 kh 2maks i=1,,n 1,j=,,m 2 i 1,j+1 i 1,j R R Ṛ R 2 i,j+1 i,j + i+1,j+1 i+1,j (41)

7 Mardhika WA et al Metode Finite Difference Interval 7 4 Contoh Nmerik Misalkan sebatang kawat berkran 1 meter yang diberi aliran panas disepanjang smb selama,5 detik Bentk mm persamaan panas, yait dengan syarat awal t (,t) = 2 2(,t), < < 1, t (42) (,) = sin(π), 1 (43) (,t) = (1,t) =, t > (44) Permasalahan diatas akan diselesaikan secara nmerik yait menggnakan metode Finite Difference dan metode Finite Difference Interval Dengan memilih n = 2, m = 8, karena telah didefinisikan h = (b a)/n = (1 )/2 sehingga diperoleh h =,5 dan k = T/m =,5/8 maka diperoleh k =,625 Kemdian nilai M = 145 ntk metode Backward Difference Interval yang diperoleh dari persamaan (29) serta M = 97 ntk metode Forward Difference Interval yang diperoleh dari persamaan (41) Hasil komptasi nmerik dapat dilihat pada tabel berikt : Tabel 1: Solsi nmerik dengan menggnakan metode Backward Difference dan metode Backward Difference Interval dengan nilai M = 145, serta solsi nmerik dengan menggnakan metode Forward Difference dan metode Forward Difference Interval dengan nilai M = 97 i i ( i,t j ) i,j [W i,j,u i,j ] v i,j [Z i,j,v i,j ] [, ] [, ] [949, 966] 9545 [9528, 9562] [1876, 197] [18825, 18887] [2758, 28] 2772 [2766, 27744] [3572, 3623] [35815, 35917] [4299, 4356] [4389, 4325] [4921, 4982] [4933, 49427] [5421, 5486] [5432, 54434] [5787, 5855] 5832 [57964, 581] [11, 8] 268 [198, 338] [86, 155] 119 [949, 189] [11, 8] 268 [198, 338] [5787, 5855] 5832 [57964, 581] [5421, 5486] [5432, 54434] [4921, 4982] [4933, 49427] [4299, 4356] [4389, 4325] [3572, 3623] [35815, 35917] [2758, 28] 2772 [2766, 27744] [1876, 197] [18825, 18887] [949, 966] 9545 [9528, 9562] 2 1 [, ] [, ] Pada Tabel 1, kolom ( i,t j ) menyatakan solsi eksak Kolom i,j merpakan solsi nmerik dengan metode Backward Difference Sedangkan pada kolom [W i,j,u i,j ]

8 Mardhika WA et al Metode Finite Difference Interval 8 merpakan solsi nmerik dengan metode Backward Difference Interval, U i,j merpakan solsi interval atas dan W i,j merpakan interval bawah Kolom v i,j merpakan solsi nmerik yang dengan metode Forward Difference Sedangkan kolom [Z i,j,v i,j ] merpakan solsi nmerik dengan metode Forward Difference Interval, V i,j merpakan interval atas sedangkan Z i,j merpakan interval bawah 7 Solsi Backward Difference Interval Atas Solsi Eksak Solsi Backward Difference Interval Bawah Solsi Backward Difference 4 Solsi Backward Difference Interval Atas Solsi Eksak Solsi Backward Difference Interval Bawah Solsi Backward Difference (a) 7 Solsi Eksak Solsi Atas Forward Difference Interval Solsi Bawah Foerward Interval Solsi Forward Interval 2 Solsi Eksak Solsi Atas Forward Difference Interval Solsi Bawah Foerward Interval Solsi Forward Interval (b) Gambar 1: (a) Grafik Solsi Nmerik Metode Backward Difference Interval dengan M = 145, Solsi Nmerik Metode Backward Difference dan Solsi Eksak dalam i dan t j pada t = 5, (b) Grafik Solsi Nmerik Metode Forward Difference Interval dengan nilai M = 97, Solsi Nmerik Metode Forward Difference dan Solsi Eksak dalam i dan t j pada t = 5 Berdasarkan Gambar 1(a) dapat dilihat bahwa metode Backward Difference dan solsi eksak berada di dalam grafik metode Backward Difference Interval, hal ini mennjkkan bahwa metode Backward Difference Interval memberikan solsi dalam bentk interval yang memat sema kemngkinan galat nmerik Selanjtnya, berdasarkan Gambar 1(b) dapat dilihat bahwa hanya pada titik ( i,t j ) saja solsi eksak berada di dalam

9 Mardhika WA et al Metode Finite Difference Interval 9 grafik metode Forward Difference Interval, hal ini mennjkkan nilai M yang diperoleh dari hasil rmsan persamaan (41) hanya menjamin keberadaan soksi eksak di dalam solsi Forward Difference Interval pada titik ( i,t j ) saja Untk it dilakkan komptasi nmerik metode Forward Difference Interval dengan pengambilan nilai M yang berbeda dari 97, pada komptasi berikt ini diambil nilai M = 6 7 Solsi Eksak Solsi Forward Difference Interval Atas Solsi Forward Difference Interval Bawah Solsi Forward Difference 3 Solsi Eksak Solsi Forward Difference Interval Atas Solsi Forward Difference Interval Bawah Solsi Forward Difference Gambar 2: Grafik Solsi Nmerik Metode Forward Difference dan Metode Forward Difference Interval dengan nilai M = 6 serta Solsi Eksak dalam i dan t j pada t = 5 Dari Grafik 2 terlihat bahwa solsi eksak berada di dalam grafik solsi metode Forward Difference Interval, ini mennjkkan bahwa metode Forward Difference Interval dengan nilai M = 6 memberikan solsi yang memat sema kemngkinan galat nmerik Dari hasil eksperimen tersebt dapat diambil kesimplan bahwa bahwa Metode Finite Difference Interval mempnyai kengglan dari Metode Finite Difference dalam memberikan solsi yang mendekati solsi sebenarnya (solsi eksak) Solsi yang diperoleh dengan Metode Finite Difference Interval yait dalam bentk interval yang berisi sema kemngkinan galat nmerik dengan pemilihan nilai M yang tepat DAFTAR PUSTAKA [1] Atkinson, K E 1993 Elementary Nmerical Analysis John Wiley & Sons, Inc, New York [2] Bartle, R G & D R Shebert 1999 Introdction to Real Analysis, Third Edition John Wiley & Sons, Inc, New York [3] Faires, JD & R Brden 1993 Nmerical Analysis Fifth Edition PWS Pblishing Company, Boston [4] Jankowska, MA 29 An Interval Finite Difference Method for Solving the One-Dimensional Heat Eqation: 4 hal 25 Desember 211 Pk 17, [5] Martono, K 1999 Kalkls Erlangga, Bandng [6] Patel, VA 1994 Nmerical Analysis Sanders College Pblishing, Orlando [7] Saer, T 26 Nmerical Analysis Addison Wesley, Boston

METODE FINITEDIFFERENCE INTERVAL UNTUK MENYELESAIKAN PERSAMAAN PANAS

METODE FINITEDIFFERENCE INTERVAL UNTUK MENYELESAIKAN PERSAMAAN PANAS METODE FINITEDIFFERENCE INTERVAL UNTUK MENYELESAIKAN PERSAMAAN PANAS Aziskhan, Mardhika W.A, Syamsudhuha Jurusan MatematikaFMIPA Universitas Riau Abstract. The aim of this paper is to solve a heat equation

Lebih terperinci

EKSISTENSI BAGIAN IMAJINER PADA INTEGRAL FORMULA INVERSI FUNGSI KARAKTERISTIK

EKSISTENSI BAGIAN IMAJINER PADA INTEGRAL FORMULA INVERSI FUNGSI KARAKTERISTIK Jrnal Matematika UNAND Vol. No. 2 Hal. 39 43 ISSN : 233 29 c Jrsan Matematika FMIPA UNAND EKSISTENSI BAGIAN IMAJINER PADA INTEGRAL FORMULA INVERSI FUNGSI KARAKTERISTIK YULIANA PERMATASARI Program Stdi

Lebih terperinci

BEBERAPA IDENTITAS PADA GENERALISASI BARISAN FIBONACCI ABSTRACT

BEBERAPA IDENTITAS PADA GENERALISASI BARISAN FIBONACCI ABSTRACT BEBERP IDENTITS PD GENERLISSI BRISN FIBONCCI Sri Melati 1, Mashadi, Msraini M 1 Mahasiswa Program Stdi S1 Matematika Dosen Jrsan Matematika Fakltas Matematika dan Ilm Pengetahan lam Universitas Ria Kamps

Lebih terperinci

Solusi Sistem Persamaan Linear Fuzzy

Solusi Sistem Persamaan Linear Fuzzy Jrnal Matematika Vol. 16, No. 2, November 2017 ISSN: 1412-5056 / 2598-8980 http://ejornal.nisba.ac.id Diterima: 14/08/2017 Disetji: 20/10/2017 Pblikasi Online: 28/11/2017 Solsi Sistem Persamaan Linear

Lebih terperinci

PENGENDALIAN OPTIMAL PADA MODEL KEMOPROFILAKSIS DAN PENANGANAN TUBERKULOSIS

PENGENDALIAN OPTIMAL PADA MODEL KEMOPROFILAKSIS DAN PENANGANAN TUBERKULOSIS PENGENDALIAN OPTIMAL PADA MODEL KEMOPROFILAKSIS DAN PENANGANAN TUBERKULOSIS Ole: Citra Dewi Ksma P. 106 100 007 Dosen pembimbing: DR. Sbiono, MSc. Latar Belakang PENDAHULUAN Penyakit Tberklosis TB adala

Lebih terperinci

PENYELESAIAN MASALAH KONTROL OPTIMAL KONTINU YANG MEMUAT FAKTOR DISKON

PENYELESAIAN MASALAH KONTROL OPTIMAL KONTINU YANG MEMUAT FAKTOR DISKON Jrnal Matematika UNAND Vol. 2 No. 3 Hal. 157 161 ISSN : 233 291 c Jrsan Matematika FMIPA UNAND PENYELESAIAN MASALAH KONTROL OPTIMAL KONTINU YANG MEMUAT FAKTOR DISKON DALIANI Program Stdi Matematika, Fakltas

Lebih terperinci

BAB III LIMIT DAN FUNGSI KONTINU

BAB III LIMIT DAN FUNGSI KONTINU BAB III LIMIT DAN FUNGSI KONTINU Konsep it mempnyai peranan yang sangat penting di dalam kalkls dan berbagai bidang matematika. Oleh karena it, konsep ini sangat perl ntk dipahami. Meskipn pada awalnya

Lebih terperinci

HASIL KALI TITIK DAN PROYEKSI ORTOGONAL SUATU VEKTOR (Aljabar Linear) Oleh: H. Karso FPMIPA UPI

HASIL KALI TITIK DAN PROYEKSI ORTOGONAL SUATU VEKTOR (Aljabar Linear) Oleh: H. Karso FPMIPA UPI HASIL KALI TITIK DAN PROYEKSI ORTOGONAL SUATU VEKTOR (Aljabar Linear) Oleh: H. Karso FPMIPA UPI A. Hasil Kali Titik (Hasil Kali Skalar) Da Vektor. Hasil Kali Skalar Da Vektor di R Perkalian diantara da

Lebih terperinci

Model Hidrodinamika Pasang Surut Di Perairan Pulau Baai Bengkulu

Model Hidrodinamika Pasang Surut Di Perairan Pulau Baai Bengkulu Jrnal Gradien Vol. No.2 Jli 2005 : 5-55 Model Hidrodinamika Pasang Srt Di Perairan Pla Baai Bengkl Spiyati Jrsan Fisika, Fakltas Matematika dan Ilm Pengetahan Alam, Universitas Bengkl, Indonesia Diterima

Lebih terperinci

PANJANG DAN JARAK VEKTOR PADA RUANG HASIL KALI DALAM. V, yang selanjutnya dinotasikan dengan v, didefinisikan:

PANJANG DAN JARAK VEKTOR PADA RUANG HASIL KALI DALAM. V, yang selanjutnya dinotasikan dengan v, didefinisikan: PANJANG DAN JARAK VEKTOR PADA RUANG HASIL KALI DALAM Perl diingat kembali definisi panjang dan jarak sat ektor pada rang hasil kali dalam Eclid, yait rnag ektor yang hasil kali dlamnya didefinisikan sebagai

Lebih terperinci

PENYELESAIAN LUAS BANGUN DATAR DAN VOLUME BANGUN RUANG DENGAN KONSEP DETERMINAN

PENYELESAIAN LUAS BANGUN DATAR DAN VOLUME BANGUN RUANG DENGAN KONSEP DETERMINAN Bletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volme xx, No. x (tahn), hal xx xx. PENYELESAIAN LUAS BANGUN DATAR DAN VOLUME BANGUN RUANG DENGAN KONSEP DETERMINAN Doni Saptra, Helmi, Shantika Martha

Lebih terperinci

III PEMODELAN SISTEM PENDULUM

III PEMODELAN SISTEM PENDULUM 14 III PEMODELAN SISTEM PENDULUM Penelitian ini membahas keterkontrolan sistem pendlm, dengan menentkan model matematika dari beberapa sistem pendlm, dan dilakkan analisis dan menyederhanakan permasalahan

Lebih terperinci

Seminar Nasional Aplikasi Teknologi Informasi 2004 Yogyakarta, 19 Juni 2004

Seminar Nasional Aplikasi Teknologi Informasi 2004 Yogyakarta, 19 Juni 2004 Seminar asional Aplikasi Teknologi Informasi 004 Yogyakarta 9 Jni 004 Analisis Efisiensi dengan Bantan Sistem Pendkng Keptsan (SPK) Carles Sitompl Jrsan Teknik Indstri Uniersitas Katolik Parahyangan Jl.

Lebih terperinci

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia. METODE SIMPSON-LIKE TERKOREKSI Ilis Suryani, M. Imran, Asmara Karma Mahasiswa Program Studi S Matematika Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

Pengembangan Hasil Kali Titik Pada Vektor

Pengembangan Hasil Kali Titik Pada Vektor Pengembangan Hasil Kali Titik Pada Vektor Swandi *, Sri Gemawati 2, Samsdhha 2 Mahasiswa Program Stdi Magister Matematika, Dosen Pendidikan Matematika Uniersitas Pasir Pengaraian 2 Dosen Jrsan Matematika

Lebih terperinci

Trihastuti Agustinah

Trihastuti Agustinah TE 9467 Teknik Nmerik Sistem Linear Trihastti Agstinah Bidang Stdi Teknik Sistem Pengatran Jrsan Teknik Elektro - FTI Institt Teknologi Seplh Nopember O U T L I N E. Objektif. Teori. Contoh 4. Simplan

Lebih terperinci

Trihastuti Agustinah

Trihastuti Agustinah TE 9467 Teknik Nmerik Sistem Linear Trihastti Agstinah Bidang Stdi Teknik Sistem Pengatran Jrsan Teknik Elektro - FTI Institt Teknologi Seplh Nopember O U T L I N E OBJEKTIF TEORI CONTOH 4 SIMPULAN 5 LATIHAN

Lebih terperinci

(a) (b) Gambar 1. garis singgung

(a) (b) Gambar 1. garis singgung BAB. TURUNAN Sebelm membahas trnan, terlebih dahl ditinja tentang garis singgng pada sat krva. A. Garis singgng Garis singgng adalah garis yang menyinggng sat titik tertent pada sat krva. Pengertian garis

Lebih terperinci

KAJIAN PEMODELAN MATEMATIKA TERHADAP PENYEBARAN VIRUS AVIAN INFLUENZA TIPE-H5N1 PADA POPULASI UNGGAS

KAJIAN PEMODELAN MATEMATIKA TERHADAP PENYEBARAN VIRUS AVIAN INFLUENZA TIPE-H5N1 PADA POPULASI UNGGAS KAJIAN PEMODELAN MATEMATIKA TERHADAP PENYEBARAN VIRUS AVIAN INFLUENZA TIPE-H5N1 PADA POPULASI UNGGAS Dian Permana Ptri 1, Herri Slaiman FKIP, Pendidikan Matematika, Universitas Swadaya Gnng Jati Cirebon

Lebih terperinci

PENELUSURAN LINTASAN DENGAN JARINGAN SARAF TIRUAN

PENELUSURAN LINTASAN DENGAN JARINGAN SARAF TIRUAN Bab 4 PENELUSURAN LINTASAN DENGAN JARINGAN SARAF TIRUAN Tgas mendasar dari robot berjalan ialah dapat bergerak secara akrat pada sat lintasan (trajectory) yang diberikan Ata dengan kata lain galat antara

Lebih terperinci

Hasil Kali Titik. Dua Operasi Vektor. Sifat-sifat Hasil Kali Titik. oki neswan (fmipa-itb)

Hasil Kali Titik. Dua Operasi Vektor. Sifat-sifat Hasil Kali Titik. oki neswan (fmipa-itb) oki neswan (fmipa-itb) Da Operasi Vektor Hasil Kali Titik Misalkan OAB adalah sebah segitiga, O (0; 0) ; A (a 1 ; a ) ; dan B (b 1 ; b ) : Maka panjang sisi OA; OB; dan AB maing-masing adalah q joaj =

Lebih terperinci

Korelasi Pasar Modal dalam Ekonofisika

Korelasi Pasar Modal dalam Ekonofisika Korelasi Pasar Modal dalam Ekonofisika Yn Hariadi Dept. Dynamical System Bandng Fe Institte yh@dynsys.bandngfe.net Pendahlan Fenomena ekonomi sebagai kondisi makro yang merpakan hasil interaksi pada level

Lebih terperinci

3. RUANG VEKTOR. dan jika k adalah sembarang skalar, maka perkalian skalar ku didefinisikan oleh

3. RUANG VEKTOR. dan jika k adalah sembarang skalar, maka perkalian skalar ku didefinisikan oleh . RUANG VEKTOR. VEKTOR (GEOMETRIK) PENGANTAR Jika n adalah sebah bilangan blat positif maka tpel-terorde (ordered-n-tple) adalah sebah rtan n bilangan riil (a a... a n ). Himpnan sema tpel-terorde dinamakan

Lebih terperinci

BAB III 3. METODOLOGI PENELITIAN

BAB III 3. METODOLOGI PENELITIAN BAB III 3. METODOLOGI PENELITIAN 3.1. PROSEDUR ANALISA Penelitian ini merpakan sebah penelitian simlasi yang menggnakan bantan program MATLAB. Adapn tahapan yang hars dilakkan pada saat menjalankan penlisan

Lebih terperinci

Penerapan Masalah Transportasi

Penerapan Masalah Transportasi KA4 RESEARCH OPERATIONAL Penerapan Masalah Transportasi DISUSUN OLEH : HERAWATI 008959 JAKA HUSEN 08055 HAPPY GEMELI QUANUARI 00890 INDRA MOCHAMMAD YUSUF 0800 BAB I PENDAHULUAN.. Pengertian Riset Operasi

Lebih terperinci

URUNAN PARSIAL. Definisi Jika f fungsi dua variable (x dan y) maka: atau f x (x,y), didefinisikan sebagai

URUNAN PARSIAL. Definisi Jika f fungsi dua variable (x dan y) maka: atau f x (x,y), didefinisikan sebagai 6 URUNAN PARSIAL Deinisi Jika ngsi da ariable maka: i Trnan parsial terhadap dinotasikan dengan ata dideinisikan sebagai ii Trnan parsial terhadap dinotasikan dengan ata dideinisikan sebagai Tentkan trnan

Lebih terperinci

METODE ITERASI BEBAS TURUNAN BERDASARKAN KOMBINASI KOEFISIEN TAK TENTU DAN FORWARD DIFFERENCE UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

METODE ITERASI BEBAS TURUNAN BERDASARKAN KOMBINASI KOEFISIEN TAK TENTU DAN FORWARD DIFFERENCE UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT METODE ITERASI BEBAS TURUNAN BERDASARKAN KOMBINASI KOEFISIEN TAK TENTU DAN FORWARD DIFFERENCE UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Mahrani 1, M. Imran, Agusni 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

METODE GENERALISASI SIMPSON-NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR DENGAN KONVERGENSI KUBIK. Resdianti Marny 1 ABSTRACT

METODE GENERALISASI SIMPSON-NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR DENGAN KONVERGENSI KUBIK. Resdianti Marny 1 ABSTRACT METODE GENERALISASI SIMPSON-NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR DENGAN KONVERGENSI KUBIK Resdianti Marny 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

Untuk pondasi tiang tipe floating, kekuatan ujung tiang diabaikan. Pp = kekuatan ujung tiang yang bekerja secara bersamaan dengan P

Untuk pondasi tiang tipe floating, kekuatan ujung tiang diabaikan. Pp = kekuatan ujung tiang yang bekerja secara bersamaan dengan P BAB 3 LANDASAN TEORI 3.1 Mekanisme Pondasi Tiang Konvensional Pondasi tiang merpakan strktr yang berfngsi ntk mentransfer beban di atas permkaan tanah ke lapisan bawah di dalam massa tanah. Bentk transfer

Lebih terperinci

PENDUGAAN JUMLAH PENDUDUK MISKIN DI KOTA SEMARANG DENGAN METODE SAE

PENDUGAAN JUMLAH PENDUDUK MISKIN DI KOTA SEMARANG DENGAN METODE SAE Vale Added, Vol. 11, No. 1, 015 PENDUGAAN JUMLAH PENDUDUK MISKIN DI KOTA SEMARANG DENGAN METODE SAE 1 Moh Yamin Darsyah, Ujang Malana 1, Program Stdi Statistika FMIPA Universitas Mhammadiyah Semarang Email:

Lebih terperinci

SOLUSI NUMERIK MODEL REAKSI-DIFUSI (TURING) DENGAN METODE BEDA HINGGA IMPLISIT SKRIPSI. Oleh: JUNIK RAHAYU NIM

SOLUSI NUMERIK MODEL REAKSI-DIFUSI (TURING) DENGAN METODE BEDA HINGGA IMPLISIT SKRIPSI. Oleh: JUNIK RAHAYU NIM SOLUSI NUMERIK MODEL REAKSI-DIFUSI (TURING) DENGAN METODE BEDA HINGGA IMPLISIT SKRIPSI Oleh: JUNIK RAHAYU NIM. 9695 JURUSAN MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI MAULANA MALIK

Lebih terperinci

EKONOMETRIKA PERSAMAAN SIMULTAN

EKONOMETRIKA PERSAMAAN SIMULTAN EKONOMETRIKA PERSAMAAN SIMULTAN OLEH KELOMPOK 5 DEKI D. TAPATAB JUMASNI K. TANEO MERSY C. PELT DELFIANA N. ERO GERARDUS V. META ARMY A. MBATU SILVESTER LANGKAMANG FAKULTAS PERTANIAN UNIVERSITAS NUSA CENDANA

Lebih terperinci

Bab 5 RUANG HASIL KALI DALAM

Bab 5 RUANG HASIL KALI DALAM Bab 5 RUANG HASIL KALI DALAM 5 Hasil Kali Dalam Untk memotiasi konsep hasil kali dalam diambil ektor di R dan R sebagai anak panah dengan titik awal di titik asal O = ( ) Panjang sat ektor x di R dan R

Lebih terperinci

MODIFIKASI METODE HOMOTOPY PERTURBASI UNTUK PERSAMAAN NONLINEAR DAN MEMBANDINGKAN DENGAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN ABSTRACT

MODIFIKASI METODE HOMOTOPY PERTURBASI UNTUK PERSAMAAN NONLINEAR DAN MEMBANDINGKAN DENGAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN ABSTRACT MODIFIKASI METODE HOMOTOPY PERTURBASI UNTUK PERSAMAAN NONLINEAR DAN MEMBANDINGKAN DENGAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN Handico Z Desri 1, Syamsudhuha 2, Zulkarnain 2 1 Mahasiswa Program Studi S1

Lebih terperinci

FOURIER Oktober 2013, Vol. 2, No. 2, APLIKASI PERSAMAAN BESSEL ORDE NOL PADA PERSAMAAN PANAS DUA DIMENSI. Annisa Eki Mulyati 1 & Sugiyanto 2

FOURIER Oktober 2013, Vol. 2, No. 2, APLIKASI PERSAMAAN BESSEL ORDE NOL PADA PERSAMAAN PANAS DUA DIMENSI. Annisa Eki Mulyati 1 & Sugiyanto 2 FOURIER Otober 03, Vol., No., 38 50 APLIKASI PERSAMAAN BESSEL ORDE NOL PADA PERSAMAAN PANAS DUA DIMENSI Annisa Ei Mlyati & Sgiyanto, Program Stdi Matematia Faltas Sains dan Tenologi UIN Snan Kalijaga Yogyaarta

Lebih terperinci

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR Rino Martino 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

FAMILI METODE ITERASI BEBAS TURUNAN DENGAN ORDE KONVERGENSI ENAM. Oktario Anjar Pratama ABSTRACT

FAMILI METODE ITERASI BEBAS TURUNAN DENGAN ORDE KONVERGENSI ENAM. Oktario Anjar Pratama ABSTRACT FAMILI METODE ITERASI BEBAS TURUNAN DENGAN ORDE KONVERGENSI ENAM Oktario Anjar Pratama Mahasiswa Program Studi S Matematika Dosen Jurusan Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

MODIFIKASI METODE NEWTON DENGAN KEKONVERGENAN ORDE EMPAT. Yenni May Sovia 1, Agusni 2 ABSTRACT

MODIFIKASI METODE NEWTON DENGAN KEKONVERGENAN ORDE EMPAT. Yenni May Sovia 1, Agusni 2 ABSTRACT MODIFIKASI METODE NEWTON DENGAN KEKONVERGENAN ORDE EMPAT Yenni May Sovia, Agusni 2 Mahasiswa Program Studi S Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau

Lebih terperinci

(x, f(x)) P. x = h. Gambar 4.1. Gradien garis singgung didifinisikan sebagai limit y/ x ketika x mendekati 0, yakni

(x, f(x)) P. x = h. Gambar 4.1. Gradien garis singgung didifinisikan sebagai limit y/ x ketika x mendekati 0, yakni Diktat Klia TK Matematika BAB TURUNAN Graien Garis Singgng Tinja seba krva = f() seperti iperliatkan paa Gambar Garis ang melali titik P(, f( )) an Q( +, f( + )) isebt tali bsr Graien tali bsr tersebt

Lebih terperinci

Kontrol Optimum pada Model Epidemik SIR dengan Pengaruh Vaksinasi dan Faktor Imigrasi

Kontrol Optimum pada Model Epidemik SIR dengan Pengaruh Vaksinasi dan Faktor Imigrasi Jrnal Matematika Integratif ISSN 4-684 Volme No, Oktober 05, pp - 8 Kontrol Optimm pada Model Epidemik SIR dengan Pengarh Vaksinasi dan Faktor Imigrasi N. Anggriani, A. Spriatna, B. Sbartini, R. Wlantini

Lebih terperinci

Integrasi 2. Metode Integral Kuadratur Gauss 2 Titik Metode Integral Kuadratur Gauss 3 Titik Contoh Kasus Permasalahan Integrasi.

Integrasi 2. Metode Integral Kuadratur Gauss 2 Titik Metode Integral Kuadratur Gauss 3 Titik Contoh Kasus Permasalahan Integrasi. Interasi Metode Interal Kadratr Gass Titik Metode Interal Kadratr Gass Titik Contoh Kass Permasalahan Interasi Interasi Metode Interasi Gass Metode interasi Gass merpakan metode yan tidak mennakan pembaian

Lebih terperinci

TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Koko Saputra 1, Supriadi Putra 2, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika

Lebih terperinci

METODE MODIFIKASI NEWTON DENGAN ORDE KONVERGENSI Lely Jusnita 1

METODE MODIFIKASI NEWTON DENGAN ORDE KONVERGENSI Lely Jusnita 1 METODE MODIFIKASI NEWTON DENGAN ORDE KONVERGENSI 1 + Lely Jusnita 1 1 Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

Pemodelan Dinamika Gelombang dengan Mengerjakan Persamaan Kekekalan Energi. Syawaluddin H 1)

Pemodelan Dinamika Gelombang dengan Mengerjakan Persamaan Kekekalan Energi. Syawaluddin H 1) tahaean Vol. 4 No. Janari 007 rnal TKNIK SIPIL Pemodelan Dinamika Gelombang dengan Mengerjakan Persamaan Kekekalan nergi Syaalddin ) Abstrak Paper ini menyajikan pengerjaan hkm kekekalan energi pada pemodelan

Lebih terperinci

lim 0 h Jadi f (x) = k maka f (x)= 0 lim lim lim TURUNAN/DIFERENSIAL Definisi : Laju perubahan nilai f terhadap variabelnya adalah :

lim 0 h Jadi f (x) = k maka f (x)= 0 lim lim lim TURUNAN/DIFERENSIAL Definisi : Laju perubahan nilai f terhadap variabelnya adalah : TURUNAN/DIFERENSIAL Deinisi : Laj perbaan nilai teradap ariabelnya adala : y dy d lim = lim = 0 0 d d merpakan ngsi bar disebt trnan ngsi ata perbandingan dierensial, proses mencarinya disebt menrnkan

Lebih terperinci

CHAPTER 6. INNER PRODUCT SPACE

CHAPTER 6. INNER PRODUCT SPACE CHAPTER 6. INNER PRODUCT SPACE Inner Prodcts Angle and Orthogonality in Inner Prodct Spaces Orthonormal Bases; Gram-Schmidt Process; QR-Decomposition Best Approximation; Least Sqares Orthogonal Matrices;

Lebih terperinci

BEBERAPA SIFAT JARAK ROTASI PADA POHON BINER TERURUT DAN TERORIENTASI

BEBERAPA SIFAT JARAK ROTASI PADA POHON BINER TERURUT DAN TERORIENTASI JRISE, Vol.1, No.1, Febrari 2014, pp. 28~40 ISSN: 2355-3677 BEBERAPA SIFA JARAK ROASI PADA POHON BINER ERURU DAN ERORIENASI Oleh: Hasniati SMIK KHARISMA Makassar hasniati@kharisma.ac.id Abstrak Andaikan

Lebih terperinci

NAMA : KELAS : theresiaveni.wordpress.com

NAMA : KELAS : theresiaveni.wordpress.com 1 NAMA : KELAS : teresiaeni.wordpress.com TURUNAN/DIFERENSIAL Deinisi : Laj perbaan nilai teradap ariabelnya adala : y dy d ' = = d d merpakan ngsi bar disebt trnan ngsi ata perbandingan dierensial, proses

Lebih terperinci

BUKU AJAR METODE ELEMEN HINGGA

BUKU AJAR METODE ELEMEN HINGGA BUKU AJA ETODE EEEN HINGGA Diringkas oleh : JUUSAN TEKNIK ESIN FAKUTAS TEKNIK STUKTU TUSS.. Deinisi Umm Trss adalah strktr yang terdiri atas batang-batang lrs yang disambng pada titik perpotongan dengan

Lebih terperinci

PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV

PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 415-422 PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV Iyut Riani, Nilamsari

Lebih terperinci

FAMILI METODE ITERASI DENGAN KEKONVERGENAN ORDE TIGA. Rahmawati ABSTRACT

FAMILI METODE ITERASI DENGAN KEKONVERGENAN ORDE TIGA. Rahmawati ABSTRACT FAMILI METODE ITERASI DENGAN KEKONVERGENAN ORDE TIGA Rahmawati Mahasiswa Program Studi S Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Bina Widya,

Lebih terperinci

Pemodelan Matematika Rentang Waktu yang Dibutuhkan dalam Menghafal Al-Qur an

Pemodelan Matematika Rentang Waktu yang Dibutuhkan dalam Menghafal Al-Qur an Pemodelan Matematika Rentang Wakt yang Dibthkan dalam Menghafal Al-Qr an Indah Nrsprianah Tadris Matematika, IAIN Syekh Nrjati Cirebon Email: rizqi.syadida@yahoo.com Abstrak Kegiatan menghafal Al-Qr an

Lebih terperinci

METODE CHEBYSHEV-HALLEY BEBAS TURUNAN KEDUA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Ridho Alfarisy 1 ABSTRACT

METODE CHEBYSHEV-HALLEY BEBAS TURUNAN KEDUA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Ridho Alfarisy 1 ABSTRACT METODE CHEBYSHEV-HALLEY BEBAS TURUNAN KEDUA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Ridho Alfarisy 1 1 Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 8 BAB LANDASAN TEORI. Pasar.. Pengertian Pasar Pasar adalah sebah tempat mm yang melayani transaksi jal - beli. Di dalam Peratran Daerah Khss Ibkota Jakarta Nomor 6 Tahn 99 tentang pengrsan pasar di Daerah

Lebih terperinci

FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU ABSTRACT

FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU ABSTRACT FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU Syofia Deswita 1, Syamsudhuha 2, Agusni 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Small Area Estimation Small Area Estimation (SAE) adalah sat teknik statistika ntk mendga parameter-parameter sb poplasi yang kran sampelnya kecil. Sedangkan, area kecil didefinisikan

Lebih terperinci

METODE ORDE-TINGGI UNTUK MENENTUKAN AKAR DARI PERSAMAAN NONLINEAR ABSTRACT

METODE ORDE-TINGGI UNTUK MENENTUKAN AKAR DARI PERSAMAAN NONLINEAR ABSTRACT METODE ORDE-TINGGI UNTUK MENENTUKAN AKAR DARI PERSAMAAN NONLINEAR I. P. Edwar, M. Imran, L. Deswita Mahasiswa Program Studi S Matematika Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika

Lebih terperinci

Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial

Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial Ikhsan Maulidi Jurusan Matematika,Universitas Syiah Kuala, ikhsanmaulidi@rocketmail.com Abstract Artikel ini membahas tentang salah satu

Lebih terperinci

MODIFIKASI FAMILI METODE ITERASI MULTI-POINT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Yolla Sarwenda 1, Zulkarnain 2 ABSTRACT

MODIFIKASI FAMILI METODE ITERASI MULTI-POINT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Yolla Sarwenda 1, Zulkarnain 2 ABSTRACT MODIFIKASI FAMILI METODE ITERASI MULTI-POINT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Yolla Sarwenda 1, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

Integra. asi 2. Metode Integral Kuadr. ratur Gauss 2 Titik

Integra. asi 2. Metode Integral Kuadr. ratur Gauss 2 Titik Intera asi Metode Interal Kadr ratr Gass Titik Metode Interal Kadratr Gass Titik Contoh Kass Permasalahan Interasi Metode Interasi Gass Metode interasi i Gass merpaka an metode yan tidak mennakan pembaian

Lebih terperinci

APROKSIMASI DISTRIBUSI PANAS DENGAN MENGGUNAKAN METODE FORWARD-BACKWARD DIFFERENCE

APROKSIMASI DISTRIBUSI PANAS DENGAN MENGGUNAKAN METODE FORWARD-BACKWARD DIFFERENCE POLITEKNOLOGI VOL. 11 NO. 3, SEPTEMBER 01 APROKSIMASI DISTRIBUSI PANAS DENGAN MENGGUNAKAN METODE FORWARD-BACKWARD DIFFERENCE Indriyani Rebet, Noorbaity JurusanTeknikMesinPoliteknikNegeri Jakarta KampusBaru

Lebih terperinci

PEMBUKTIAN RUMUS BENTUK TUTUP BEDA MUNDUR BERDASARKAN DERET TAYLOR

PEMBUKTIAN RUMUS BENTUK TUTUP BEDA MUNDUR BERDASARKAN DERET TAYLOR Jurnal Matematika UNAND Vol. VI No. Hal. 68 76 ISSN : 233 29 c Jurusan Matematika FMIPA UNAND PEMBUKTIAN RUMUS BENTUK TUTUP BEDA MUNDUR BERDASARKAN DERET TAYLOR WIDIA ASTUTI Program Studi Matematika, Fakultas

Lebih terperinci

BAB III PENDEKATAN TEORI

BAB III PENDEKATAN TEORI 9 BAB III PENDEKAAN EORI 3.1. eknik Simlasi CFD Comptational Flid Dnamics (CFD) adalah ilm ang mempelajari cara memprediksi aliran flida, perpindahan panas, rekasi kimia, dan fenomena lainna dengan menelesaikan

Lebih terperinci

Trihastuti Agustinah. TE Teknik Numerik Sistem Linear

Trihastuti Agustinah. TE Teknik Numerik Sistem Linear E 09467 eknik Nmerik Sistem Linear rihastti Agstinah Bidang Stdi eknik Sistem Pengatran Jrsan eknik Elektro - FI Institt eknologi Seplh Nopember O U L I N E OBJEKIF EORI 3 CONOH 4 SIMPULAN 5 LAIHAN OBJEKIF

Lebih terperinci

Bab 5 RUANG HASIL KALI DALAM

Bab 5 RUANG HASIL KALI DALAM Bab 5 RUANG HASIL KALI DALAM 5 Hasil Kali Dalam Untk memotiasi konsep hasil kali dalam diambil ektor di R dan R sebagai anak panah dengan titik awal di titik asal O ( ) Panjang sat ektor x di R dan R dinamakan

Lebih terperinci

KELUARGA METODE LAGUERRE DAN KELAKUAN DINAMIKNYA DALAM MENENTUKAN AKAR GANDA PERSAMAAN NONLINEAR. Een Susilawati 1 ABSTRACT

KELUARGA METODE LAGUERRE DAN KELAKUAN DINAMIKNYA DALAM MENENTUKAN AKAR GANDA PERSAMAAN NONLINEAR. Een Susilawati 1 ABSTRACT KELUARGA METODE LAGUERRE DAN KELAKUAN DINAMIKNYA DALAM MENENTUKAN AKAR GANDA PERSAMAAN NONLINEAR Een Susilawati 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

Solusi Persamaan Laplace Menggunakan Metode Crank-Nicholson. (The Solution of Laplace Equation Using Crank-Nicholson Method)

Solusi Persamaan Laplace Menggunakan Metode Crank-Nicholson. (The Solution of Laplace Equation Using Crank-Nicholson Method) Prosiding Seminar Nasional Matematika, Universitas Jember, 19 November 2014 320 Persamaan Laplace Menggunakan Metode Crank-Nicholson (The Solution of Laplace Equation Using Crank-Nicholson Method) Titis

Lebih terperinci

METODE ITERASI OPTIMAL TANPA TURUNAN BERDASARKAN BEDA TERBAGI ABSTRACT

METODE ITERASI OPTIMAL TANPA TURUNAN BERDASARKAN BEDA TERBAGI ABSTRACT METODE ITERASI OPTIMAL TANPA TURUNAN BERDASARKAN BEDA TERBAGI Amelia Riski, Putra. Supriadi 2, Agusni 2 Mahasiswa Program Studi S Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika Fakultas

Lebih terperinci

ALJABAR LINEAR (Vektor diruang 2 dan 3) Disusun Untuk Memenuhi Tugas Mata Kuliah Aljabar Linear Dosen Pembimbing: Abdul Aziz Saefudin, M.

ALJABAR LINEAR (Vektor diruang 2 dan 3) Disusun Untuk Memenuhi Tugas Mata Kuliah Aljabar Linear Dosen Pembimbing: Abdul Aziz Saefudin, M. ALJABAR LINEAR (Vektor dirang 2 dan 3) Dissn Untk Memenhi Tgas Mata Kliah Aljabar Linear Dosen Pembimbing: Abdl Aziz Saefdin, M.Pd Dissn Oleh : Kelompok 3/3A4 1. Nrl Istiqomah 14144100130 2. Ambar Retno

Lebih terperinci

Metode Iterasi Tiga Langkah Bebas Turunan Untuk Menyelesaikan Persamaan Nonlinear

Metode Iterasi Tiga Langkah Bebas Turunan Untuk Menyelesaikan Persamaan Nonlinear Metode Iterasi Tiga Langkah Bebas Turunan Untuk Menyelesaikan Persamaan Nonlinear M. Nizam 1, Lendy Listia Nanda 2 1, 2 Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sultan Syarif Kasim Riau Jl.

Lebih terperinci

PERBAIKAN METODE OSTROWSKI UNTUK MENCARI AKAR PERSAMAAN NONLINEAR. Rin Riani ABSTRACT

PERBAIKAN METODE OSTROWSKI UNTUK MENCARI AKAR PERSAMAAN NONLINEAR. Rin Riani ABSTRACT PERBAIKAN METODE OSTROWSKI UNTUK MENCARI AKAR PERSAMAAN NONLINEAR Rin Riani Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Riau Kampus

Lebih terperinci

PENGGUNAAN ALGORITMA KUHN MUNKRES UNTUK MENDAPATKAN MATCHING MAKSIMAL PADA GRAF BIPARTIT BERBOBOT

PENGGUNAAN ALGORITMA KUHN MUNKRES UNTUK MENDAPATKAN MATCHING MAKSIMAL PADA GRAF BIPARTIT BERBOBOT PENGGUNAAN ALGORITMA KUHN MUNKRES UNTUK MENDAPATKAN MATCHING MAKSIMAL PADA GRAF BIPARTIT BERBOBOT oleh GURITNA NOOR AINATMAJA M SKRIPSI ditlis dan diajkan ntk memenhi sebagian persyaratan memperoleh gelar

Lebih terperinci

MODIFIKASI METODE CAUCHY DENGAN ORDE KONVERGENSI EMPAT. Masnida Esra Elisabet ABSTRACT

MODIFIKASI METODE CAUCHY DENGAN ORDE KONVERGENSI EMPAT. Masnida Esra Elisabet ABSTRACT MODIFIKASI METODE CAUCHY DENGAN ORDE KONVERGENSI EMPAT Masnida Esra Elisabet Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Riau Kampus

Lebih terperinci

Mata Kuliah: Aljabar Linier Dosen Pengampu: Darmadi, S. Si, M. Pd

Mata Kuliah: Aljabar Linier Dosen Pengampu: Darmadi, S. Si, M. Pd . RUANG BERDIMENSI n EUCLIDIS Mata Kliah: Aljabar Linier Dosen Pengamp: Darmadi S. Si M. Pd Dissn oleh: Kelompok Pendidikan Matematika VA. Abdl Fajar Sidiq (8.). Lilies Prwanti (8.76). Ristinawati (8.)

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Logika Fzzy Pada awalnya sistem logika fzzy diperkenalkan oleh Profesor Lotfi A. Zadeh pada tahn 1965. Konsep fzzy bermla dari himpnan klasik (crisp) yang bersifat tegas ata

Lebih terperinci

METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI

METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI Yuni Yulida Program Studi Matematika FMIPA Unlam Universitas Lambung Mangkurat Jl. Jend. A. Yani km. 36

Lebih terperinci

KAJIAN DISKRETISASI DENGAN METODE GALERKIN SEMI DISKRET TERHADAP EFISIENSI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI

KAJIAN DISKRETISASI DENGAN METODE GALERKIN SEMI DISKRET TERHADAP EFISIENSI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI KAJIAN DISKRETISASI DENGAN METODE GALERKIN SEMI DISKRET TERHADAP EFISIENSI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI Suhartono dan Solikhin Zaki Jurusan Matematika FMIPA UNDIP Abstrak Penelitian

Lebih terperinci

SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT ABSTRACT

SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT ABSTRACT SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT Vera Alvionita Harahap 1, Asmara Karma 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

Perbandingan Skema Numerik Metode Finite Difference dan Spectral

Perbandingan Skema Numerik Metode Finite Difference dan Spectral Jurnal Ilmiah Teknologi dan Informasia ASIA (JITIKA) Vol.10, No.2, Agustus 2016 ISSN: 0852-730X Perbandingan Skema Numerik Metode Finite Difference dan Spectral Lukman Hakim 1, Azwar Riza Habibi 2 STMIK

Lebih terperinci

FEEDFORWARD FEEDBACK CONTROL SEBAGAI PENGONTROL SUHU MENGGUNAKAN PROPORSIONAL - INTEGRAL BERBASIS MIKROKONTROLLER ATMEGA 8535

FEEDFORWARD FEEDBACK CONTROL SEBAGAI PENGONTROL SUHU MENGGUNAKAN PROPORSIONAL - INTEGRAL BERBASIS MIKROKONTROLLER ATMEGA 8535 FEEDFORWARD FEEDBACK CONTROL SEBAGAI PENGONTROL SUHU MENGGUNAKAN PROPORSIONAL - INTEGRAL BERBASIS MIKROKONTROLLER ATMEGA 8535 Makalah Seminar Tgas Akhir Jnanto Prihantoro 1, Trias Andromeda. 2, Iwan Setiawan

Lebih terperinci

METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK ABSTRACT

METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK ABSTRACT METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK Risvi Ayu Imtihana 1, Asmara Karma 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

SOLUSI PERIODIK TUNGGAL SUATU PERSAMAAN RAYLEIGH. Jurusan Matematika FMIPA UT ABSTRAK

SOLUSI PERIODIK TUNGGAL SUATU PERSAMAAN RAYLEIGH. Jurusan Matematika FMIPA UT ABSTRAK SOLUSI PERIODIK TUNGGAL SUATU PERSAMAAN RAYLEIGH Sugimin Jurusan Matematika FMIPA UT ugi@mail.ut.ac.id ABSTRAK Suatu persamaan vektor berbentuk x & = f (x dengan variabel bebas t yang tidak dinyatakan

Lebih terperinci

METODE ITERASI DUA LANGKAH BEBAS TURUNAN BERDASARKAN INTERPOLASI POLINOMIAL ABSTRACT

METODE ITERASI DUA LANGKAH BEBAS TURUNAN BERDASARKAN INTERPOLASI POLINOMIAL ABSTRACT METODE ITERASI DUA LANGKAH BEBAS TURUNAN BERDASARKAN INTERPOLASI POLINOMIAL N.D. Monti 1, M. Imran, A. Karma 1 Mahasiswa Program Studi S1 Matematika Laboratorium Matematika Terapan, Jurusan Matematika

Lebih terperinci

Sidang Tugas Akhir - Juli 2013

Sidang Tugas Akhir - Juli 2013 Sidang Tugas Akhir - Juli 2013 STUDI PERBANDINGAN PERPINDAHAN PANAS MENGGUNAKAN METODE BEDA HINGGA DAN CRANK-NICHOLSON COMPARATIVE STUDY OF HEAT TRANSFER USING FINITE DIFFERENCE AND CRANK-NICHOLSON METHOD

Lebih terperinci

BAB RELATIVITAS Semua Gerak adalah Relatif

BAB RELATIVITAS Semua Gerak adalah Relatif BAB RELATIVITAS. Sema Gerak adalah Relatif Sat benda dikatakan bergerak bila keddkan benda it berbah terhadap sat titik aan ata kerangka aan. Seorang penmpang kereta api yang sedang ddk di dalam kereta

Lebih terperinci

METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE DUA DENGAN KOEFISIEN VARIABEL ABSTRACT

METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE DUA DENGAN KOEFISIEN VARIABEL ABSTRACT METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE DUA DENGAN KOEFISIEN VARIABEL Marpipon Haryandi 1, Asmara Karma 2, Musraini M 2 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

MODEL MATEMATIKA WAKTU PENGOSONGAN TANGKI AIR

MODEL MATEMATIKA WAKTU PENGOSONGAN TANGKI AIR Prosiding Seinar Nasional Penelitian, Pendidikan dan Penerapan MIPA Fakltas MIPA, Universitas Negeri Yogakarta, 6 Mei 9 MODEL MATEMATIKA WAKTU PENGOSONGAN TANGKI AIR Irawati, Kntjoro Adji Sidarto. Gr SMA

Lebih terperinci

Pengenalan Pola. Ekstraksi dan Seleksi Fitur

Pengenalan Pola. Ekstraksi dan Seleksi Fitur Pengenalan Pola Ekstraksi dan Seleksi Fitr PTIIK - 4 Corse Contents Collet Data Objet to Dataset 3 Ekstraksi Fitr 4 Seleksi Fitr Design Cyle Collet data Choose featres Choose model Train system Evalate

Lebih terperinci

SIMULASI PADA MODEL PENYEBARAN PENYAKIT TUBERKULOSIS SRI REJEKI PURI WAHYU PRAMESTHI DOSEN PENDIDIKAN MATEMATIKA IKIP WIDYA DARMA SURABAYA

SIMULASI PADA MODEL PENYEBARAN PENYAKIT TUBERKULOSIS SRI REJEKI PURI WAHYU PRAMESTHI DOSEN PENDIDIKAN MATEMATIKA IKIP WIDYA DARMA SURABAYA SIMULASI PADA MODEL PENYEBARAN PENYAKIT TUBERKULOSIS SRI REJEKI PURI WAHYU PRAMESTHI DOSEN PENDIDIKAN MATEMATIKA IKIP WIDYA DARMA SURABAYA Abstrak TBC penyebab kematian nomor tiga setelah penyakit kardioaskler

Lebih terperinci

SISTEM PERANGKINGAN ITEM MOBIL PADA E-COMMERCE PENJUALAN MOBIL DENGAN METODE RANDOM-WALK BASE SCORING

SISTEM PERANGKINGAN ITEM MOBIL PADA E-COMMERCE PENJUALAN MOBIL DENGAN METODE RANDOM-WALK BASE SCORING SISTEM PERANGKINGAN ITEM MOBIL PADA E-COMMERCE PENJUALAN MOBIL DENGAN METODE RANDOM-WALK BASE SCORING Desi Yanti, Sayti Rahman, Rismayanti 3 Jrsan Teknik Informatika Universitas Harapan Medan Jl. HM Jhoni

Lebih terperinci

METODE ITERASI JACOBI DAN GAUSS-SEIDEL PREKONDISI UNTUK MENYELESAIKAN SISTEM PERSAMAN LINEAR DENGAN M-MATRIKS ABSTRACT

METODE ITERASI JACOBI DAN GAUSS-SEIDEL PREKONDISI UNTUK MENYELESAIKAN SISTEM PERSAMAN LINEAR DENGAN M-MATRIKS ABSTRACT METODE ITERASI JACOBI DAN GAUSS-SEIDEL PREKONDISI UNTUK MENYELESAIKAN SISTEM PERSAMAN LINEAR DENGAN M-MATRIKS Efriani Widya 1, Syamsudhuha 2, Bustami 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan

Lebih terperinci

SOLUSI POLINOMIAL TAYLOR PERSAMAAN DIFERENSIAL-BEDA LINEAR DENGAN KOEFISIEN VARIABEL ABSTRACT

SOLUSI POLINOMIAL TAYLOR PERSAMAAN DIFERENSIAL-BEDA LINEAR DENGAN KOEFISIEN VARIABEL ABSTRACT SOLUSI POLINOMIAL TAYLOR PERSAMAAN DIFERENSIAL-BEDA LINEAR DENGAN KOEFISIEN VARIABEL Siti Nurjanah 1, Musraini M 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia. INTEGRASI NUMERIK TANPA ERROR UNTUK FUNGSI-FUNGSI TERTENTU Irma Silpia 1, Syamsudhuha, Musraini M. 1 Mahasiswi Jurusan Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

SOLUSI NUMERIK PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI BASIS BARU ABSTRACT

SOLUSI NUMERIK PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI BASIS BARU ABSTRACT SOLUSI NUMERIK PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI BASIS BARU Vanny Octary 1 Endang Lily 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

METODE ITERASI ORDE EMPAT DAN ORDE LIMA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Imaddudin ABSTRACT

METODE ITERASI ORDE EMPAT DAN ORDE LIMA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Imaddudin ABSTRACT METODE ITERASI ORDE EMPAT DAN ORDE LIMA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Imaddudin Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

METODE SIMPLEKS PRIMAL-DUAL PADA PROGRAM LINIER FUZZY PENUH DENGAN BILANGAN TRAPEZOIDAL

METODE SIMPLEKS PRIMAL-DUAL PADA PROGRAM LINIER FUZZY PENUH DENGAN BILANGAN TRAPEZOIDAL METODE SIMPLEKS PRIMAL-DUAL PADA PROGRAM LINIER FUZZY PENUH DENGAN BILANGAN TRAPEZOIDAL Bambang Irawanto 1,Djwandi 2, Sryoto 3, Rizky Handayani 41,2,3 Departemen Matematika Faktas Sains dan Matematika

Lebih terperinci

PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR

PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR Jurnal Matematika UNAND Vol. 4 No. 1 Hal. 93 98 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR

Lebih terperinci

METODE ITERASI OPTIMAL BERORDE EMPAT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

METODE ITERASI OPTIMAL BERORDE EMPAT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT METODE ITERASI OPTIMAL BERORDE EMPAT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Helmi Putri Yanti 1, Rolan Pane 2 1 Mahasiswa Program Studi S1 Matematika 2 DosenJurusan Matematika Fakultas Matematika dan

Lebih terperinci

PEMBUKTIAN BENTUK TUTUP RUMUS BEDA MAJU BERDASARKAN DERET TAYLOR

PEMBUKTIAN BENTUK TUTUP RUMUS BEDA MAJU BERDASARKAN DERET TAYLOR Jurnal Matematika UAD Vol. 5 o. 4 Hal. 8 ISS : 233 29 c Jurusan Matematika FMIPA UAD PEMBUKTIA BETUK TUTUP RUMUS BEDA MAJU BERDASARKA DERET TAYLOR ADE PUTRI, RADHIATUL HUSA Program Studi Matematika, Fakultas

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hendra Gnawan Semester II, 2016/2017 3 Maret 2017 Kliah yang Lal 10.1-2 Parabola, Elips, dan Hiperbola 10.4 Persamaan Parametrik Kra di Bidang 10.5 Sistem Koordinat Polar 11.1 Sistem

Lebih terperinci