(x, f(x)) P. x = h. Gambar 4.1. Gradien garis singgung didifinisikan sebagai limit y/ x ketika x mendekati 0, yakni

Ukuran: px
Mulai penontonan dengan halaman:

Download "(x, f(x)) P. x = h. Gambar 4.1. Gradien garis singgung didifinisikan sebagai limit y/ x ketika x mendekati 0, yakni"

Transkripsi

1 Diktat Klia TK Matematika BAB TURUNAN Graien Garis Singgng Tinja seba krva = f() seperti iperliatkan paa Gambar Garis ang melali titik P(, f( )) an Q( +, f( + )) isebt tali bsr Graien tali bsr tersebt aala f ( ) f ( ) m PQ Jika titik Q igerakkan menj P, menekati Paa keaaan ini, jga menekati Akan tetapi, / menj nilai tertent an kenataan ini mengantarkan paa penggnaan konsep it (, f()) P Q = Gambar tali bsr (+, f(+)) garis singgng Graien garis singgng iifinisikan sebagai it / ketika menekati, akni m f ( ) f ( ) CONTOH Tentkan graien garis singgng paa krva f ( ) paa titik (, ) Tliskan persamaan garis singgngna Penelesaian Graien garis singgng paa titik (,) sebagai berikt m f ( ) f () {( ) } Aip Saripin Trnan - 57

2 Diktat Klia TK Matematika {( ) } ( ) Persamaan garis singgng engan graien m = an melali titik (, ) sebagai berikt m( ) ( ) Jai, persamaan garis singgng paa krva f ( ) paa titik (, ) aala Definisi an Lambang Trnan Trnan seba fngsi f aala fngsi lain f ang memiliki nilai paa sat bilangan iefinisikan sebagai f '( ) f ( ) f ( ) ang menjamin bawa it it aa an bkan ata Jika it it aa, ikatakan bawa fngsi tersebt teriferensialkan paa Pencarian trnan isebt peniferensialan Lambang trnan apat itliskan alam beberapa bentk Lambang-lambang ang ignakan ntk fngsi ang itrnkan teraap sebagai berikt f () D [f()] [ f ( )] Ketigana memiliki makna ang sama ata, engan kata lain, f '( ) D [ f ( )] [ f ( )] Aip Saripin Trnan - 58

3 Diktat Klia TK Matematika CONTOH Cari trnan ari f() = +5 Penelesaian f '( ) f ( [( ) ) f ( ) 5] [ 5] Jai, trnan ari f() = +5 aala f () = CONTOH Cari trnan ari f() = Penelesaian f '( ) f ( ) f ( ) ( ) ( ) Jai, trnan ari f() = aala f () = CONTOH Cari jika Penelesaian Ambil f ( ) maka f ( ) f ( ) ( ) Aip Saripin Trnan - 59

4 Diktat Klia TK Matematika ) Jai, maka Atran Pencarian Trnan Pencarian trnan menggnakan it merpakan pekerjaan ang slit an menjemkan Akan tetapi, ari a conto i atas, kita menapatkan metoe ang lebi singkat Teorema-teorema ang berkaitan engan atran pencarian trnan sebagai berikt Untk k konstanta, n real, = (), an v = v(): () f() = k maka f () = () f() = n maka f () = n n- () g() = k f() maka g () = k f () () f() = v maka f () = v (5) f() = v maka f () = v + v (6) ' v v' f ( ) maka f '( ) v v CONTOH Cari trnan ari f ( ) 5 Penelesaian Dengan menggnakan atran (), (), (), an () iperole f '( ) 6 CONTOH Cari trnan ari f ( ) ( 6) Penelesaian Fngsi i atas apat ianggap sebagai asil kali a ba fngsi sebagai berikt engan f ( ) Gnakan atran (6), v v f '( ) ' v 6 v', iperole Aip Saripin Trnan - 6

5 Diktat Klia TK Matematika f '( ) ( )( 6) ( 6)( ) ( )( 6) Untk mengji kebenaranna, gnakan cara lain f ( ) ( 6) 6 6 maka sesai atran (), (), (), (), an (5) iperole f '( ) CONTOH Penelesaian Cari trnan ari Misal = an v = + maka seingga engan atran asil bagi, f ( ) f ( ) ' v v' ( ) f '( ) v ( ) ( ) v Trnan Fngsi Komposisi: Atran Rantai Jika f() teriferensialkan paa = g() an g() teriferensialkan paa, fngsi komposisi ( f g)( ) f ( g( )) f ( ) teriferensialkan paa Trnan fngsi komposisi ini apat icari menggnakan rms berikt Rms i atas isebt atran rantai CONTOH Cari jika ( ) Penelesaian Dengan metoa biasa, ( ) maka ( ) Dengan atran rantai: misal maka ( ) Dengan emikian, Aip Saripin Trnan - 6

6 Diktat Klia TK Matematika ( ) CONTOH Penelesaian Cari trnan ari ( ) Misal maka ( ) Dengan emikian, ( ) 6( ) CONTOH Penelesaian Misal 5 maka Cari jika ( 5) ( 5) Dengan emikian, 6( 5) 6 ( 5) Ketika menerapkan atran rantai, akan ckp membant jika kita menggnakan taapan berikt: trnkan fngsi lar f an fngsi alam masing-masing, lal kalikan sat sama lain Peratikan conto berikt CONTOH Cari jika Penelesaian Uba bentk fngsi i atas menjai maka ( ) ( ) alam lar ( ) trnan" lar" ( ) trnan" alam" Aip Saripin Trnan - 6

7 Diktat Klia TK Matematika 5 Trnan Fngsi Trigonometri Untk menrnkan fngsi sins an cosins, kita apat menggnakan konsep it an ientitas penjmlaan st: sin( ) sin cos cos sin cos( ) cos cos sin sin Trnan fngsi sins, f ( ) sin, sebagai berikt sin sin( ) sin sin cos cos sin sin sin (cos (cos ) sin ) cos sin sin cos sin cos cos sin sin cos cos Trnan fngsi cosins, f ( ) cos, sebagai berikt cos cos( ) cos cos cos sin sin cos cos (cos (cos ) cos ) sin sin sin sin cos cos sin sin cos sin sin Aip Saripin Trnan - 6

8 Diktat Klia TK Matematika Dari penrnan i atas iperole teorema sebagai berikt sin cos an cos sin Trnan fngsi trigonometri asar lainna apat iperole engan bantan teorema i atas CONTOH Cari trnan ari = tan Penelesaian tan maka, sesai atran asil bagi, sin cos v ' v v' cos cos ( sin ) sin cos sin sec v cos cos cos Jai, tan sec CONTOH Tentkan sec Penelesaian Dengan mengingat bawa Jai, ' v v' sec an trnan asil bagi: ', iperole cos v cos ( sin ) sec cos cos cos sin cos sectan sec sec tan Aip Saripin Trnan - 6

9 Diktat Klia TK Matematika CONTOH Cari trnan ari = sin Penelesaian Dengan menggnakan atran rantai, ( cos) cos CONTOH Cari trnan ari cos Dengan menggnakan atran rantai, ( cos) ( sin ) sin cos sin CONTOH 5 Penelesaian Cari trnan ari = sin () Dengan menggnakan atran rantai, ((sin ) ) (cos) () 6sin cos 6 Trnan Fngsi Logaritma an Eksponen Asli Trnan fngsi logaritma an eksponen natral sebagai berikt: ln, an e e CONTOH Cari jika ln( ) Penelesaian Misal ln maka an seingga sesai atran rantai iperole CONTOH Cari jika e Aip Saripin Trnan - 65

10 Diktat Klia TK Matematika Penelesaian Misal e maka an seingga iperole e e e ( ) CONTOH Cari jika e Penelesaian Misal an v e v seingga v v e e e ( ) 7 Trnan Ore Tinggi Trnan ari f aala f Jika f iiferensialkan lagi, iperole f f isebt trnan pertama an f trnan kea Jika iiferensialkan lagi an lagi, iperole trnan ketiga (f ), keempat (f () ), kea (f (5) ), an setersna Lambang trnan ari = f() ntk ore tinggi iberikan paa Tabel - Tabel - Lambang trnan ore tinggi Trnan Lambang f Lambang Lambang D Pertama f () D Kea f () D Ketiga f () D Keempat f () () () D Lambang Leibniz Aip Saripin Trnan - 66

11 Diktat Klia TK Matematika Kea f (5) () (5) 5 D Keenam f (6) () (6) 6 D Ke-n f (n) () (n) D n n n CONTOH Cari trnan kea ari f ( ) Penelesaian f '( ) 6 6 () f ( ) f ''( ) (5) f f '''( ) CONTOH Cari f () jika f ( ) ln, Penelesaian Gnakan atran trnan asil kali maka f '( ) f ''( ) ln ln ln ln f '''( ) 8 Peniferensialan Implisit Dalam beberapa kass, sebagai fngsi tiak apat inatakan secara eksplisit alam bentk = f(), misalna = Sebagai conto, persamaan tiak apat itlis menjai = f() secara eksplisit Fngsi seperti ini isebt fngsi implisit, engan kata lain merpakan fngsi implisit ari Akan tetapi, trnan ari teraap apat icari Metoe pencarian trnan fngsi implisit isebt peniferensialan implisit Berikt beberapa conto peniferensialan implisit Aip Saripin Trnan - 67

12 Diktat Klia TK Matematika CONTOH Cari ari persamaan berikt: Penelesaian Diferensialkan setiap sk i sema ras teraap seingga iperole [ ] [] [ ] [ ] CONTOH Cari ari persamaan berikt: 8 Penelesaian Diferensialkan setiap sk i setiap ras teraap, [ ] [] [ ] [8] [ ] [ ] seingga iperole [ ] [ ] CONTOH Tentkan persamaan garis singgng paa krva 8 i titik (, ) Penelesaian Paa CONTOH tela iperole bawa ari 8 aala Aip Saripin Trnan - 68

13 Diktat Klia TK Matematika [ ] Graien garis singgng paa krva tersebt i titik (, ) aala ( ) m, Persamaan garis singgngna i titik (, ) aala m( ) ( ) Jai, garis singgng paa krva 8 i titik (, ) aala ata apat itlis sebagai 6 9 Laj ang Berkaitan Jika variabel bergantng paa wakt t, trnanna, /, isebt laj perbaan teraap wakt Secara mm, setiap variabel ang bergantng wakt, trnanna isebt laj CONTOH Penelesaian Seba partikel bergerak sepanjang smb- an posisina sebagai fngsi wakt berba menrt persamaan: = t + 5t, engan alam meter an t alam sekon Cari laj perbaan posisi teraap wakt (ata ikenal sebagai kecepatan) paa saat t = sekon Trnan ari posisi teraap wakt, v ( t) t Paa t = sekon, v() 5 5 9m/s CONTOH Penelesaian Setiap sisi kbs bertamba engan laj cm per sekon Tentkan laj perbaan volme kbs saat panjang sisina cm Misalna sisi kbs inatakan ole s maka volme kbs V = s Laj pertambaan sisi s kbs cm/s, ini berarti cm/s Laj perbaan volme teraap wakt, Aip Saripin Trnan - 69

14 Diktat Klia TK Matematika V s [ s ] s Dengan emikian, paa s = cm, V () 96 cm /s CONTOH Penelesaian Seorang anak meneot minman ari seba cangkir berbentk kerct engan laj cm /s Smb cangkir vertikal an tinggi cangkir cm engan iameter bagian terbka 6 cm Tentkan laj penrnan tinggi cairan alam cangkir ketika kealamanna 5 cm Kealaman cairan an jari-jari cangkir r maka volme cangkir (kerct), V r Dari gambar iperole bngan maka r V r Laj perbaan volme teraap wakt, V seingga laj perbaan kealaman teraap wakt, 9 V Karena cairan berkrang (iseot) engan laj cm /s, ini berarti V Dengan emikian paa = 5 cm iperole cm /s [tana negatif mennjkkan berkrang] 9 V 9 5 cm/s Jai, laj penrnan kealaman cairan aala cm tiap sekon r cm cm Aip Saripin Trnan - 7

15 Diktat Klia TK Matematika CONTOH Penelesaian Sepea motor A bergerak lrs engan kelajan konstan 6 km/jam menj ke Timr an melintasi perempatan jalan tepat paa pkl Sepea motor B bergerak lrs ke Utara engan kelajan konstan 8 km/jam an melintasi perempatan jalan ang sama paa pkl 5 Tentkan laj perbaan jarak kea motor paa pkl Misalna titik O aala titik ang tepat i perempatan jalan Paa sat saat tertent, jarak motor A ke O sebt saja, jarak motor B ke O aala, an jarak A an B aala r Keaaan ini iilstrasikan paa gambar Sesai engan alil Ptagoras iperoe bngan r Laj perbaan jarak A an B (r/) iperole melali peniferensialan implisit paa persamaan i atas sebagai berikt r seingga iperole ata ( r r r r r r r r ) r engan = 6 km/jam an = 8 km/jam Jarak ang itemp motor A selama jam (ari pkl s ) aala t 6 6 km, seangkan jarak ang itemp motor B selama 5 menit ata ¾ jam (ari pkl 5 s ) aala t 8 6 km Maskkan nilai-nilai i atas paa (*) iperole r r Utara B O r A Timr (*) Aip Saripin Trnan - 7

16 Diktat Klia TK Matematika r (6 6 8) 7 km/jam Jai, laj perbaan jarak kea motor paa pkl aala 7 km/jam Diferensial an Hampiran Misalna = f() teriferensialkan paa setiap Dalam notasi Leibniz, trnan fngsi tersebt itliskan sebagai f '( ) Seja ini, kita belm memberikan makna apa pn paa notasi /, selain sebagai lambang trnan ang tak terpisakan Paa bagian ini, kita akan memberikan makna paa an Dari efinisi trnan, ntk fngsi = f() ang teriferensialkan berlak Jika kecil, ata f ( f ( ) ) f ( ) f ( ) f '( ) f '( ) f ( ) f ( ) f '( ) Karena =, persamaan i atas apat itlis f ( ) f ( ) f '( ) Ras kanan paa persamaan ini iefinisikan sebagai iferensial ari, ilambangkan ole, akni f '( ) Besaran isebt iferensial variabel bebas an isebt iferensial variabel terikat Secara grafis, tafsiran iferensial iperliatkan paa Gambar Besaran menatakan perbaan alam garis singgng paa P ketika berba sebesar = Jika sangat kecil, menjai ampiran ang ckp baik paa an ma ntk icari Gamba Aip Saripin Trnan - 7

17 Diktat Klia TK Matematika CONTOH Cari jika (a), (b) Penelesaian, (c) sin Untk menapatkan iferensialna, terlebi al cari trnanna lal kalikan engan (a) (b) (c) ( ) cos CONTOH Gnakan iferensial ntk mengampiri nilai, Penelesaian Nilai ang akan kita cari aala, Karena it, ambil fngsi f ( ) an kita akan mencari/mengampiri nilai f (,) Trnan ari f ( ) aala f '( ) maka perbaanna alam aala ata f '( ) f ( ) f ( ) f '( ) Sekarang, ambil = an =, maka f ( ) f ( ) f '( ),,,,5 Jai,,, 5 Aip Saripin Trnan - 7

(a) (b) Gambar 1. garis singgung

(a) (b) Gambar 1. garis singgung BAB. TURUNAN Sebelm membahas trnan, terlebih dahl ditinja tentang garis singgng pada sat krva. A. Garis singgng Garis singgng adalah garis yang menyinggng sat titik tertent pada sat krva. Pengertian garis

Lebih terperinci

Bagian 3 Differensiasi

Bagian 3 Differensiasi Bagian Differensiasi Bagian Differensiasi berisi materi tentang penerapan konsep limit untuk mengitung turunan an berbagai teknik ifferensial. Paa penerapan konsep limit, Ana akan iperkenalkan engan konsep

Lebih terperinci

lim 0 h Jadi f (x) = k maka f (x)= 0 lim lim lim TURUNAN/DIFERENSIAL Definisi : Laju perubahan nilai f terhadap variabelnya adalah :

lim 0 h Jadi f (x) = k maka f (x)= 0 lim lim lim TURUNAN/DIFERENSIAL Definisi : Laju perubahan nilai f terhadap variabelnya adalah : TURUNAN/DIFERENSIAL Deinisi : Laj perbaan nilai teradap ariabelnya adala : y dy d lim = lim = 0 0 d d merpakan ngsi bar disebt trnan ngsi ata perbandingan dierensial, proses mencarinya disebt menrnkan

Lebih terperinci

NAMA : KELAS : theresiaveni.wordpress.com

NAMA : KELAS : theresiaveni.wordpress.com 1 NAMA : KELAS : teresiaeni.wordpress.com TURUNAN/DIFERENSIAL Deinisi : Laj perbaan nilai teradap ariabelnya adala : y dy d ' = = d d merpakan ngsi bar disebt trnan ngsi ata perbandingan dierensial, proses

Lebih terperinci

BAB III LIMIT DAN FUNGSI KONTINU

BAB III LIMIT DAN FUNGSI KONTINU BAB III LIMIT DAN FUNGSI KONTINU Konsep it mempnyai peranan yang sangat penting di dalam kalkls dan berbagai bidang matematika. Oleh karena it, konsep ini sangat perl ntk dipahami. Meskipn pada awalnya

Lebih terperinci

Diferensial fungsi sederhana

Diferensial fungsi sederhana Diferensial fngsi sederhana Kaidah-kaidah diferensiasi 1. Diferensiasi konstanta Jika y = k, dimana k adalah konstanta, maka / = 0 contoh : y = 5 / = 0. Diferensiasi fngsi pangkat Jika y = n, dimana n

Lebih terperinci

TUGAS TERSTRUKTUR KALKULUS PEUBAH BANYAK. Dari Buku Kalkulus Edisi Keempat Jilid II James Stewart, Penerbit Erlangga.

TUGAS TERSTRUKTUR KALKULUS PEUBAH BANYAK. Dari Buku Kalkulus Edisi Keempat Jilid II James Stewart, Penerbit Erlangga. TUGAS TERSTRUKTUR KALKULUS PEUBAH BANYAK Dari Bk Kalkls Edisi Keempat Jilid II James Steart Penerbit Erlangga Dissn ole : K i r b a n i M5 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

Lebih terperinci

DIFERENSIAL FUNGSI SEDERHANA

DIFERENSIAL FUNGSI SEDERHANA DIFERENSIAL FUNGSI SEDERHANA Salah satu metoe yang cukup penting alam matematika aalah turunan (iferensial). Sejalan engan perkembangannya aplikasi turunan telah banyak igunakan untuk biang-biang rekayasa

Lebih terperinci

URUNAN PARSIAL. Definisi Jika f fungsi dua variable (x dan y) maka: atau f x (x,y), didefinisikan sebagai

URUNAN PARSIAL. Definisi Jika f fungsi dua variable (x dan y) maka: atau f x (x,y), didefinisikan sebagai 6 URUNAN PARSIAL Deinisi Jika ngsi da ariable maka: i Trnan parsial terhadap dinotasikan dengan ata dideinisikan sebagai ii Trnan parsial terhadap dinotasikan dengan ata dideinisikan sebagai Tentkan trnan

Lebih terperinci

38 Soal dengan Pembahasan, 426 Soal Latihan

38 Soal dengan Pembahasan, 426 Soal Latihan Galeri Soal 8 Soal dengan Pembaasan, Soal Latian Dirangkm Ole: Anang Wibowo, S.Pd April MatikZone s Series Email : matikzone@gmail.com Blog : HP : 8 897 897 Hak Cipta Dilindngi Undang-ndang. Dilarang mengktip

Lebih terperinci

Galeri Soal. Dirangkum Oleh: Anang Wibowo, S.Pd

Galeri Soal. Dirangkum Oleh: Anang Wibowo, S.Pd Galeri Soal Dirangkm Ole: Anang Wibowo, S.Pd April Semoga sedikit conto soal-soal ini dapat membant siswa dalam mempelajari Matematika kssna Bab Trnan. Kami mengsaakan agar soal-soal ang kami baas sevariasi

Lebih terperinci

TURUNAN FUNGSI (DIFERENSIAL)

TURUNAN FUNGSI (DIFERENSIAL) TURUNAN FUNGSI (DIFERENSIAL) A. Pengertian Derivatif (turunan) suatu fungsi. Perhatikan grafik fungsi f( (pengertian secara geometri) ang melalui garis singgung. f( f( f(+ Q [( +, f ( + ] f( P (, f ( )

Lebih terperinci

HASIL KALI TITIK DAN PROYEKSI ORTOGONAL SUATU VEKTOR (Aljabar Linear) Oleh: H. Karso FPMIPA UPI

HASIL KALI TITIK DAN PROYEKSI ORTOGONAL SUATU VEKTOR (Aljabar Linear) Oleh: H. Karso FPMIPA UPI HASIL KALI TITIK DAN PROYEKSI ORTOGONAL SUATU VEKTOR (Aljabar Linear) Oleh: H. Karso FPMIPA UPI A. Hasil Kali Titik (Hasil Kali Skalar) Da Vektor. Hasil Kali Skalar Da Vektor di R Perkalian diantara da

Lebih terperinci

MODEL MATEMATIKA WAKTU PENGOSONGAN TANGKI AIR

MODEL MATEMATIKA WAKTU PENGOSONGAN TANGKI AIR Prosiding Seinar Nasional Penelitian, Pendidikan dan Penerapan MIPA Fakltas MIPA, Universitas Negeri Yogakarta, 6 Mei 9 MODEL MATEMATIKA WAKTU PENGOSONGAN TANGKI AIR Irawati, Kntjoro Adji Sidarto. Gr SMA

Lebih terperinci

Sudaryatno Sudirham. Diferensiasi

Sudaryatno Sudirham. Diferensiasi Suaratno Suirham Diferensiasi Bahan Kuliah Terbuka alam format pf terseia i.buku-e.lipi.go.i alam format pps beranimasi terseia i.ee-cafe.org Pengertian-Pengertian 0-0 Kita telah melihat baha kemiringan

Lebih terperinci

MAKALAH TURUNAN. Disusun oleh: Agusman Bahri A1C Dosen Pengampu: Dra. Irma Suryani, M.Pd

MAKALAH TURUNAN. Disusun oleh: Agusman Bahri A1C Dosen Pengampu: Dra. Irma Suryani, M.Pd MAKALAH TURUNAN Disusun ole: Agusman Bari A1C214027 Dosen Pengampu: Dra. Irma Suryani, M.P PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS JAMBI 2015 KATA PENGANTAR

Lebih terperinci

4. TURUNAN. MA1114 Kalkulus I 1

4. TURUNAN. MA1114 Kalkulus I 1 4. TURUNAN MA4 Kalkulus I 4. Konsep Turunan 4.. Turunan di satu titik Pendauluan dua masala dalam satu tema a. Garis Singgung Kemiringan tali busur PQ adala : m PQ Jika, maka tali busur PQ akan beruba

Lebih terperinci

PELUANG BERTAHAN PERUSAHAAN ASURANSI DARI KEBANGKRUTAN PADA WAKTU KEDATANGAN KLAIM BERDISTRIBUSI GAMMA(2,

PELUANG BERTAHAN PERUSAHAAN ASURANSI DARI KEBANGKRUTAN PADA WAKTU KEDATANGAN KLAIM BERDISTRIBUSI GAMMA(2, PELUANG BERTAHAN PERUSAHAAN ASURANSI DARI KEBANGKRUTAN PADA WAKTU KEDATANGAN KLAIM BERDISTRIBUSI GAMMA(2, ) Ali Shoiqin alqinok@gmail.com Dosen Peniikan Matematika IKIP PGRI Semarang Jl. Sioai Timr Semarang

Lebih terperinci

MODUL 5 INTEGRAL LIPAT DAN PENGGUNAANNYA

MODUL 5 INTEGRAL LIPAT DAN PENGGUNAANNYA Sei Mol Kliah EL- Matematika Teknik I MOUL 5 INTEGRAL LIPAT AN PENGGUNAANNYA Satan Acaa Pekliahan Mol 5 Integal Lipat an Penggnaanna sebagai beikt Peteman ke- Pokok/Sb Pokok ahasan Tjan Pembelajaan Integal

Lebih terperinci

MODUL PERKULIAHAN. Kalkulus. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh

MODUL PERKULIAHAN. Kalkulus. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh MODUL PERKULIAHAN Modl Standar ntk dignakan dalam Perkliahan di Universitas Merc Bana Fakltas Program Stdi Tatap Mka Kode MK Dissn Oleh Ilm Kompter Teknik Informatika 9 Abstract Matakliah Menjadi Dasar

Lebih terperinci

Untuk pondasi tiang tipe floating, kekuatan ujung tiang diabaikan. Pp = kekuatan ujung tiang yang bekerja secara bersamaan dengan P

Untuk pondasi tiang tipe floating, kekuatan ujung tiang diabaikan. Pp = kekuatan ujung tiang yang bekerja secara bersamaan dengan P BAB 3 LANDASAN TEORI 3.1 Mekanisme Pondasi Tiang Konvensional Pondasi tiang merpakan strktr yang berfngsi ntk mentransfer beban di atas permkaan tanah ke lapisan bawah di dalam massa tanah. Bentk transfer

Lebih terperinci

UJIAN TENGAH SEMESTER KALKULUS/KALKULUS1

UJIAN TENGAH SEMESTER KALKULUS/KALKULUS1 Jurusan Matematika FMIPA IPB UJIAN TENGAH SEMESTER KALKULUS/KALKULUS1 Sabtu, 4 Maret 003 Waktu : jam SETIAP NOMOR MEMPUNYAI BOBOT 10 1. Tentukan: (a) (b) x sin x x + 1 ; x (cos (x 1)) :. Diberikan fungsi

Lebih terperinci

PERSAMAAN DIFFERENSIAL. Disusun untuk memenuhi tugas mata kuliah Matematika

PERSAMAAN DIFFERENSIAL. Disusun untuk memenuhi tugas mata kuliah Matematika PERSAMAAN DIFFERENSIAL Disusun untuk memenuhi tugas mata kuliah Matematika Disusun oleh: Aurey Devina B 1211041005 Irul Mauliia 1211041007 Anhy Ramahan 1211041021 Azhar Fuai P 1211041025 Murni Mariatus

Lebih terperinci

PENGENDALIAN OPTIMAL PADA MODEL KEMOPROFILAKSIS DAN PENANGANAN TUBERKULOSIS

PENGENDALIAN OPTIMAL PADA MODEL KEMOPROFILAKSIS DAN PENANGANAN TUBERKULOSIS PENGENDALIAN OPTIMAL PADA MODEL KEMOPROFILAKSIS DAN PENANGANAN TUBERKULOSIS Ole: Citra Dewi Ksma P. 106 100 007 Dosen pembimbing: DR. Sbiono, MSc. Latar Belakang PENDAHULUAN Penyakit Tberklosis TB adala

Lebih terperinci

PENYELESAIAN LUAS BANGUN DATAR DAN VOLUME BANGUN RUANG DENGAN KONSEP DETERMINAN

PENYELESAIAN LUAS BANGUN DATAR DAN VOLUME BANGUN RUANG DENGAN KONSEP DETERMINAN Bletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volme xx, No. x (tahn), hal xx xx. PENYELESAIAN LUAS BANGUN DATAR DAN VOLUME BANGUN RUANG DENGAN KONSEP DETERMINAN Doni Saptra, Helmi, Shantika Martha

Lebih terperinci

KERJA DAN PESAWAT SEDERHANA

KERJA DAN PESAWAT SEDERHANA KERJA DAN PESAWAT SEDERHANA Apakah energi? Ketika Ana memiliki banyak energi, Ana apat berlari lebih cepat an lebih jah; Ana jga apat melompat lebih tinggi. Sebagaimana mansia, bena jga apat memiliki energi.

Lebih terperinci

Misalkan S himpunan bilangan kompleks. Fungsi kompleks f pada S adalah aturan yang

Misalkan S himpunan bilangan kompleks. Fungsi kompleks f pada S adalah aturan yang Fngs Analtk FUNGSI ANALITIK Fngs sebt analtk ttk apabla aa sema ttk paa sat lngkngan Untk mengj keanaltkan sat ngs kompleks w = = + gnakan persamaan Cach Remann Sebelm mempelejar persamaan Cach-Remann

Lebih terperinci

4.1 Konsep Turunan. lim. m PQ Turunan di satu titik. Pendahuluan ( dua masalah dalam satu tema )

4.1 Konsep Turunan. lim. m PQ Turunan di satu titik. Pendahuluan ( dua masalah dalam satu tema ) 4. TURUNAN 4. Konsep Turunan 4.. Turunan di satu titik Pendauluan dua masala dalam satu tema a. Garis Singgung Kemiringan tali busur PQ adala : m PQ Jika, maka tali busur PQ akan beruba menjadi garis ggung

Lebih terperinci

ALJABAR LINEAR (Vektor diruang 2 dan 3) Disusun Untuk Memenuhi Tugas Mata Kuliah Aljabar Linear Dosen Pembimbing: Abdul Aziz Saefudin, M.

ALJABAR LINEAR (Vektor diruang 2 dan 3) Disusun Untuk Memenuhi Tugas Mata Kuliah Aljabar Linear Dosen Pembimbing: Abdul Aziz Saefudin, M. ALJABAR LINEAR (Vektor dirang 2 dan 3) Dissn Untk Memenhi Tgas Mata Kliah Aljabar Linear Dosen Pembimbing: Abdl Aziz Saefdin, M.Pd Dissn Oleh : Kelompok 3/3A4 1. Nrl Istiqomah 14144100130 2. Ambar Retno

Lebih terperinci

BAB RELATIVITAS Semua Gerak adalah Relatif

BAB RELATIVITAS Semua Gerak adalah Relatif BAB RELATIVITAS. Sema Gerak adalah Relatif Sat benda dikatakan bergerak bila keddkan benda it berbah terhadap sat titik aan ata kerangka aan. Seorang penmpang kereta api yang sedang ddk di dalam kereta

Lebih terperinci

PERTEMUAN-2. Persamaan Diferensial Homogen. Persamaan diferensial yang unsur x dan y tidak dapat dipisah n. Contoh: 1.

PERTEMUAN-2. Persamaan Diferensial Homogen. Persamaan diferensial yang unsur x dan y tidak dapat dipisah n. Contoh: 1. PERTEMUAN- Persamaan Diferensial Homogen Persamaan diferensial ang nsr dan tidak daat diisah n semana. F t, t) t. F, ) Contoh:. F, ) 7 F t, t) t F t, t) t t t 7t 7. F, ) Homogen derajat ). F, ) F t, t)

Lebih terperinci

Suatu persamaan diferensial biasa orde n adalah persamaan bentuk :

Suatu persamaan diferensial biasa orde n adalah persamaan bentuk : PERSAMAAN DIFERENSIAL BIASA PERSAMAAN DIFERENSIAL Suatu persamaan iferensial biasa ore n aalah persamaan bentuk : F n, ', '', ''',......, 0 Yang menatakan hubungan antara, fungsi () an turunanna ', '',

Lebih terperinci

Hasil Kali Titik. Dua Operasi Vektor. Sifat-sifat Hasil Kali Titik. oki neswan (fmipa-itb)

Hasil Kali Titik. Dua Operasi Vektor. Sifat-sifat Hasil Kali Titik. oki neswan (fmipa-itb) oki neswan (fmipa-itb) Da Operasi Vektor Hasil Kali Titik Misalkan OAB adalah sebah segitiga, O (0; 0) ; A (a 1 ; a ) ; dan B (b 1 ; b ) : Maka panjang sisi OA; OB; dan AB maing-masing adalah q joaj =

Lebih terperinci

Gambar 1. Gradien garis singgung grafik f

Gambar 1. Gradien garis singgung grafik f D. URAIAN MATERI 1. Definisi dan Rumus-rumus Turunan Fungsi a. Definisi Turunan Sala satu masala yang mendasari munculnya kajian tentang turunan adala gradien garis singgung. Peratikan Gambar 1. f(c +

Lebih terperinci

3. Turunan Fungsi Trigonometri, Trigonometri Inversi, Logaritmik, Eksponensial

3. Turunan Fungsi Trigonometri, Trigonometri Inversi, Logaritmik, Eksponensial Darpublic Nopember 03.arpublic.com 3. Turunan Fungsi Trigonometri, Trigonometri Inversi, Logaritmik, Eksponensial 3.. Turunan Fungsi Trigonometri Jika sin maka sin sin( + ) sin sin cos + cos sin sin Untuk

Lebih terperinci

VEKTOR. Oleh : Musayyanah, S.ST, MT

VEKTOR. Oleh : Musayyanah, S.ST, MT VEKTOR Oleh : Msayyanah, S.ST, MT . ESRN SKLR DN VEKTOR Sifat besaran fisis : esaran Skalar Skalar Vektor esaran yang ckp dinyatakan oleh besarnya saja (besar dinyatakan oleh bilangan dan satan). Contoh

Lebih terperinci

DEFERENSIAL Bab 13. u u. u 2

DEFERENSIAL Bab 13. u u. u 2 DEFERENSIAL Bab Laj perbahan nilai f : f() pada = a ata trnan f pada = a adalah Limit ini disebt deriatif ata trnan f pada = a dan dinyatakan dengan f (a) f (a) = f ( a h) f ( a ) lim it h 0 h secara mm

Lebih terperinci

KEKUATAN BATAS : LENTUR DAN BEBAN LANGSUNG

KEKUATAN BATAS : LENTUR DAN BEBAN LANGSUNG KEKUATAN BATAS : LENTUR DAN BEBAN LANGSUNG (Kolom engan beban eksentris an batang tekan.. Saat ini sema kolom paa strktr portal beton bertlang, an batang-batang strktr lainnya, seperti bentk lengkng, mengalami

Lebih terperinci

BAB VI. FUNGSI TRANSENDEN

BAB VI. FUNGSI TRANSENDEN BAB VI. FUNGSI TRANSENDEN Fungsi Logaritma Natural Fungsi Balikan (Invers) Fungsi Eksponen Natural Fungsi Eksponen Umum an Fungsi Logaritma Umum Masalah Laju Perubahan Seerhana Fungsi Trigonometri Balikan

Lebih terperinci

III PEMODELAN SISTEM PENDULUM

III PEMODELAN SISTEM PENDULUM 14 III PEMODELAN SISTEM PENDULUM Penelitian ini membahas keterkontrolan sistem pendlm, dengan menentkan model matematika dari beberapa sistem pendlm, dan dilakkan analisis dan menyederhanakan permasalahan

Lebih terperinci

, serta notasi turunan total ρ

, serta notasi turunan total ρ LANDASAN TEORI Lanasan teori ini berasarkan rujukan Jaharuin (4 an Groesen et al (99, berisi penurunan persamaan asar fluia ieal, sarat batas fluia ua lapisan an sistem Hamiltonian Penentuan karakteristik

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hendra Gnawan Semester II, 2016/2017 3 Maret 2017 Kliah yang Lal 10.1-2 Parabola, Elips, dan Hiperbola 10.4 Persamaan Parametrik Kra di Bidang 10.5 Sistem Koordinat Polar 11.1 Sistem

Lebih terperinci

TURUNAN FUNGSI IKA ARFIANI, S.T.

TURUNAN FUNGSI IKA ARFIANI, S.T. TURUNAN FUNGSI IKA ARFIANI, S.T. DEFINISI TURUNAN Turunan dari ( terhadap dideinisikan dengan: d d ' ' ( lim h 0 ( h-( h RUMUS DASAR TURUNAN ' n n n k k ' 0 k ' u' nu u n n '( ( '( ( '( ( '( ( 0 '( ( n

Lebih terperinci

BUKU AJAR METODE ELEMEN HINGGA

BUKU AJAR METODE ELEMEN HINGGA BUKU AJA ETODE EEEN HINGGA Diringkas oleh : JUUSAN TEKNIK ESIN FAKUTAS TEKNIK STUKTU TUSS.. Deinisi Umm Trss adalah strktr yang terdiri atas batang-batang lrs yang disambng pada titik perpotongan dengan

Lebih terperinci

A. Penggunaan Konsep dan Aturan Turunan

A. Penggunaan Konsep dan Aturan Turunan A. Penggunaan Konsep dan Aturan Turunan. Turunan Fungsi Aljabar a. Mengitung Limit Fungsi yang Mengara ke Konsep Turunan Dari grafik di bawa ini, diketaui fungsi y f() pada interval k < < k +, seingga

Lebih terperinci

II LANDASAN TEORI. menyatakan koordinat horizontal, koordinat vertikal, dan waktu. dan hukum kekekalan momentum memberikan persamaan Euler berikut

II LANDASAN TEORI. menyatakan koordinat horizontal, koordinat vertikal, dan waktu. dan hukum kekekalan momentum memberikan persamaan Euler berikut II LANDASAN EORI Paa bagian ini akan iraikan beberapa konsep ang menasari peneliian ini. Konsep inamika flia akan isajikan ari psaka [5] an [] seangkan eori sisem amilonian irangkm ari psaka [7] an [8]..

Lebih terperinci

Solusi Tutorial 6 Matematika 1A

Solusi Tutorial 6 Matematika 1A Solusi Tutorial 6 Matematika A Arif Nurwahi ) Pernyataan benar atau salah. a) Salah, sebab ln tiak terefinisi untuk 0. b) Betul. Seerhananya, titik belok apat ikatakan sebagai lokasi perubahan kecekungan.

Lebih terperinci

VIII. ALIRAN MELALUI LUBANG DAN PELUAP

VIII. ALIRAN MELALUI LUBANG DAN PELUAP VIII. ALIRAN MELALUI LUBANG DAN PELUAP 8.. Penahuluan Lubang aalah bukaan paa ining atau asar tangki imana zat cair mengalir melaluinya. Lubang tersebut bisa berbentuk segi empat, segi tiga, ataupun lingkaran.

Lebih terperinci

Hendra Gunawan. 5 Maret 2014

Hendra Gunawan. 5 Maret 2014 MA101 MATEMATIKA A Hendra Gnawan Semester II, 013/014 5 Maret 014 Kliah yang Lal 10.1 Parabola, aboa, Elips, danhiperbola a 10.4 Persamaan Parametrik Kra di Bidang 10.5 Sistem Koordinat Polar 11.1 Sistem

Lebih terperinci

FUNGSI TRANSENDEN J.M. TUWANKOTTA

FUNGSI TRANSENDEN J.M. TUWANKOTTA FUNGSI TRANSENDEN J.M. TUWANKOTTA. Penekatan Kalkulus: menefinisikan fungsi logaritma natural sebagai integral Panang sebuah fungsi yang iefinisikan engan menggunakan integral: (.) L(x) = t t. Dari Teorema

Lebih terperinci

1. Persamaan Energi Total

1. Persamaan Energi Total . Persamaan Eneri Total Eneri total adala jmla eneri karena ketinian elevasi (potential enery), eneri tekanan (pressre enery), dan eneri kecepatan (velocity ead). Prinsip eneri kekal ini lebi dikenal denan

Lebih terperinci

Penerapan Masalah Transportasi

Penerapan Masalah Transportasi KA4 RESEARCH OPERATIONAL Penerapan Masalah Transportasi DISUSUN OLEH : HERAWATI 008959 JAKA HUSEN 08055 HAPPY GEMELI QUANUARI 00890 INDRA MOCHAMMAD YUSUF 0800 BAB I PENDAHULUAN.. Pengertian Riset Operasi

Lebih terperinci

Fisika Ebtanas

Fisika Ebtanas isika Ebtanas 1996 1 1. Di bawah ini yang merpakan kelompok besaran trnan adalah A. momentm, wakt, kat ars B. kecepatan, saha, massa C. energi, saha, wakt ptar D. wakt ptar, panjang, massa E. momen gaya,

Lebih terperinci

TURUNAN FUNGSI IKA ARFIANI, S.T.

TURUNAN FUNGSI IKA ARFIANI, S.T. TURUNAN FUNGSI IKA ARFIANI, S.T. DEFINISI TURUNAN Turunan dari ( terhadap dideinisikan dengan: d d ( lim h 0 ( h-( h RUMUS DASAR TURUNAN n n n k k 0 k u nu u n n ( ( ( ( ( ( ( ( 0 ( ( n n n c RUMUS JUMLAH

Lebih terperinci

TURUNAN FUNGSI. 1. Turunan Fungsi

TURUNAN FUNGSI. 1. Turunan Fungsi TURUNAN FUNGSI. Turunan Fungsi Turunan fungsi f disembarang titik dilambangkan dengan f () dengan definisi f ( ) f ( ) f (). Proses mencari f dari f disebut penurunan; dikatakan bawa f diturunkan untuk

Lebih terperinci

Turunan Fungsi. Penggunaan Konsep dan Aturan Turunan ; Penggunaan Turunan untuk Menentukan Karakteristik Suatu Fungsi

Turunan Fungsi. Penggunaan Konsep dan Aturan Turunan ; Penggunaan Turunan untuk Menentukan Karakteristik Suatu Fungsi 8 Penggunaan Konsep dan Aturan Turunan ; Penggunaan Turunan untuk Menentukan Karakteristik Suatu Fungsi ; Model Matematika dari Masala yang Berkaitan dengan ; Ekstrim Fungsi Model Matematika dari Masala

Lebih terperinci

Persamaan gerak dalam bentuk vektor diberikan oleh: dv dt dimana : (1) v = gaya coriolis. = gaya gravitasi

Persamaan gerak dalam bentuk vektor diberikan oleh: dv dt dimana : (1) v = gaya coriolis. = gaya gravitasi 1 ARUS LAUT Ada gaa ang berperan dalam ars ait: gaa-gaa primer dan gaa-gaa seknder. Gaa primer berperan dalam menggerakkan ars dan menentkan kecepatanna, gaa primer ini antara lain adalah: stress angin,

Lebih terperinci

BAB III PENDEKATAN TEORI

BAB III PENDEKATAN TEORI 9 BAB III PENDEKAAN EORI 3.1. eknik Simlasi CFD Comptational Flid Dnamics (CFD) adalah ilm ang mempelajari cara memprediksi aliran flida, perpindahan panas, rekasi kimia, dan fenomena lainna dengan menelesaikan

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCN PELKSNN PEMBELJRN Mata Pelajaran : Matematika Kelas/ Semester: XI Program IP/ lokasi Waktu: 8 jam Pelajaran (4 Pertemuan). Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam

Lebih terperinci

8. FUNGSI TRANSENDEN

8. FUNGSI TRANSENDEN 8. FUNGSI TRANSENDEN 8. Fngsi Invrs Misalkan : D R dngan Dinisi 8. Fngsi = disbt sat-sat jika = v maka = v ata jika v maka v v ngsi = sat-sat ngsi =- sat-sat ngsi tidak sat-sat INF8 Kalkls Dasar Scara

Lebih terperinci

Sudaryatno Sudirham. Studi Mandiri. Diferensiasi. Darpublic

Sudaryatno Sudirham. Studi Mandiri. Diferensiasi. Darpublic Suaratno Suirham Stui Maniri Diferensiasi ii Darpublic BAB 3 Turunan Fungsi-Fungsi (3 (Fungsi-Fungsi Trigonometri, Trigonometri Inersi, Logaritmik, Eksponensial 3.. Turunan Fungsi Trigonometri Jika maka

Lebih terperinci

Solusi Sistem Persamaan Linear Fuzzy

Solusi Sistem Persamaan Linear Fuzzy Jrnal Matematika Vol. 16, No. 2, November 2017 ISSN: 1412-5056 / 2598-8980 http://ejornal.nisba.ac.id Diterima: 14/08/2017 Disetji: 20/10/2017 Pblikasi Online: 28/11/2017 Solsi Sistem Persamaan Linear

Lebih terperinci

BAB XV DIFERENSIAL (Turunan)

BAB XV DIFERENSIAL (Turunan) BAB XV DIFERENSIAL (Trnan) 7. y co y ' - cosec. y sec y ' sec an 9. y cosec y ' - cosec coan Jika y f(), maka rnan peramanya dinoasikan dy dengan y f ' () d dy Lim f ( + h) f ( ) dengan d h 0 h Penggnaan

Lebih terperinci

EKONOMETRIKA PERSAMAAN SIMULTAN

EKONOMETRIKA PERSAMAAN SIMULTAN EKONOMETRIKA PERSAMAAN SIMULTAN OLEH KELOMPOK 5 DEKI D. TAPATAB JUMASNI K. TANEO MERSY C. PELT DELFIANA N. ERO GERARDUS V. META ARMY A. MBATU SILVESTER LANGKAMANG FAKULTAS PERTANIAN UNIVERSITAS NUSA CENDANA

Lebih terperinci

= + atau = - 2. TURUNAN 2.1 Definisi Turunan fungsi f adalah fungsi yang nilainya di setiap bilangan sebarang c di dalam D f diberikan oleh

= + atau = - 2. TURUNAN 2.1 Definisi Turunan fungsi f adalah fungsi yang nilainya di setiap bilangan sebarang c di dalam D f diberikan oleh JURUSAN PENDIDIKAN MATEMATIKA FPMIPA-UPI BANDUNG HAND OUT TURUNAN DAN DIFERENSIASI OLEH: FIRDAUS-UPI 0716 1. GARIS SINGGUNG 1.1 Definisi Misalkan fungsi f kontinu di c. Garis singgung ( tangent line )

Lebih terperinci

Integrasi 2. Metode Integral Kuadratur Gauss 2 Titik Metode Integral Kuadratur Gauss 3 Titik Contoh Kasus Permasalahan Integrasi.

Integrasi 2. Metode Integral Kuadratur Gauss 2 Titik Metode Integral Kuadratur Gauss 3 Titik Contoh Kasus Permasalahan Integrasi. Interasi Metode Interal Kadratr Gass Titik Metode Interal Kadratr Gass Titik Contoh Kass Permasalahan Interasi Interasi Metode Interasi Gass Metode interasi Gass merpakan metode yan tidak mennakan pembaian

Lebih terperinci

METODE FINITE DIFFERENCE INTERVAL UNTUK MENYELESAIKAN PERSAMAAN PANAS ABSTRACT 1. PENDAHULUAN

METODE FINITE DIFFERENCE INTERVAL UNTUK MENYELESAIKAN PERSAMAAN PANAS ABSTRACT 1. PENDAHULUAN METODE FINITE DIFFERENCE INTERVAL UNTUK MENYELESAIKAN PERSAMAAN PANAS Mardhika WA 1, Syamsdhha 2, Aziskhan 2 mardhikawirahadi@nriacid 1 Mahasiswa Program Stdi S1 Matematika 2 Laboratorim Komptasi Jrsan

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN 3.1 Stdi Pendahlan Langkah aal dalam enelitian ini adalah mencari dan mengmlkan smbersmber seerti: bk, jrnal ata enelitian sebelmna ang mendkng enelitian ini. 3. Tahaan Analisis

Lebih terperinci

Pengembangan Hasil Kali Titik Pada Vektor

Pengembangan Hasil Kali Titik Pada Vektor Pengembangan Hasil Kali Titik Pada Vektor Swandi *, Sri Gemawati 2, Samsdhha 2 Mahasiswa Program Stdi Magister Matematika, Dosen Pendidikan Matematika Uniersitas Pasir Pengaraian 2 Dosen Jrsan Matematika

Lebih terperinci

SEISMIK REFRAKSI (DASAR TEORI & AKUISISI DATA) SUSILAWATI. Fakultas Matematika dan Ilmu Pengetahuan Alam Jurusan Fisika Universitas Sumatera Utara

SEISMIK REFRAKSI (DASAR TEORI & AKUISISI DATA) SUSILAWATI. Fakultas Matematika dan Ilmu Pengetahuan Alam Jurusan Fisika Universitas Sumatera Utara SEISMIK REFRAKSI (DASAR TEORI & AKUISISI DATA) SUSILAWATI Fakltas Matematika an Ilm Pengetahan Alam Jrsan Fisika Universitas Smatera Utara PENDAHULUAN Metoe seismik merpakan salah sat metoe yang sangat

Lebih terperinci

PENYELESAIAN MASALAH KONTROL OPTIMAL KONTINU YANG MEMUAT FAKTOR DISKON

PENYELESAIAN MASALAH KONTROL OPTIMAL KONTINU YANG MEMUAT FAKTOR DISKON Jrnal Matematika UNAND Vol. 2 No. 3 Hal. 157 161 ISSN : 233 291 c Jrsan Matematika FMIPA UNAND PENYELESAIAN MASALAH KONTROL OPTIMAL KONTINU YANG MEMUAT FAKTOR DISKON DALIANI Program Stdi Matematika, Fakltas

Lebih terperinci

Integra. asi 2. Metode Integral Kuadr. ratur Gauss 2 Titik

Integra. asi 2. Metode Integral Kuadr. ratur Gauss 2 Titik Intera asi Metode Interal Kadr ratr Gass Titik Metode Interal Kadratr Gass Titik Contoh Kass Permasalahan Interasi Metode Interasi Gass Metode interasi i Gass merpaka an metode yan tidak mennakan pembaian

Lebih terperinci

Bab 5 RUANG HASIL KALI DALAM

Bab 5 RUANG HASIL KALI DALAM Bab 5 RUANG HASIL KALI DALAM 5 Hasil Kali Dalam Untk memotiasi konsep hasil kali dalam diambil ektor di R dan R sebagai anak panah dengan titik awal di titik asal O = ( ) Panjang sat ektor x di R dan R

Lebih terperinci

4. TURUNAN. MA1114 Kalkulus I 1

4. TURUNAN. MA1114 Kalkulus I 1 4. TURUNAN MA4 Kalkulus I 4. Konsep Turunan 4.. Turunan di satu titik Pendauluan dua masala dalam satu tema a. Garis Sinun Kemirinan tali busur PQ adala : m PQ Jika à, maka tali busur PQ akan beruba menjadi

Lebih terperinci

Korelasi Pasar Modal dalam Ekonofisika

Korelasi Pasar Modal dalam Ekonofisika Korelasi Pasar Modal dalam Ekonofisika Yn Hariadi Dept. Dynamical System Bandng Fe Institte yh@dynsys.bandngfe.net Pendahlan Fenomena ekonomi sebagai kondisi makro yang merpakan hasil interaksi pada level

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV Turunan. Pertemuan 3, 4, 5, 6, 7

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV Turunan. Pertemuan 3, 4, 5, 6, 7 Mata Kuliah : Kalkulus Kode : CIV - 101 SKS : 3 SKS Turunan Pertemuan 3, 4, 5, 6, 7 Kemampuan Akhir ang Diharapkan Mahasiswa mampu : - menjelaskan arti turunan ungsi - mencari turunan ungsi - menggunakan

Lebih terperinci

Analisis Vektor dan Fasor

Analisis Vektor dan Fasor Mol #0 EE83 ELEKTROMGNETIK I nalisis Vekto an Faso Pogam ti 1 Teknik Telekomnikasi Jsan Teknik Elekto - ekola Tinggi Teknologi Telkom anng 006 Otline Penalan ljaba kala ljaba Vekto istem Kooinat Tansfomasi

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA101 MATEMATIKA A Hendra Gunawan Semester II 016/017 4 Maret 017 Kulia ang Lalu 1.1 Fungsi dua atau lebi peuba 1. Turunan Parsial 1.3 Limit dan Kekontinuan 1.4 Turunan ungsi dua peuba 1.5 Turunan berara

Lebih terperinci

KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY IV. TURUNAN

KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY IV. TURUNAN KALKULUS I MUGA4 PROGRAM PERKULIAHAN DASAR DAN UMUM PPDU TELKOM UNIVERSITY IV. TURUNAN Turunan di satu titik Pendahuluan dua masalah dalam satu tema KONSEP TURUNAN a. Garis Singgung Kemiringan tali busur

Lebih terperinci

Pendahuluan Definisi Aturan Problems DERIVATIVE (TURUNAN) Kus Prihantoso Krisnawan. November 18 th, Yogyakarta. Krisnawan Pertemuan 1

Pendahuluan Definisi Aturan Problems DERIVATIVE (TURUNAN) Kus Prihantoso Krisnawan. November 18 th, Yogyakarta. Krisnawan Pertemuan 1 DERIVATIVE (TURUNAN) Kus Prihantoso Krisnawan November 18 th, 2011 Yogyakarta Garis Singgung Garis Singgung Kecepatan Sesaat Garis Singgung Garis Singgung Kecepatan Sesaat Garis Singgung Garis Singgung

Lebih terperinci

Kontrol Optimum pada Model Epidemik SIR dengan Pengaruh Vaksinasi dan Faktor Imigrasi

Kontrol Optimum pada Model Epidemik SIR dengan Pengaruh Vaksinasi dan Faktor Imigrasi Jrnal Matematika Integratif ISSN 4-684 Volme No, Oktober 05, pp - 8 Kontrol Optimm pada Model Epidemik SIR dengan Pengarh Vaksinasi dan Faktor Imigrasi N. Anggriani, A. Spriatna, B. Sbartini, R. Wlantini

Lebih terperinci

PRAKTIKUM OPERASI TEKNIK KIMIA II MODUL 5 BILANGAN REYNOLD

PRAKTIKUM OPERASI TEKNIK KIMIA II MODUL 5 BILANGAN REYNOLD PRAKTIKUM OPERASI TEKNIK KIMIA II MODUL 5 BILANGAN REYNOLD LABORATORIUM RISET DAN OPERASI TEKNIK KIMIA PROGRAM STUDI TEKNIK KIMA FAKULTAS TEKNOLOGI INDUSTRI UPN VETERAN JAWA TIMUR SURABAYA BILANGAN REYNOLD

Lebih terperinci

1. Pada ganbar di bawah, komponen vektor gaya F menurut sumbu x adalah A. ½ 3 F B. ½ 2 F C. ½ F D. ½ F E. ½ 3 F

1. Pada ganbar di bawah, komponen vektor gaya F menurut sumbu x adalah A. ½ 3 F B. ½ 2 F C. ½ F D. ½ F E. ½ 3 F 1 1. Pada ganbar di bawah, komponen vektor gaya F menrt smb x adalah A. ½ 3 F B. ½ F C. ½ F D. ½ F E. ½ 3 F. Benda jath bebas adalah benda yang memiliki: (1) Kecepatan awal nol () Percepatan = percepatan

Lebih terperinci

Bab 5 RUANG HASIL KALI DALAM

Bab 5 RUANG HASIL KALI DALAM Bab 5 RUANG HASIL KALI DALAM 5 Hasil Kali Dalam Untk memotiasi konsep hasil kali dalam diambil ektor di R dan R sebagai anak panah dengan titik awal di titik asal O ( ) Panjang sat ektor x di R dan R dinamakan

Lebih terperinci

FUNGSI LOGARITMA ASLI

FUNGSI LOGARITMA ASLI FUNGSI LOGARITMA ASLI............ Definisi Fungsi logaritma asli, dinyatakan oleh ln, didefinisikan sebagai ln (Daerah asalnya adalah., 0 Turunan Logaritma Asli ln, 0 Lebih umumnya, Jika 0 dan f terdifferensialkan,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Logika Fzzy Pada awalnya sistem logika fzzy diperkenalkan oleh Profesor Lotfi A. Zadeh pada tahn 1965. Konsep fzzy bermla dari himpnan klasik (crisp) yang bersifat tegas ata

Lebih terperinci

CHAPTER 6. INNER PRODUCT SPACE

CHAPTER 6. INNER PRODUCT SPACE CHAPTER 6. INNER PRODUCT SPACE Inner Prodcts Angle and Orthogonality in Inner Prodct Spaces Orthonormal Bases; Gram-Schmidt Process; QR-Decomposition Best Approximation; Least Sqares Orthogonal Matrices;

Lebih terperinci

IV TIGA MODEL ARUS LALU-LINTAS

IV TIGA MODEL ARUS LALU-LINTAS 8 IV TIGA MODEL ARUS LALU-LINTAS Maih berkaitan dengan bab ebelmnya, pada bagian ini akan dibaha tiga model ntk at ar lal-linta yang mengalir pada at ingle link. Model-model terebt terdiri ata da model

Lebih terperinci

DESAIN PENGENDALIAN KETINGGIAN AIR DAN TEMPERATUR UAP PADA SISTEM STEAM DRUM BOILER DENGAN METODE SLIDING MODE CONTROL (SMC)

DESAIN PENGENDALIAN KETINGGIAN AIR DAN TEMPERATUR UAP PADA SISTEM STEAM DRUM BOILER DENGAN METODE SLIDING MODE CONTROL (SMC) Prosiing Seminar Nasional Penelitian, Peniikan an Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 4 Mei 20 DESAIN PENGENDALIAN KEINGGIAN AIR DAN EMPERAUR UAP PADA SISEM SEAM DRUM BOILER DENGAN

Lebih terperinci

BAB III 3. METODOLOGI PENELITIAN

BAB III 3. METODOLOGI PENELITIAN BAB III 3. METODOLOGI PENELITIAN 3.1. PROSEDUR ANALISA Penelitian ini merpakan sebah penelitian simlasi yang menggnakan bantan program MATLAB. Adapn tahapan yang hars dilakkan pada saat menjalankan penlisan

Lebih terperinci

Model Hidrodinamika Pasang Surut Di Perairan Pulau Baai Bengkulu

Model Hidrodinamika Pasang Surut Di Perairan Pulau Baai Bengkulu Jrnal Gradien Vol. No.2 Jli 2005 : 5-55 Model Hidrodinamika Pasang Srt Di Perairan Pla Baai Bengkl Spiyati Jrsan Fisika, Fakltas Matematika dan Ilm Pengetahan Alam, Universitas Bengkl, Indonesia Diterima

Lebih terperinci

1. Perhatikan gambar percobaan vektor gaya resultan dengan menggunakan 3 neraca pegas berikut ini

1. Perhatikan gambar percobaan vektor gaya resultan dengan menggunakan 3 neraca pegas berikut ini 1 1. Perhatikan gambar percobaan vektor gaya resltan dengan menggnakan 3 neraca pegas berikt ini Yang sesai dengan rms vektor gaya resltan secara analitis adalah gambar A. (1), (2) dan (3) D. (1), dan

Lebih terperinci

BAB I PENDAHULUAN. Kelompok II, Teknik Elektro, Unhas

BAB I PENDAHULUAN. Kelompok II, Teknik Elektro, Unhas BAB I PENDAHULUAN A. Latar Belakang Matematika asar II merupakan matakuliah lanjutan ari matematika asar I yang telah ipelajari paa semester sebelumnya. Matematika asar II juga merupakan matakuliah pengantar

Lebih terperinci

Penyelesaian Model Matematika Masalah yang Berkaitan dengan Ekstrim Fungsi dan Penafsirannya

Penyelesaian Model Matematika Masalah yang Berkaitan dengan Ekstrim Fungsi dan Penafsirannya . Tentukan nilai maksimum dan minimum pada interval tertutup [, 5] untuk fungsi f(x) x + 9 x. 4. Suatu kolam ikan dipagari kawat berduri, pagar kawat yang tersedia panjangnya 400 m dan kolam berbentuk

Lebih terperinci

3. RUANG VEKTOR. dan jika k adalah sembarang skalar, maka perkalian skalar ku didefinisikan oleh

3. RUANG VEKTOR. dan jika k adalah sembarang skalar, maka perkalian skalar ku didefinisikan oleh . RUANG VEKTOR. VEKTOR (GEOMETRIK) PENGANTAR Jika n adalah sebah bilangan blat positif maka tpel-terorde (ordered-n-tple) adalah sebah rtan n bilangan riil (a a... a n ). Himpnan sema tpel-terorde dinamakan

Lebih terperinci

Seri : Modul Diskusi Fakultas Ilmu Komputer. FAKULTAS ILMU KOMPUTER Sistem Komputer & Sistem Informasi HANDOUT : KALKULUS DASAR

Seri : Modul Diskusi Fakultas Ilmu Komputer. FAKULTAS ILMU KOMPUTER Sistem Komputer & Sistem Informasi HANDOUT : KALKULUS DASAR Seri : Modul Diskusi Fakultas Ilmu Komputer FAKULTAS ILMU KOMPUTER Sistem Komputer & Sistem Informasi HANDOUT : KALKULUS DASAR Ole : Tony Hartono Bagio 00 KALKULUS DASAR Tony Hartono Bagio KATA PENGANTAR

Lebih terperinci

TURUNAN FUNGSI. turun pada interval 1. x, maka nilai ab... 5

TURUNAN FUNGSI. turun pada interval 1. x, maka nilai ab... 5 TURUNAN FUNGSI. SIMAK UI Matematika Dasar 9, 009 Jika kurva y a b turun pada interval, maka nilai ab... 5 A. B. C. D. E. Solusi: [D] 5 5 5 0 5 5 0 5 0... () y a b y b b a b b 6 6a 0 b 0 b 6a 0 b 5 b a

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4.0. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

FUNGSI LOGARITMA ASLI

FUNGSI LOGARITMA ASLI D.. = D.. = D.. = = 0 D.. = D.. = D.. = 3 FUNGSI LOGARITMA ASLI Definisi Fungsi logaritma asli, dinyatakan oleh ln, didefinisikan sebagai ln = (Daerah asalnya adalah R). t dt, > 0 Turunan Logaritma Asli

Lebih terperinci

LEMBAR KERJA SISWA 1. : Menggunakan Konsep Limit Fungsi Dan Turunan Dalam Pemecahan Masalah

LEMBAR KERJA SISWA 1. : Menggunakan Konsep Limit Fungsi Dan Turunan Dalam Pemecahan Masalah BAB V T U R U N A N 1. Menentukan Laju Perubaan Nilai Fungsi. Menggunakan Aturan Turunan Fungsi Aljabar 3. Menggunakan Rumus Turunan Fungsi Aljabar 4. Menentukan Persamaan Garis Singgung Kurva 5. Fungsi

Lebih terperinci