SOLUSI-SOLUSI PERIODIK PADA PERLUASAN FRACTIONAL VAN-DER POL TAK LINEAR

Ukuran: px
Mulai penontonan dengan halaman:

Download "SOLUSI-SOLUSI PERIODIK PADA PERLUASAN FRACTIONAL VAN-DER POL TAK LINEAR"

Transkripsi

1 Jurnal Maemaika Vol. 8, No., Desember 5: 7-77 SOLUSI-SOLUSI PERIODIK PADA PERLUASAN FRACTIONAL VAN-DER POL TAK LINEAR S. B. Waluya Jurusan Maemaika FMIPA Universias Negeri Semarang Abrac. In his paper will be sudied a Generalized Non Linear Rayleigh Oscillaor. I will be shown ha he recenly developed perurbaion mehod based on inegraing facors can be used o approximae firs inegrals and periodic soluions. No only approximaions of firs inegrals will be given, bu i will also be shown how in a raher efficien way he exisence and sabiliy of ime-periodic soluions can be obained from hese approximaions. Keyword: periodic soluions, perurbaion mehod, Non Linear Rayleigh Oscillaor. PENDAHULUAN Dalam erori Perurbasi persamaan Van der Pol yang mempunyai benuk Y = ε ( Y, (. dimana ε adalah parameer yang cukup kecil yang memenuhi, ε <<, adalah urunan Y erhadap waku, merupakan persamaan yang sanga populer yang dapa memberikan conoh lengkap enang keberadaan dan keunikan (keunggalan suau solusi dari persamaan differensial orde dua yang diperurb (diganggu. Sekarang apakah keberadaan dan keunikan solusi ersebu masih bisa diperahankan manakala suku perurbasinya yakni Y ɺ yang di sebelah kanan dari persamaan (. diperumum yakni menjadi Y ɺ? Perlu dicaa m n bahwa banyak penelii yang elah mempelajari secara deail dan luas dengan berbagai macam meoda dari perluasan persamaan Van der Pol (.. Misalnya saja Mickens dalam makalahnya di [] elah mempelajari secara deail perluasan persamaan (. yakni Y = ε ( Y, (. Dia menggaproksimasi solusi-solusi periodik dengan menggunakan meoda aproksimasi perama dari Krylov dan Bogoliubov. Juga keika perluasan persamaan Van der Pol (. yakni Y = ε ( Y, (. elah dipelajari secara deail oleh Mickens dalam makalahnya [] dengan menggunakan meoda aplikasi dari eorema Lienard-Levinson-Smih. Mickens mengaproksimasi solusi periodik dengan menggunakan meoda harmonic balance. Kemudian dengan menggunakan meoda perurbasi yang didasarkan pada fakor-fakor inegral Waluya dan Van Horssen di [7] memperumum persamaan (. menjadi m n Y = ε ( Y, (.4 dimana m,n Ν. Pengembangan eori perurbasi yakni perurbasi yang didasarkan pada fakor-fakor inegral elah banyak digunakan dalam menganalisa berbagai macam persamaan differensial ak linear (liha [4,5],[7]-[]. Banyak meode-meoda perurbasi lain seperi halnya meoda averaging (liha [6], meoda muliple ime-scale (liha [5, 6], meoda harmonic balance (liha [6] dan yang lainlain yang digunakan oleh banyak penelii unuk menganalisa persamaan diferensial ak linear. Dalam makalah ini akan juga dianalisa perumuman dari persamaan Van der Pol yang berbenuk m n Y ɺ Y = ε ( Y Y ɺ, (.5 dimana m,n Ν dengan menggunakan meoda perurbasi yang didasarkan pada fakor-fakor inegral. Persamaan (.5 merupakan perumuman dari persamaan (. yang elah dielii oleh Mickens dalam ma- 7

2 S. B. Waluya (Solusi-solusi Periodik pada Perluasan Fracional Van der Pol Tak Linear kalahnya []. Makalah ini diuraikan sebagai beriku. Pada bagian ke dua dari makalah ini diunjukkan bagaimana aproksimasi dari inegral-inegral perama dapa dikonsruksi dengan menggunakan meoda perurbasi yang didasarkan pada fakor inegral. Eksisensi dan kesabilan dari solusi periodik dapa diberikan dalam bagian ke iga. Bagian ke empa dari makalah ini berisi penuup.. Aproksimasi Inegral Perama Dalam bagian ini kia akan unjukkan bagaimana meoda perurbasi yang didasarkan pada fakor-fakor inegral dapa dierapkan pada perluasan Fracional Van der Pol ak linear. Perhaikan kembali persamaan perluasan Fracional Van der Pol ak linear m n Xɺ X = ε ( X Xɺ, (. Solusi-solusi anpa gangguan dari (., yakni dengan ε = membenuk sebuah keluarga dari orbi-orbi periodik. Keluarga ini akan memenuhi seluruh bidang phase (phase plane ( X,Xɺ. Seiap orbi periodik bersesuaian dengan sebuah konsana energi E = Xɺ X. Sebuah konsana energi E bersesuaian dengan sebuah sudu phase yang didefinisikan X E ( X,Xɺ ( E, dengan = arcsin (. Kia gunakan ransformasi, dan kia dapakan Eɺ = εxf ɺ = g( E,, (. ɺ = ε X f = g( E,, E m n dimana f = ( X. Dengan mengalikan persamaan perama dan kedua dalam (. dengan fakor-fakor inegral µ dan µ beruru-uru, maka berdasarkan eori dari fakor-fakor inegral yang dinyaakan dalam makalah [4, 5] bahwa µ dan µ harus memenuhi =, = ( µ g µ g, E = ( µ g g. µ (. Dengan memperluas µ dan µ dalam dere pangka dalam ε dan dengan mensubsiusikan g ; g dan perluasan fakorfakor inegral ke dalam (., dan dengan memisahkan dan mengumpulkan sukusuku yang berpangka sama dalamε, kia akhirnya mendapa masalah-masalah O( ε n, unuk n=,,,... (liha juga [4, 5],[8]-[]. Masalah ( ε adalah,, =,,, =,,, =. O (.4 dan unuk n masalah-masalah O( ε adalah,n,n =, µ,n,n = ( µ g g,,n, µ E,n, µ,n = ( µ g g.,n, µ,n, µ,n (.5 dimana ε = g, εg = g. Masalah g,, O(² dalam persamaan (.4 dapa mudah diselesaikan dan menghasilkan µ = h ( E,, µ = h ( E,,, h, h,,, dengan =. Fungsi-fungsi h, dan h, masih sebarang dan sekarang akan dipilih sesederhana mungkin. Kia pilih h, dan h,, dan juga (liha juga [4, 5], [8]-[] µ, =, µ, = (.6 Maka, dari masalah order ε dalam (.5 µ, dan µ, diperoleh n 7

3 Jurnal Maemaika Vol. 8, No., Desember 5: 7-77 = µ ( ( X Xɺ, = µ, ( ( X Xɺ m n n m n n,. (.7 Sebuah aproksimasi F dari sebuah inegral perama F = consan dari sisem (. dapa diperoleh dari (.6, (.7, dan eori dari fakor-fakor inegral yang dinyaakan dalam makalah [4, 5], [8]-[], dan menghasilkan m n n F = E ε ( X Xɺ, (.8 dengan X ɺ = E cos. (.9 Prosedur sederhana unuk mengkonsruksi inegral perama dapa juga diliha dalam makalah-makalah [8]-[]. Seberapa baik F mengaproksimasi F dalam inegral perama F = cons an mengikui dari eorema-eorema yang dinyaakan dalam makalah erdahulu [4, 5],[8]-[]. Dalam kasus ini dapa diunjukkan bahwa (menggunakan eori dalam [4, 5],[8]-[] df = εµ g ( g, εµ, = ε R( E, (. dimana g dan g, dan µ, dan µ, diberikan beruru-uru dengan (. dan (.7. Telah dikeahui bahwa (liha bagian dalam [9] unuk buki dan referensi bahwa sebuah sisem dari dua persamaan diferensial orde sau mempunyai dua, dan idak dapa mempunyai lebih dari dua, inegral-inegral perama secara fungsional. Aproksimasi lain (bebas secara fungsional dari sebuah inegral perama dapa diperoleh dengan mengambil µ, =, µ, = (. dari pada (.6. Masalah O( ε dalam (.5 dapa juga dipecahkan dan menghasilkan m n = X n µ, ( ( ( X Xɺ, E m n = X n µ, ( ( ( X Xɺ. E (. Sebuah aproksimasi F dari sebuah inegral perama F = consan dari sisem (. dapa juga diperoleh dari (., (., dan eori enang fakor-fakor inegral dalam [4,5],[8]-[], dan menghasilkan = X ( m n F E,, ( ε ( ( X Xɺ n E (. Seberapa baik F mengaproksimasi sebuah inegral perama F = cons an mengikui dari eorema-eorema dalam [4,5],[8]-[]. Dalam kasus ini kia punyai df = εµ, g εµ,( g = ε R( E, (.4 dimana g dan g, dan µ, dan µ, diberikan beruru-uru dengan (. dan (... Solusi-solusi Periodik Dalam bagian sebelumnya elah diunjukkan aproksimasi secara asimoik dari inegral-inegral perama. Dalam bagian ini kia akan menunjukkan keberadaan, sabilias solusi periodik ak rivial dengan menggunakan aproksimasi inegral-inegral perama ersebu. Misalkan T < adalah periode dari sebuah solusi periodik dan misalkan c adalah sebuah konsana dalam inegral perama F ( E,,; ε = cons an dimana solusi periodik ada. Perhaikan F = c unuk = dan = T. Kia aproksimasi F dengan F (diberikan dengan (.8, eliminasi c dengan pengurangan, kia kemudian dapakan (menggunakan faka bahwa E ( = E(T unuk sebuah solusi periodik 74

4 S. B. Waluya (Solusi-solusi Periodik pada Perluasan Fracional Van der Pol Tak Linear ε T ( X Xɺ m n n = O( ε X (T m n n ε ( X X dx = O( ε. ɺ X ( (. Tanpa mengurangi keumuman dapa diasumsikan bahwa pada saa = posisi di ( X(,X( ɺ = ( A, dengan A >. Karena sifa simeri dari orbi-orbi yang ak diganggu dalam bidang phase maka kia punyai ( X ( T,X( ɺ T = ( A,. Dari (. dapa kia peroleh ε I( E = ( ε, (. dimana A m n I( E = 4 ( X X Unuk mendapakan sebuah solusi periodik unuk (.5 kia harus menemukan sebuah energi E sedemikian sehingga I(E sama dengan nol (liha juga [7, 8]. Dapa mudah diperiksa bahwa masalah yang sama (yakni, menemukan nilai nol dari I(E diperoleh keika eknik pemeaan Poincar e aau meoda Melnikov dierapkan (liha juga [,6]. Unuk menemukan energi E ini kia ulis kembali I(E dalam (menggunakan (.9 = I ( E I ( E 4I ( E I ( E, (. dimana A m 4 n I( E = ( E X dx, (.4 A m 4 n I( E = X ( E X dx. Dapa diperiksa bahwa E ( = X ɺ ( X( dan E ( = A. Dari (. kia dapa liha bahwa E adalah konsan sampai pada order O( ε dengan skala waku (. Dengan menggunakan ransformasi X = Au dalam (.4 dan menggunakan faka bahwa ɺ dx. E = E( O( ε unuk T dapa mudah diperlihakan dari (.-(.4 bahwa (. dapa diulis dalam p 4ε I( E ( Q = O( ε, (.5 dengan p > dimana J ( m,n Q = E, (.6 J ( m,n dan dimana m m 4 n π Γ ( 4 n 4 n J( m,n = ( u du =, m n Γ ( n m m 4 n π Γ ( 4 n 4 n J( m,n = u ( u du =. m n 4Γ ( n (.7 dengan Γ adalah fungsi gamma. Mudah diliha bahwa J ( m,n > dan J ( m,n > unuk semua nilai m,n N. Mudah juga diliha dari (.6 bahwa dq J ( m,n = >. Ini mengakibakan de J ( m,n bahwa Q adalah monoon naik keras. Karena Q monoon naik keras dalam E kia dapa simpulkan bahwa erdapa dengan unggal, ak rivial nilai E sedemikian sehingga I(E =. Unuk hasil ini dapa disimpulkan (liha juga [[8], secion 4.] bahwa erdapa dengan unggal, ak rivial, sabil solusi periodik unuk (.5. Misalkan bahwa pada =, X( = A dan X ɺ ( = unuk solusi periodik. Maka, X ɺ X = A E (.8 dimana E adalah energi sedemikian sehingga kia punyai solusi periodik. Jelas E memenuhi (liha juga (. dan (.5 m 5 n J ( m,n Γ ( n E = =, (.9 m n J ( m,n Γ ( n p sampai pada O( ε dengan p >. Periode dari solusi periodik dapa dihiung sampai O( ε p dengan p > dari (.8, menghasilkan dx = ± A X, (. 75

5 Jurnal Maemaika Vol. 8, No., Desember 5: 7-77 aau ekuivalen dengan dx = ± A X. (. Kemudian dengan menginegralkan (. erhadap dari = sampai T dan kia peroleh T = π. (. Beberapa phase porrai unuk bebarapa nilai dari m dan n dapa diberikan dalam Gambar. (a m =, n = (b m =, n = (c m =, n = (d m =, n = Gambar. Phase Porrai persamaan perluasan Fracional Van der Pol unuk beberapa nilai m dan n. 4. PENUTUP Telah diujukkan dalam bagian erdahulu bahwa meoda perurbasi yang didasarkan pada fakor inegral dapa digunakan unuk mengaproksimasi inegralinegral perama persamaan (.5 yang merupakan perluasan dari suau persamaan fracional Van der Pol yang elah dielii oleh Mickens dalam makalahnya []. Dalam bab 5 elah diunjukkan bahwa keberadaan dan keunikan dari solusi-solusi periodik dari perluasan fracional Van der Pol persamaan (.5 masih eap dapa diperahankan seperi saa m = n =. Dengan meliha hasil dari meoda ini yakni dapa dierapkan unuk kasus umum, maka perlu dikaji unuk kasus-kasus lain yang lebih besar yang lebih komplek. 5. DAFTAR PUSTAKA [] Arnold, V. I. (978, Ordinary Differenial Equaions, The MIT Press, Cambridge. [] Mickens, R. E. (, Analysis of Non-linear Oscillaors having Non- Polynomial Elasic Terms, Journal of Sound and Vibraion 55: [] Mickens, R. E. (, Fracional Van der Pol Equaions, Journal of Sound and Vibraion 59: [4] Van Horssen, W. T. (999, A Perurbaion Mehod Based on Inegraing Facors, SIAM Journal on Applied Mahemaics 59: [5] Van Horssen, W. T. (999, A Perurbaion Mehod Based on Inegraing Vecors and Muliple Scales, SIAM journal on Applied Mahemaics 59: [6] Verhuls, F. (996, Nonlinear Differenial Equaions and Dynamical Sysems, Springer-Verlag, Berlin. [7] Waluya, S. B., and W. T. Van Horssen (, On he Periodic Soluions of a Generalized Nonlinear Van der Pol Oscillaor, Journal of Sound and Vibraion 68: 9-5. [8] Waluya, S. B., and W. T. Van Horssen (, Asympoic Approximaions of Firs Inegrals for a Nonlinear Oscillaor, Nonlinear Analysis TMA 5: [9] Waluya, S. B., and W. T. Van Horssen,, On Approximaions of Firs Inegrals for a Sysem of Weakly Nonlinear, Coupled Harmonic Oscil- 76

6 S. B. Waluya (Solusi-solusi Periodik pada Perluasan Fracional Van der Pol Tak Linear laors, Nonlinear Dynamics : [] Waluya, S. B., and W. T. Van Horssen,, On Approximaions of Firs Inegrals for Srongly Nonlinear Oscillaors, Nonlinear Dynamics :

BAB 2 RESPONS FUNGSI STEP PADA RANGKAIAN RL DAN RC. Adapun bentuk yang sederhana dari suatu persamaan diferensial orde satu adalah: di dt

BAB 2 RESPONS FUNGSI STEP PADA RANGKAIAN RL DAN RC. Adapun bentuk yang sederhana dari suatu persamaan diferensial orde satu adalah: di dt BAB ESPONS FUNGSI STEP PADA ANGKAIAN DAN C. Persamaan Diferensial Orde Sau Adapun benuk yang sederhana dari suau persamaan ferensial orde sau adalah: 0 a.i a 0 (.) mana a o dan a konsana. Persamaan (.)

Lebih terperinci

Integral dan Persamaan Diferensial

Integral dan Persamaan Diferensial Sudaryano Sudirham Sudi Mandiri Inegral dan Persamaan Diferensial ii Darpublic 4.1. Pengerian BAB 4 Persamaan Diferensial (Orde Sau) Persamaan diferensial adalah suau persamaan di mana erdapa sau aau lebih

Lebih terperinci

Penyelesaian Persamaan Diferensial Hill Dengan Menggunakan Teori Floquet

Penyelesaian Persamaan Diferensial Hill Dengan Menggunakan Teori Floquet JURNAL FOURIER Okober 6, Vol. 5, No., 67-8 ISSN 5-763X; E-ISSN 54-539 Penyelesaian Persamaan Diferensial Hill Dengan Menggunakan eori Floque Syarifah Inayai Program Sudi Maemaika, Fakulas Maemaika dan

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer Silabus : Aljabar Linear Elemener MA SKS Bab I Mariks dan Operasinya Bab II Deerminan Mariks Bab III Sisem Persamaan Linear Bab IV Vekor di Bidang dan di Ruang Bab V Ruang Vekor Bab VI Ruang Hasil Kali

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL LINEAR DENGAN MENGGUNAKAN METODE TRANSFORMASI ARTION-FUNDO. Naufal Helmi, Mariatul Kiftiah, Bayu Prihandono

PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL LINEAR DENGAN MENGGUNAKAN METODE TRANSFORMASI ARTION-FUNDO. Naufal Helmi, Mariatul Kiftiah, Bayu Prihandono Bulein Ilmiah Ma. Sa. dan Terapannya (Bimaser) Volume 5, No. 3 (216), hal 195 24. PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL LINEAR DENGAN MENGGUNAKAN METODE TRANSFORMASI ARTION-FUNDO Naufal Helmi, Mariaul

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 8 VEKTOR DAN NILAI EIGEN /5/7 9.9 Beberapa Aplikasi Ruang Eigen Uji Kesabilan dalam sisem dinamik Opimasi dengan SVD pada pengolahan Cira Sisem Transmisi dan lain-lain.

Lebih terperinci

RANK DARI MATRIKS ATAS RING

RANK DARI MATRIKS ATAS RING Dela-Pi: Jurnal Maemaika dan Pendidikan Maemaika ISSN 089-855X ANK DAI MATIKS ATAS ING Ida Kurnia Waliyani Program Sudi Pendidikan Maemaika Jurusan Pendidikan Maemaika dan Ilmu Pengeahuan Alam FKIP Universias

Lebih terperinci

BAB III METODE PEMULUSAN EKSPONENSIAL TRIPEL DARI WINTER. Metode pemulusan eksponensial telah digunakan selama beberapa tahun

BAB III METODE PEMULUSAN EKSPONENSIAL TRIPEL DARI WINTER. Metode pemulusan eksponensial telah digunakan selama beberapa tahun 43 BAB METODE PEMUUAN EKPONENA TRPE DAR WNTER Meode pemulusan eksponensial elah digunakan selama beberapa ahun sebagai suau meode yang sanga berguna pada begiu banyak siuasi peramalan Pada ahun 957 C C

Lebih terperinci

PENDUGAAN PARAMETER DERET WAKTU HIDDEN MARKOV SATU WAKTU SEBELUMNYA

PENDUGAAN PARAMETER DERET WAKTU HIDDEN MARKOV SATU WAKTU SEBELUMNYA PENDUGAAN PARAMEER DERE WAKU HIDDEN MARKOV SAU WAKU SEBELUMNYA BERLIAN SEIAWAY DAN DIMAS HARI SANOSO Deparemen Maemaika Fakulas Maemaika dan Ilmu Pengeahuan Alam Insiu Peranian Bogor Jl Merani, Kampus

Lebih terperinci

MODUL PERTEMUAN KE 3. MATA KULIAH : FISIKA TERAPAN (2 sks)

MODUL PERTEMUAN KE 3. MATA KULIAH : FISIKA TERAPAN (2 sks) Polieknik Negeri Banjarmasin 4 MODUL PERTEMUAN KE 3 MATA KULIAH : ( sks) MATERI KULIAH: Jarak, Kecepaan dan Percepaan; Gerak Lurus Berauran, Percepaan; Gerak Lurus Berauran, Gerak Lurus Berubah Berauran

Lebih terperinci

LIMIT FUNGSI. 0,9 2,9 0,95 2,95 0,99 2,99 1 Tidak terdefinisi 1,01 3,01 1,05 3,05 1,1 3,1 Gambar 1

LIMIT FUNGSI. 0,9 2,9 0,95 2,95 0,99 2,99 1 Tidak terdefinisi 1,01 3,01 1,05 3,05 1,1 3,1 Gambar 1 LIMIT FUNGSI. Limi f unuk c Tinjau sebuah fungsi f, apakah fungsi f ersebu sama dengan fungsi g -? Daerah asal dari fungsi g adalah semua bilangan real, sedangkan daerah asal fungsi f adalah bilangan real

Lebih terperinci

Analisis Gerak Osilator Harmonik Dengan Gaya pemaksa Bebas Menggunakan Metode Elemen Hingga Dewi Sartika junaid 1,*, Tasrief Surungan 1, Eko Juarlin 1

Analisis Gerak Osilator Harmonik Dengan Gaya pemaksa Bebas Menggunakan Metode Elemen Hingga Dewi Sartika junaid 1,*, Tasrief Surungan 1, Eko Juarlin 1 Analisis Gerak Osilaor Harmonik Dengan Gaya pemaksa Bebas Menggunakan Meode Elemen Hingga Dewi Sarika junaid 1,*, Tasrief Surungan 1, Eko Juarlin 1 1 Jurusan Fisika FMIPA Universias Hasanuddin, Makassar

Lebih terperinci

1.4 Persamaan Schrodinger Bergantung Waktu

1.4 Persamaan Schrodinger Bergantung Waktu .4 Persamaan Schrodinger Berganung Waku Mekanika klasik aau mekanika Newon sanga sukses dalam mendeskripsi gerak makroskopis, eapi gagal dalam mendeskripsi gerak mikroskopis. Gerak mikroskopis membuuhkan

Lebih terperinci

PENGGUNAAN METODE HOMOTOPI UNTUK MENYELESAIKAN MODEL ALIRAN POLUTAN DI TIGA DANAU YANG SALING TERHUBUNG ANDRI TRI WIBOWO

PENGGUNAAN METODE HOMOTOPI UNTUK MENYELESAIKAN MODEL ALIRAN POLUTAN DI TIGA DANAU YANG SALING TERHUBUNG ANDRI TRI WIBOWO PENGGUNAAN METODE HOMOTOPI UNTUK MENYELESAIKAN MODEL ALIRAN POLUTAN DI TIGA DANAU YANG SALING TERHUBUNG ANDRI TRI WIBOWO DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN

Lebih terperinci

BAB III HASIL DAN PEMBAHASAN. A. Permasalahan Nyata Penyebaran Penyakit Tuberculosis

BAB III HASIL DAN PEMBAHASAN. A. Permasalahan Nyata Penyebaran Penyakit Tuberculosis BAB III HASIL DAN PEMBAHASAN A. Permasalahan Nyaa Penyebaran Penyaki Tuberculosis Tuberculosis merupakan salah sau penyaki menular yang disebabkan oleh bakeri Mycobacerium Tuberculosis. Penularan penyaki

Lebih terperinci

Jurusan Teknik Sipil Fakultas Teknik Sipil dan Perencanaan Universitas Mercu Buana MODUL PERTEMUAN KE 3. MATA KULIAH : FISIKA DASAR (4 sks)

Jurusan Teknik Sipil Fakultas Teknik Sipil dan Perencanaan Universitas Mercu Buana MODUL PERTEMUAN KE 3. MATA KULIAH : FISIKA DASAR (4 sks) MODUL PERTEMUAN KE 3 MATA KULIAH : (4 sks) MATERI KULIAH: Jarak, Kecepaan dan Percepaan; Gerak Lurus Berauran, Percepaan; Gerak Lurus Berauran, Gerak Lurus Berubah Berauran POKOK BAHASAN: GERAK LURUS 3-1

Lebih terperinci

PENYELESAIAN SISTEM DESKRIPTOR KONTINU

PENYELESAIAN SISTEM DESKRIPTOR KONTINU LEMMA VOL I NO. 2, MEI 215 PENYELESAIAN SISTEM DESKRIPTOR KONTINU Siskha Handayani STKIP PGRI Sumaera Bara Email: siskhandayani@yahoo.com Absrak. Dalam peneliian ini akan dibahas penyelesaian dari sisem

Lebih terperinci

BAB KINEMATIKA DENGAN ANALISIS VEKTOR

BAB KINEMATIKA DENGAN ANALISIS VEKTOR BAB KINEMATIKA DENGAN ANALISIS VEKTOR Karakerisik gerak pada bidang melibakan analisis vekor dua dimensi, dimana vekor posisi, perpindahan, kecepaan, dan percepaan dinyaakan dalam suau vekor sauan i (sumbu

Lebih terperinci

Darpublic Nopember 2013

Darpublic Nopember 2013 Darpublic Nopember 01 www.darpublic.com 4.1. Pengerian 4. Persamaan Diferensial (Orde Sau) Sudarano Sudirham Persamaan diferensial adalah suau persamaan di mana erdapa sau aau lebih urunan fungsi. Persamaan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Laar Belakang Masalah Dalam sisem perekonomian suau perusahaan, ingka perumbuhan ekonomi sanga mempengaruhi kemajuan perusahaan pada masa yang akan daang. Pendapaan dan invesasi merupakan

Lebih terperinci

Pemodelan Data Runtun Waktu : Kasus Data Tingkat Pengangguran di Amerika Serikat pada Tahun

Pemodelan Data Runtun Waktu : Kasus Data Tingkat Pengangguran di Amerika Serikat pada Tahun Pemodelan Daa Runun Waku : Kasus Daa Tingka Pengangguran di Amerika Serika pada Tahun 948 978. Adi Seiawan Program Sudi Maemaika, Fakulas Sains dan Maemaika Universias Krisen Saya Wacana, Jl. Diponegoro

Lebih terperinci

BAB 7 NILAI EIGEN DAN VEKTOR EIGEN. Dr. Ir. Abdul Wahid Surhim, MT.

BAB 7 NILAI EIGEN DAN VEKTOR EIGEN. Dr. Ir. Abdul Wahid Surhim, MT. BAB 7 NILAI EIGEN DAN VEKTOR EIGEN Dr. Ir. Abdul Wahid Surhim, MT. KERANGKA PEMBAHASAN. Nilai Eigen dan Vekor Eigen. Diagonalisasi. Diagonalisasi secara Orogonal 7. NILAI EIGEN DAN VEKTOR EIGEN Definisi

Lebih terperinci

Pekan #3. Osilasi. F = ma mẍ + kx = 0. (2)

Pekan #3. Osilasi. F = ma mẍ + kx = 0. (2) FI Mekanika B Sem. 7- Pekan #3 Osilasi Persamaan diferensial linear Misal kia memiliki sebuah fungsi berganung waku (. Persamaan diferensial linear dalam adalah persamaan yang mengandung variabel dan urunannya

Lebih terperinci

PERSAMAAN GERAK VEKTOR SATUAN. / i / = / j / = / k / = 1

PERSAMAAN GERAK VEKTOR SATUAN. / i / = / j / = / k / = 1 PERSAMAAN GERAK Posisi iik maeri dapa dinyaakan dengan sebuah VEKTOR, baik pada suau bidang daar maupun dalam bidang ruang. Vekor yang dipergunakan unuk menenukan posisi disebu VEKTOR POSISI yang diulis

Lebih terperinci

Eksak Period dari Solusi Periodik untuk Sebuah Osilator Tak Linear

Eksak Period dari Solusi Periodik untuk Sebuah Osilator Tak Linear Eksak Period dari Solusi Periodik untuk Sebuah Osilator Tak Linear S.B. Waluya Jurusan Matematika FMIP Universitas Negeri Semarang bstrak. Dalam makalah ini akan dibahas sebuah oscilator taklinear dalam

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LADASA TEORI 2.1 Pengerian Peramalan Peramalan (forecasing) adalah suau kegiaan yang memperkirakan apa yang akan erjadi pada masa yang akan daang. Meode peramalan merupakan cara unuk memperkirakan

Lebih terperinci

BAB 2 KINEMATIKA. A. Posisi, Jarak, dan Perpindahan

BAB 2 KINEMATIKA. A. Posisi, Jarak, dan Perpindahan BAB 2 KINEMATIKA Tujuan Pembelajaran 1. Menjelaskan perbedaan jarak dengan perpindahan, dan kelajuan dengan kecepaan 2. Menyelidiki hubungan posisi, kecepaan, dan percepaan erhadap waku pada gerak lurus

Lebih terperinci

1 dz =... Materi XII. Tinjaulah integral

1 dz =... Materi XII. Tinjaulah integral Maeri XII Tujuan :. Mahasiswa dapa memahami menyelesiakan persamaan inegral yang lebih kompleks. Mahasiswa mampunyelesiakan persamaan yang lebih rumi 3. Mahasiswa mengimplemenasikan konsep inegral pada

Lebih terperinci

x 4 x 3 x 2 x 5 O x 1 1 Posisi, perpindahan, jarak x 1 t 5 t 4 t 3 t 2 t 1 FI1101 Fisika Dasar IA Pekan #1: Kinematika Satu Dimensi Dr.

x 4 x 3 x 2 x 5 O x 1 1 Posisi, perpindahan, jarak x 1 t 5 t 4 t 3 t 2 t 1 FI1101 Fisika Dasar IA Pekan #1: Kinematika Satu Dimensi Dr. Pekan #1: Kinemaika Sau Dimensi 1 Posisi, perpindahan, jarak Tinjau suau benda yang bergerak lurus pada suau arah erenu. Misalnya, ada sebuah mobil yang dapa bergerak maju aau mundur pada suau jalan lurus.

Lebih terperinci

PEMODELAN NILAI TUKAR RUPIAH TERHADAP $US MENGGUNAKAN DERET WAKTU HIDDEN MARKOV SATU WAKTU SEBELUMNYA 1. PENDAHULUAN

PEMODELAN NILAI TUKAR RUPIAH TERHADAP $US MENGGUNAKAN DERET WAKTU HIDDEN MARKOV SATU WAKTU SEBELUMNYA 1. PENDAHULUAN PEMODELAN NILAI UKAR RUPIAH ERHADAP $US MENGGUNAKAN DERE WAKU HIDDEN MARKOV SAU WAKU SEBELUMNYA BERLIAN SEIAWAY, DIMAS HARI SANOSO, N. K. KUHA ARDANA Deparemen Maemaika Fakulas Maemaika dan Ilmu Pengeahuan

Lebih terperinci

III. PEMODELAN HARGA PENGGUNAAN INTERNET

III. PEMODELAN HARGA PENGGUNAAN INTERNET 8 III EMODELAN HARGA ENGGUNAAN INTERNET 3 Asumsi dan Model ada peneliian ini diperhaikan beberapa asumsi yaiu sebagai beriku: Waku anarkedaangan menyebar eksponensial dengan raaan λ - (laju kedaangan adalah

Lebih terperinci

Pencarian Solusi Persamaan Diferensial Parsial Non Linier menggunakan Metode Transformasi Pertubasi Homotopi dan Metode Dekomposisi Adomian

Pencarian Solusi Persamaan Diferensial Parsial Non Linier menggunakan Metode Transformasi Pertubasi Homotopi dan Metode Dekomposisi Adomian Jurnal Kubik, Volume No. 1 (17) ISSN : 338-896 Pencarian Solusi Persamaan Diferensial Parsial Non Linier menggunakan Meode Transformasi Perubasi Homoopi dan Meode Dekomposisi Adomian Feni Sii Fahonah 1,

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang

BAB 2 TINJAUAN TEORITIS. Kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang BAB 2 TINJAUAN TEORITIS 2.1 Pengerian dan Manfaa Peramalan Kegiaan unuk mempeirakan apa yang akan erjadi pada masa yang akan daang disebu peramalan (forecasing). Sedangkan ramalan adalah suau kondisi yang

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA101 MATEMATIKA A Hendra Gunawan Semeser II, 016/017 9 Mare 017 Kuliah yang Lalu 11 Fungsi dua (aau lebih) peubah 1 Turunan Parsial 13 Limi dan Kekoninuan 14 Turunan ungsi dua peubah 15 Turunan berarah

Lebih terperinci

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang BAB 2 LANDASAN TEORI 2.1 Pengerian Peramalan Peramalan adalah kegiaan unuk memperkirakan apa yang akan erjadi di masa yang akan daang. Sedangkan ramalan adalah suau aau kondisi yang diperkirakan akan erjadi

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t TKE 305 ISYARAT DAN SISTEM B a b I s y a r a Indah Susilawai, S.T., M.Eng. Program Sudi Teknik Elekro Fakulas Teknik dan Ilmu Kompuer Universias Mercu Buana Yogyakara 009 BAB I I S Y A R A T Tujuan Insruksional.

Lebih terperinci

KARAKTERISTIK UMUR PRODUK PADA MODEL WEIBULL. Sudarno Staf Pengajar Program Studi Statistika FMIPA UNDIP

KARAKTERISTIK UMUR PRODUK PADA MODEL WEIBULL. Sudarno Staf Pengajar Program Studi Statistika FMIPA UNDIP Karakerisik Umur Produk (Sudarno) KARAKTERISTIK UMUR PRODUK PADA MODEL WEIBULL Sudarno Saf Pengajar Program Sudi Saisika FMIPA UNDIP Absrac Long life of produc can reflec is qualiy. Generally, good producs

Lebih terperinci

BAB 4 PENGANALISAAN RANGKAIAN DENGAN PERSAMAAN DIFERENSIAL ORDE DUA ATAU LEBIH TINGGI

BAB 4 PENGANALISAAN RANGKAIAN DENGAN PERSAMAAN DIFERENSIAL ORDE DUA ATAU LEBIH TINGGI BAB 4 PENANAISAAN RANKAIAN DENAN PERSAMAAN DIFERENSIA ORDE DUA ATAU EBIH TINI 4. Pendahuluan Persamaan-persamaan ferensial yang pergunakan pada penganalisaan yang lalu hanya erbaas pada persamaan-persamaan

Lebih terperinci

BAB II TINJAUAN TEORITIS

BAB II TINJAUAN TEORITIS BAB II TIJAUA TEORITIS 2.1 Peramalan (Forecasing) 2.1.1 Pengerian Peramalan Peramalan dapa diarikan sebagai beriku: a. Perkiraan aau dugaan mengenai erjadinya suau kejadian aau perisiwa di waku yang akan

Lebih terperinci

BAB 2 LANDASAN TEORI. Metode Peramalan merupakan bagian dari ilmu Statistika. Salah satu metode

BAB 2 LANDASAN TEORI. Metode Peramalan merupakan bagian dari ilmu Statistika. Salah satu metode 20 BAB 2 LADASA TEORI 2.1. Pengerian Peramalan Meode Peramalan merupakan bagian dari ilmu Saisika. Salah sau meode peramalan adalah dere waku. Meode ini disebu sebagai meode peramalan dere waku karena

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 11 BAB I PENDAHULUAN 1.1 Laar Belakang Salah sau masalah analisis persediaan adalah kesulian dalam menenukan reorder poin (iik pemesanan kembali). Reorder poin diperlukan unuk mencegah erjadinya kehabisan

Lebih terperinci

PENGGUNAAN KONSEP FUNGSI CONVEX UNTUK MENENTUKAN SENSITIVITAS HARGA OBLIGASI

PENGGUNAAN KONSEP FUNGSI CONVEX UNTUK MENENTUKAN SENSITIVITAS HARGA OBLIGASI PENGGUNAAN ONSEP FUNGSI CONVEX UNU MENENUAN SENSIIVIAS HARGA OBLIGASI 1 Zelmi Widyanuara, 2 Ei urniai, Dra., M.Si., 3 Icih Sukarsih, S.Si., M.Si. Maemaika, Universias Islam Bandung, Jl. amansari No.1 Bandung

Lebih terperinci

I. PENDAHULUAN II. LANDASAN TEORI

I. PENDAHULUAN II. LANDASAN TEORI I. PENDAHULUAN. Laar Belakang Menuru Sharpe e al (993), invesasi adalah mengorbankan ase yang dimiliki sekarang guna mendapakan ase pada masa mendaang yang enu saja dengan jumlah yang lebih besar. Invesasi

Lebih terperinci

Persamaan Differensial Parsial Difusi Homogen pada Selang. dengan Kondisi Batas Dirichlet dan Neumann

Persamaan Differensial Parsial Difusi Homogen pada Selang. dengan Kondisi Batas Dirichlet dan Neumann Okober 16, Vol. 1, No.1. ISSN: 57-618 Persamaan Differensial Parsial Difusi Homogen pada Selang, dengan Kondisi Baas Dirichle dan Neumann Rukmono Budi Uomo Universias Muhammadiyah Tangerang rukmono.budi.u@mail.ugm.ac.id

Lebih terperinci

BAB II LANDASAN TEORI. Peramalan (Forecasting) adalah suatu kegiatan yang mengestimasi apa yang akan

BAB II LANDASAN TEORI. Peramalan (Forecasting) adalah suatu kegiatan yang mengestimasi apa yang akan BAB II LADASA TEORI 2.1 Pengerian peramalan (Forecasing) Peramalan (Forecasing) adalah suau kegiaan yang mengesimasi apa yang akan erjadi pada masa yang akan daang dengan waku yang relaif lama (Assauri,

Lebih terperinci

PELATIHAN STOCK ASSESSMENT

PELATIHAN STOCK ASSESSMENT PELATIHA STOCK ASSESSMET Modul 5 PERTUMBUHA Mennofaria Boer Kiagus Abdul Aziz Maeri Pelaihan Sock Assessmen Donggala, 1-14 Sepember 27 DIAS PERIKAA DA KELAUTA KABUPATE DOGGALA bekerjasama dengan PKSPL

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 9 TKE 35 ISYARAT DAN SISTEM B a b I s y a r a (bagian 2) Indah Susilawai, S.T., M.Eng. Program Sudi Teknik Elekro Fakulas Teknik dan Ilmu Kompuer Universias Mercu Buana Yogyakara 29 2.4. Isyara Periodik

Lebih terperinci

PELABELAN TOTAL (a, d)-sisi ANTIAJAIB SUPER PADA K 1,m K 1,n untuk d = 1 atau d = 2

PELABELAN TOTAL (a, d)-sisi ANTIAJAIB SUPER PADA K 1,m K 1,n untuk d = 1 atau d = 2 Jurnal Maemaika UNAND Vol. No. 1 Hal. 3 36 ISSN : 303 910 c Jurusan Maemaika FMIPA UNAND PELABELAN TOTAL (a, d)-sisi ANTIAJAIB SUPER PADA K 1,m K 1,n unuk d = 1 aau d = DINA YELNI Program Sudi Maemaika,

Lebih terperinci

ANALISIS STABILITAS DAN PENAKSIRAN PARAMETER MODEL RENDLEMAN-BARTTER

ANALISIS STABILITAS DAN PENAKSIRAN PARAMETER MODEL RENDLEMAN-BARTTER ANALISIS STABILITAS DAN PENAKSIRAN PARAMETER MODEL RENDLEMAN-BARTTER Murni 1 dan Gao F. Herono 1, Program Magiser Maemaika, Deparemen maemaika FMIPA UI e-mail 1 : murni@ui.ac.id, e-mail : gao-f1@ui.ac.id

Lebih terperinci

Hubungan antara Keterobservasian dan Keterkonstruksian Sistem Linier Kontinu Bergantung Waktu

Hubungan antara Keterobservasian dan Keterkonstruksian Sistem Linier Kontinu Bergantung Waktu Mah Educa Jurnal () (7): 86-95 Jur na l Maem aika Pend i di ka n Maema i ka Email: mejuinibpag@gmailcm Hubungan anara Keerbservasian Keerknsruksian Sisem Linier Kninu Berganung Waku Ezhari Asfa ani adris

Lebih terperinci

Bilangan Dominasi Jarak Dua Pada Graf Hasil Operasi Amalgamasi

Bilangan Dominasi Jarak Dua Pada Graf Hasil Operasi Amalgamasi Bilangan Dominasi Jarak Dua Pada Graf Hasil Operasi Amalgamasi Ilham Saifudin ) ) Jurusan Teknik Informaika, Fakulas Teknik, Universias Muhammadiyah Jember Jl. Karimaa No. 49 Jember Kode Pos 68 Email :

Lebih terperinci

BAB 4 ANALISIS DAN PEMBAHASAN

BAB 4 ANALISIS DAN PEMBAHASAN BAB 4 ANALISIS DAN EMBAHASAN 4.1 Karakerisik dan Obyek eneliian Secara garis besar profil daa merupakan daa sekunder di peroleh dari pusa daa saisik bursa efek Indonesia yang elah di publikasi, daa di

Lebih terperinci

PENGUJIAN HIPOTESIS. pernyataan atau dugaan mengenai satu atau lebih populasi.

PENGUJIAN HIPOTESIS. pernyataan atau dugaan mengenai satu atau lebih populasi. PENGUJIAN HIPOTESIS 1. PENDAHULUAN Hipoesis Saisik : pernyaaan aau dugaan mengenai sau aau lebih populasi. Pengujian hipoesis berhubungan dengan penerimaan aau penolakan suau hipoesis. Kebenaran (benar

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Laar Belakang Pada dasarnya peramalan adalah merupakan suau dugaan aau perkiraan enang erjadinya suau keadaan di masa depan. Akan eapi dengan menggunakan meodemeode erenu peramalan

Lebih terperinci

BAB III RUNTUN WAKTU MUSIMAN MULTIPLIKATIF

BAB III RUNTUN WAKTU MUSIMAN MULTIPLIKATIF BAB III RUNTUN WAKTU MUSIMAN MULTIPLIKATIF Pada bab ini akan dibahas mengenai sifa-sifa dari model runun waku musiman muliplikaif dan pemakaian model ersebu menggunakan meode Box- Jenkins beberapa ahap

Lebih terperinci

APLIKASI PEMULUSAN EKSPONENSIAL DARI BROWN DAN DARI HOLT UNTUK DATA YANG MEMUAT TREND

APLIKASI PEMULUSAN EKSPONENSIAL DARI BROWN DAN DARI HOLT UNTUK DATA YANG MEMUAT TREND APLIKASI PEMULUSAN EKSPONENSIAL DARI BROWN DAN DARI HOLT UNTUK DATA YANG MEMUAT TREND Noeryani 1, Ely Okafiani 2, Fera Andriyani 3 1,2,3) Jurusan maemaika, Fakulas Sains Terapan, Insiu Sains & Teknologi

Lebih terperinci

MODEL MATEMATIKA GERAK PENDULUM DENGAN MEMPERTIMBANGKAN GAYA GESEK UDARA

MODEL MATEMATIKA GERAK PENDULUM DENGAN MEMPERTIMBANGKAN GAYA GESEK UDARA JMP : Vol. 8 No., Des. 06, hal. 9-3 ISSN 085-456 MODEL MATEMATIKA GERAK PENDULUM DENGAN MEMPERTIMBANGKAN GAYA GESEK UDARA Rukmono Budi Uomo Universias Muhammadiyah Tangerang Email: rukmono.budi.u@mail.ugm.ac.id

Lebih terperinci

BAB III METODE DEKOMPOSISI CENSUS II. Data deret waktu adalah data yang dikumpulkan dari waktu ke waktu

BAB III METODE DEKOMPOSISI CENSUS II. Data deret waktu adalah data yang dikumpulkan dari waktu ke waktu BAB III METODE DEKOMPOSISI CENSUS II 3.1 Pendahuluan Daa dere waku adalah daa yang dikumpulkan dari waku ke waku unuk menggambarkan perkembangan suau kegiaan (perkembangan produksi, harga, hasil penjualan,

Lebih terperinci

BAB 1 PENDAHULUAN. Sumber Daya Alam (SDA) yang tersedia merupakan salah satu pelengkap alat

BAB 1 PENDAHULUAN. Sumber Daya Alam (SDA) yang tersedia merupakan salah satu pelengkap alat BAB 1 PENDAHULUAN 1.1 Laar Belakang Sumber Daya Alam (SDA) yang ersedia merupakan salah sau pelengkap ala kebuuhan manusia, misalnya anah, air, energi lisrik, energi panas. Energi Lisrik merupakan Sumber

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 39 III. METODE PENELITIAN 3.1 Waku dan Meode Peneliian Pada bab sebelumnya elah dibahas bahwa cadangan adalah sejumlah uang yang harus disediakan oleh pihak perusahaan asuransi dalam waku peranggungan

Lebih terperinci

Drs. H. Karso, M.M.Pd. Modul 11 NILAI EIGEN, VEKTOR EIGEN DAN DIAGONALISASI METRIKS

Drs. H. Karso, M.M.Pd. Modul 11 NILAI EIGEN, VEKTOR EIGEN DAN DIAGONALISASI METRIKS Drs. H. Karso, M.M.Pd. Modul NILAI EIGEN, VEKTOR EIGEN DAN DIAGONALISASI METRIKS Pendahuluan Modul yang ke- dari maa kuliah Aljabar Linear ini akan mendiskusikan beberapa konsep yang berguna bagi kia sebagai

Lebih terperinci

ADOPSI REGRESI BEDA UNTUK MENGATASI BIAS VARIABEL TEROMISI DALAM REGRESI DERET WAKTU: MODEL KEHILANGAN AIR DISTRIBUSI DI PDAM SUKABUMI

ADOPSI REGRESI BEDA UNTUK MENGATASI BIAS VARIABEL TEROMISI DALAM REGRESI DERET WAKTU: MODEL KEHILANGAN AIR DISTRIBUSI DI PDAM SUKABUMI ADOPSI REGRESI BEDA UNTUK MENGATASI BIAS VARIABEL TEROMISI DALAM REGRESI DERET WAKTU: MODEL KEHILANGAN AIR DISTRIBUSI DI PDAM SUKABUMI Yusep Suparman Universias Padjadjaran yusep.suparman@unpad.ac.id ABSTRAK.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Perawaan (Mainenance) Mainenance adalah akivias agar komponen aau sisem yang rusak akan dikembalikan aau diperbaiki dalam suau kondisi erenu pada periode waku erenu (Ebeling,

Lebih terperinci

Oleh : Danny Kurnianto; Risa Farrid Christianti Sekolah Tinggi Teknologi Telematika Telkom Purwokerto

Oleh : Danny Kurnianto; Risa Farrid Christianti Sekolah Tinggi Teknologi Telematika Telkom Purwokerto Oleh : Danny Kurniano; Risa Farrid Chrisiani Sekolah Tinggi Teknologi Telemaika Telkom Purwokero Pendahuluan Seelah kia mempelajari anggapan alamiah dari suau rangkaian RL aau RC, yaiu anggapan saa sumber

Lebih terperinci

BAB 2 LANDASAN TEORI. Produksi padi merupakan suatu hasil bercocok tanam yang dilakukan dengan

BAB 2 LANDASAN TEORI. Produksi padi merupakan suatu hasil bercocok tanam yang dilakukan dengan BAB 2 LANDASAN TEORI 2.1. Produksi Produksi padi merupakan suau hasil bercocok anam yang dilakukan dengan penanaman bibi padi dan perawaan sera pemupukan secara eraur sehingga menghasilkan suau produksi

Lebih terperinci

BAB IV NILAI EIGEN DAN VEKTOR EIGEN. Bab ini membahas suatu vektor tidak nol x dan skalar l yang mempunyai

BAB IV NILAI EIGEN DAN VEKTOR EIGEN. Bab ini membahas suatu vektor tidak nol x dan skalar l yang mempunyai BAB IV NILAI EIGEN DAN VEKTOR EIGEN Bab ini membahas suau vekor idak nol dan skalar l yang mempunyai hubungan erenu dengan suau mariks A. Hubungan ersebu dinyaakan dalam benuk A λ. Bagaimana kia memperoleh

Lebih terperinci

Aljabar C* dan Mekanika Kuantum 1

Aljabar C* dan Mekanika Kuantum 1 Aljabar C* dan Mekanika Kuanum 1 Oleh: Rizky Rosjanuardi rizky@upi.edu Jurusan Pendidikan Maemaika FPMIPA Universias Pendidikan Indonesia Absrak Pada makalah ini dibahas konsep aljabar-c* dan kaiannya

Lebih terperinci

PERHITUNGAN VALUE AT RISK (VaR) DENGAN SIMULASI MONTE CARLO (STUDI KASUS SAHAM PT. XL ACIATA.Tbk)

PERHITUNGAN VALUE AT RISK (VaR) DENGAN SIMULASI MONTE CARLO (STUDI KASUS SAHAM PT. XL ACIATA.Tbk) Jurnal UJMC, Volume 3, Nomor 1, Hal. 15-0 pissn : 460-3333 eissn : 579-907X ERHITUNGAN VAUE AT RISK (VaR) DENGAN SIMUASI MONTE CARO (STUDI KASUS SAHAM T. X ACIATA.Tbk) Sii Alfiaur Rohmaniah 1 1 Universias

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa

BAB 2 TINJAUAN TEORITIS. Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa BAB 2 TINJAUAN TEORITI 2.1. Pengerian-pengerian Peramalan adalah kegiaan unuk memperkirakan apa yang akan erjadi di masa yang akan daang. edangkan ramalan adalah suau siuasi aau kondisi yang diperkirakan

Lebih terperinci

PENDUGAAN PARAMETER DERET WAKTU HIDDEN MARKOV HAMILTON *

PENDUGAAN PARAMETER DERET WAKTU HIDDEN MARKOV HAMILTON * PENDUGAAN PARAMEER DERE WAKU HIDDEN MARKOV HAMILON * BERLIAN SEIAWAY, YANA ADHARINI DAN HIRASAWA Deparemen Maemaika Fakulas Maemaika dan Ilmu Pengeahuan Alam Insiu Peranian Bogor Jl Merani, Kampus IPB

Lebih terperinci

ANALISIS MODEL DINAMIKA VIRUS DALAM SEL TUBUH. Winarno 1 (M )

ANALISIS MODEL DINAMIKA VIRUS DALAM SEL TUBUH. Winarno 1 (M ) ANALISIS MODEL DINAMIKA VIRUS DALAM SEL TUBUH Winarno (M49) Virus merupakan salah sau conoh organisme yang sering mengganggu perumbuhan sel Akhirakhir ini keberadaan virus dirasa sanga mengganggu kehidupan

Lebih terperinci

PERSAMAAN DIFERENSIAL. metode euler metode runge-kutta

PERSAMAAN DIFERENSIAL. metode euler metode runge-kutta PERSAMAAN DIFERENSIAL (DIFFERENTIAL EQUATION) meode euler meode runge-kua Persamaan Diferensial Persamaan paling pening dalam bidang rekayasa, paling bisa menjelaskan apa yang erjadi dalam sisem fisik.

Lebih terperinci

KAJIAN PEMODELAN DERET WAKTU: METODE VARIASI KALENDER YANG DIPENGARUHI OLEH EFEK VARIASI LIBURAN

KAJIAN PEMODELAN DERET WAKTU: METODE VARIASI KALENDER YANG DIPENGARUHI OLEH EFEK VARIASI LIBURAN JMP : Volume 4 omor, Juni 22, hal. 35-46 KAJIA PEMODELA DERET WAKTU: METODE VARIASI KALEDER YAG DIPEGARUHI OLEH EFEK VARIASI LIBURA Winda Triyani Universias Jenderal Soedirman winda.riyani@gmail.com Rina

Lebih terperinci

Analisis Rangkaian Listrik Di Kawasan s

Analisis Rangkaian Listrik Di Kawasan s Sudaryano Sudirham Analisis angkaian Lisrik Di Kawasan s Sudaryano Sudirham, Analisis angkaian Lisrik () BAB 3 Fungsi Jargan Pembahasan fungsi jargan akan membua kia memahami makna fungsi jargan, fungsi

Lebih terperinci

3. Kinematika satu dimensi. x 2. x 1. t 1 t 2. Gambar 3.1 : Kurva posisi terhadap waktu

3. Kinematika satu dimensi. x 2. x 1. t 1 t 2. Gambar 3.1 : Kurva posisi terhadap waktu daisipayung.com 3. Kinemaika sau dimensi Gerak benda sepanjang garis lurus disebu gerak sau dimensi. Kinemaika sau dimensi memiliki asumsi benda dipandang sebagai parikel aau benda iik arinya benuk dan

Lebih terperinci

HASIL DAN PEMBAHASAN. Model Potensial Aksi Membran Hodgkin-Huxley

HASIL DAN PEMBAHASAN. Model Potensial Aksi Membran Hodgkin-Huxley 9 HASIL DAN PEMBAHASAN Model Poensial Aksi Membran Hodgkin-Huley Hasil yang didapa dengan banuan bahasa pemrograman kompuer Sofware Mahemaica 7. dari Wolfram Research unuk plo poensial aksi berdasarkan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Defenisi Persediaan Persediaan adalah barang yang disimpan unuk pemakaian lebih lanju aau dijual. Persediaan dapa berupa bahan baku, barang seengah jadi aau barang jadi maupun

Lebih terperinci

MODEL PREDATOR DAN PREY DENGAN MODEL SUSCEPTIBLE - INFECTED SUSCEPTIBLE. Jl. Prof. H. Soedarto, S.H. Tembalang Semarang

MODEL PREDATOR DAN PREY DENGAN MODEL SUSCEPTIBLE - INFECTED SUSCEPTIBLE. Jl. Prof. H. Soedarto, S.H. Tembalang Semarang MODEL PREDATOR DAN PREY DENGAN MODEL SUSCEPTIBLE - INFECTED SUSCEPTIBLE Firsy Nur Hidayai Sunarsih Djuwandi Program Sudi Maemaika F.MIPA Universias Diponegoro Jl. Prof. H. Soedaro S.H. Tembalang Semarang

Lebih terperinci

BAB 1 PENDAHULUAN. tahun 1990-an, jumlah produksi pangan terutama beras, cenderung mengalami

BAB 1 PENDAHULUAN. tahun 1990-an, jumlah produksi pangan terutama beras, cenderung mengalami 11 BAB 1 PENDAHULUAN 1.1. Laar Belakang Keahanan pangan (food securiy) di negara kia ampaknya cukup rapuh. Sejak awal ahun 1990-an, jumlah produksi pangan eruama beras, cenderung mengalami penurunan sehingga

Lebih terperinci

BAB 2 TINJAUAN TEORI

BAB 2 TINJAUAN TEORI 7 BAB 2 TINJAUAN TEORI 2.1 Pengerian Peramalan Peramalan adalah kegiaan unuk memperkirakan apa yang akan erjadi di masa yang akan daang. Sedangkan ramalan adalah suau siuasi aau kondisi yang diperkirakan

Lebih terperinci

ANALISIS KESTABILAN MODEL PREY-PREDATOR DENGAN PEMANENAN KONSTAN PADA IKAN PREY

ANALISIS KESTABILAN MODEL PREY-PREDATOR DENGAN PEMANENAN KONSTAN PADA IKAN PREY ANALISIS KESTABILAN MODEL PREY-PREDATOR DENGAN PEMANENAN KONSTAN PADA IKAN PREY Luluk Ianaul Afifah 1, Usman Pagalay 1, Jurusan Maemaika Fakulas Sains dan Teknologi UIN Maulana Malik Ibrahim Malang e-mail:

Lebih terperinci

Penduga Data Hilang Pada Rancangan Bujur Sangkar Latin Dasar

Penduga Data Hilang Pada Rancangan Bujur Sangkar Latin Dasar Kumpulan Makalah Seminar Semiraa 013 Fakulas MIPA Universias Lampung Penduga Daa Pada Rancangan Bujur Sangkar Lain Dasar Idhia Sriliana Jurusan Maemaika FMIPA UNIB E-mail: aha_muflih@yahoo.co.id Absrak.

Lebih terperinci

0,9 2,9 0,95 2,95 0,99 2,99 1 Tidak terdefinisi 1,01 3,01 1,05 3,05 1,1 3,1 Gambar 7.1

0,9 2,9 0,95 2,95 0,99 2,99 1 Tidak terdefinisi 1,01 3,01 1,05 3,05 1,1 3,1 Gambar 7.1 BAB 7 LIMIT FUNGSI Sandar Kompeensi Menggunakan konsep i fungsi dan urunan fungsi dalam pemecahan masalah Kompeensi Dasar. Menjelaskan secara inuiif ari i fungsi di suau iik dan di akhingga. Menggunakan

Lebih terperinci

Gambar 1, Efek transien pada rangkaian RC

Gambar 1, Efek transien pada rangkaian RC Bab I, Efek Transien Hal: 04 BAB I EFEK TANSIEN Kapasior pada sinyal D Jika sinyal D berikan pada kapasior (mula-mula ak ermuai) yang -seri-kan dengan hambaan, maka pada saa hubungkan ( 0 s) akan ada arus

Lebih terperinci

PERSAMAAN DIFERENSIAL PARSIAL DIFUSI NON HOMOGEN SATU DIMENSI

PERSAMAAN DIFERENSIAL PARSIAL DIFUSI NON HOMOGEN SATU DIMENSI rima: Jurnal endidikan Maemaika Vol., No., Juli 7, hal. 33-4 -ISSN: 579-987, E-ISSN: 58-6 ERSAMAAN DIFERENSIAL ARSIAL DIFUSI NON HOMOGEN SATU DIMENSI Rukmono Budi Uomo Universias Muhammadiyah Tangerang,

Lebih terperinci

HUMAN CAPITAL. Minggu 16

HUMAN CAPITAL. Minggu 16 HUMAN CAPITAL Minggu 16 Pendahuluan Invesasi berujuan unuk meningkakan pendapaan di masa yang akan daang. Keika sebuah perusahaan melakukan invesasi barang-barang modal, perusahaan ini akan mengeluarkan

Lebih terperinci

Analisis Rangkaian Listrik Di Kawasan Waktu

Analisis Rangkaian Listrik Di Kawasan Waktu Sudaryano Sudirham Analisis Rangkaian Lisrik Di Kawasan Waku 2-2 Sudaryano Sudirham, Analisis Rangkaian Lisrik (1) BAB 2 Besaran Lisrik Dan Model Sinyal Dengan mempelajari besaran lisrik dan model sinyal,

Lebih terperinci

PERSAMAAN DIFFERENSIAL PARSIAL DIFUSI NON HOMOGEN SATU DIMENSI

PERSAMAAN DIFFERENSIAL PARSIAL DIFUSI NON HOMOGEN SATU DIMENSI ISSN: 3-989 Vol. V, No. II, April 6 ERSAMAAN DIFFERENSIAL ARSIAL DIFUSI NON HOMOGEN SATU DIMENSI Rukmono Budi Uomo endidikan Maemaika FKI UMT E-mail: rukmono.budi.u@mail.ugm.ac.id Absrak Dalam peneliian

Lebih terperinci

Hendra Gunawan. 28 Maret 2014

Hendra Gunawan. 28 Maret 2014 MA101 MATEMATIKA A Hendra Gunawan Semeser II, 013/014 8 Mare 014 Kuliah ang Lalu 1.1 Fungsi dua aau lebih peubah 1. Turunan Parsial 1.3 Limi dan Kekoninuan 1.4 Turunan ungsi dua peubah 1.5 Turunan berarah

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 1, 1-7, April 2002, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 1, 1-7, April 2002, ISSN : JURNAL MAEMAIKA DAN KOMPUER APLIKASI OPIMASI DINAMIS DENGAN PENDEKAAN MAXIMUM PRINCIPLE PADA PERUMBUHAN EKONOMI DAERAH DAN ALOKASI PENDAPAAN BELANJA DAERAH 1 Yusup Supena dan Yayan Jurusan Maemaika Fakulas

Lebih terperinci

BAB II PERTIDAKSAMAAN CHERNOFF

BAB II PERTIDAKSAMAAN CHERNOFF BAB II PERTIDAKSAMAAN CHERNOFF.1 Pendahuluan Di lapangan, yang menjadi perhaian umumnya adalah besar peluang dari peubah acak pada beberapa nilai aau suau selang, misalkan P(a

Lebih terperinci

Suatu Catatan Matematika Model Ekonomi Diamond

Suatu Catatan Matematika Model Ekonomi Diamond Vol. 5, No.2, 58-65, Januari 2009 Suau aaan Maemaika Model Ekonomi Diamond Jeffry Kusuma Absrak Model maemaika diberikan unuk menjelaskan fenomena dalam dunia ekonomi makro seperi modal/kapial, enaga kerja,

Lebih terperinci

Matematika EBTANAS Tahun 1988

Matematika EBTANAS Tahun 1988 Maemaika EBTANAS Tahun 988 EBT-SMA-88- cos = EBT-SMA-88- Sisi sisi segiiga ABC : a = 6, b = dan c = 8 Nilai cos A 8 4 8 EBT-SMA-88- Layang-layang garis singgung OAPB, sudu APB = 6 dan panjang OP = cm.

Lebih terperinci

MASSA KLASIK SOLITON PERSAMAAN SCHRÖDINGER NONLINEAR

MASSA KLASIK SOLITON PERSAMAAN SCHRÖDINGER NONLINEAR Berkala Fisika ISSN : 1410-966 Vol. 14, No. 3, Juli 011, hal 75-80 MASSA KLASIK SOLITON PERSAMAAN SCHRÖDINGER NONLINEAR T.B. Prayino Jurusan Fisika, Fakulas MIPA, Universias Negeri Jakara Jl. Pemuda Rawamangun

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. dari bahasa Yunani yang berarti Demos adalah rakyat atau penduduk,dan Grafein

BAB 2 TINJAUAN TEORITIS. dari bahasa Yunani yang berarti Demos adalah rakyat atau penduduk,dan Grafein BAB 2 TINJAUAN TEORITIS 2.1 Pengerian Demografi Keadaan penduduk sanga era kaiannya dengan demografi. Kaa demografi berasal dari bahasa Yunani yang berari Demos adalah rakya aau penduduk,dan Grafein adalah

Lebih terperinci

APLIKASI METODE DOUBLE EXPONENTIAL SMOOTHING BROWN DAN HOLT UNTUK MERAMALKAN TOTAL PENDAPATAN BEA DAN CUKAI

APLIKASI METODE DOUBLE EXPONENTIAL SMOOTHING BROWN DAN HOLT UNTUK MERAMALKAN TOTAL PENDAPATAN BEA DAN CUKAI Prosiding Seminar Nasional Maemaika dan Terapannya 2016 p-issn : 2550-0384; e-issn : 2550-0392 APLIKASI METODE DOUBLE EXPONENTIAL SMOOTHING BROWN DAN HOLT UNTUK MERAMALKAN TOTAL PENDAPATAN BEA DAN CUKAI

Lebih terperinci

Penerapan Metode Steepest Descent dalam Menentukan Konservasi Solusi Persamaan Kadomtsev-Petviashvili I Arah x atau y 1 Oleh: Rustanto Rahardi 2

Penerapan Metode Steepest Descent dalam Menentukan Konservasi Solusi Persamaan Kadomtsev-Petviashvili I Arah x atau y 1 Oleh: Rustanto Rahardi 2 Penerapan Meode Seepes Descen dalam Menenukan Konservasi Solusi Persamaan Kadomsev-Peviashvili I Arah aau y Oleh: Rusano Rahardi Absrak: Peneliian ini meliha benuk gelombang solusi Kadomsev- Peviashvili

Lebih terperinci

BAB 2 URAIAN TEORI. waktu yang akan datang, sedangkan rencana merupakan penentuan apa yang akan

BAB 2 URAIAN TEORI. waktu yang akan datang, sedangkan rencana merupakan penentuan apa yang akan BAB 2 URAIAN EORI 2.1 Pengerian Peramalan Peramalan adalah kegiaan memperkirakan aau memprediksi apa yang erjadi pada waku yang akan daang, sedangkan rencana merupakan penenuan apa yang akan dilakukan

Lebih terperinci

Bab IV Pengembangan Model

Bab IV Pengembangan Model Bab IV engembangan Model IV. Sisem Obyek Kajian IV.. Komodias Obyek Kajian Komodias dalam peneliian ini adalah gula pasir yang siap konsumsi dan merupakan salah sau kebuuhan pokok masyaraka. Komodias ini

Lebih terperinci

ARUS,HAMBATAN DAN TEGANGAN GERAK ELEKTRIK

ARUS,HAMBATAN DAN TEGANGAN GERAK ELEKTRIK AUS,HAMBATAN DAN TEGANGAN GEAK ELEKTK Oleh : Sar Nurohman,M.Pd Ke Menu Uama Liha Tampilan Beriku: AUS Arus lisrik didefinisikan sebagai banyaknya muaan yang mengalir melalui suau luas penampang iap sauan

Lebih terperinci