4. TURUNAN. MA1114 Kalkulus I 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "4. TURUNAN. MA1114 Kalkulus I 1"

Transkripsi

1 4. TURUNAN MA4 Kalkulus I

2 4. Konsep Turunan 4.. Turunan di satu titik Pendauluan dua masala dalam satu tema a. Garis Sinun Kemirinan tali busur PQ adala : m PQ Jika à, maka tali busur PQ akan beruba menjadi aris sinun di ttk P dn kemirinan m P - Q - MA4 Kalkulus I

3 n b. Keepatan Sesaat Misal sebua benda bererak sepanjan aris koordinat seina posisina setiap saat diberikan ole s t. Pada saat t benda berada di dan saat t benda berada di. Perubaan waktu Perubaan posisi n s Seina keepatan rata-rata pada selan waktu [,] adala v rata rata MA4 Kalkulus I

4 Jika 0, diperole keepatan sesaat di : v Misal, bentuk diatas dapat dituliskan dalam bentuk v Dari dua bentuk diatas : kemirinan aris sinun dan keepatan sesaat terliat bawa dua masala tersebut berada dalam satu tema, aitu turunan v 0 rata rata Deinisi 4. : Turunan pertama unsi di titik, notasi sebaai berikut: bila it diatas ada 0 ' ' dideinisikan MA4 Kalkulus I 4

5 Notasi lain : d, ' d Conto : Diketaui ' tentukan ' 9 MA4 Kalkulus I 5

6 4.. Turunan Sepiak Turunan kiri dari unsi di titik, dideinisikan sebaai : ' Turunan kanan dari unsi di titik, dideinisikan sebaai : ' bila it ini ada. Funsi dikatakan mempunai turunandierensiabel di atau ada, jika ' ' ' ' dan ' _ sebalikna dikatakan tidak mempunai turunan di. ' MA4 Kalkulus I 6

7 Conto : Diketaui,, < Selidiki apaka dierensiabel di Jika a, tentukan ' Jawab : a. b. ' ' ' Jadi, dierensiabel di. dan. MA4 Kalkulus I 7

8 MA4 Kalkulus I 8 Teorema 4. Jika dierensiabel di è kontinu di. Bukti : Yan perlu ditunjukkan adala Peratikan bawa Maka Siat tersebut tidak berlaku sebalikna. Artina, Jika kontinu di, maka belum tentu dierensiabel di. Hal ini, ditunjukkan ole onto berikut.,...0 '. Terbukti.

9 Conto Tunjukkan bawa kontinu di 0 tetapi tidak dierensiabel di 0 Jawab Akan ditunjukkan bawa kontinu di 0, 0, < 0 q q q kontinu di 0 MA4 Kalkulus I 9

10 Selidiki apaka terdierensialkan di 0 ' ' Karena ' ' 0 0 maka tidak dierensiabel di 0. MA4 Kalkulus I 0

11 4. Aturan Penarian Turunan Funsi Turunan Pertama n n Deinisi 4. Misalkan terdeinisi pada selan I. Funsi turunan pertama dari, ditulis ', dideinisikan sebaai t ', Ι t t atau jika t- ', Ι 0 bila itna ada. d d n Notasi lain ',,, D, D d, bentuk dikenal d d d sebaai notasi Leibniz. MA4 Kalkulus I

12 n Denan menunakan deinisi tersebut dapat diturunkan aturan untuk menari turunan sebaai berikut :. Jika k, maka.. 4. r r r ; r R d d d d d d ' ' ' ' d 5. denan 0. d ' 0 ' ' MA4 Kalkulus I

13 MA4 Kalkulus I Bukti aturan ke-4 Misal ' ' ' ' '

14 MA4 Kalkulus I 4 6. '.Tentukan turunan pertama dari. 6 Conto. Tentukan turunan pertama dari 4 Jawab : 0. ' 6. Tentukan turunan pertama dari Jawab : ' Jawab :

15 Soal Latian Tentukan unsi turunan pertama dari. / MA4 Kalkulus I 5

16 4. Turunan Funsi Sinus dan Cosinus a. sin ' Bukti: os b. os ' sin a. Misal sin maka sint ' t t sin t t os sin t t t os t os.. os. t 0 t sin t MA4 Kalkulus I 6

17 b. Misal os maka ' os os os os sin 0 0 os sin sin sin 0 os os sin sin 0 sin os os sin sin sin / sin sin os sin 0 / 0 / 4 / 4 0 os.0 sin sin MA4 Kalkulus I 7

18 Untuk turunan unsi trionometri an lain dapat diperole denan menerapkan rumus peritunan turunan, kususna turunan bentuk u/v sin tan d os d. d d os ot d sin d d. d d se d os d e. d d s d sin d. d d os sin os sin os sin sin os os sin se os s sin sin tan se os os os s ot sin sin MA4 Kalkulus I 8

19 4.4 Aturan Rantai n Andaikan u dan u. Jika d dan du ada, maka du d Conto : Tentukan dari Jawab : Misal u seina bentuk diatas menjadi Karena maka d d d du d d d du du d osu dan d d os du d sin os sin u MA4 Kalkulus I 9

20 Jika u, u v, v, dan d d Conto : Tentukan Jawab : Misal v d du dv du dv d d d dari 5 d du Sin 4 du dv, dv d, Ada, maka dv d 5 u Sin v du osv os 5 dv 4 u d 4u 4Sin 5 seina du d d du dv.. Sin 5 Cos d du dv d 5 MA4 Kalkulus I 0

21 n Conto : Tentukan ' jika d d jawab : d d ' '. MA4 Kalkulus I

22 Soal Latian Tentukan unsi turunan pertama dari sin os sin tan [ ] MA4 Kalkulus I

23 4.5 Turunan Tinkat Tini n n n n n Turunan ke-n didapatkan dari penurunan turunan ke-n-. n d Turunan pertama Turunan kedua Turunan ketia Turunan ke-n n n Conto : Tentukan dari d d ' d d " d d "' d n n d '' d n 4 sin n Jawab : ' os maka '' 4 sin MA4 Kalkulus I

24 Soal Latian A. Tentukan turunan kedua dari sin 4 os π B. Tentukan nilai seina bila " a C. Tentukan nilai a, b dan dari b bila 5, ' dan ' ' 4 MA4 Kalkulus I 4

25 4.6 Turunan Funsi Implisit n n Jika ubunan antara dan dapat dituliskan dalam bentuk maka disebut unsi eksplisit dari, aitu antara peuba bebas dan tak bebasna dituliskan dalam ruas an berbeda. Bila tidak demikian maka dikatakan unsi implisit dari. Conto :. 0. sin Untuk menentukan turunan dari bentuk implisit diunakan aturan rantai dan anap unsi dari. MA4 Kalkulus I 5

26 Tentukan d/d dari bentuk implisit berikut. 0. sin Jawab. D D D D D D 0 0 ' ' 0. D ' ' sin D os ' ' 0 os ' os ' os os MA4 Kalkulus I 6

27 Soal Latian Tentukan turunan pertama ' dari bentuk implisit. 0. sin. 4. tan - 0 sin MA4 Kalkulus I 7

28 4.7 Garis sinun dan aris normal n Persamaan aris sinun unsi di titik 0, 0 denan kemirinan m adala 0 m 0. n Garis an teak lurus denan aris sinun disebut denan aris normal. n Persamaan aris normal di titik 0, 0 adala m 0 0. MA4 Kalkulus I 8

29 Conto: Tentukan persamaan aris sinun dan aris normal unsi 6 di,6. Jawab : ' 4 ', Seina persamaan aris sinun di titik,6 : Persamaan aris normal dititik,6 : MA4 Kalkulus I 9

30 Tentukan persamaan aris sinun dan aris normal pada kurva 6 0 di titik denan absis Jawab : Jika disubstitusikan nilai pada persamaan kurva diperole dan - Seina diperole titik dimana akan ditentukan persamaan aris sinun dan aris normalna adala, dan,- Hitun terlebi daulu ' denan menunakan turunan unsi implisit D 6 D 0 ' ' 0 0 MA4 Kalkulus I 0

31 ' ' 0 ' Di titik,..9 5 ',.. 5 Persamaan aris sinun ' 6 Persamaan aris normal 8 MA4 Kalkulus I

32 Di titik,- ', Persamaan aris sinun 4 Persamaan aris normal MA4 Kalkulus I

4. TURUNAN. MA1114 Kalkulus I 1

4. TURUNAN. MA1114 Kalkulus I 1 4. TURUNAN MA4 Kalkulus I 4. Konsep Turunan 4.. Turunan di satu titik Pendauluan dua masala dalam satu tema a. Garis Singgung Kemiringan tali busur PQ adala : m PQ Jika, maka tali busur PQ akan beruba

Lebih terperinci

4.1 Konsep Turunan. lim. m PQ Turunan di satu titik. Pendahuluan ( dua masalah dalam satu tema )

4.1 Konsep Turunan. lim. m PQ Turunan di satu titik. Pendahuluan ( dua masalah dalam satu tema ) 4. TURUNAN 4. Konsep Turunan 4.. Turunan di satu titik Pendauluan dua masala dalam satu tema a. Garis Singgung Kemiringan tali busur PQ adala : m PQ Jika, maka tali busur PQ akan beruba menjadi garis ggung

Lebih terperinci

KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY IV. TURUNAN

KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY IV. TURUNAN KALKULUS I MUGA4 PROGRAM PERKULIAHAN DASAR DAN UMUM PPDU TELKOM UNIVERSITY IV. TURUNAN Turunan di satu titik Pendahuluan dua masalah dalam satu tema KONSEP TURUNAN a. Garis Singgung Kemiringan tali busur

Lebih terperinci

4.1 Konsep Turunan. lim Turunan di satu titik. Pendahuluan ( dua masalah dalam satu tema ) a. Garis Singgung Kemiringan tali busur PQ adalah :

4.1 Konsep Turunan. lim Turunan di satu titik. Pendahuluan ( dua masalah dalam satu tema ) a. Garis Singgung Kemiringan tali busur PQ adalah : 4. TURUNAN 4. Konsep Turunan 4.. Turunan di satu titik Pendahuluan dua masalah dalam satu tema a. Garis Singgung Kemiringan tali busur PQ adalah : m PQ c c Q -c Jika c, maka tali busur PQ akan berubah

Lebih terperinci

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Turunan Pertemuan - 3

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Turunan Pertemuan - 3 a home base to ecellence Mata Kuliah : Kalkulus Kode : TSP 102 SKS : 3 SKS Turunan Pertemuan - 3 a home base to ecellence TIU : Mahasiswa dapat memahami turunan unsi dan aplikasinya TIK : Mahasiswa mampu

Lebih terperinci

19, 2. didefinisikan sebagai bilangan yang dapat ditulis dengan b

19, 2. didefinisikan sebagai bilangan yang dapat ditulis dengan b PENDAHULUAN. Sistem Bilangan Real Untuk mempelajari kalkulus perlu memaami baasan tentang system bilangan real karena kalkulus didasarkan pada system bilangan real dan sifatsifatnya. Sistem bilangan yang

Lebih terperinci

TURUNAN FUNGSI IKA ARFIANI, S.T.

TURUNAN FUNGSI IKA ARFIANI, S.T. TURUNAN FUNGSI IKA ARFIANI, S.T. DEFINISI TURUNAN Turunan dari ( terhadap dideinisikan dengan: d d ' ' ( lim h 0 ( h-( h RUMUS DASAR TURUNAN ' n n n k k ' 0 k ' u' nu u n n '( ( '( ( '( ( '( ( 0 '( ( n

Lebih terperinci

TURUNAN. Ide awal turunan: Garis singgung. Kemiringan garis singgung di titik P: lim. Definisi

TURUNAN. Ide awal turunan: Garis singgung. Kemiringan garis singgung di titik P: lim. Definisi TURUNAN Ide awal turunan: Garis singgung Tali busur c +, f c + Garis singgung c, f c c P h c+h f c + f c Kemiringan garis singgung di titik P: f c + f c lim Definisi Turunan fungsi f adalah fungsi lain

Lebih terperinci

Turunan Fungsi. Penggunaan Konsep dan Aturan Turunan ; Penggunaan Turunan untuk Menentukan Karakteristik Suatu Fungsi

Turunan Fungsi. Penggunaan Konsep dan Aturan Turunan ; Penggunaan Turunan untuk Menentukan Karakteristik Suatu Fungsi 8 Penggunaan Konsep dan Aturan Turunan ; Penggunaan Turunan untuk Menentukan Karakteristik Suatu Fungsi ; Model Matematika dari Masala yang Berkaitan dengan ; Ekstrim Fungsi Model Matematika dari Masala

Lebih terperinci

GEOMETRI DALAM RUANG DIMENSI TIGA

GEOMETRI DALAM RUANG DIMENSI TIGA OMI LM UN IMNSI I (l. rismanto, M.Sc.) I. UUN II, IS, N IN. II, IS N IN itik merupakan unsur ruan yan palin sederana, tidak didefinisikan, tetapi setiap pembaca diarapkan dapat memaaminya. Yan dimaksud

Lebih terperinci

TURUNAN FUNGSI IKA ARFIANI, S.T.

TURUNAN FUNGSI IKA ARFIANI, S.T. TURUNAN FUNGSI IKA ARFIANI, S.T. DEFINISI TURUNAN Turunan dari ( terhadap dideinisikan dengan: d d ( lim h 0 ( h-( h RUMUS DASAR TURUNAN n n n k k 0 k u nu u n n ( ( ( ( ( ( ( ( 0 ( ( n n n c RUMUS JUMLAH

Lebih terperinci

MATEMATIKA MODUL 4 TURUNAN FUNGSI KELAS : XI IPA SEMESTER : 2 (DUA)

MATEMATIKA MODUL 4 TURUNAN FUNGSI KELAS : XI IPA SEMESTER : 2 (DUA) MATEMATIKA MODUL 4 TURUNAN FUNGSI KELAS : XI IPA SEMESTER : (DUA) Muammad Zainal Abidin Personal Blog SMAN Bone-Bone Luwu Utara Sulsel ttp://meetabied.wordpress.com PENGANTAR : TURUNAN FUNGSI Modul ini

Lebih terperinci

FUNGSI DAN GRAFIK KED. Fungsi Bukan Fungsi Definisi

FUNGSI DAN GRAFIK KED. Fungsi Bukan Fungsi Definisi FUNGSI DAN GRAFIK Deinisi Funsi adalah suatu aturan padanan yan menhubunkan tiap objek x dalam satu himpunan, yan disebut daerah asal, denan sebuah nilai unik x dari himpunan kedua. Himpunan nilai ya diperoleh

Lebih terperinci

BAB 1. FUNGSI DUA PEUBAH

BAB 1. FUNGSI DUA PEUBAH BAB. FUNGSI DUA PEUBAH. PENDAHUUAN Pada baian ini akan dibahas perluasan konsep pada unsi satu peubah ke unsi dua peubah atau lebih. Setelah mempelajari bab ini anda seharusna dapat: - Menentukan domain

Lebih terperinci

A. Penggunaan Konsep dan Aturan Turunan

A. Penggunaan Konsep dan Aturan Turunan A. Penggunaan Konsep dan Aturan Turunan. Turunan Fungsi Aljabar a. Mengitung Limit Fungsi yang Mengara ke Konsep Turunan Dari grafik di bawa ini, diketaui fungsi y f() pada interval k < < k +, seingga

Lebih terperinci

TURUNAN FUNGSI. 1. Turunan Fungsi

TURUNAN FUNGSI. 1. Turunan Fungsi TURUNAN FUNGSI. Turunan Fungsi Turunan fungsi f disembarang titik dilambangkan dengan f () dengan definisi f ( ) f ( ) f (). Proses mencari f dari f disebut penurunan; dikatakan bawa f diturunkan untuk

Lebih terperinci

Pengertian Fungsi. Kalkulus Dasar 2

Pengertian Fungsi. Kalkulus Dasar 2 Funsi Penertian Funsi Relasi : aturan an menawankan himpunan Funsi Misalkan A dan B himpunan. Relasi biner dari A ke B merupakan suatu unsi jika setiap elemen di dalam A dihubunkan denan tepat satu elemen

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA101 MATEMATIKA A Hendra Gunawan Semester II 016/017 4 Maret 017 Kulia ang Lalu 1.1 Fungsi dua atau lebi peuba 1. Turunan Parsial 1.3 Limit dan Kekontinuan 1.4 Turunan ungsi dua peuba 1.5 Turunan berara

Lebih terperinci

LEMBAR KERJA SISWA 1. : Menggunakan Konsep Limit Fungsi Dan Turunan Dalam Pemecahan Masalah

LEMBAR KERJA SISWA 1. : Menggunakan Konsep Limit Fungsi Dan Turunan Dalam Pemecahan Masalah BAB V T U R U N A N 1. Menentukan Laju Perubaan Nilai Fungsi. Menggunakan Aturan Turunan Fungsi Aljabar 3. Menggunakan Rumus Turunan Fungsi Aljabar 4. Menentukan Persamaan Garis Singgung Kurva 5. Fungsi

Lebih terperinci

MATEMATIKA TURUNAN FUNGSI

MATEMATIKA TURUNAN FUNGSI MATEMATIKA TURUNAN FUNGSI lim 0 f ( x ) f( x) KELAS : XI IPA SEMESTER : (DUA) SMA Santa Angela Bandung Taun Pelajaran 04-05 XI IPA Semester Taun Pelajaran 04 05 PENGANTAR : TURUNAN FUNGSI Modul ini kami

Lebih terperinci

1 Posisi, kecepatan, dan percepatan

1 Posisi, kecepatan, dan percepatan 1 Posisi, kecepatan, dan percepatan Posisi suatu benda pada suatu waktu t tertentu kita tulis sebaai r(t). Jika saat t = t 1 benda berada pada posisi r 1 r(t 1 ) dan saat t = t 2 > t 1 benda berada pada

Lebih terperinci

TURUNAN / DIFERENSIAL TURUNAN DAN DIFERENSIAL

TURUNAN / DIFERENSIAL TURUNAN DAN DIFERENSIAL TURUNAN / DIFERENSIAL 4. Devinisi Turunan Derivati Turunan ungsi adala yang nilainya pada bilangan dan dideinisikan ole : ' lim0 untuk semua dengan limit tersebut ada. Conto Andaikan cari 4? Penyelesaian

Lebih terperinci

Seri : Modul Diskusi Fakultas Ilmu Komputer. FAKULTAS ILMU KOMPUTER Sistem Komputer & Sistem Informasi HANDOUT : KALKULUS DASAR

Seri : Modul Diskusi Fakultas Ilmu Komputer. FAKULTAS ILMU KOMPUTER Sistem Komputer & Sistem Informasi HANDOUT : KALKULUS DASAR Seri : Modul Diskusi Fakultas Ilmu Komputer FAKULTAS ILMU KOMPUTER Sistem Komputer & Sistem Informasi HANDOUT : KALKULUS DASAR Ole : Tony Hartono Bagio 00 KALKULUS DASAR Tony Hartono Bagio KATA PENGANTAR

Lebih terperinci

FUNGSI DAN GRAFIK KED

FUNGSI DAN GRAFIK KED FUNGSI DAN GRAFIK 1.1 Pendahuluan Deinisi unsi adalah suatu aturan padanan yan menhubunkan tiap objek x dalam satu himpunan, yan disebut daerah asal, denan sebuah nilai unik x dari himpunan kedua. Himpunan

Lebih terperinci

h maks = tinggi maksimum X maks = Jauh maksimum

h maks = tinggi maksimum X maks = Jauh maksimum GEK PELUU eori Sinkat : Y y 0 y o sin α o maks α x o cos α maks Gerak parabola terdiri dari dua komponen erak yaitu :. Gerak orisontal berupa GL. Gerak vertikal berupa GL.Gerak orisontal (seara sumbu-x)

Lebih terperinci

GESERAN (TRANSLASI) S = M M. Dalam Bab ini akan dibahas. hasil kali dua pencerminan pada dua garis yang sejajar.

GESERAN (TRANSLASI) S = M M. Dalam Bab ini akan dibahas. hasil kali dua pencerminan pada dua garis yang sejajar. GESERN TRNSLSI Ketentuan dan Sifat-sifat Dalam Bab setena putaran, bawa setena putaran dapat ditulis sebaai asil kali dua pencerminan, aitu kalau sebua titik an diketaui dan dan dua aris an teak lurus

Lebih terperinci

Penyelesaian Model Matematika Masalah yang Berkaitan dengan Ekstrim Fungsi dan Penafsirannya

Penyelesaian Model Matematika Masalah yang Berkaitan dengan Ekstrim Fungsi dan Penafsirannya . Tentukan nilai maksimum dan minimum pada interval tertutup [, 5] untuk fungsi f(x) x + 9 x. 4. Suatu kolam ikan dipagari kawat berduri, pagar kawat yang tersedia panjangnya 400 m dan kolam berbentuk

Lebih terperinci

Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada

Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada 5 TURUNAN JUMLAH PERTEMUAN : 4 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada permasalahan yang ada Materi : 5.1 Pendahuluan Ide awal

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCN PELKSNN PEMBELJRN Mata Pelajaran : Matematika Kelas/ Semester: XI Program IP/ lokasi Waktu: 8 jam Pelajaran (4 Pertemuan). Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam

Lebih terperinci

MAKALAH OLEH KELOMPOK II

MAKALAH OLEH KELOMPOK II MKLH OLEH KELOMOK II NM : 1. MRIS (4007059) 2. NOV LUKIT (4007215). SYMSURI (4007194) 4. SUDRYNTI (4007055) 5. CMELLI (4007062) ROGRM STUDI : ENDIDIKN MTEMTIK MT KULIH : GEOMETRI TRNSFORMSI DOSEN ENGMU

Lebih terperinci

HASIL KALI TRANSFORMASI

HASIL KALI TRANSFORMASI Definisi : Andaikan F dan G dua transformasi, denan F : V V G : V V HASIL KALI TRANSFORMASI Maka komposisi dari F dan G yan ditulis sebaai Go F didefinisikan sebaai: (Go F) (P) = G[F(P)], P V Teorema :

Lebih terperinci

1 Posisi, kecepatan, dan percepatan

1 Posisi, kecepatan, dan percepatan 1 osisi, kecepatan, dan percepatan osisi suatu benda pada suatu waktu t tertentu kita tulis sebaai r(t). Jika saat t = t 1 benda berada pada posisi r 1 r(t 1 ) dan saat t = t 2 > t 1 benda berada pada

Lebih terperinci

Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada

Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada 5 TURUNAN JUMLAH PERTEMUAN : 4 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada permasalahan yang ada Materi : 5.1 Pendahuluan Ide awal adanya

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV Turunan. Pertemuan 3, 4, 5, 6, 7

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV Turunan. Pertemuan 3, 4, 5, 6, 7 Mata Kuliah : Kalkulus Kode : CIV - 101 SKS : 3 SKS Turunan Pertemuan 3, 4, 5, 6, 7 Kemampuan Akhir ang Diharapkan Mahasiswa mampu : - menjelaskan arti turunan ungsi - mencari turunan ungsi - menggunakan

Lebih terperinci

Dengan substitusi persamaan (1.2) ke dalam persamaan (1.3) maka kedudukan x partikel sebagai fungsi waktu dapat diperoleh melalui integral pers (1.

Dengan substitusi persamaan (1.2) ke dalam persamaan (1.3) maka kedudukan x partikel sebagai fungsi waktu dapat diperoleh melalui integral pers (1. GERAK PADA BIDANG DATAR 1. Gerak denan Percepatan Tetap C Gb. 1 Grafik kecepatan-waktu untuk erak lurus denan percepatan tetap Pada ambar 1, kemirinan tali busur antara titik A dan B sama denan kemirinan

Lebih terperinci

Differensiasi Numerik

Differensiasi Numerik Dierensiasi Numerik Yuliana Setiowati Politeknik Elektronika Negeri Surabaya 2007 1 Topik DIFFERENSIASI NUMERIK Mengapa perlu Metode Numerik? Dierensiasi dg MetNum Metode Selisi Maju Metode Selisi Tengaan

Lebih terperinci

ISOMETRI DAN HASIL KALI TRANSFORMASI

ISOMETRI DAN HASIL KALI TRANSFORMASI ISOETRI DN HSIL KLI TRNSFORSI DI SUSUN OLEH : KELOPOK II. ri neraini 4007 ). Elftria 40070 ). aryana 400744 ) 4. Sudar si 400705 ) 5. Ibnu Harlis Firmansa 40070 ) 4. Samini 40076 ) PROGR STUDY PENDIDIKN

Lebih terperinci

( ) terdapat sedemikian sehingga

( ) terdapat sedemikian sehingga LATIHAN.. Misalan A R, : A R, c R adala titi cluster dari A (c, ). Maa pernyataan beriut equivalen : a. lim b. Barisan ( ) yan onveren e c seina dan >., maa barisan ( ) onveren e. Buti : lim ( ) Berarti

Lebih terperinci

65 Soal dengan Pembahasan, 315 Soal Latihan

65 Soal dengan Pembahasan, 315 Soal Latihan Galeri Soal Soal dengan Pembaasan, Soal Latian Dirangkum Ole: Anang Wibowo, SPd April MatikZone s Series Email : matikzone@gmailcom Blog : HP : 8 8 8 Hak Cipta Dilindungi Undang-undang Dilarang mengkutip

Lebih terperinci

Galeri Soal. Dirangkum Oleh: Anang Wibowo, S.Pd

Galeri Soal. Dirangkum Oleh: Anang Wibowo, S.Pd Galeri Soal Dirangkum Ole: Anang Wibowo, SPd April Semoga sedikit conto soal-soal ini dapat membantu siswa dalam mempelajari Matematika kususnya Bab Limit Kami mengusaakan agar soal-soal yang kami baas

Lebih terperinci

BAB II FUNGSI DAN GRAFIK FUNGSI

BAB II FUNGSI DAN GRAFIK FUNGSI BAB II FUNGSI DAN GRAFIK FUNGSI. Funsi. Graik Funsi. Barisan dan Deret.4 Irisan Kerucut. Funsi Dalam berbaai aplikasi, korespondensi/hubunan antara dua himpunan serin terjadi. Sebaai contoh, volume bola

Lebih terperinci

TURUNAN. Bogor, Departemen Matematika FMIPA-IPB. (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, / 50

TURUNAN. Bogor, Departemen Matematika FMIPA-IPB. (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, / 50 TURUNAN Departemen Matematika FMIPA-IPB Bogor, 2012 (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, 2012 1 / 50 Topik Bahasan 1 Pendahuluan 2 Turunan Fungsi 3 Tafsiran Lain Turunan 4 Kaitan

Lebih terperinci

MAKALAH GEOMETRI TRANSFORMASI TENTANG GESERAN (TRANSLASI)

MAKALAH GEOMETRI TRANSFORMASI TENTANG GESERAN (TRANSLASI) MAKALAH EOMETRI TRANSFORMASI TENTAN ESERAN (TRANSLASI) I SUSUN OLEH : KELOMPOK VI (ENAM) 1. IIN MARLINA Npm. 4006082 2. SITI RUSNAWATI Npm. 4006082 3. ARYENTI Npm. 4006087 4. IWA SUSILA Npm. 40066119 5.

Lebih terperinci

Limit Fungsi. Limit Fungsi di Suatu Titik dan di Tak Hingga ; Sifat Limit Fungsi untuk Menghitung Bentuk Tak Tentu ; Fungsi Aljabar dan Trigonometri

Limit Fungsi. Limit Fungsi di Suatu Titik dan di Tak Hingga ; Sifat Limit Fungsi untuk Menghitung Bentuk Tak Tentu ; Fungsi Aljabar dan Trigonometri 7 Limit Fungsi Limit Fungsi di Suatu Titik dan di Tak Hingga ; Sifat Limit Fungsi untuk Mengitung Bentuk Tak Tentu ; Fungsi Aljabar dan Trigonometri Cobala kamu mengambil kembang gula-kembang gula dalam

Lebih terperinci

Hendra Gunawan. 25 September 2013

Hendra Gunawan. 25 September 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 25 September 2013 Kuis 1 (Kuliah yang Lalu) 1. Selesaikan pertaksamaan 2x 3 < x. 2. Diketahui i f(x) ) = x 2 sin (1/x) untuk x 0 dan f(0) = 0.

Lebih terperinci

BAB 6 RANGKAIAN KUTUB EMPAT

BAB 6 RANGKAIAN KUTUB EMPAT BAB 6 ANGKAAN KUTUB EMPAT 6. Pendauluan Sepasan terminal an dilalui ole arus (menuju atau meninalkan terminal disebut sebaai rankaian kutub dua (misalna pada resistor, induktor dan kapasitor). Gambar 6.

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV 101. Limit Fungsi. Pertemuan - 2

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV 101. Limit Fungsi. Pertemuan - 2 Respet, Proessionalism, & Entrepreneurship Mata Kuliah : Kalkulus Kode : CIV 101 SKS : 3 SKS Limit Fungsi Pertemuan - Respet, Proessionalism, & Entrepreneurship Kemampuan Akhir yang Diharapkan Mahasiswa

Lebih terperinci

Rencana Pembelajaran

Rencana Pembelajaran Learning Outcome Rencana Pembelajaran Setelah mengikuti proses pembelajaran ini, diharapkan mahasiswa dapat ) Menentukan nilai turunan suatu fungsi di suatu titik ) Menentukan nilai koefisien fungsi sehingga

Lebih terperinci

Matematika ITB Tahun 1975

Matematika ITB Tahun 1975 Matematika ITB Taun 975 ITB-75-0 + 5 6 tidak tau ITB-75-0 Nilai-nilai yang memenui ketidaksamaan kuadrat 5 7 0 atau atau 0 < ITB-75-0 Persamaan garis yang melalui A(,) dan tegak lurus garis + y = 0 + y

Lebih terperinci

5. Aplikasi Turunan 1

5. Aplikasi Turunan 1 5. Aplikasi Turunan 5. Menggambar graik ungsi Inormasi yang dibutuhkan: A. Titik potong dengan sumbu dan sumbu y B. Asimtot ungsi Deinisi 5.: Asimtot ungsi adalah garis lurus yang didekati oleh graik ungsi.

Lebih terperinci

PERSAMAAN DIFFERENSIAL ORDE I. Nurdinintya Athari

PERSAMAAN DIFFERENSIAL ORDE I. Nurdinintya Athari PERSAMAAN DIFFERENSIAL ORDE I Nurdininta Athari Definisi PERSAMAAN DIFERENSIAL Persamaan diferensial adalah suatu persamaan ang memuat satu atau lebih turunan fungsi ang tidak diketahui. Jika persamaan

Lebih terperinci

INTEGRAL TAK TENTU (subtitusi parsial) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

INTEGRAL TAK TENTU (subtitusi parsial) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ INTEGRAL TAK TENTU subtitusi parsial Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ agustina.mipa@unej.ac.id DEFINISI Untuk ungsi yang terdeinisi pada selang terbuka I, dpt ditentukan ungsi

Lebih terperinci

Transformasi Balikan

Transformasi Balikan Tranformai Balikan Suatu tranformai pada uatu bidan adala uatu funi an bijektif denan daera aal dan daera ailna jua Jika ebua ari dan refleki pada ari maka Kita tuli jua Jadi adala uatu tranformai an memetakan

Lebih terperinci

KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY V. APLIKASI TURUNAN

KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY V. APLIKASI TURUNAN KALKULUS I MUGA4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY V. APLIKASI TURUNAN MENGGAMBAR GRAFIK FUNGSI A. Titik potong dengan sumbu dan sumbu y B. Asimtot ungsi Deinisi : Asimtot ungsi

Lebih terperinci

Beberapa Permasalahan pada Teori Gelombang Linier. Syawaluddin Hutahean 1) Hang Tuah 2) Widiadnyana Merati 2) Leo Wiryanto 2)

Beberapa Permasalahan pada Teori Gelombang Linier. Syawaluddin Hutahean 1) Hang Tuah 2) Widiadnyana Merati 2) Leo Wiryanto 2) Hutaean, Vol. No. dkk. Januari 005 urnal EKNIK SIPIL Beberapa Permasalaan pada eori Gelomban Linier Syawaluddin Hutaean ) Han ua ) Widiadnyana Merati ) Leo Wiryanto ) Abstrak Makala ini meninatkan kembali

Lebih terperinci

KALKULUS. Laporan Ini Disusun Untuk Memenuhi Mata Kuliah KALKULUS Dosen Pengampu : Ibu Kristina Eva Nuryani, M.Sc. Disusun Oleh :

KALKULUS. Laporan Ini Disusun Untuk Memenuhi Mata Kuliah KALKULUS Dosen Pengampu : Ibu Kristina Eva Nuryani, M.Sc. Disusun Oleh : KALKULUS Laporan Ini Disusun Untuk Memenui Mata Kulia KALKULUS Dosen Pengampu : Ibu Kristina Eva Nuryani, M.Sc Disusun Ole : 1. Anggit Sutama 14144100107 2. Andi Novantoro 14144100111 3. Diya Elvi Riana

Lebih terperinci

BAB II FUNGSI DAN GRAFIK FUNGSI

BAB II FUNGSI DAN GRAFIK FUNGSI BAB II FUNGSI DAN GRAFIK FUNGSI. Funsi. Graik Funsi. Barisan dan Deret.4 Irisan Kerucut. Funsi Dalam berbaai alikasi koresondensi/hubunan antara dua himunan serin terjadi. Sebaai 4 contoh volume bola denan

Lebih terperinci

ABSTRAK DAN EXECUTIVE SUMMARY HIBAH DISERTASI DOKTOR

ABSTRAK DAN EXECUTIVE SUMMARY HIBAH DISERTASI DOKTOR ABSTRAK DAN EXECUTIVE SUMMARY HIBAH DISERTASI DOKTOR Judul: INTEGRAL HENSTOCK-KURZWEIL DI DALAM RUANG FUNGSI KONTINU C[a,b] Tim Peneliti Firdaus Ubaidillah, S.Si, M.Si NIDN 0006067003 UNIVERSITAS JEMBER

Lebih terperinci

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Limit Fungsi Pertemuan - 2

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Limit Fungsi Pertemuan - 2 a home base to eellene Mata Kuliah : Kalkulus Kode : TSP 0 SKS : 3 SKS Limit Fungsi Pertemuan - a home base to eellene TIU : Mahasiswa dapat memahami it ungsi TIK : Mahasiswa mampu menyelesaikan it ungsi

Lebih terperinci

SUATU CONTOH INVERSE PROBLEMS YANG BERKAITAN DENGAN HUKUM TORRICELLI

SUATU CONTOH INVERSE PROBLEMS YANG BERKAITAN DENGAN HUKUM TORRICELLI Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA Fakultas MIPA, Universitas Negeri Yogyakarta, 16 Mei 009 SUATU CONTOH INVERSE PROBLEMS YANG BERKAITAN DENGAN HUKUM TORRICELLI Suciati

Lebih terperinci

BAB 5 DIFFERENSIASI NUMERIK

BAB 5 DIFFERENSIASI NUMERIK BAB 5 DIFFERENSIASI NUMERIK 5.1. Permasalaan Differensiasi Numerik Sala satu peritungan kalkulus yang banyak digunakan adala differensial, dimana differensial ini banyak digunakan untuk keperluan peritungan

Lebih terperinci

5.1 Menggambar grafik fungsi

5.1 Menggambar grafik fungsi 5. Aplikasi Turunan 5. Menggambar graik ungsi Inormasi yang dibutuhkan: A. Titik potong dengan sumbu dan sumbu y B. Asimtot ungsi Deinisi 5.: Asimtot ungsi adalah garis lurus yang didekati oleh graik ungsi.

Lebih terperinci

PERBANDINGAN DAN FUNGSI TRIGONOMETRI

PERBANDINGAN DAN FUNGSI TRIGONOMETRI PERBANDINGAN DAN FUNGSI TRIGONOMETRI E Gaik Funsi Tionometi Untuk memahami unsi tionometi secaa umum, telebih dahulu kita akan membahas aik unsi tionometi dasa, aitu aik unsi = sin, = cos dan = tan Gaik

Lebih terperinci

Disarikan dari Malatuni Topik Bahasan Penggunaan Konsep Limit Fungsi

Disarikan dari Malatuni Topik Bahasan Penggunaan Konsep Limit Fungsi Disarikan dari Malatuni 7 Topik Baasan Penggunaan Konsep Limit Fungsi y f Ditulis: f L L X Amati ara terbang dua ekor burung menuju sangkar dari ara yang berbeda. Jika kita aplikasikan dalam bentuk matematis

Lebih terperinci

MATEMATIKA 3 Turunan Parsial. -Irma Wulandari-

MATEMATIKA 3 Turunan Parsial. -Irma Wulandari- MATEMATIKA 3 Turunan Parsial -Irma Wulandari- Pengertian Turunan Parsial T = (,) Rata-rata perubahan suhu pelat T per satuan panjang dalam arah sumbu, sejauh, untuk koordinat tetap ; (, ) (, ) Rata-rata

Lebih terperinci

Catatan Kuliah 10 Memahami dan Menganalisa Optimasi dengan Kendala Persamaan

Catatan Kuliah 10 Memahami dan Menganalisa Optimasi dengan Kendala Persamaan Catatan Kuliah 10 Memahami dan Menanalisa Optimasi denan Kendala Persamaan 1. Metode Larane Multiplier Misal diberikan masalah optimisasi sbb : OF : U =, st.: (, ) Selanjutna akan dipelajari baaimana mencari

Lebih terperinci

APLIKASI INTEGRAL 1. LUAS DAERAH BIDANG

APLIKASI INTEGRAL 1. LUAS DAERAH BIDANG Bahan ajar Kalkulus Integral 9 APLIKASI INTEGRAL. LUAS DAERAH BIDANG Misalkan f() kontinu pada a b, dan daerah tersebut dibagi menjadi n sub interval h, h,, h n yang panjangnya,,, n (anggap n ), ambil

Lebih terperinci

PENDAHULUAN TINJAUAN PUSTAKA

PENDAHULUAN TINJAUAN PUSTAKA Latar Belakan PENDAHULUAN Sistem penenalan biometrik menunakan karakteristik fisiolois yan dimiliki manusia sebaai dasar dari penenalannya. arakteristik fisiolois manusia yan diunakan sebaai dasar penenalan

Lebih terperinci

SMA JENJANG KELAS MATA PELAJARAN TOPIK BAHASAN XI (SEBELAS) FISIKA GERAK HARMONIK

SMA JENJANG KELAS MATA PELAJARAN TOPIK BAHASAN XI (SEBELAS) FISIKA GERAK HARMONIK JENJANG KELAS MAA PELAJARAN OPIK BAHASAN SMA XI (SEBELAS) FISIKA GERAK HARMONIK Benda yan melakukan erak lurus berubah beraturan, mempunyai percepatan yan tetap, Ini berarti pada benda senantiasa bekerja

Lebih terperinci

MAKALAH GEOMETRI TRANSFORMASI

MAKALAH GEOMETRI TRANSFORMASI KLH GEOETRI TRNFORI TERI ETENGH UTRN IUUN OLEH : Nama : Listiana aputri Rini uji stuti Ridu Novriansya ewi usiana uprayitno rsi roram tudi : end atematia osen enampu : Fadli, i,d EKOLH TINGGI KEGURUN N

Lebih terperinci

matematika TURUNAN TRIGONOMETRI K e l a s A. Rumus Turunan Sinus dan Kosinus Kurikulum 2006/2013 Tujuan Pembelajaran

matematika TURUNAN TRIGONOMETRI K e l a s A. Rumus Turunan Sinus dan Kosinus Kurikulum 2006/2013 Tujuan Pembelajaran Kurikulum 006/03 matematika K e l a s XI TURUNAN TRIGONOMETRI Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Dapat menentukan rumus turunan trigonometri

Lebih terperinci

Kalkulus I. Fungsi Dan Grafik Fungsi. Dr. Eko Pujiyanto, S.Si., M.T eko.staff.uns.ac.id/kalkulus1

Kalkulus I. Fungsi Dan Grafik Fungsi. Dr. Eko Pujiyanto, S.Si., M.T eko.staff.uns.ac.id/kalkulus1 Kalkulus I Funsi Dan Graik Funsi Dr. Eko Pujiyanto, S.Si., M.T. eko@uns.ac.id 081 2278 3991 eko.sta.uns.ac.id/kalkulus1 Materi Funsi ( Daerah deinisi, daerah asal dan daerah hasil ) Funsi Surjekti, Injekti,

Lebih terperinci

Tujuan Pembelajaran Umum Setelah membaca modul mahasiswa memahami penggunaan atau penerapan persamaan momentum untuk aliran saluran terbuka.

Tujuan Pembelajaran Umum Setelah membaca modul mahasiswa memahami penggunaan atau penerapan persamaan momentum untuk aliran saluran terbuka. Tujuan Pembelajaran Umum Setelah membaca modul mahasiswa memahami penunaan atau penerapan persamaan momentum untuk aliran saluran terbuka. Tujuan Pembelajaran Khusus Setelah membaca modul dan menelesaikan

Lebih terperinci

B C D E... 2h g. =v 2h g T AB. B, y. = 2 v' =2e v 2h T BC

B C D E... 2h g. =v 2h g T AB. B, y. = 2 v' =2e v 2h T BC 1. Gerak benda di antara tubukan erupakan erak parabola. Sebut posisi ula-ula benda adalah titik A, posisi terjadinya tubukan pertaa kali adalah titik B, posisi terjadi tubukan kedua kalinya adalah titik

Lebih terperinci

Diferensial dan Integral

Diferensial dan Integral Open Course Diferensial dan Integral Oleh: Sudaratno Sudirham Pengantar Setelah kita mempelajari fungsi dan grafik, ang merupakan bagian pertama dari kalkulus, berikut ini kita akan membahas bagian kedua

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

Sekolah Olimpiade Fisika davitsipayung.com

Sekolah Olimpiade Fisika davitsipayung.com SOLUSI SELEKSI OSN TINGKAT PROVINSI 06 Bidan Fisika Waktu : Jam Sekolah Olimpiade Fisika davitsipaun.com DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT SEKOLAH

Lebih terperinci

dapat dihampiri oleh:

dapat dihampiri oleh: BAB V PENGGUNAAN TURUNAN Setela pada bab sebelumnya kita membaas pengertian, sifat-sifat, dan rumus-rumus dasar turunan, pada bab ini kita akan membaas tentang aplikasi turunan, diantaranya untuk mengitung

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN LIMIT DAN KEKONTINUAN Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 37 Topik Bahasan 1 Limit Fungsi 2 Hukum Limit 3 Kekontinuan Fungsi (Departemen

Lebih terperinci

TURUNAN FUNGSI. turun pada interval 1. x, maka nilai ab... 5

TURUNAN FUNGSI. turun pada interval 1. x, maka nilai ab... 5 TURUNAN FUNGSI. SIMAK UI Matematika Dasar 9, 009 Jika kurva y a b turun pada interval, maka nilai ab... 5 A. B. C. D. E. Solusi: [D] 5 5 5 0 5 5 0 5 0... () y a b y b b a b b 6 6a 0 b 0 b 6a 0 b 5 b a

Lebih terperinci

E-learning Matematika, GRATIS

E-learning Matematika, GRATIS Penyusun : Arik Murwanto, S.Pd. Editor : Drs. Keto Susanto, M.Si. M.T. ; Istijab, S.H. M.Hum. Imam Indra Gunawan, S.Si. Standar Kompetensi: Menggunakan konsep turunan fungsi dalam pemecaan masala Kompetensi

Lebih terperinci

MODUL MATEMATIKA II. Oleh: Dr. Eng. LILYA SUSANTI

MODUL MATEMATIKA II. Oleh: Dr. Eng. LILYA SUSANTI MODUL MATEMATIKA II Oleh: Dr. Eng. LILYA SUSANTI DEPARTEMEN RISET TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL KATA PENGANTAR Puji sukur kehadirat Allah SWT

Lebih terperinci

Gerak Dua Dimensi Gerak dua dimensi merupakan gerak dalam bidang datar Contoh gerak dua dimensi : Gerak peluru Gerak melingkar Gerak relatif

Gerak Dua Dimensi Gerak dua dimensi merupakan gerak dalam bidang datar Contoh gerak dua dimensi : Gerak peluru Gerak melingkar Gerak relatif Gerak Dua Dimensi Gerak dua dimensi merupakan erak dalam bidan datar Contoh erak dua dimensi : Gerak peluru Gerak melinkar Gerak relatif Posisi, Kecepatan, Percepatan r i = vektor posisi partikel di A

Lebih terperinci

bila limitnya ada. Dengan penggantian x = c+ h, jika x c h 0 dan x c h turunan fungsi f di c dapat dituliskan dalam bentuk: x c

bila limitnya ada. Dengan penggantian x = c+ h, jika x c h 0 dan x c h turunan fungsi f di c dapat dituliskan dalam bentuk: x c Misalkan fungsi f terdefinisi pada selang terbuka I yang memuat c. Turunan pertama dari fungsi f di titik c ditulis f '( c ) didefinisikan sebagai: ( ) ( ) f x f '( c) = lim f c x c x c bila limitnya ada.

Lebih terperinci

Hendra Gunawan. 11 September 2013

Hendra Gunawan. 11 September 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 01/014 11 September 01 Latihan (Kuliah yang Lalu) 1. Buktikan bahwa ( 5) 1. (sdh dibahas). Buktikan bahwa. 4. Buktikan kik bh bahwa 4. bh bahas sekarang

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Fungsi Dua Peubah

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Fungsi Dua Peubah Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Fungsi Dua Peubah [MA114] Sistem Koordinat Kuadran II Kuadran I P(,) z P(,,z) Kuadran III Kuadran IV R (Bidang) Oktan 1 R 3 (Ruang) 7/6/007

Lebih terperinci

Turunan Fungsi dan Aplikasinya

Turunan Fungsi dan Aplikasinya Bab 8 Sumber: www.duniacyber.com Turunan Fungsi dan Aplikasinya Setelah mempelajari bab ini, Anda harus mampu menggunakan konsep, siat, dan aturan dalam perhitungan turunan ungsi; menggunakan turunan untuk

Lebih terperinci

MATA KULIAH : FISIKA DASAR (4 sks) GERAK BENDA DALAM BIDANG DATAR DENGAN PERCEPATAN TETAP

MATA KULIAH : FISIKA DASAR (4 sks) GERAK BENDA DALAM BIDANG DATAR DENGAN PERCEPATAN TETAP MODUL PERTEMUAN KE 4 MATA KULIAH : (4 sks) MATERI KULIAH: Gerak Peluru (Proyektil); Gerak Melinkar Beraturan, Gerak Melinkar Berubah Beraturan, Besaran Anular dan Besaran Tanensial. POKOK BAHASAN: GERAK

Lebih terperinci

Fungsi Peubah Banyak. Modul 1 PENDAHULUAN

Fungsi Peubah Banyak. Modul 1 PENDAHULUAN Modul 1 Fungsi Peubah Banak Prof. Dr. Bambang Soedijono PENDAHULUAN D alam modul ini dibahas masalah Fungsi Peubah Banak. Dengan sendirina para pengguna modul ini dituntut telah menguasai pengertian mengenai

Lebih terperinci

Jurusan Matematika FMIPA-IPB

Jurusan Matematika FMIPA-IPB Jurusan Matematika FMIPA-IPB Ujian Kedua Semester Pendek T.A 4/5 KALKULUS/KALKULUS Jum at, Agustus 4 (Waktu : jam) SETIAP SOAL BERNILAI. Tentukan (a) + (b) p 4 + 5. Periksa apakah Teorema Nilai Rata-rata

Lebih terperinci

BUKU AJAR MATAKULIAH GEOMETRI TRANSFORMASI TINJAUAN MATAKULIAH

BUKU AJAR MATAKULIAH GEOMETRI TRANSFORMASI TINJAUAN MATAKULIAH BUKU JR TKULIH GOTRI TRNFORI TINJUN TKULIH. Desripsi inat ata Kulia ata ulia ini membaas tentan eometri dari sudut pandan rup transformasi onsep-onsep rup sebaai unsur dari strutur aljabar diterapan melalui

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4.0. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

Variasi Kuat Medan Gravitasi

Variasi Kuat Medan Gravitasi Vaiasi Kuat edan avitasi By Anawa Kuat medan avitasi bumi sanat dipenaui ole bebeapa al, antaa lain:. KETINIAN Vaiasi kuat medan avitasi akibat penau ketinian maksudnya, bawa besanya aya yan dialami ole

Lebih terperinci

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c > 0, maka

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c > 0, maka Contoh 5 Buktikan jika c > 0 maka c c Analisis Pendahuluan Akan dicari bilangan δ > 0 sedemikian sehingga apabila c < ε untuk setiap ε > 0. 0 < c < δ berlaku Perhatikan: c ( c)( c) c c c c c c c Dapat

Lebih terperinci

BAB V PENERAPAN DIFFERENSIASI

BAB V PENERAPAN DIFFERENSIASI BAB V PENERAPAN DIFFERENSIASI 5.1 Persamaan garis singgung Bentuk umum persamaan garis adalah = m + n, dimana m adalah koeffisien arah atau kemiringan garis dan n adalah penggal garis. Sekarang perhatikan

Lebih terperinci

DIKTAT. Persamaan Diferensial

DIKTAT. Persamaan Diferensial Diktat Persamaan Diferensial; Dwi Lestari, M.S. 3 DIKTAT Persamaan Diferensial Disusun oleh: Dwi Lestari, M.S email: dwilestari@un.a.id JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

KALKULUS INTEGRAL 2013

KALKULUS INTEGRAL 2013 KALKULUS INTEGRAL 0 PENDAHULUAN A. DESKRIPSI MATA KULIAH Isi pokok mata kuliah ini memuat pemahaman tentang: () Anti turunan: pengertian anti turunan, teorema-teorema, dan teknik anti turunan, () Integral

Lebih terperinci

1. Persamaan Energi Total

1. Persamaan Energi Total . Persamaan Eneri Total Eneri total adala jmla eneri karena ketinian elevasi (potential enery), eneri tekanan (pressre enery), dan eneri kecepatan (velocity ead). Prinsip eneri kekal ini lebi dikenal denan

Lebih terperinci

Membangun Kode Golay (24, 12, 8) dengan Matriks Generator dan Menggunakan Aturan Kontruksi. Ikhsan Rizki K 1 dan Bambang Irawanto 2

Membangun Kode Golay (24, 12, 8) dengan Matriks Generator dan Menggunakan Aturan Kontruksi. Ikhsan Rizki K 1 dan Bambang Irawanto 2 Membanun Kode olay (2, 2, 8) denan Matriks enerator Menunakan Aturan Kontruksi Iksan Rizki K Bamban Irawanto 2, 2 Jurusan Matematika FMIPA UNDIP Jln Prof H Soedarto, SH, Tembalan, Semaran Abstract : Te

Lebih terperinci

FISIKA GERAK PARABOLA

FISIKA GERAK PARABOLA KTSP K-13 Kelas X FISIKA GERAK PARABOLA TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan. 1. Memahami konsep erak parabola.. Menaplikasikannya dalam pemecahan masalah.

Lebih terperinci