KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY IV. TURUNAN

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY IV. TURUNAN"

Transkripsi

1 KALKULUS I MUGA4 PROGRAM PERKULIAHAN DASAR DAN UMUM PPDU TELKOM UNIVERSITY IV. TURUNAN

2 Turunan di satu titik Pendahuluan dua masalah dalam satu tema KONSEP TURUNAN a. Garis Singgung Kemiringan tali busur PQ adalah : m PQ Q - Jika, maka tali busur PQ akan berubah menjadi garis singgung di titik P dgn kemiringan m P -

3 b. Keepatan Sesaat Misal sebuah benda bergerak sepanjang garis koordinat sehingga posisinya setiap saat diberikan oleh s = t. Pada saat t = benda berada di dan saat t = + h benda berada di +h. Perubahan waktu Perubahan posisi +h +h s Sehingga keepatan rata-rata pada selang waktu [,+h] adalah h vrata rata h

4 Jika h 0, diperoleh keepatan sesaat di = : v v h0 ratarata h h0 h Misal = + h, bentuk diatas dapat dituliskan dalam bentuk v Dari dua bentuk diatas : kemiringan garis singgung dan keepatan sesaat terlihat bahwa dua masalah tersebut berada dalam satu tema, yaitu turunan Deinisi 4. : Turunan pertama ungsi di titik =, notasi dideinisikan sebagai bila it diatas ada

5 Notasi lain : d d, y Contoh : Diketahui tentukan. 9

6 . h h 0 h h 0 h 0 h 0 h 0 h h h h h h h h h h h h 0 9

7 Turunan kiri dari ungsi di titik, dideinisikan sebagai : TURUNAN SEPIHAK Turunan kanan dari ungsi di titik, dideinisikan sebagai : bila it ini ada. Fungsi dikatakan mempunyai turunan dierensiabel di atau jika dan Jika sebaliknya, dikatakan tidak mempunyai turunan di. _

8 Contoh : Diketahui,, Selidiki apakah dierensiabel di =. Jika ya, tentukan Jawab : a. b. Jadi, dierensiabel di = dan.

9 Teorema : Jika dierensiabel di kontinu di. Bukti : Yang perlu ditunjukkan adalah Perhatikan bahwa Maka Siat tersebut tidak berlaku sebaliknya. Artinya, jika kontinu di, maka belum tentu dierensiabel di. Hal ini, ditunjukkan oleh ontoh berikut.,...0 =. Terbukti.

10 Contoh Tunjukkan bahwa = kontinu di = 0 tetapi tidak dierensiabel di = 0 Jawab Akan ditunjukkan bahwa = kontinu di =0, 0, 0 0 = kontinu di = 0 0

11 Selidiki apakah terdierensialkan di = Karena maka tidak dierensiabel di 0.

12 Contoh : Cari nilai a dan b sehingga mempunyai turunan di =.,, a b. Jawab : mempunyai turunan di = jika a. kontinu di = syarat perlu kontinu di = jika kontinu kiri dan kontinu kanan di =, atau a b a b a a b a

13 b. Turunan kiri = turunan kanan di syarat ukup ba a a aa a a a Maka a = dan b =

14 Soal Latihan. Apakah ungsi, 4, dierensiabel di =?. Apakah ungsi dierensiabel di setiap bilangan real?. Apakah ungsi dierensiabel di =?,, 4. Apakah ungsi dierensiabel di setiap bilangan real? ; a b ; 5. Cari nilai a dan b sehingga mempunyai turunan di =

15 ATURAN PENCARIAN TURUNAN Fungsi Turunan Pertama Deinisi Misalkan terdeinisi pada selang I. Fungsi turunan pertama dari, ditulis, dideinisikan sebagai atau jika h=t- t, t t h0 bila itnya ada. h, h Notasi lain y, dy d d,, D d y, D dy, bentuk dikenal d sebagai notasi Leibniz.

16 Dengan menggunakan deinisi tersebut dapat diturunkan aturan untuk menari turunan sebagai berikut :. Jika =k, maka dengan R r r d d r r ; g d g d g g d g d g g g d d g 0 g 0

17 Bukti ormula 4 Misalkan h = g h h h hg h g h h0 h h0 h h g h h g h g g h0 h g h g h h g h0 h h g h g h h g h0 h0 h h0 h0 h g g g g

18 . 6 6.Tentukan turunan pertama dari Contoh:. Tentukan turunan pertama dari 4 Jawab : Tentukan turunan pertama dari Jawab : Jawab :

19 Soal Latihan Tentukan ungsi turunan pertama dari. /..

20 TURUNAN FUNGSI SINUS COSINUS a. sin os b. os sin BUKTI a. Misal = sin, maka t t os sin sin t sin t t t t t sin t os. t t 0 t os. os

21 b. Misal = os, maka os h h os h0 h0 ososh sinsinh 0 h h os osh sin sinh os h os sin h 0 h h os sin h sinh sin os h0 h/ 4 h h sin h/ h/ sinh sin h h sinh sin 4 h 0 h h/ 0 os.0 sin sin

22 Untuk turunan ungsi trigonometri yang lain dapat diperoleh dengan menerapkan rumus perhitungan turunan, khususnya turunan bentuk u/v sin tan d os d. d d os ot d sin d d. d d se d os d e. d d s d sin d. d d os sin os sin os sin sin os os sin os sin se s sin se tan os os os s sin sin ot

23 ATURAN RANTAI dy du Andaikan y = u dan u = g. Jika dan ada, maka dy du du d dy d du d dy d Contoh : Tentukan dari y sin Jawab : Misal u sehingga bentuk diatas menjadi Karena y sinu maka dy du osu dan du d dy os os d

24 Jika y = u, u = gv, v = h, dan dy d Contoh : Tentukan Jawab : Misal v dy du du dv dy d dv d 5 dari y dy du Sin du dv, dv d, ada, maka 4 dv d du sin osv os 5 dv 4 dy y u 4u 4Sin 5 du sehingga dy dy du dv.. Sin 5 Cos 5 d du dv d 5

25 Atau bisa dengan ara langsung, y 4. Sin 5 Cos 5. y Sin 4 5 Sin 5 Cos 5.

26 Soal Latihan Tentukan ungsi turunan pertama dari. y. y y y sin os 4 4 y 6. ysintan

27 TURUNAN TINGKAT TINGGI Turunan ke-n didapatkan dari penurunan turunan ke-n-. n Turunan pertama Turunan kedua Turunan ketiga Turunan ke-n " " n Contoh : Tentukan dari d d d d d y n d d d n d d n y 4 sin Jawab : y os maka y 4 sin

28 y sin Soal Latihan A. Tentukan turunan kedua dari y y y 4 os B. Tentukan nilai sehingga " 0 bila 456 g a C. Tentukan nilai a, b dan dari b bila g = 5, g dan g 4

29 TURUNAN FUNGSI IMPLISIT Jika hubungan antara y dan dapat dituliskan dalam bentuk y =, maka y disebut ungsi eksplisit dari, yaitu antara peubah bebas dan tak bebasnya dituliskan dalam ruas yang berbeda. Bila tidak demikian, maka dikatakan y ungsi implisit dari. Contoh :. y y 0. sin y y Untuk menentukan turunan dari bentuk implisit digunakan aturan rantai dan anggap y ungsi dari.

30 Contoh: Tentukan dy/d dari bentuk implisit berikut Jawab:. y y 0. sin y y. D y y D0 D y D D y D 0 y yy y 0 y y y y y y

31 . Dsin y D y os y. y y yy 0 os y y y y os y y y os y os y y

32 Soal Latihan Tentukan turunan pertama y dari bentuk implisit... yy 0 ysin y y 0 tan y 4. sin y y

33 GARIS SINGGUNG DAN GARIS NORMAL Persamaan garis singgung ungsi y = di titik 0,y 0 dengan kemiringan m adalah Garis yang tegak lurus dengan garis singgung disebut dengan garis normal. Persamaan garis normal di titik 0,y 0 adalah y y y m, m y y 0 0 m 0 0.

34 Contoh: Tentukan persamaan garis singgung dan garis normal ungsi di,6. y 6 Jawab : y 4 y, Sehingga persamaan garis singgung di titik,6 : y 6 4 y 4 Persamaan garis normal dititik,6 : y 6 y y 4

35 Tentukan persamaan garis singgung dan garis normal pada kurva y y 6 0 di titik dengan absis = Jawab : Jika disubstitusikan nilai = pada persamaan kurva diperoleh y y y y y dan y 60 0 Sehingga diperoleh titik dimana akan ditentukan persamaan garis singgung dan garis normalnya adalah, dan,- Hitung terlebih dahulu y dengan menggunakan turunan ungsi implisit D y y 6 D0 y yy y y 00 y yy y y 0 y y y y yy y y

36 Di titik, y, Persamaan garis singgung y y 6 Persamaan garis normal y y 8 Di titik,- y, Persamaan garis singgung y y 4 Persamaan garis normal y y

37 Soal Latihan. Diketahui kurva yang dinyatakan seara implisit y y 0y Tentukan persamaan garis singgung dan garis normal di,. Diketahui kurva yang dinyatakan seara implisit sin y y Tentukan persamaan garis singgung dan garis normal di,

38 Terima Kasih

4.1 Konsep Turunan. lim Turunan di satu titik. Pendahuluan ( dua masalah dalam satu tema ) a. Garis Singgung Kemiringan tali busur PQ adalah :

4.1 Konsep Turunan. lim Turunan di satu titik. Pendahuluan ( dua masalah dalam satu tema ) a. Garis Singgung Kemiringan tali busur PQ adalah : 4. TURUNAN 4. Konsep Turunan 4.. Turunan di satu titik Pendahuluan dua masalah dalam satu tema a. Garis Singgung Kemiringan tali busur PQ adalah : m PQ c c Q -c Jika c, maka tali busur PQ akan berubah

Lebih terperinci

4.1 Konsep Turunan. lim. m PQ Turunan di satu titik. Pendahuluan ( dua masalah dalam satu tema )

4.1 Konsep Turunan. lim. m PQ Turunan di satu titik. Pendahuluan ( dua masalah dalam satu tema ) 4. TURUNAN 4. Konsep Turunan 4.. Turunan di satu titik Pendauluan dua masala dalam satu tema a. Garis Singgung Kemiringan tali busur PQ adala : m PQ Jika, maka tali busur PQ akan beruba menjadi garis ggung

Lebih terperinci

4. TURUNAN. MA1114 Kalkulus I 1

4. TURUNAN. MA1114 Kalkulus I 1 4. TURUNAN MA4 Kalkulus I 4. Konsep Turunan 4.. Turunan di satu titik Pendauluan dua masala dalam satu tema a. Garis Singgung Kemiringan tali busur PQ adala : m PQ Jika, maka tali busur PQ akan beruba

Lebih terperinci

4. TURUNAN. MA1114 Kalkulus I 1

4. TURUNAN. MA1114 Kalkulus I 1 4. TURUNAN MA4 Kalkulus I 4. Konsep Turunan 4.. Turunan di satu titik Pendauluan dua masala dalam satu tema a. Garis Sinun Kemirinan tali busur PQ adala : m PQ Jika à, maka tali busur PQ akan beruba menjadi

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV 101. Limit Fungsi. Pertemuan - 2

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV 101. Limit Fungsi. Pertemuan - 2 Respet, Proessionalism, & Entrepreneurship Mata Kuliah : Kalkulus Kode : CIV 101 SKS : 3 SKS Limit Fungsi Pertemuan - Respet, Proessionalism, & Entrepreneurship Kemampuan Akhir yang Diharapkan Mahasiswa

Lebih terperinci

KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY V. APLIKASI TURUNAN

KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY V. APLIKASI TURUNAN KALKULUS I MUGA4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY V. APLIKASI TURUNAN MENGGAMBAR GRAFIK FUNGSI A. Titik potong dengan sumbu dan sumbu y B. Asimtot ungsi Deinisi : Asimtot ungsi

Lebih terperinci

Rencana Pembelajaran

Rencana Pembelajaran Learning Outcome Rencana Pembelajaran Setelah mengikuti proses pembelajaran ini, diharapkan mahasiswa dapat ) Menentukan nilai turunan suatu fungsi di suatu titik ) Menentukan nilai koefisien fungsi sehingga

Lebih terperinci

Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada

Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada 5 TURUNAN JUMLAH PERTEMUAN : 4 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada permasalahan yang ada Materi : 5.1 Pendahuluan Ide awal

Lebih terperinci

TURUNAN. Bogor, Departemen Matematika FMIPA-IPB. (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, / 50

TURUNAN. Bogor, Departemen Matematika FMIPA-IPB. (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, / 50 TURUNAN Departemen Matematika FMIPA-IPB Bogor, 2012 (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, 2012 1 / 50 Topik Bahasan 1 Pendahuluan 2 Turunan Fungsi 3 Tafsiran Lain Turunan 4 Kaitan

Lebih terperinci

Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada

Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada 5 TURUNAN JUMLAH PERTEMUAN : 4 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada permasalahan yang ada Materi : 5.1 Pendahuluan Ide awal adanya

Lebih terperinci

TURUNAN FUNGSI IKA ARFIANI, S.T.

TURUNAN FUNGSI IKA ARFIANI, S.T. TURUNAN FUNGSI IKA ARFIANI, S.T. DEFINISI TURUNAN Turunan dari ( terhadap dideinisikan dengan: d d ' ' ( lim h 0 ( h-( h RUMUS DASAR TURUNAN ' n n n k k ' 0 k ' u' nu u n n '( ( '( ( '( ( '( ( 0 '( ( n

Lebih terperinci

INTEGRAL TAK TENTU (subtitusi parsial) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

INTEGRAL TAK TENTU (subtitusi parsial) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ INTEGRAL TAK TENTU subtitusi parsial Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ agustina.mipa@unej.ac.id DEFINISI Untuk ungsi yang terdeinisi pada selang terbuka I, dpt ditentukan ungsi

Lebih terperinci

5.1 Menggambar grafik fungsi

5.1 Menggambar grafik fungsi 5. Aplikasi Turunan 5. Menggambar graik ungsi Inormasi yang dibutuhkan: A. Titik potong dengan sumbu dan sumbu y B. Asimtot ungsi Deinisi 5.: Asimtot ungsi adalah garis lurus yang didekati oleh graik ungsi.

Lebih terperinci

bila limitnya ada. Dengan penggantian x = c+ h, jika x c h 0 dan x c h turunan fungsi f di c dapat dituliskan dalam bentuk: x c

bila limitnya ada. Dengan penggantian x = c+ h, jika x c h 0 dan x c h turunan fungsi f di c dapat dituliskan dalam bentuk: x c Misalkan fungsi f terdefinisi pada selang terbuka I yang memuat c. Turunan pertama dari fungsi f di titik c ditulis f '( c ) didefinisikan sebagai: ( ) ( ) f x f '( c) = lim f c x c x c bila limitnya ada.

Lebih terperinci

5. Aplikasi Turunan 1

5. Aplikasi Turunan 1 5. Aplikasi Turunan 5. Menggambar graik ungsi Inormasi yang dibutuhkan: A. Titik potong dengan sumbu dan sumbu y B. Asimtot ungsi Deinisi 5.: Asimtot ungsi adalah garis lurus yang didekati oleh graik ungsi.

Lebih terperinci

TURUNAN FUNGSI IKA ARFIANI, S.T.

TURUNAN FUNGSI IKA ARFIANI, S.T. TURUNAN FUNGSI IKA ARFIANI, S.T. DEFINISI TURUNAN Turunan dari ( terhadap dideinisikan dengan: d d ( lim h 0 ( h-( h RUMUS DASAR TURUNAN n n n k k 0 k u nu u n n ( ( ( ( ( ( ( ( 0 ( ( n n n c RUMUS JUMLAH

Lebih terperinci

Turunan Fungsi dan Aplikasinya

Turunan Fungsi dan Aplikasinya Bab 8 Sumber: www.duniacyber.com Turunan Fungsi dan Aplikasinya Setelah mempelajari bab ini, Anda harus mampu menggunakan konsep, siat, dan aturan dalam perhitungan turunan ungsi; menggunakan turunan untuk

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV Turunan. Pertemuan 3, 4, 5, 6, 7

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV Turunan. Pertemuan 3, 4, 5, 6, 7 Mata Kuliah : Kalkulus Kode : CIV - 101 SKS : 3 SKS Turunan Pertemuan 3, 4, 5, 6, 7 Kemampuan Akhir ang Diharapkan Mahasiswa mampu : - menjelaskan arti turunan ungsi - mencari turunan ungsi - menggunakan

Lebih terperinci

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c 0, maka

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c 0, maka Contoh 5 Buktikan jika c 0 maka c c Analisis Pendahuluan Akan dicari bilangan 0 sedemikian sehingga apabila c untuk setiap 0. 0 c berlaku Perhatikan: c ( c)( c) c c c c Dapat dipilih c Bukti: c c c Ambil

Lebih terperinci

Hendra Gunawan. 25 September 2013

Hendra Gunawan. 25 September 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 25 September 2013 Kuis 1 (Kuliah yang Lalu) 1. Selesaikan pertaksamaan 2x 3 < x. 2. Diketahui i f(x) ) = x 2 sin (1/x) untuk x 0 dan f(0) = 0.

Lebih terperinci

Matematika I: Turunan. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 61

Matematika I: Turunan. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 61 Matematika I: Turunan Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 61 Outline 1 Garis Singgung Dadang Amir Hamzah Matematika I Semester I 2015 2 / 61 Outline 1 Garis Singgung

Lebih terperinci

Hendra Gunawan. 11 September 2013

Hendra Gunawan. 11 September 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 01/014 11 September 01 Latihan (Kuliah yang Lalu) 1. Buktikan bahwa ( 5) 1. (sdh dibahas). Buktikan bahwa. 4. Buktikan kik bh bahwa 4. bh bahas sekarang

Lebih terperinci

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c > 0, maka

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c > 0, maka Contoh 5 Buktikan jika c > 0 maka c c Analisis Pendahuluan Akan dicari bilangan δ > 0 sedemikian sehingga apabila c < ε untuk setiap ε > 0. 0 < c < δ berlaku Perhatikan: c ( c)( c) c c c c c c c Dapat

Lebih terperinci

TURUNAN / DIFERENSIAL TURUNAN DAN DIFERENSIAL

TURUNAN / DIFERENSIAL TURUNAN DAN DIFERENSIAL TURUNAN / DIFERENSIAL 4. Devinisi Turunan Derivati Turunan ungsi adala yang nilainya pada bilangan dan dideinisikan ole : ' lim0 untuk semua dengan limit tersebut ada. Conto Andaikan cari 4? Penyelesaian

Lebih terperinci

PENGGUNAAN TURUNAN. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

PENGGUNAAN TURUNAN. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ PENGGUNAAN TURUNAN Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ agustina.mipa@unej.a.id Pada materi sebelumnya telah dijelaskan bahwa Teorema Nilai Rata-Rata (TNR dierensial) memegang peranan

Lebih terperinci

LIMIT & KEKONTINUAN IRA PRASETYANINGRUM

LIMIT & KEKONTINUAN IRA PRASETYANINGRUM LIMIT & KEKONTINUAN IRA PRASETYANINGRUM Bilangan Tidak Tertentu Nol = Bilangan yang menyatakan banyaknya elemen himpunan kosong Misal : A={Orang yang Istrinya } Terdapat bilangan mendekati dari kiri/bawah/negati

Lebih terperinci

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Turunan Pertemuan - 3

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Turunan Pertemuan - 3 a home base to ecellence Mata Kuliah : Kalkulus Kode : TSP 102 SKS : 3 SKS Turunan Pertemuan - 3 a home base to ecellence TIU : Mahasiswa dapat memahami turunan unsi dan aplikasinya TIK : Mahasiswa mampu

Lebih terperinci

Jurusan Matematika FMIPA-IPB

Jurusan Matematika FMIPA-IPB Jurusan Matematika FMIPA-IPB Ujian Kedua Semester Pendek T.A 4/5 KALKULUS/KALKULUS Jum at, Agustus 4 (Waktu : jam) SETIAP SOAL BERNILAI. Tentukan (a) + (b) p 4 + 5. Periksa apakah Teorema Nilai Rata-rata

Lebih terperinci

AFTAR ISI KATA PENGANTAR... i DAFTAR ISI... iii SOAL - SOAL... 2 PEMBAHASAN... 19

AFTAR ISI KATA PENGANTAR... i DAFTAR ISI... iii SOAL - SOAL... 2 PEMBAHASAN... 19 DAFTAR ISI KATA PENGANTAR... i DAFTAR ISI... iii SOAL - SOAL... UTS Genap 009/00... UTS Ganjil 009/00... UTS Genap 008/009... 5 UTS Pendek 008/009... 6 UTS 007/008... 8 UTS 006/007... 9 UTS 005/006...

Lebih terperinci

19, 2. didefinisikan sebagai bilangan yang dapat ditulis dengan b

19, 2. didefinisikan sebagai bilangan yang dapat ditulis dengan b PENDAHULUAN. Sistem Bilangan Real Untuk mempelajari kalkulus perlu memaami baasan tentang system bilangan real karena kalkulus didasarkan pada system bilangan real dan sifatsifatnya. Sistem bilangan yang

Lebih terperinci

BAB 3 LIMIT DAN KEKONTINUAN FUNGSI

BAB 3 LIMIT DAN KEKONTINUAN FUNGSI Diktat Kuliah TK Matematika BAB LIMIT DAN KEKONTINUAN FUNGSI Limit Fungsi Pengantar Limit Tinjau fungsi yang didefinisikan oleh f ( ) Perhatikan bahwa fungsi ini tidak terdefinisi pada = karena memiliki

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

APLIKASI INTEGRAL 1. LUAS DAERAH BIDANG

APLIKASI INTEGRAL 1. LUAS DAERAH BIDANG Bahan ajar Kalkulus Integral 9 APLIKASI INTEGRAL. LUAS DAERAH BIDANG Misalkan f() kontinu pada a b, dan daerah tersebut dibagi menjadi n sub interval h, h,, h n yang panjangnya,,, n (anggap n ), ambil

Lebih terperinci

Catatan Kuliah MA1123 KALKULUS ELEMENTER I BAB III. TURUNAN

Catatan Kuliah MA1123 KALKULUS ELEMENTER I BAB III. TURUNAN BAB III. TURUNAN Kecepatan Sesaat dan Gradien Garis Singgung Turunan dan Hubungannya dengan Kekontinuan Aturan Dasar Turunan Notasi Leibniz dan Turunan Tingkat Tinggi Penurunan Implisit Laju yang Berkaitan

Lebih terperinci

-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ -LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ agustina.mipa@unej.ac.id Konsep Limit Fungsi mendasari pembentukan kalkulus dierensial dan integral. Konsep ini

Lebih terperinci

5. Aplikasi Turunan MA1114 KALKULUS I 1

5. Aplikasi Turunan MA1114 KALKULUS I 1 5. Aplikasi Turunan MA4 KALKULUS I 5. Menggambar grafik fungsi Informasi yang dibutuhkan: A. Titik potong dengan sumbu dan sumbu y B. Asimtot fungsi C. Kemonotonan Fungsi D. Ekstrim Fungsi E. Kecekungan

Lebih terperinci

Fungsi. Pengertian Fungsi. Pengertian Fungsi ( ) ( )

Fungsi. Pengertian Fungsi. Pengertian Fungsi ( ) ( ) Fungsi Pengertian Fungsi Relasi : aturan yang mengawankan/ mengkaitkan/ menugaskan himpunan Fungsi Misalkan A dan B himpunan. Relasi biner dari A ke B merupakan suatu ungsi jika setiap elemen di dalam

Lebih terperinci

Turunan Fungsi. h asalkan limit ini ada.

Turunan Fungsi. h asalkan limit ini ada. Turunan Fungsi q Definisi Turunan Fungsi Misalkan fungsi f terdefinisi pada selang terbuka I yang memuat a. Turunan pertama fungsi f di =a ditulis f (a) didefinisikan dengan f ( a h) f ( a) f '( a) lim

Lebih terperinci

BAB VII. FUNGSI TRANSEDEN. Perhatikan adanya kesenjangan tentang turunan berikut.

BAB VII. FUNGSI TRANSEDEN. Perhatikan adanya kesenjangan tentang turunan berikut. 64 BAB VII. FUNGSI TRANSEDEN 7.. Fungsi Logaritma Asli Perhatikan adanya kesenjangan tentang turunan berikut. D ( 3 /3) D ( /) D () 0 D (???) - D (- - ) - D (- - /3) -3 Definisi: Fungsi logaritma asli

Lebih terperinci

MATEMATIKA TURUNAN FUNGSI

MATEMATIKA TURUNAN FUNGSI MATEMATIKA TURUNAN FUNGSI lim h 0 f ( x h) f( x) h KELAS : XI MIA SEMESTER : (DUA) SMA Santa Angela Bandung Tahun Pelajaran 06-07 XI MIA Semester Tahun Pelajaran 06 07 PENGANTAR : TURUNAN FUNGSI Modul

Lebih terperinci

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan KALKULUS 1 HADI SUTRISNO 1 Pendidikan Matematika STKIP PGRI Bangkalan BAB I PENDAHULUAN A. Sistem Bilangan Real Untuk mempelajari kalkulus kita terlebih dahulu perlu memahami bahasan tentang sistem bilangan

Lebih terperinci

= + atau = - 2. TURUNAN 2.1 Definisi Turunan fungsi f adalah fungsi yang nilainya di setiap bilangan sebarang c di dalam D f diberikan oleh

= + atau = - 2. TURUNAN 2.1 Definisi Turunan fungsi f adalah fungsi yang nilainya di setiap bilangan sebarang c di dalam D f diberikan oleh JURUSAN PENDIDIKAN MATEMATIKA FPMIPA-UPI BANDUNG HAND OUT TURUNAN DAN DIFERENSIASI OLEH: FIRDAUS-UPI 0716 1. GARIS SINGGUNG 1.1 Definisi Misalkan fungsi f kontinu di c. Garis singgung ( tangent line )

Lebih terperinci

UJIAN TENGAH SEMESTER KALKULUS I

UJIAN TENGAH SEMESTER KALKULUS I UJIAN TENGAH SEMESTER KALKULUS I Senin, 9 April 001 Waktu :,5 jam 1. Tentukan dy dx jika (a) y 5x (x + 1) (b) y cos x.. Dengan menggunakan de nisi turunan, tentukan f 0 (x) untuk fungsi f berikut f (x)

Lebih terperinci

TURUNAN FUNGSI KELAS : XI IPS

TURUNAN FUNGSI KELAS : XI IPS MATEMATIKA MODUL 4 TURUNAN FUNGSI KELAS : XI IPS SEMESTER : (DUA) MAYA KURNIAWATI SMA N SUMBER PENGANTAR : TURUNAN FUNGSI Modul ini kami susun sebagai salah satu sumber belajar untuk siswa agar dapat dipelajari

Lebih terperinci

matematika TURUNAN TRIGONOMETRI K e l a s A. Rumus Turunan Sinus dan Kosinus Kurikulum 2006/2013 Tujuan Pembelajaran

matematika TURUNAN TRIGONOMETRI K e l a s A. Rumus Turunan Sinus dan Kosinus Kurikulum 2006/2013 Tujuan Pembelajaran Kurikulum 006/03 matematika K e l a s XI TURUNAN TRIGONOMETRI Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Dapat menentukan rumus turunan trigonometri

Lebih terperinci

Turunan Fungsi. Penggunaan Konsep dan Aturan Turunan ; Penggunaan Turunan untuk Menentukan Karakteristik Suatu Fungsi

Turunan Fungsi. Penggunaan Konsep dan Aturan Turunan ; Penggunaan Turunan untuk Menentukan Karakteristik Suatu Fungsi 8 Penggunaan Konsep dan Aturan Turunan ; Penggunaan Turunan untuk Menentukan Karakteristik Suatu Fungsi ; Model Matematika dari Masala yang Berkaitan dengan ; Ekstrim Fungsi Model Matematika dari Masala

Lebih terperinci

Turunan Fungsi dan Aplikasinya

Turunan Fungsi dan Aplikasinya Bab 8 Sumber: www.duniacyber.com Turunan Fungsi dan Aplikasinya Setelah mempelajari bab ini, Anda harus mampu menggunakan konsep, sifat, dan aturan dalam perhitungan turunan fungsi; menggunakan turunan

Lebih terperinci

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4)

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4) LIMIT FUNGSI A. Menentukan Limit Fungsi Aljabar A.. Limit a Contoh A.:. ( ) 3 Contoh A. : 4 ( )( ) ( ) 4 Latihan. Hitunglah nilai it fungsi-fungsi berikut ini. a. (3 ) b. ( 4) c. ( 4) d. 0 . Hitunglah

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN LIMIT DAN KEKONTINUAN Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 37 Topik Bahasan 1 Limit Fungsi 2 Hukum Limit 3 Kekontinuan Fungsi (Departemen

Lebih terperinci

BAB I SISTEM BILANGAN REAL

BAB I SISTEM BILANGAN REAL BAB I SISTEM BILANGAN REAL A. Sistem Bilangan Real Sistem bilangan real sangat erat kaitannya dengan kalkulus. Sebagian dari kalkulus berdasar pada sifat-sifat sistem bilangan real, sehingga sistem bilangan

Lebih terperinci

MATEMATIKA TURUNAN FUNGSI

MATEMATIKA TURUNAN FUNGSI MATEMATIKA TURUNAN FUNGSI lim 0 f ( x ) f( x) KELAS : XI IPA SEMESTER : (DUA) SMA Santa Angela Bandung Taun Pelajaran 04-05 XI IPA Semester Taun Pelajaran 04 05 PENGANTAR : TURUNAN FUNGSI Modul ini kami

Lebih terperinci

TURUNAN FUNGSI. dy (y atau f (x) atau ) dx. Hal-hal yang perlu diingat untuk menyelesaikan turunan fungsi aljabar adalah :

TURUNAN FUNGSI. dy (y atau f (x) atau ) dx. Hal-hal yang perlu diingat untuk menyelesaikan turunan fungsi aljabar adalah : TURUNAN FUNGSI dy (y atau f () atau ) d Hal-hal yang perlu diingat untuk menyelesaikan turunan fungsi aljabar adalah :. ( a + b) = ( a + ab + b ). ( a b) = ( a ab + b ) m n m n. a = a 4. a m = a m m m.

Lebih terperinci

UJIAN TENGAH SEMESTER KALKULUS/KALKULUS1

UJIAN TENGAH SEMESTER KALKULUS/KALKULUS1 Jurusan Matematika FMIPA IPB UJIAN TENGAH SEMESTER KALKULUS/KALKULUS1 Sabtu, 4 Maret 003 Waktu : jam SETIAP NOMOR MEMPUNYAI BOBOT 10 1. Tentukan: (a) (b) x sin x x + 1 ; x (cos (x 1)) :. Diberikan fungsi

Lebih terperinci

MATEMATIKA MODUL 4 TURUNAN FUNGSI KELAS : XI IPA SEMESTER : 2 (DUA)

MATEMATIKA MODUL 4 TURUNAN FUNGSI KELAS : XI IPA SEMESTER : 2 (DUA) MATEMATIKA MODUL 4 TURUNAN FUNGSI KELAS : XI IPA SEMESTER : (DUA) Muammad Zainal Abidin Personal Blog SMAN Bone-Bone Luwu Utara Sulsel ttp://meetabied.wordpress.com PENGANTAR : TURUNAN FUNGSI Modul ini

Lebih terperinci

SATUAN ACARA PERKULIAHAN STRATA-1 STMIK UBUDIYAH

SATUAN ACARA PERKULIAHAN STRATA-1 STMIK UBUDIYAH SATUAN ACARA PERKULIAHAN STRATA-1 STMIK UBUDIYAH MATA KULIAH : KALKULUS I JURUSAN : TEKNIK INFORMATIKA KODE MATA KULIAH : JUMLAH PERTEMUAN : 32 X (30 X, 2 X Ujian) TATAP MUKA KE POKOK BAHASAN 1 SUB POKOK

Lebih terperinci

Ringkasan Materi Kuliah Bab II FUNGSI

Ringkasan Materi Kuliah Bab II FUNGSI Ringkasan Materi Kuliah Bab II FUNGSI. FUNGSI REAL, FUNGSI ALJABAR, DAN FUNGSI TRIGONOMETRI. TOPIK-TOPIK YANG BERKAITAN DENGAN FUNGSI.3 FUNGSI KOMPOSISI DAN FUNGSI INVERS. FUNGSI REAL, FUNGSI ALJABAR,

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4.0. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

BAHAN AJAR DIKLAT PENGEMBANG MATEMATIKA SMA JENJANG DASAR

BAHAN AJAR DIKLAT PENGEMBANG MATEMATIKA SMA JENJANG DASAR PPPPTK Matematika Kode Dok Revisi : F-PRO-00 : 0 BAHAN AJAR DIKLAT PENGEMBANG MATEMATIKA SMA JENJANG DASAR Oleh : Drs. Setiawan, M.Pd. DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT PENINGKATAN MUTU PENDIDIK

Lebih terperinci

1 Sistem Bilangan Real

1 Sistem Bilangan Real Learning Outcome Rencana Pembelajaran Setelah mengikuti proses pembelajaran ini, diharapkan mahasiswa dapat ) Menentukan solusi pertidaksamaan aljabar ) Menyelesaikan pertidaksamaan dengan nilai mutlak

Lebih terperinci

KALKULUS INTEGRAL 2013

KALKULUS INTEGRAL 2013 KALKULUS INTEGRAL 0 PENDAHULUAN A. DESKRIPSI MATA KULIAH Isi pokok mata kuliah ini memuat pemahaman tentang: () Anti turunan: pengertian anti turunan, teorema-teorema, dan teknik anti turunan, () Integral

Lebih terperinci

MATEMATIKA TURUNAN FUNGSI

MATEMATIKA TURUNAN FUNGSI MATEMATIKA TURUNAN FUNGSI lim h 0 f ( x h) f( x) h KELAS : XII IIS SEMESTER GANJIL SMA Santa Angela Bandung Tahun Pelajaran 017/018 XII IIS Semester 1 Tahun Pelajaran 017/018 PENGANTAR : TURUNAN FUNGSI

Lebih terperinci

karena limit dari kiri = limit dari kanan

karena limit dari kiri = limit dari kanan A. DEFINISI LIMIT Istilah it dalam matematika hampir sama artinya dengan istilah mendekati. Akibatnya, nilai it sering dikatakan sebagai nilai pendekatan.. Pengertian Limit secara Intusi Untuk memahami

Lebih terperinci

FUNGSI LOGARITMA ASLI

FUNGSI LOGARITMA ASLI D.. = D.. = D.. = = 0 D.. = D.. = D.. = 3 FUNGSI LOGARITMA ASLI Definisi Fungsi logaritma asli, dinyatakan oleh ln, didefinisikan sebagai ln = (Daerah asalnya adalah R). t dt, > 0 Turunan Logaritma Asli

Lebih terperinci

Matematika I: Turunan. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 75

Matematika I: Turunan. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 75 Matematika I: Turunan Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 75 Outline 1 Garis Singgung Dadang Amir Hamzah Matematika I Semester I 2015 2 / 75 Outline 1 Garis Singgung

Lebih terperinci

CATATAN KULIAH Pertemuan V: Analisis Komparatif Statik dan Konsep Derivatif

CATATAN KULIAH Pertemuan V: Analisis Komparatif Statik dan Konsep Derivatif CATATAN KULIAH Pertemuan V: Analisis Komparati Statik dan Konsep Derivati A. Pengertian Komparati Statik dan Konsep Derivati Analisis Statis (ekuilibrium)yang dipelajari dalam bab yang lalu, mempunyai

Lebih terperinci

Aturan dasar pengintegralan Integral fungsi rasional Integral parsial Integral trigonometri Substitusi yang merasionalkan Strategi pengintegralan

Aturan dasar pengintegralan Integral fungsi rasional Integral parsial Integral trigonometri Substitusi yang merasionalkan Strategi pengintegralan Aturan dasar pengintegralan Integral fungsi rasional Integral parsial Integral trigonometri Substitusi yang merasionalkan Strategi pengintegralan Kemampuan yang diinginkan: kejelian melihat bentuk soal

Lebih terperinci

Hendra Gunawan. 2 Oktober 2013

Hendra Gunawan. 2 Oktober 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 2 Oktober 2013 Apa yang Telah Dipelajari pada Bab 2 2.1 Dua Masalah Satu Tema 2.2 Turunan 2.3 Aturan Turunan 2.4 Turunan Fungsi Trigonometri 2.5Aturan

Lebih terperinci

UJIAN TENGAH SEMESTER KALKULUS I Senin, 5 Maret 1999 Waktu : 2,5 jam

UJIAN TENGAH SEMESTER KALKULUS I Senin, 5 Maret 1999 Waktu : 2,5 jam UJIAN TENGAH SEMESTER KALKULUS I Senin, 5 Maret 999 Waktu :,5 jam SETIAP NOMOR MEMPUNYAI BOBOT 0. Misalkan diketahui fungsi f dengan ; 0 f() = ; < 0 Gunakan de nisi turunan untuk memeriksa aakah f 0 (0)

Lebih terperinci

SOLUSI PERSAMAAN DIFFERENSIAL

SOLUSI PERSAMAAN DIFFERENSIAL SOLUSI PERSAMAAN DIFFERENSIAL PENGERTIAN SOLUSI. Solusi dari suatu persamaan differensial adalah persamaan yang memuat variabelvariabel dari persamaan differensial dan memenuhi persamaan differensial yang

Lebih terperinci

integral = 2 . Setiap fungsi ini memiliki turunan ( ) = adalah ( ) = 6 2.

integral = 2 . Setiap fungsi ini memiliki turunan ( ) = adalah ( ) = 6 2. integral 13.1 PENGERTIAN INTEGRAL Untuk itu, coba tentukan turunan fungsi berikut. Perhatikan bahwa fungsi ini memiliki bentuk umum 6 2. Jadi, turunan fungsi = 2 =2 3. Setiap fungsi ini memiliki turunan

Lebih terperinci

MA1201 KALKULUS 2A Do maths and you see the world

MA1201 KALKULUS 2A Do maths and you see the world Catatan Kuliah MA20 KALKULUS 2A Do maths and you see the world disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 203 Catatan kuliah ini ditulis

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN SATUAN ACARA PERKULIAHAN 1. PROGRAM STUDI : Pendidikan Matematika 2. MATA KULIAH/KODE/SEMESTER : Kalkulus I 3. PRASYARAT : -- 4. JENJANG / SKS : S1/3 SKS 5. LOMPOK MATA KULIAH : MPK / MPB / MKK/ MKB/ MBB

Lebih terperinci

16. INTEGRAL. A. Integral Tak Tentu 1. dx = x + c 2. a dx = a dx = ax + c. 3. x n dx = + c. cos ax + c. 4. sin ax dx = 1 a. 5.

16. INTEGRAL. A. Integral Tak Tentu 1. dx = x + c 2. a dx = a dx = ax + c. 3. x n dx = + c. cos ax + c. 4. sin ax dx = 1 a. 5. 6. INTEGRAL A. Integral Tak Tentu. dx = x + c. a dx = a dx = ax + c. x n dx = n+ x n+ + c. sin ax dx = a cos ax + c 5. cos ax dx = a sin ax + c 6. sec ax dx = a tan ax + c 7. [ f(x) ± g(x) ] dx = f(x)

Lebih terperinci

BAB I DERIVATIF (TURUNAN)

BAB I DERIVATIF (TURUNAN) BAB I DERIVATIF (TURUNAN) Pada bab ini akan dipaparkan pengertian derivatif suatu fungsi, beberapa sifat aljabar derivatif, aturan rantai, dan derifativ fungsi invers. A. Pengertian Derivatif Pengertian

Lebih terperinci

Penyelesaian Model Matematika Masalah yang Berkaitan dengan Ekstrim Fungsi dan Penafsirannya

Penyelesaian Model Matematika Masalah yang Berkaitan dengan Ekstrim Fungsi dan Penafsirannya . Tentukan nilai maksimum dan minimum pada interval tertutup [, 5] untuk fungsi f(x) x + 9 x. 4. Suatu kolam ikan dipagari kawat berduri, pagar kawat yang tersedia panjangnya 400 m dan kolam berbentuk

Lebih terperinci

Modul Praktikum. Ekonomi Produksi Pertanian. Program Studi Agribisnis Fakultas Pertanian Universitas Brawijaya

Modul Praktikum. Ekonomi Produksi Pertanian. Program Studi Agribisnis Fakultas Pertanian Universitas Brawijaya Modul Praktikum Ekonomi Produksi Pertanian Program Studi Agribisnis Fakultas Pertanian Universitas Brawijaya 1 Membuat Grafik dengan Graphmatica Graphmatica merupakan perangkat lunak pembuat grafik yang

Lebih terperinci

Zulfaneti Yulia Haryono Rina F ebriana. Berbasis Penemuan Terbimbing = = D(sec x)= sec x tan x, ( + ) ( ) ( )=

Zulfaneti Yulia Haryono Rina F ebriana. Berbasis Penemuan Terbimbing = = D(sec x)= sec x tan x, ( + ) ( ) ( )= Zulfaneti Yulia Haryono Rina F ebriana Berbasis Penemuan Terbimbing = = D(sec x)= sec x tan x, ()= (+) () Penyusun Zulfaneti Yulia Haryono Rina Febriana Nama NIm : : Untuk ilmu yang bermanfaat Untuk Harapan

Lebih terperinci

Bagian 2 Turunan Parsial

Bagian 2 Turunan Parsial Bagian Turunan Parsial Bagian Turunan Parsial mempelajari bagaimana teknik dierensiasi diterapkan untuk ungsi dengan dua variabel atau lebih. Teknik dierensiasi ini tidak hana akan diterapkan untuk ungsi-ungsi

Lebih terperinci

Pengertian Fungsi. MA 1114 Kalkulus I 2

Pengertian Fungsi. MA 1114 Kalkulus I 2 Fungsi Pengertian Fungsi Relasi : aturan yang mengawankan himpunan Fungsi Misalkan A dan B himpunan. Relasi biner dari A ke B merupakan suatu ungsi jika setiap elemen di dalam A dihubungkan dengan tepat

Lebih terperinci

Hendra Gunawan. 26 Februari 2014

Hendra Gunawan. 26 Februari 2014 MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2013/2014 26 Februari 2014 9.6 Deret Pangkat Kuliah yang Lalu Menentukan selang kekonvergenan deret pangkat 9.7 Operasi pada Deret Pangkat Mlkk Melakukan

Lebih terperinci

Seri : Modul Diskusi Fakultas Ilmu Komputer. FAKULTAS ILMU KOMPUTER Sistem Komputer & Sistem Informasi HANDOUT : KALKULUS DASAR

Seri : Modul Diskusi Fakultas Ilmu Komputer. FAKULTAS ILMU KOMPUTER Sistem Komputer & Sistem Informasi HANDOUT : KALKULUS DASAR Seri : Modul Diskusi Fakultas Ilmu Komputer FAKULTAS ILMU KOMPUTER Sistem Komputer & Sistem Informasi HANDOUT : KALKULUS DASAR Ole : Tony Hartono Bagio 00 KALKULUS DASAR Tony Hartono Bagio KATA PENGANTAR

Lebih terperinci

MATEMATIKA 3 Turunan Parsial. -Irma Wulandari-

MATEMATIKA 3 Turunan Parsial. -Irma Wulandari- MATEMATIKA 3 Turunan Parsial -Irma Wulandari- Pengertian Turunan Parsial T = (,) Rata-rata perubahan suhu pelat T per satuan panjang dalam arah sumbu, sejauh, untuk koordinat tetap ; (, ) (, ) Rata-rata

Lebih terperinci

KALKULUS 1 UNTUK MAHASISWA CALON GURU MATEMATIKA OLEH: DADANG JUANDI, DKK PROGRAM STUDI PENDIDIKAN MATEMATIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA

KALKULUS 1 UNTUK MAHASISWA CALON GURU MATEMATIKA OLEH: DADANG JUANDI, DKK PROGRAM STUDI PENDIDIKAN MATEMATIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA KALKULUS UNTUK MAHASISWA 9 CALON GURU MATEMATIKA OLEH: DADANG JUANDI, DKK PROGRAM STUDI PENDIDIKAN MATEMATIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA BAB I PENDAHULUAN. Sistem Bilangan Real Dalam Uraian

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS)

RENCANA PEMBELAJARAN SEMESTER (RPS) RENCANA PEMBELAJARAN SEMESTER (RPS) MUG1A4 KALKULUS 1 Disusun oleh: Jondri, M.Si. PROGRAM STUDI S1 TEKNIK INFORMATIKA FAKULTAS INFORMATIKA TELKOM UNIVERSITY LEMBAR PENGESAHAN Rencana Semester (RPS) ini

Lebih terperinci

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya FUNGSI dan LIMIT 1.1 Fungsi dan Grafiknya Fungsi : suatu aturan yang menghubungkan setiap elemen suatu himpunan pertama (daerah asal) tepat kepada satu elemen himpunan kedua (daerah hasil) fungsi Daerah

Lebih terperinci

TUJUAN INSTRUKSIONAL KHUSUS

TUJUAN INSTRUKSIONAL KHUSUS PREVIEW KALKULUS TUJUAN INSTRUKSIONAL KHUSUS Mahasiswa mampu: menyebutkan konsep-konsep utama dalam kalkulus dan contoh masalah-masalah yang memotivasi konsep tersebut; menjelaskan menyebutkan konsep-konsep

Lebih terperinci

KONSEP DASAR PERSAMAAN DIFERENSIAL

KONSEP DASAR PERSAMAAN DIFERENSIAL KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu fungsi (dasar). Sebagai

Lebih terperinci

DERIVATIVE (continued)

DERIVATIVE (continued) DERIVATIVE (continued) (TURUNAN) Kus Prihantoso Krisnawan November 25 rd, 2011 Yogyakarta Aturan Turunan Trigonometri Aturan Turunan Trigonometri d (sin x) = cos x d (cos x) = sin x Aturan Turunan Trigonometri

Lebih terperinci

Open Source. Not For Commercial Use

Open Source. Not For Commercial Use Ringkasan Kalkulus 2, Untuk dipakai di ITB 1 Limit dan Kekontinuan Misalkan z = f(, y) fungsi dua peubah dan (a, b) R 2. Seperti pada limit fungsi satu peubah, limit fungsi dua peubah bertujuan untuk mengamati

Lebih terperinci

A. Penggunaan Konsep dan Aturan Turunan

A. Penggunaan Konsep dan Aturan Turunan A. Penggunaan Konsep dan Aturan Turunan. Turunan Fungsi Aljabar a. Mengitung Limit Fungsi yang Mengara ke Konsep Turunan Dari grafik di bawa ini, diketaui fungsi y f() pada interval k < < k +, seingga

Lebih terperinci

TIM MATEMATIKA DASAR I

TIM MATEMATIKA DASAR I MATEMATIKA DASAR I DIKTAT KULIAH DISUSUN OLEH TIM MATEMATIKA DASAR I FAKULTAS SAIN DAN TEKNOLOGI UNIVERSITAS JAMBI 2013 KATA PENGANTAR Mata kuliah Matematika Dasar merupakan mata kuliah dasar yang diwajibkan

Lebih terperinci

KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I

KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I 7 INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Memahami konsep dasar integral, teorema-teorema, sifat-sifat, notasi jumlah, fungsi transenden dan teknik-teknik pengintegralan. Materi

Lebih terperinci

Integral Tak Tentu. Modul 1 PENDAHULUAN

Integral Tak Tentu. Modul 1 PENDAHULUAN Modul 1 Integral Tak Tentu M PENDAHULUAN Drs. Hidayat Sardi, M.Si odul ini akan membahas operasi balikan dari penurunan (pendiferensialan) yang disebut anti turunan (antipendiferensialan). Dengan mengikuti

Lebih terperinci

INTEGRAL (ANTI DIFERENSIAL) Tito Adi Dewanto S.TP

INTEGRAL (ANTI DIFERENSIAL) Tito Adi Dewanto S.TP A. Soal dan Pembahasan. ( x ) dx... Jawaban : INTEGRAL (ANTI DIFERENSIAL) Tito Adi Dewanto S.TP ( x) dx x dx x C x C x x C. ( x 9) dx... x Jawaban : ( x 9) dx. (x x 9) dx x 9x C x x x. (x )(x + ) dx =.

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2016/2017 27 Januari 2017 Bab Sebelumnya 7. Teknik Pengintegralan 7.1 Aturan Dasar Pengintegralan 7.2 Pengintegralan Parsial 7.3 Integral Trigonometrik

Lebih terperinci

Catatan Kuliah KALKULUS II BAB V. INTEGRAL

Catatan Kuliah KALKULUS II BAB V. INTEGRAL BAB V. INTEGRAL Anti-turunan dan Integral TakTentu Persamaan Diferensial Sederhana Notasi Sigma dan Luas Daerah di Bawah Kurva Integral Tentu Teorema Dasar Kalkulus Sifat-sifat Integral Tentu Lebih Lanjut

Lebih terperinci

Geometri pada Bidang, Vektor

Geometri pada Bidang, Vektor Jurusan Matematika FMIPA Unsyiah September 9, 2011 Sebuah kurva bidang (plane curve) ditentukan oleh pasangan persamaan parametrik x = f(t), y = g(t), t dalam I dengan f dan g kontinu pada selang I. I

Lebih terperinci

Bagian 4 Terapan Differensial

Bagian 4 Terapan Differensial Bagian 4 Terapan Differensial Dalam bagian 4 Terapan Differensial, kita akan mempelajari materi bagaimana konsep differensial dapat dipergunakan untuk mengatasi persoalan yang terjadi di sekitar kita.

Lebih terperinci

FUNGSI TRIGONOMETRI, FUNGSI EKSPONEN, FUNGSI LOGARITMA

FUNGSI TRIGONOMETRI, FUNGSI EKSPONEN, FUNGSI LOGARITMA FUNGSI TRIGONOMETRI, FUNGSI EKSPONEN, FUNGSI LOGARITMA Makalah Ini Disusun Guna Memenuhi Tugas Mata Kuliah Kalkulus Dosen Pengampu : Muhammad Istiqlal, M.Pd. Disusun Oleh:. Mukhammad Rif an Alwi (070600).

Lebih terperinci

INTEGRAL MATERI 12 IPS ( MAT ) Disusun Oleh : Drs. Pundjul Prijono. Nip PEMERINTAH KOTA MALANG DINAS PENDIDIKAN

INTEGRAL MATERI 12 IPS ( MAT ) Disusun Oleh : Drs. Pundjul Prijono. Nip PEMERINTAH KOTA MALANG DINAS PENDIDIKAN MODUL MATEMATIKA INTEGRAL MATERI 12 IPS ( MAT 12.1.1 ) Disusun Oleh : Drs. Pundjul Prijono Nip. 19580117.198101.1.003 PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMA NEGERI 6 Jalan Mayjen Sungkono No. 58 Telp.

Lebih terperinci