BAB VI. FUNGSI TRANSENDEN

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB VI. FUNGSI TRANSENDEN"

Transkripsi

1 BAB VI. FUNGSI TRANSENDEN Fungsi Logaritma Natural Fungsi Balikan (Invers) Fungsi Eksponen Natural Fungsi Eksponen Umum an Fungsi Logaritma Umum Masalah Laju Perubahan Seerhana Fungsi Trigonometri Balikan Turunan Fungsi Trigonometri Fungsi Hiperbolik an Balikannya

2 Untuk menyajikan persoalan-persoalan yang lebih rumit, kita memerlukan perluasan fungsi-fungsi yang apat ipakai. Fungsi Logaritma Natural Fungsi Logaritma Natural (isingkat ln), itulis f()ln, iefinisikan sebagai, ln t, > t Daerah efinisi (D f ) an Daerah nilai (R f ) fungsi ini aalah D f (0,+ ) an R f R. Fungsi ini aa hubungannya engan fungsi logaritma yang telah ipelajari paa sekolah lanjutan. 0

3 Grafik ari fungsi f()ln aalah, Teorema (Turunan Fungsi Logaritma Natural) (ln ), > 0. ; u u u u. (lnu)., u( ) > 0, u aa.

4 Teorema (Sifat Logaritma Natural). Jika a, b > 0 an r є Q an r -, maka. ln 0;. ln a.b ln a + ln b;. ln a/b ln a ln b; 4. ln a r r.ln a. Contoh. (ln + ) ln( ) ln(+ ) + (Menggunakan rumus turunan an sifat logaritma natural. Selain itu, apat juga menggunakan Aturan Rantai). Seangkan D f (-,). 4

5 Setiap bentuk turunan itu aa rumus integralnya. Akibatnya ari teorema, iperoleh u lnu + C, u 0. u Contoh. Hitung. Jawab. Misalkan u0-, u-, maka Menurut Teorema asar kalkukus iperoleh, 0 u u + C ln ln0 0 u 0 ln0 ln9. + C Agar perhitungan i atas berlaku, 0-0 paa [-,]. 5

6 Latihan. A. Tentukan turunan fungsi i bawah ini.. f() ln(/ - ).. y ln (-)/. B. Hitung nilai integral berikut tan. 6

7 Fungsi Balikan (Invers). Misalkan fungsi yf(), engan є D f an y є R f. Bila f apat ibalik, maka iperoleh fungsi f - (y). Fungsi f - isebut balikan (invers) ari fungsi f. Sebagai contoh, jika yf() -, maka f - (y) Tiak semua fungsi mempunyai balikan. Sebagai contoh, jika yf() tiak mempunyai balikan, kecuali kalau aerah efinisinya ibatasi. y +. Teorema. Eksistensi Fungsi Balikan. Jika fungsi f monoton murni paa aerah efinisinya, maka f mempunyai balikan. 7

8 Langkah-langkah mencari inver fungsi yf(),. Nyatakan engan y ari persamaan yf();. Nyatakan bentuk alam y sebagai f - (y) f - (y);. Ganti y engan an engan y ari f - (y), iperoleh y f - (). Contoh. Tentukan rumus untuk f - () bila yf()/(-). Jawab. Langkah: y /(-) (-).y (+y)y y/(+y); Langkah: f - (y) y/(+y); Langkah: f - () /(+); 8

9 Bila f mempunyai balikan f - maka f - juga memiliki balikan f sehingga iperoleh, f - (f()) an f(f - (y)) y. Jika f mempunyai balikan, maka f - (y) y f(). Catatan. Lambang f - bukan berari /f. Grafik fungsi yf - () aalah pencerminan grafik yf() terhaap garis y. Sebagai contoh, grafik fungsi yf - () aalah pencerminan grafik yf() - terhaap garis y. + y + y y 9

10 Teorema 4. (Turunan Fungsi Balikan). Misalkan f mempunyai turunan an monoton murni paa I. Jika f () 0 untuk suatu Є I, maka f - apat iturunkan i titik y f() paa aerah nilai f an berlaku ( f ) ( y ). f ( ) Rumus tersebut apat juga itulis y y Contoh 4. Misalkan yf() Maka ( f ) (4) f () 5 + (Berasarkan fakta y4 sepaan engan an f ()5 4 + ) 7. 0

11 Latihan. Rumuskan f - () ari fungsi f() berikut,. f() +5. f() -/ f() (-)/(+) 4. f() /, 0.

12 Fungsi Eksponen Natural. Bilangan e aalah suatu bilangan real yang merupakan jawaban tunggal ari persamaan ln. Nilai hampirannya aalah e,788. Fungsi eksponen natural aalah suatu fungsi yang iefinisikan oleh persamaan f() e. Teorema 5. (Hubungan Fungsi ln engan ep). Fungsi f : R (0,+ ), f() e aalah invers ari fungsi g : (0,+ ) R, g() ln. Bentuk lain apat itulis y e ln y.

13 Karena antara ep an ln aalah fungsi-fungsi yang saling invers, maka grafik y e aalah grafik y ln yang icerminkan terhaap garis y. (Seperti gambar i samping). Teorema 6 (Sifat Eponen Natural). Jika a, b є R, maka. e 0 ;. e a.e b e a+b ;. e a /e b e a-b ; 4. (e a ) b e a.b.

14 Teorema 7 (Turunan Fungsi Eksponen Natural) ( e. ; ) e. u u u u ( e ) e e u'; u' aa. Contoh 5.. ( ) ln ln ln ln e e ( ln ) e + ln e ( + ln ). ( e cos ) e ( sin ) + ( cos ) e e ( cos sin ) Akibatnya, rumus integral fungsi eksponen natural, u u e u e + C. 4

15 Contoh 6. e e ( ) + C. (Misalkan u -, sehingga u - ) e Latihan. A. Tentukan turunan fungsi berikut.. y e sin ;. y ln ( - e )/( + e ). B. Hitung nilai integral berikut. e. ;. e 5

16 Fungsi Eksponen Umum Fungsi eksponen engan bilangan asar a>0 an peubah bebas real iefinisikan sebagai, f() a e ln a. Akibatnya, ln a ln a. Teorema 8. (Sifat-sifat eksponen umum).. a 0, a>0; 5. a - /a, a>0,,yєr;. a a, a>0; 6. (a )y a y, a>0,,yєr;. a.a y a +y, a>0,,yєr; 7. (ab) a.b,a,b>0, yєr; 4. a /a y a -y, a>0,,yєr; 8. (a/b) a /b,a,b>0, yєr; 6

17 Teorema 9.(Turunan fungsi eksponen Umum).. ( a ) a lna, a > 0;. u u ( a ) ( a lna) u'; u' aa. Akibatnya iperoleh, a u u u a lna + C, a > 0, a. Catatan. Beakan engan fungsi f() a. 7

18 Fungsi Logaritma Umum Jika a>0 an a, maka fungsi logaritma engan bilangan asar a, itulis y f() a log. Diefinisikan sebagai invers ari fungsi eksponen engan bilangan asar a, a. Hubungan keua fungsi ini itentukan oleh relasi y a log a. Teorema 0.(Hubungan logaritma engan log. Natural). a log ln / ln a, a>0, a ;. a log e /ln a; ln a / a log e, a>0, a. 8

19 Teorema.(Sifat-sifat Logaritma). Jika a>0 an a an,y>0, maka. a log.y a log + a log y; 4. a log 0;. a log (/y) a log - a log y; 5. a log a.. a log y y a log ; Teorema.(Turunan fungsi Logaritma Umum).. a a loge ( log ), a > 0, a, > 0;. a a ( loge). u' ( logu), a > 0, a, u > 0, u' aa; u 9

20 Contoh 7. ln... ln ln ( ) ( ln ).. + ln ( + ln )(. ln). loge. cos loge ( log(cos ) ( cos ).( sin ) loge.tan cos u u ( ) 4 u + C ln4.ln4 + C Latihan. A. Hitung turunan berikut.. y y ;. log y y. B. Hitung Integral berikut. e ln. ;. e log 0

21 Masalah Laju Perubahan Seerhana Misalkan suatu populasi yang besarnya setiap saat berubah bergantung paa waktu t. Bila laju perubahan populasinya setiap saat sebaning engan besarnya populasi saat itu, maka masalah yang muncul inamakan Masalah Laju Perubahan Seerhana. Untuk menyelesaikan masalah ini, misalkan P(t) besarnya populasi paa saat t, maka P/t laju perubahan populasi paa saat t. Karena iketahui P/t sebaning P, terapat konstanta k 0, sehingga P P/t kp, k 0. (*) Jika k > 0, maka populasi bertambah, k < 0 berkurang.

22 Selanjutnya akan iselesaikan persamaan (*). P/P k t, k 0 an P > 0 P/P k t ln P kt + C, C konstanta sebarang. P e kt + C C e kt, C > 0. Ini berarti, populasinya berubah secara eksponen terhaap t. Contoh 8. Laju pertumbuhan penuuk suatu kota paa setiap saat berbaning lurus engan jumlah penuuknya paa saat itu. Bila jumlah penuuk kota itu bertambah ari, juta jmenjai,8 juta jiwa alam kurun waktu 0 tahun, tentukan lamanya waktu yang iperlukan sehingga penuuk kota itu bertambah ari, juta menjai,7 juta jiwa.

23 Contoh 9. Suatu zat raio aktif meluluh engan laju yang sebaning engan banyaknya zat saat itu. Zat tersebut memerlukan waktu 5570 tahun untuk mneyusut menjai setengahnya. Apabila paa saat awal aa 0 gram, berapakah sisanya setelah 000 tahun?

24 Fungsi Trigonometri Balikan. Balikan ari Sinus iperoleh engan membatasi aerah efinisinya paa selang [-π/, π/], sehingga sin - y y sin an -π/ π/. y sin y sin Grafik y sin an grafik y sin -. Fungsi y f() sin - mempunyai D f [-, ] an R f [-π/, π/]. 4

25 Balikan ari Cosinus iperoleh engan membatasi aerah efinisinya paa selang [0, π], sehingga cos - y y cos an 0 π. y cos y cos Grafik y cos an grafik y cos -. Fungsi y f() cos - mempunyai D f [-, ] an R f [0, π]. 5

26 Balikan ari Tangen iperoleh engan membatasi aerah efinisinya paa selang (-π/, π/), sehingga tan - y y tan an -π/ < < π/. y tan y tan Grafik y tan an grafik y tan -. Fungsi y f() tan - mempunyai D f R an R f (- π /, π/). 6

27 Balikan ari Secan iperoleh engan membatasi aerah efinisinya paa selang [0,π/)U (π/,π], sehingga sec - y y sec an 0 π, π/. y sec y sec Grafik y sec an grafik y sec -. Fungsi y f() sec - mempunyai D f R [-,] an R f [0, π] {π/}. 7

28 Teorema. (Turunan Balikan fungsi Trigonometri) ( ) ;. sin, < <. ( tan ) + ( ) ; cos, < <. 4. ( sec ), > Akibatnya, iperoleh integral berikut,. sin + C.. tan + C + sec + C 8

29 Contoh ( sin (4 ) ). ( 4 ). (4 ) sin + C 9

30 Fungsi Hiperbolik an Balikannya. Fungsi Hiperbolik iperoleh ari campuran fungsi e an fungsi e -. Fungsi sinus hiperbolik, cosinus hiperbolik an empat fungsi hiperbolik lainnya, iefinisikan sebagai berikut. sinh ( e e sinh tanh cosh sec h cosh ) cosh ( e + cosh coth sinh csc h sinh Berlaku hubungan : cosh sinh e ) 0

31 y sinh() y cosh() Teorema 4. (Turunan fungsi hiperbolik) (sinh ) cosh (tanh ) (sec h ) sec h sec h.tanh (cosh ) (coth ) (csc h ) sinh csc h csc h.coth

32 Balikan Fungsi Hiperbolik. Dengan cara membatasi aerah efinisi fungsi hiperbolik paa suatu himpunan tertentu agar fungsinya satu-kesatu, maka apat iefinisikan balikan fungsi hiperbolik sebagai berikut. sinh - y y sinh cosh - y y cosh, 0 tanh - y y tanh coth - y y coth, 0 sech - y y sech, 0 csch - y y csch

33 Karena fungsi hiperbolik apat inyatakan sebagai fungsi eksponen, maka balikannya apat inyatakan sebagai fungsi logaritma natural. Teorema 4. (Balikan fungsi hiperbolik alam logaritma) sinh ln ( + +. cosh ln ( +, >. tanh ln +, < <. coth ln +, [, ]. sec h ln ( +, 0 <. csc h ln ( ,

34 Rumus turunan balikan fungsi hiperbolik iperoleh ari rumus turunan fungsi balikan atau apat juga ari bentuk logaritma naturalnya. Turunan balikan fungsi hiperbolik inyatakan oleh rumus berikut. Teorema 5. (Turunan Balikan fungsi hiperbolik) (sinh (tanh (sec h ). + ), < <. ), < <. (cosh (coth (csc h ), >. ), [, ]. ), 0. + Latihan. Buktikan Teorema, 4 an Teorema 5. 4

35 SOAL-SOAL BAB no., 6, 7,8, 7,. 7. no. 8,7, no., 6, 7, 9,,,. 7.4 no., 4, 5, 8, 5, no., no., 5, 6, no. 5, 7,4,,, 9, 5, no., 9,,,, 5. 5

TURUNAN FUNGSI (DIFERENSIAL)

TURUNAN FUNGSI (DIFERENSIAL) TURUNAN FUNGSI (DIFERENSIAL) A. Pengertian Derivatif (turunan) suatu fungsi. Perhatikan grafik fungsi f( (pengertian secara geometri) ang melalui garis singgung. f( f( f(+ Q [( +, f ( + ] f( P (, f ( )

Lebih terperinci

DIFERENSIAL FUNGSI SEDERHANA

DIFERENSIAL FUNGSI SEDERHANA DIFERENSIAL FUNGSI SEDERHANA Salah satu metoe yang cukup penting alam matematika aalah turunan (iferensial). Sejalan engan perkembangannya aplikasi turunan telah banyak igunakan untuk biang-biang rekayasa

Lebih terperinci

BAB VII. FUNGSI TRANSEDEN. Perhatikan adanya kesenjangan tentang turunan berikut.

BAB VII. FUNGSI TRANSEDEN. Perhatikan adanya kesenjangan tentang turunan berikut. 64 BAB VII. FUNGSI TRANSEDEN 7.. Fungsi Logaritma Asli Perhatikan adanya kesenjangan tentang turunan berikut. D ( 3 /3) D ( /) D () 0 D (???) - D (- - ) - D (- - /3) -3 Definisi: Fungsi logaritma asli

Lebih terperinci

FUNGSI LOGARITMA ASLI

FUNGSI LOGARITMA ASLI FUNGSI LOGARITMA ASLI............ Definisi Fungsi logaritma asli, dinyatakan oleh ln, didefinisikan sebagai ln (Daerah asalnya adalah., 0 Turunan Logaritma Asli ln, 0 Lebih umumnya, Jika 0 dan f terdifferensialkan,

Lebih terperinci

PERSAMAAN DIFFERENSIAL. Disusun untuk memenuhi tugas mata kuliah Matematika

PERSAMAAN DIFFERENSIAL. Disusun untuk memenuhi tugas mata kuliah Matematika PERSAMAAN DIFFERENSIAL Disusun untuk memenuhi tugas mata kuliah Matematika Disusun oleh: Aurey Devina B 1211041005 Irul Mauliia 1211041007 Anhy Ramahan 1211041021 Azhar Fuai P 1211041025 Murni Mariatus

Lebih terperinci

FUNGSI LOGARITMA ASLI

FUNGSI LOGARITMA ASLI D.. = D.. = D.. = = 0 D.. = D.. = D.. = 3 FUNGSI LOGARITMA ASLI Definisi Fungsi logaritma asli, dinyatakan oleh ln, didefinisikan sebagai ln = (Daerah asalnya adalah R). t dt, > 0 Turunan Logaritma Asli

Lebih terperinci

Solusi Tutorial 6 Matematika 1A

Solusi Tutorial 6 Matematika 1A Solusi Tutorial 6 Matematika A Arif Nurwahi ) Pernyataan benar atau salah. a) Salah, sebab ln tiak terefinisi untuk 0. b) Betul. Seerhananya, titik belok apat ikatakan sebagai lokasi perubahan kecekungan.

Lebih terperinci

FUNGSI TRANSENDEN J.M. TUWANKOTTA

FUNGSI TRANSENDEN J.M. TUWANKOTTA FUNGSI TRANSENDEN J.M. TUWANKOTTA. Penekatan Kalkulus: menefinisikan fungsi logaritma natural sebagai integral Panang sebuah fungsi yang iefinisikan engan menggunakan integral: (.) L(x) = t t. Dari Teorema

Lebih terperinci

A B A B. ( a ) ( b )

A B A B. ( a ) ( b ) BAB. FUNGSI A. Relasi dan Fungsi Misalkan A dan B dua himpunan tak kosong. Relasi T dari himpunan A ke B adalah himpunan bagian dari A B. Jadi relasi A ke B merupakan himpunan (,y), dengan pada himpunan

Lebih terperinci

FUNGSI HIPERBOLIK Matematika

FUNGSI HIPERBOLIK Matematika FUNGSI HIPERBOLIK FTP UB Pokok Bahasan Pendahuluan Grafik dari fungsi hiperbolik Menentukan nilai fungsi hiperbolik Fungsi hiperbolik invers Bentuk log dari fungsi hiperbolik invers Identitas hiperbolik

Lebih terperinci

UJIAN TENGAH SEMESTER KALKULUS/KALKULUS1

UJIAN TENGAH SEMESTER KALKULUS/KALKULUS1 Jurusan Matematika FMIPA IPB UJIAN TENGAH SEMESTER KALKULUS/KALKULUS1 Sabtu, 4 Maret 003 Waktu : jam SETIAP NOMOR MEMPUNYAI BOBOT 10 1. Tentukan: (a) (b) x sin x x + 1 ; x (cos (x 1)) :. Diberikan fungsi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Aljabar dapat didefinisikan sebagai manipulasi dari simbol-simbol. Secara

BAB II TINJAUAN PUSTAKA. Aljabar dapat didefinisikan sebagai manipulasi dari simbol-simbol. Secara 4 BAB II TINJAUAN PUSTAKA A. Aljabar Definisi II.A.: Aljabar (Wahyudin, 989:) Aljabar dapat didefinisikan sebagai manipulasi dari simbol-simbol. Secara historis aljabar dibagi menjadi dua periode waktu,

Lebih terperinci

Bagian 3 Differensiasi

Bagian 3 Differensiasi Bagian Differensiasi Bagian Differensiasi berisi materi tentang penerapan konsep limit untuk mengitung turunan an berbagai teknik ifferensial. Paa penerapan konsep limit, Ana akan iperkenalkan engan konsep

Lebih terperinci

Sudaryatno Sudirham. Diferensiasi

Sudaryatno Sudirham. Diferensiasi Suaratno Suirham Diferensiasi Bahan Kuliah Terbuka alam format pf terseia i.buku-e.lipi.go.i alam format pps beranimasi terseia i.ee-cafe.org Pengertian-Pengertian 0-0 Kita telah melihat baha kemiringan

Lebih terperinci

BAB IV DIFFERENSIASI

BAB IV DIFFERENSIASI BAB IV DIFFERENSIASI 4. Garis singgung Garis singgung adalah garis yang menyinggung suatu titik tertentu pada suatu kurva. Pengertian garis singgung tersebut dapat dilihat pada Gambar 4.. Akan tetapi jika

Lebih terperinci

Teknik Pengintegralan

Teknik Pengintegralan Jurusan Matematika 13 Nopember 2012 Review Rumus-rumus Integral yang Dikenal Pada beberapa subbab sebelumnya telah dijelaskan beberapa integral dari fungsi-fungsi tertentu. Berikut ini diberikan sebuah

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral Darpublic Hak cipta pada penulis, SUDIRHAM, SUDARYATNO Fungsi dan Grafik, Diferensial dan Integral Oleh: Sudaratmo Sudirham Darpublic,

Lebih terperinci

3. Turunan Fungsi Trigonometri, Trigonometri Inversi, Logaritmik, Eksponensial

3. Turunan Fungsi Trigonometri, Trigonometri Inversi, Logaritmik, Eksponensial Darpublic Nopember 03.arpublic.com 3. Turunan Fungsi Trigonometri, Trigonometri Inversi, Logaritmik, Eksponensial 3.. Turunan Fungsi Trigonometri Jika sin maka sin sin( + ) sin sin cos + cos sin sin Untuk

Lebih terperinci

Bab 3 Fungsi Elementer

Bab 3 Fungsi Elementer Bab 3 Fungsi Elementer Bab 3 ini direncanakan akan disampaikan dalam 3 kali pertemuan, dengan perincian sebagai berikut: (1) Pertemuan I: Fungsi Eksponensial dan sifat-sifatnya, Fungsi Trigonometri. ()

Lebih terperinci

Ax b Cx d dan dua persamaan linier yang dapat ditentukan solusinya x Ax b dan Ax b. Pada sistem Ax b Cx d solusi akan

Ax b Cx d dan dua persamaan linier yang dapat ditentukan solusinya x Ax b dan Ax b. Pada sistem Ax b Cx d solusi akan SOLUSI SISTEM PERSAMAAN LINIER PADA ALJABAR MAX-PLUS Bui Cahyono Peniikan Matematika, FSAINSTEK, Universitas Walisongo Semarang bui_oplang@yahoo.com Abstrak Dalam kehiupan sehari-hari seringkali kita menapatkan

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaryatno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral ii Darpublic BAB 3 Integral () (Integral Tak Tentu) Dalam bab sebelumnya kita telah mengenal macam-macam perhitungan integral.

Lebih terperinci

FUNGSI VARIABEL KOMPLEKS. Oleh: Endang Dedy

FUNGSI VARIABEL KOMPLEKS. Oleh: Endang Dedy FUNGSI VARIABEL KOMPLEKS Oleh: Endang Dedy Diskusikan! Sistem Bilangan Kompleks 1 Perhatikan definisi berikut: Bilangan kompleks adalah suatu bilangan yang didefinisikan dengan =+iy,, y R dan i 1.Coba

Lebih terperinci

dan E 3 = 3 Tetapi integral garis dari keping A ke keping D harus nol, karena keduanya memiliki potensial yang sama akibat dihubungkan oleh kawat.

dan E 3 = 3 Tetapi integral garis dari keping A ke keping D harus nol, karena keduanya memiliki potensial yang sama akibat dihubungkan oleh kawat. E 3 E 1 -σ 3 σ 3 σ 1 1 a Namakan keping paling atas aalah keping A, keping keua ari atas aalah keping B, keping ketiga ari atas aalah keping C an keping paling bawah aalah keping D E 2 muatan bawah keping

Lebih terperinci

Darpublic Nopember 2013 www.darpublic.com

Darpublic Nopember 2013 www.darpublic.com Darpublic Nopember 0 www.darpublic.com. Integral () (Integral Tak Tentu) Sudaryatno Sudirham Dalam bab sebelumnya kita telah mengenal macam-macam perhitungan integral. Salah satu cara mudah untuk menghitung

Lebih terperinci

FUNGSI Matematika Industri I

FUNGSI Matematika Industri I FUNGSI TIP FTP UB Pokok Bahasan Memproses bilangan Komposisi fungsi dari fungsi Jenis fungsi Fungsi trigonometrik Fungsi eksponensial dan logaritmik Fungsi ganjil dan fungsi genap Pokok Bahasan Memproses

Lebih terperinci

FUNGSI TRIGONOMETRI, FUNGSI EKSPONENSIAL, dan FUNGSI LOGARITMA

FUNGSI TRIGONOMETRI, FUNGSI EKSPONENSIAL, dan FUNGSI LOGARITMA FUNGSI TRIGONOMETRI, FUNGSI EKSPONENSIAL, dan FUNGSI LOGARITMA Makalah ini disusun untuk memenuhi tugas Mata Kuliah Kalkulus 1 Dosen Pengampu : Muhammad Istiqlal, M.Pd Disusun Oleh : 1. Sufi Anisa (23070160086)

Lebih terperinci

KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I

KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I 7 INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Memahami konsep dasar integral, teorema-teorema, sifat-sifat, notasi jumlah, fungsi transenden dan teknik-teknik pengintegralan. Materi

Lebih terperinci

3 TEORI KONGRUENSI. Contoh 3.1. Misalkan hari ini adalah Sabtu, hari apa setelah 100 hari dari sekarang?

3 TEORI KONGRUENSI. Contoh 3.1. Misalkan hari ini adalah Sabtu, hari apa setelah 100 hari dari sekarang? Paa bab ini ipelajari aritmatika moular yaitu aritmatika tentang kelas-kelas ekuivalensi, imana permasalahan alam teori bilangan iseerhanakan engan cara mengganti setiap bilangan bulat engan sisanya bila

Lebih terperinci

Sudaryatno Sudirham. Studi Mandiri. Diferensiasi. Darpublic

Sudaryatno Sudirham. Studi Mandiri. Diferensiasi. Darpublic Suaratno Suirham Stui Maniri Diferensiasi ii Darpublic BAB 3 Turunan Fungsi-Fungsi (3 (Fungsi-Fungsi Trigonometri, Trigonometri Inersi, Logaritmik, Eksponensial 3.. Turunan Fungsi Trigonometri Jika maka

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaryatno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral ii Darpublic BAB 3 Integral () (Integral Tak Tentu) Dalam bab sebelumnya kita telah mengenal macam-macam perhitungan integral.

Lebih terperinci

Aturan dasar pengintegralan Integral fungsi rasional Integral parsial Integral trigonometri Substitusi yang merasionalkan Strategi pengintegralan

Aturan dasar pengintegralan Integral fungsi rasional Integral parsial Integral trigonometri Substitusi yang merasionalkan Strategi pengintegralan Aturan dasar pengintegralan Integral fungsi rasional Integral parsial Integral trigonometri Substitusi yang merasionalkan Strategi pengintegralan Kemampuan yang diinginkan: kejelian melihat bentuk soal

Lebih terperinci

Suatu persamaan diferensial biasa orde n adalah persamaan bentuk :

Suatu persamaan diferensial biasa orde n adalah persamaan bentuk : PERSAMAAN DIFERENSIAL BIASA PERSAMAAN DIFERENSIAL Suatu persamaan iferensial biasa ore n aalah persamaan bentuk : F n, ', '', ''',......, 0 Yang menatakan hubungan antara, fungsi () an turunanna ', '',

Lebih terperinci

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f. Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan

Lebih terperinci

1 Kapasitor Lempeng Sejajar

1 Kapasitor Lempeng Sejajar FI1201 Fisika Dasar IIA Kapasitor 1 Kapasitor Lempeng Sejajar Dosen: Agus Suroso Paa bab sebelumnya, telah ibahas mean listrik i sekitar lempeng-yang-sangat-luas yang bermuatan, E = σ 2ε 0 ˆn, (1) engan

Lebih terperinci

1.1. Sub Ruang Vektor

1.1. Sub Ruang Vektor 1.1. Sub Ruang Vektor Dalam membiarakan ruang vektor, tiak hanya vektoer-vektornya saja yang menarik, tetapi juga himpunan bagian ari ruang vektor tersebut yang membentuk ruang vektor lagi terhaap operasi

Lebih terperinci

, serta notasi turunan total ρ

, serta notasi turunan total ρ LANDASAN TEORI Lanasan teori ini berasarkan rujukan Jaharuin (4 an Groesen et al (99, berisi penurunan persamaan asar fluia ieal, sarat batas fluia ua lapisan an sistem Hamiltonian Penentuan karakteristik

Lebih terperinci

(a) (b) Gambar 1. garis singgung

(a) (b) Gambar 1. garis singgung BAB. TURUNAN Sebelm membahas trnan, terlebih dahl ditinja tentang garis singgng pada sat krva. A. Garis singgng Garis singgng adalah garis yang menyinggng sat titik tertent pada sat krva. Pengertian garis

Lebih terperinci

Asimtot.wordpress.com FUNGSI TRANSENDEN

Asimtot.wordpress.com FUNGSI TRANSENDEN FUNGSI TRANSENDEN 7.1 Fungsi Logaritma Asli 7.2 Fungsi-fungsi Balikan dan Turunannya 7.3 Fungsi-fungsi Eksponen Asli 7.4 Fungsi Eksponen dan Logaritma Umum 7.5 Pertumbuhan dan Peluruhan Eksponen 7.6 Persamaan

Lebih terperinci

BAB 3 MODEL DASAR DINAMIKA VIRUS HIV DALAM TUBUH

BAB 3 MODEL DASAR DINAMIKA VIRUS HIV DALAM TUBUH BAB 3 MODEL DASA DINAMIKA VIUS HIV DALAM TUBUH 3.1 Moel Dasar Moel asar inamika virus HIV alam tubuh menggunakan beberapa asumsi sebagai berikut: Mula-mula tubuh alam keaaan tiak terinfeksi virus atau

Lebih terperinci

Fungsi Elementer (Bagian Kedua)

Fungsi Elementer (Bagian Kedua) Fungsi Elementer (Bagian Kedua) Supama Jurusan Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemuan Minggu IX) Outline 1 Fungsi Hiperbolik 2 sin(iz) =

Lebih terperinci

Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika. Integral Lipat Dua

Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika. Integral Lipat Dua Universitas Inonusa Esa Unggul Faultas Ilmu Komputer Teni Informatia Integral Lipat ua Integral Lipat ua Misalan z = f(,) terefinisi paa merupaan suatu persegi panjang tertutup, aitu : = {(, ) : a b, c

Lebih terperinci

3 TEORI KONGRUENSI. Contoh 3.1. Misalkan hari ini adalah Sabtu, hari apa setelah 100 hari dari sekarang?

3 TEORI KONGRUENSI. Contoh 3.1. Misalkan hari ini adalah Sabtu, hari apa setelah 100 hari dari sekarang? Paa bab ini ipelajari aritmatika moular yaitu aritmatika tentang kelas-kelas ekuivalensi, imana permasalahan alam teori bilangan iseerhanakan engan cara mengganti setiap bilangan bulat engan sisanya bila

Lebih terperinci

matriks A. PENGERTIAN MATRIKS Persija Persib baris

matriks A. PENGERTIAN MATRIKS Persija Persib baris Kolom 1. Pengertian Matriks matriks A. PENGERTIAN MATRIKS Dalam kehiupan sehari-hari an alam matematika, berbagai keterangan seringkali isajikan alam bentuk matriks. Contoh 1: Hasil pertaningan grup I

Lebih terperinci

DERIVATIVE (continued)

DERIVATIVE (continued) DERIVATIVE (continued) (TURUNAN) Kus Prihantoso Krisnawan December 9 th, 2011 Yogyakarta Turunan Latihan Turunan Latihan sin (cos 1 x) = cos (sin 1 x) = sec (tan 1 x) = tan (sec 1 x) = 1 x 2 1 x 2 1 +

Lebih terperinci

VIII. ALIRAN MELALUI LUBANG DAN PELUAP

VIII. ALIRAN MELALUI LUBANG DAN PELUAP VIII. ALIRAN MELALUI LUBANG DAN PELUAP 8.. Penahuluan Lubang aalah bukaan paa ining atau asar tangki imana zat cair mengalir melaluinya. Lubang tersebut bisa berbentuk segi empat, segi tiga, ataupun lingkaran.

Lebih terperinci

INTEGRASI Matematika Industri I

INTEGRASI Matematika Industri I INTEGRASI TIP FTP UB Pokok Bahasan Pendahuluan Fungsi dari suatu fungsi linear Integral berbentuk Integrasi hasilkali Integrasi per bagian Integrasi dengan pecahan parsial Integrasi fungsi-fungsi trigonometris

Lebih terperinci

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS MODUL 1 Teori Bilangan Bilangan merupakan sebuah alat bantu untuk menghitung, sehingga pengetahuan tentang bilangan, mutlak diperlukan. Pada modul pertama ini akan dibahas mengenai bilangan (terutama bilangan

Lebih terperinci

MAKALAH TUGAS AKHIR DIMENSI METRIK PADA PENGEMBANGAN GRAPH KINCIR DENGAN POLA K 1 + mk n

MAKALAH TUGAS AKHIR DIMENSI METRIK PADA PENGEMBANGAN GRAPH KINCIR DENGAN POLA K 1 + mk n MAKALAH TUGAS AKHIR DIMENSI METRIK PADA PENGEMBANGAN GRAPH KINCIR DENGAN POLA K 1 + mk n Oleh : JOHANES ARIF PURWONO 105 100 00 Pembimbing : Drs. Suhu Wahyui, MSi 131 651 47 ABSTRAK Graph aalah suatu sistem

Lebih terperinci

FUNGSI-FUNGSI INVERS

FUNGSI-FUNGSI INVERS FUNGSI-FUNGSI INVERS Logaritma, Eksponen, Trigonometri Invers Departemen Matematika FMIPA IPB Bogor, 202 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 202 / 49 Topik Bahasan Fungsi Satu ke Satu 2

Lebih terperinci

SISTEM BILANGAN KOMPLEKS

SISTEM BILANGAN KOMPLEKS BAB 1 SISTEM BILANGAN KOMPLEKS Pokok Pembahasan : Definisi Bilangan Imajiner Bilangan Kompleks Operasi Aritmatik BAB 1 SISTEM BILANGAN KOMPLEKS 1.1. DEFINISI Bilangan kompleks adalah bilangan yang besaran

Lebih terperinci

F = M a Oleh karena diameter pipa adalah konstan, maka kecepatan aliran di sepanjang pipa adalah konstan, sehingga percepatan adalah nol, d dr.

F = M a Oleh karena diameter pipa adalah konstan, maka kecepatan aliran di sepanjang pipa adalah konstan, sehingga percepatan adalah nol, d dr. Hukum Newton II : F = M a Oleh karena iameter pipa aalah konstan, maka kecepatan aliran i sepanjang pipa aalah konstan, sehingga percepatan aalah nol, rr rr( s) rs rs( r r) rrs sin o Bentuk tersebut apat

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

METODE PENELITIAN Data Langkah-Langkah Penelitian

METODE PENELITIAN Data Langkah-Langkah Penelitian METODE PENELITIAN Data Inonesia merupakan salah satu negara yang tiak mempunyai ata vital statistik yang lengkap. Dengan memperhatikan hal tersebut, sangat tepat menggunakan Moel CPA untuk mengukur tingkat

Lebih terperinci

UN SMA IPA 2009 Matematika

UN SMA IPA 2009 Matematika UN SMA IPA 009 Matematika Koe Soal P88 Doc. Name: UNSMAIPA009MATP88 Doc. Version : 0-0 halaman 0. Perhatikan premis-premis berikut ini : :Jika Ai muri rajin maka Ai muri panai :Jika Ai muri panai maka

Lebih terperinci

digunakan untuk menyelesaikan integral seperti 3

digunakan untuk menyelesaikan integral seperti 3 Bab Teknik Pengintegralan BAB TEKNIK PENGINTEGRALAN Rumus-rumus dasar integral tak tertentu yang diberikan pada bab hanya dapat digunakan untuk mengevaluasi integral dari fungsi sederhana dan tidak dapat

Lebih terperinci

PERSAMAAN SCHRODINGER YANG BERGANTUNG WAKTU

PERSAMAAN SCHRODINGER YANG BERGANTUNG WAKTU PERSAMAAN SCHRODINGER YANG BERGANTUNG WAKTU Perbeaan pokok antara mekanika newton an mekanika kuantum aalah cara menggambarkannya. Dalam mekanika newton, masa epan partikel telah itentukan oleh keuukan

Lebih terperinci

BAB VI INTEGRAL TAK TENTU DAN PENGGUNAANNYA

BAB VI INTEGRAL TAK TENTU DAN PENGGUNAANNYA BAB VI INTEGRAL TAK TENTU DAN PENGGUNAANNYA Jika dari suatu fungsi kita dapat memperoleh turunannya, bagaimana mengembalikan turunan suatu fungsi ke fungsi semula? Operasi semacam ini disebut operasi balikan

Lebih terperinci

8. FUNGSI TRANSENDEN MA1114 KALKULU I 1

8. FUNGSI TRANSENDEN MA1114 KALKULU I 1 8. FUNGSI TRANSENDEN MA4 KALKULU I 8. Invrs Fungsi Misalkan : D R! y dngan () Dinisi 8. Fungsi y () disbut satu-satu jika (u) (v) maka u v atau jika u v maka ( u) ( v) y y y u v ungsi y satu-satu ungsi

Lebih terperinci

DASAR-DASAR MATLAB. Seperti bahasa pemrograman lainnnya, MATLAB JUGA memiliki metode dan symbol tersendiri dalam penulisan syntax-nya.

DASAR-DASAR MATLAB. Seperti bahasa pemrograman lainnnya, MATLAB JUGA memiliki metode dan symbol tersendiri dalam penulisan syntax-nya. DASAR-DASAR MATLAB Seperti bahasa pemrograman lainnnya, MATLAB JUGA memiliki metode dan symbol tersendiri dalam penulisan syntax-nya. Dalam pemrograman MATLAB dikenal hanya dua tipe data, yaitu Numeric

Lebih terperinci

BAGIAN 1 SINTAK DASAR MATLAB

BAGIAN 1 SINTAK DASAR MATLAB BAGIAN 1 SINTAK DASAR MATLAB Pada bagian 1 ini, akan diuraikan tentang bagaimana mendefinisikan data, operasi data dan teknik mengakses data pada Matlab. Untuk lebih memahami, pembaca sebaiknya mecobanya

Lebih terperinci

Hendra Gunawan. 27 November 2013

Hendra Gunawan. 27 November 2013 MA0 MATEMATIKA A Hendra Gunawan Semester I, 03/04 7 November 03 Latihan (Kuliah yang Lalu) d. Tentukan (0 ). d. Hitunglah 3 5 d. 0 a 3. Buktikan bahwa y, a, monoton. a Tentukan inversnya. /7/03 (c) Hendra

Lebih terperinci

1 Kapasitor Lempeng Sejajar

1 Kapasitor Lempeng Sejajar FI1201 Fisika Dasar IIA Kapasitor 1 Kapasitor Lempeng Sejajar Dosen: Agus Suroso Paa bab sebelumnya, telah ibahas mean listrik i sekitar lempeng-yang-sangat-luas yang bermuatan, E = σ 2ε 0 ˆn, (1) engan

Lebih terperinci

FUNGSI EKSPONEN, TRIGONOMETRI DAN HYPERBOLIK BAB I FUNGSI EKSPONEN

FUNGSI EKSPONEN, TRIGONOMETRI DAN HYPERBOLIK BAB I FUNGSI EKSPONEN BAB I FUNGSI EKSPONEN Dfinisi Fungsi ksponn aalah fungsi f yang mnntukan k. Rumusnya ialah f(. Fungsi ksponn ngan pubah bbas + yi ( an y bilangan ral aalah (cos y + i sin y. Dari finisi ini, jika : y 0

Lebih terperinci

PENENTUAN SOLUSI SOLITON PADA PERSAMAAN KDV DENGAN MENGGUNAKAN METODE TANH

PENENTUAN SOLUSI SOLITON PADA PERSAMAAN KDV DENGAN MENGGUNAKAN METODE TANH Jurnal Matematika UNND Vol. 5 No. 4 Hal. 54 61 ISSN : 303 910 c Jurusan Matematika FMIP UNND PENENTUN SOLUSI SOLITON PD PERSMN KDV DENGN MENGGUNKN METODE TNH SILVI ROSIT, MHDHIVN SYFWN, DMI NZR Program

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Studi Mandiri Fungsi dan Grafik Diferensial dan Integral oleh Sudaryatno Sudirham i Hak cipta pada penulis, SUDIRHAM, SUDARYATNO Fungsi dan Grafik, Diferensial dan Integral Oleh: Sudaryatmo Sudirham Darpublic,

Lebih terperinci

BAB II MACAM-MACAM FUNGSI

BAB II MACAM-MACAM FUNGSI BAB II MACAM-MACAM FUNGSI (Pertemuan ke 3) PENDAHULUAN Diskripsi singkat Pada bab ini dibahas tentang macam-macam fungsi, yaitu fungsi aljabar, fungsi trigonometri, fungsi logaritma, fungsi eksponensial,

Lebih terperinci

FUNGSI. Berdasarkan hubungan antara variabel bebas dan terikat, fungsi dibedakan dua: fungsi eksplisit dan fungsi implisit.

FUNGSI. Berdasarkan hubungan antara variabel bebas dan terikat, fungsi dibedakan dua: fungsi eksplisit dan fungsi implisit. FUNGSI Fungsi merupakan hubungan antara dua variabel atau lebih. Variabel dibedakan :. Variabel bebas yaitu variabel yang besarannya dpt ditentukan sembarang, mis:,, 6, 0 dll.. Variabel terikat yaitu variabel

Lebih terperinci

PENENTUAN FREKUENSI MAKSIMUM KOMUNIKASI RADIO DAN SUDUT ELEVASI ANTENA

PENENTUAN FREKUENSI MAKSIMUM KOMUNIKASI RADIO DAN SUDUT ELEVASI ANTENA Penentuan Frekuensi Maksimum Komunikasi Raio an Suut..(Jiyo) PENENTUAN FREKUENSI MAKSIMUM KOMUNIKASI RADIO DAN SUDUT ELEVASI ANTENA J i y o Peneliti iang Ionosfer an Telekomunikasi, LAPAN ASTRACT In this

Lebih terperinci

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018 Kalkulus 2 Teknik Pengintegralan ke - 1 Tim Pengajar Kalkulus ITK Institut Teknologi Kalimantan Januari 2018 Tim Pengajar Kalkulus ITK (Institut Teknologi Kalimantan) Kalkulus 2 Januari 2018 1 / 36 Daftar

Lebih terperinci

Penerapan Aljabar Max-Plus Pada Sistem Produksi Meubel Rotan

Penerapan Aljabar Max-Plus Pada Sistem Produksi Meubel Rotan Jurnal Graien Vol 8 No 1 Januari 2012:775-779 Penerapan Aljabar Max-Plus Paa Sistem Prouksi Meubel Rotan Ulfasari Rafflesia Jurusan Matematika, Fakultas Matematika an Ilmu Pengetahuan Alam, Universitas

Lebih terperinci

( ) P = P T. RT a. 1 v. b v c

( ) P = P T. RT a. 1 v. b v c Bab X 10.1 Zat murni aalah zat yang teriri atas sutau senyawa kimia tertentu, misalnya CO alam bentuk gas, cairan atau paatan, atau campuran aripaya, tetapi tiak merupakan campuran engan zat murni lain

Lebih terperinci

Hendra Gunawan. 26 Februari 2014

Hendra Gunawan. 26 Februari 2014 MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2013/2014 26 Februari 2014 9.6 Deret Pangkat Kuliah yang Lalu Menentukan selang kekonvergenan deret pangkat 9.7 Operasi pada Deret Pangkat Mlkk Melakukan

Lebih terperinci

ANALISAPERHITUNGANWAKTU PENGALIRAN AIR DAN SOLAR PADA TANGKI

ANALISAPERHITUNGANWAKTU PENGALIRAN AIR DAN SOLAR PADA TANGKI ANALISAPERITUNGANWAKTU PENGALIRAN AIR DAN SOLAR PADA TANGKI Nurnilam Oemiati Staf Pengajar Jurusan Sipil Fakultas Teknik Universitas Muhammaiyah Palembang Email: nurnilamoemiatie@yahoo.com Abstrak paa

Lebih terperinci

Kalkulus: Fungsi Satu Variabel Oleh: Prayudi Editor: Kartono Edisi Pertama Cetakan Pertama, 2006 Hak Cipta 2005 pada penulis, Hak Cipta dilindungi undang-undang. Dilarang memperbanyak atau memindahkan

Lebih terperinci

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya FUNGSI dan LIMIT 1.1 Fungsi dan Grafiknya Fungsi : suatu aturan yang menghubungkan setiap elemen suatu himpunan pertama (daerah asal) tepat kepada satu elemen himpunan kedua (daerah hasil) fungsi Daerah

Lebih terperinci

Turunan Fungsi. h asalkan limit ini ada.

Turunan Fungsi. h asalkan limit ini ada. Turunan Fungsi q Definisi Turunan Fungsi Misalkan fungsi f terdefinisi pada selang terbuka I yang memuat a. Turunan pertama fungsi f di =a ditulis f (a) didefinisikan dengan f ( a h) f ( a) f '( a) lim

Lebih terperinci

BAB 4 ANALISIS DAN MINIMISASI RIAK TEGANGAN DAN ARUS SISI DC

BAB 4 ANALISIS DAN MINIMISASI RIAK TEGANGAN DAN ARUS SISI DC BAB ANAL DAN MNMA RAK EGANGAN DAN ARU DC. Penahuluan ampai saat ini, penelitian mengenai riak sisi DC paa inverter PWM lima-fasa paa ggl beban sinusoial belum pernah ilakukan. Analisis yang ilakukan terutama

Lebih terperinci

BAB III KONDUKSI ALIRAN STEDI - DIMENSI BANYAK

BAB III KONDUKSI ALIRAN STEDI - DIMENSI BANYAK BAB III KONDUKSI ALIRAN SEDI - DIMENSI BANYAK Untuk aliran stedi tanpa pembangkitan panas, persamaan Laplacenya adalah: + y 0 (6-) Aliran kalor pada arah dan y bisa dihitung dengan persamaan Fourier: q

Lebih terperinci

VI. FUNGSI EKSPONEN DAN FUNGSI LOGARITMA

VI. FUNGSI EKSPONEN DAN FUNGSI LOGARITMA VI. FUNGSI EKSPONEN DAN FUNGSI LOGARITMA 6. Pendahuluan A. Tujuan Setelah mempelajari bagian ini diharapkan mahasiswa dapat:. menuliskan bentuk umum fungsi eksponen; 2. menggambar grafik fungsi eksponen;

Lebih terperinci

Modul 5 Saluran Transmisi

Modul 5 Saluran Transmisi Saluran Transisi Organisasi Moul 5 Saluran Transisi A. Penahuluan page 3 B. Paraeter Prier Saluran Transisi page 9 C. Paraeter Sekuner Saluran Transisi page 5 D. Koefisien Pantul an SW page 7 E. Tegangan

Lebih terperinci

Barisan dan Deret Agus Yodi Gunawan

Barisan dan Deret Agus Yodi Gunawan Barisan dan Deret Agus Yodi Gunawan Barisan. Definisi. Barisan tak hingga adalah suatu fungsi dengan daerah asalnya himpunan bilangan bulat positif dan daerah kawannya himpunan bilangan real. Notasi untuk

Lebih terperinci

GROUP YANG DIBANGUN OPERATOR LINEAR TERBATAS SEBAGAI SUATU PENYELESAIAN MCA HOMOGEN

GROUP YANG DIBANGUN OPERATOR LINEAR TERBATAS SEBAGAI SUATU PENYELESAIAN MCA HOMOGEN M-10 GROUP YANG DIBANGUN OPERATOR LINEAR TERBATAS SEBAGAI SUATU PENYELESAIAN MCA HOMOGEN Susilo Hariyanto Departemen Matematika Fakultas Sains an Matematika Universitas Diponegoro Semarang sus2_hariyanto@yahoo.co.i

Lebih terperinci

PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI

PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI FUNGSI PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI PENGERTIAN FUNGSI Sebuah fungsi f dari himpunan A ke himpunan B adalah suatu aturan yang memasangkan setiap X anggota A dengan tepat

Lebih terperinci

BAB 2. FUNGSI & GRAFIKNYA

BAB 2. FUNGSI & GRAFIKNYA . Fungsi BAB. FUNGSI & GRAFIKNYA Seara intuitif, kita pandang sebagai fungsi dari jika terdapat aturan dimana nilai (tunggal) mengkait nilai. Contoh:. a. 5 b. Definisi: Suatu fungsi adalah suatu himpunan

Lebih terperinci

KAPASITOR. Pengertian Kapasitor

KAPASITOR. Pengertian Kapasitor 7/3/3 KAPASITOR Pengertian Kapasitor Dua penghantar berekatan yang imaksukan untuk iberi muatan sama tetapi berlawanan jenis isebut kapasitor. Sifat menyimpan energi listrik / muatan listrik. Kapasitas

Lebih terperinci

Bab 16. LIMIT dan TURUNAN. Motivasi. Limit Fungsi. Fungsi Turunan. Matematika SMK, Bab 16: Limit dan Turunan 1/35

Bab 16. LIMIT dan TURUNAN. Motivasi. Limit Fungsi. Fungsi Turunan. Matematika SMK, Bab 16: Limit dan Turunan 1/35 Bab 16 Grafik LIMIT dan TURUNAN Matematika SMK, Bab 16: Limit dan 1/35 Grafik Pada dasarnya, konsep limit dikembangkan untuk mengerjakan perhitungan matematis yang melibatkan: nilai sangat kecil; Matematika

Lebih terperinci

Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui.

Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui. 1 Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui. Jika persamaan diferensial memiliki satu peubah tak bebas maka disebut Persamaan Diferensial

Lebih terperinci

BAB III INTERFERENSI SEL

BAB III INTERFERENSI SEL BAB NTEFEENS SEL Kinerja sistem raio seluler sangat ipengaruhi oleh faktor interferensi. Sumber-sumber interferensi apat berasal ari ponsel lainya ialam sel yang sama an percakapan yang seang berlangsung

Lebih terperinci

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan KALKULUS 1 HADI SUTRISNO 1 Pendidikan Matematika STKIP PGRI Bangkalan BAB I PENDAHULUAN A. Sistem Bilangan Real Untuk mempelajari kalkulus kita terlebih dahulu perlu memahami bahasan tentang sistem bilangan

Lebih terperinci

TURUNAN RANGKUMAN MATERI. '( x) lim. '( x) lim lim 0. Turunan fungsi f(x) terhadap x didefinisikan sebagai berikut. f (x+h) f (x) x x + h

TURUNAN RANGKUMAN MATERI. '( x) lim. '( x) lim lim 0. Turunan fungsi f(x) terhadap x didefinisikan sebagai berikut. f (x+h) f (x) x x + h TURUNAN RANGKUMAN MATERI Turunan fungsi f() traap ifinisikan sbagai brikut f f ( ) f ( ) '( ) lim 0 f (+) f () + Scara gomtri turunan fungsi i = mrupakan grain/kmiringan kurva fungsi trsbut i =. Torma:

Lebih terperinci

FUNGSI DAN MODEL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 63

FUNGSI DAN MODEL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 63 FUNGSI DAN MODEL Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 63 Topik Bahasan 1 Fungsi 2 Jenis-jenis Fungsi 3 Fungsi Baru dari Fungsi Lama 4

Lebih terperinci

BAB I PENDAHULUAN. Kelompok II, Teknik Elektro, Unhas

BAB I PENDAHULUAN. Kelompok II, Teknik Elektro, Unhas BAB I PENDAHULUAN A. Latar Belakang Matematika asar II merupakan matakuliah lanjutan ari matematika asar I yang telah ipelajari paa semester sebelumnya. Matematika asar II juga merupakan matakuliah pengantar

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4.0. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

III HASIL DAN PEMBAHASAN

III HASIL DAN PEMBAHASAN 7 III HASIL DAN PEMBAHASAN 3. Analisis Metode Dala penelitian ini akan digunakan etode hootopi untuk enyelesaikan persaaan Whitha-Broer-Koup (WBK), yaitu persaaan gerak bagi perabatan gelobang pada perairan

Lebih terperinci

3. Kegiatan Belajar Medan listrik

3. Kegiatan Belajar Medan listrik 3. Kegiatan Belajar Mean listrik a. Tujuan Kegiatan Pembelajaran Setelah mempelajari kegiatan belajar 3, iharapkan Ana apat: Menjelaskan hubungan antara kuat mean listrik i suatu titik, gaya interaksi,

Lebih terperinci

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +

Lebih terperinci

Hendra Gunawan. 4 September 2013

Hendra Gunawan. 4 September 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 4 September 2013 Latihan (Kuliah yang Lalu) 1. Tentukan daerah asal dan daerah nilai fungsi 2 f(x) = 1 x. sudah dijawab 2. Gambar grafik fungsi

Lebih terperinci

Materi UTS. Kalkulus 1. Semester Gasal Pengajar: Hazrul Iswadi

Materi UTS. Kalkulus 1. Semester Gasal Pengajar: Hazrul Iswadi Materi UTS Kalkulus 1 Semester Gasal 2016-2017 Pengajar: Hazrul Iswadi Daftar Isi Pengantar...hal 1 Pertemuan 1...hal 2-5 Pertemuan 2...hal 6-10 Pertemuan 3...hal 11-13 Pertemuan 4...hal 14-21 Pertemuan

Lebih terperinci

(x, f(x)) P. x = h. Gambar 4.1. Gradien garis singgung didifinisikan sebagai limit y/ x ketika x mendekati 0, yakni

(x, f(x)) P. x = h. Gambar 4.1. Gradien garis singgung didifinisikan sebagai limit y/ x ketika x mendekati 0, yakni Diktat Klia TK Matematika BAB TURUNAN Graien Garis Singgng Tinja seba krva = f() seperti iperliatkan paa Gambar Garis ang melali titik P(, f( )) an Q( +, f( + )) isebt tali bsr Graien tali bsr tersebt

Lebih terperinci

BAB VII KONDUKTOR DIELEKTRIK DAN KAPASITANSI

BAB VII KONDUKTOR DIELEKTRIK DAN KAPASITANSI BAB VII KONDUKTOR DIELEKTRIK DAN KAPASITANSI 6.. Arus an Kerapatan Arus. Muatan listrik yang bergerak membentuk arus yang memiliki satuan ampere (A) an iefinisikan sebagai laju aliran muatan yang melalui

Lebih terperinci