KAJIAN KONVERGENSI BARISAN RUANG NORM-(n-1) DENGAN n 2

Ukuran: px
Mulai penontonan dengan halaman:

Download "KAJIAN KONVERGENSI BARISAN RUANG NORM-(n-1) DENGAN n 2"

Transkripsi

1 Kaa Kovrgs Barsa Ruag Norm-(-) Dga KAJIAN KONVERGENSI BARISAN RUANG NORM-(-) DENGAN Faratul Masruroh Era Aprla Sao 3 Jurusa Matmatka FMIPA Isttut Tkolog Spuluh Nopmbr Surabaa 3 Jl. Arf Rahma Hakm Kampus Kputh Sukollo Surabaa 6 Jawa Tmur sus_grl@ahoo.co. aprl@matmatka.ts.ac. Abstrak Plasa mga ruag orm tlah baak ka olh para matmatkawa. Bak kaa alam ruag orm ruag orm- a ruag orm-. Kaa ttag ortogoaltas alam ruag orm lham olh Ruag hasl kal alam. Dfs ortogoaltas alam ruag orm uga tlah baak kmbagka olh para matmatkawa. Paa papr ga mgguaka aspk ortogoaltas laska bahwa ka trfs suatu ruag orm- maka ruag orm-(-) trfs ga. Brkuta ka kovrgs barsa ruag orm-(-). Kata kuc: Ortogoaltas Ruag orm- Ruag orm-(-) Abstract A scrpto of th spac orm has b wl stu b mathmatcas. Both stus wth th orm a orm- a a orm-. Stus o orthogoalt spac orm s spr b th r prouct spac. Th fto of orthogoalt spac orm also b vlop b mathmatcas. I ths papr b usg th orthogoalt aspcts pla that wh fg a spac of orm- th spac orm-(-) f b. Nt am covrgc squc spac orm-(-). Kwors: Orthogoalt orm- Spac Spac orm-(-).. Pahulua Plasa mga ruag orm tlah baak ka olh para matmatkawa. Bak kaa alam ruag orm ruag orm- a ruag orm-. Kaa ttag ortogoaltas alam ruag orm lham olh Ruag hasl kal alam. Dfs ortogoaltas alam ruag orm uga tlah baak kmbagka olh para matmatkawa. Bbrapa fs ortogoaltas ag kutp ar Kkat (8) ataraa aalah Dfs Ortogoaltas Pthagoras Isoscls a Brkhoff-Jams. Msal X aalah ruag orm- ga ms ( + ) atau lbh.. Pthagoras-ortogoaltas: kataka P-ortogoal trhaap (otaska ga p ) ka a haa ka aa subruag V X ga com(v) = smka hgga ; V. Gamatka. No. M. Isoscls-ortogoaltas: kataka I-ortogoal trhaap (otaska ga I ) ka a haa ka aa subruag V X ga com(v) = smka hgga ; V.

2 Kaa Kovrgs Barsa Ruag Norm-(-) Dga 3. Brkhoff-Jams-ortogoaltas: kataka BJ-ortogoal trhaap (otaska ga BJ ) ka a haa ka aa subruag V X ga com(v) = smka hgga ; V a R. Msal X aalah ruag hasl kal alam-. utuk stap X maka aalah G-ortogoal trhaap (otaska ga G ) ka a haa ka aa subruag V X ga com(v) = smka hgga V. (Guawa 6) Paa papr ga mgguaka aspk ortogoaltas aka laska bahwa ka trfs suatu ruag orm- maka harus trfs trlbh ahulu ruag orm-(-) ga. Brkuta aka ka kovrgs barsa a lgkap paa ruag orm- a ruag orm-(-).. Pmbahasa. Ruag Norm- Dfs.a Msal X aalah ruag lar ral ga m X a suatu fugs : X X sbut ruag orm- lar ka R maka (N-) ka a haa ka brgatug lr; (N-) (N 3) (N-) utuk stap prmutas ar = ; R a X. ; Fugs sbut orm- paa X. (Chu kk 8) Dfs.b Msal X aalah ruag orm- ga ms ( + ) atau lbh maka. Pthagoras-ortogoaltas: kataka P-ortogoal trhaap (otaska ga p ) ka a haa ka aa subruag V X ga com(v) = smka hgga V.. Isoscls-ortogoaltas: kataka I-ortogoal trhaap (otaska ga I ) ka a haa ka aa subruag V X ga com(v) = smka hgga V. 3. Brkhoff-Jams-ortogoaltas: kataka BJ-ortogoal trhaap (otaska ga BJ ) ka a haa ka aa subruag V X ga com(v) = smka hgga V a R.(Chu kk 8) Dfs.c Msal X aalah ruag hasl kal alam-. brms atau lbh. Utuk X maka aalah G-ortogoaltas trhaap (otaska ga G ) ka a haa ka aa suatu subruag V Gamatka. No. M

3 Kaa Kovrgs Barsa Ruag Norm-(-) Dga X ga com(v) = smka hgga utuk stap V. (Guawa 6). Ortogoaltas Ruag Norm- a Ruag Norm-(-) Paa baga aka laska bahwa ga ka suatu ruag orm- trfs maka ruag orm-(-) trfs ga mau ar aspk ortogoaltas Pthagoras Isoscls Brkhoff-Jams a Guawa. maksua ka trfs a ortogoal orm- maka a ortogoal orm- (-) trfs. Torma. Jka a ortogoal orm- maka ortogoal orm-(- ) ga a ortogoal trhaap a. Bukt: Dktahu : a ortogoal orm- arta. Ortogoaltas_ Pthagoras:.. Ortogoaltas_ Isoscls:. 3. Ortogoaltas_ Brkhoff-Jams: a R.. Ortogoaltas_ Guawa:. a ortogoal trhaap arta a 3 3 maka brakbat a. 3 Aka tuukka a ortogoal orm- arta:. Ortogoaltas_ Pthagoras:.. Ortogoaltas_ Isoscls:. 3. Ortogoaltas_ Brkhoff-Jams: a R.. Ortogoaltas_ Guawa:.. Dktahu. Aka buktka bahwa. Dar (Guawa 6) prolh 3 Gamatka. No. M 3

4 Kaa Kovrgs Barsa Ruag Norm-(-) Dga Gamatka. No. M Kara a ortogoal trhaap. Dktahu. Aka buktka bahwa. Dar (Guawa 6) prolh Kara a ortogoal trhaap 3. Dktahu a R. Aka buktka bahwa a R. Dar (Guawa 6) prolh

5 . Dktahu. Aka buktka bahwa. Kaa Kovrgs Barsa Ruag Norm-(-) Dga Dar (Guawa 6) prolh Ja apat kataka apabla trfs suatu orm- maka orm-(-) trfs..3 Kovrgs Barsa Ruag Norm- a Ruag Norm-(-) Slauta aka ka krtra kovrgs barsa ruag orm- sbagamaa fs brkut Dfs.3a Msal X ruag orm- suatu barsa m X kataka kovrg k X ka lm m X. m Dalam hal apat tuls lm m m a sbut lmt barsa m. (Guawa ) Dar fs kovrgs barsa ruag orm- apat kmbagka suatu torma sbaga brkut Torma.3b Msal X aalah ruag orm-. X brms maa. Msal m X aalah kovrg k X bass ar X. Barsa ka a haa ka lm m.(guawa ) Bukt : m X aalah kovrg k X Dktahu barsa arta lm m m Atau murut fs kovrgs barsa alam orm- lm m X m Aka tuukka bahwa lm m Utuk maka ssua ga fs barsa kovrg alam orm- prolh Gamatka. No. M 5

6 Kaa Kovrgs Barsa Ruag Norm-(-) Dga a a m lm m m lm m a lm m m Shgga lm m m. Utuk maka ssua ga fs barsa kovrg alam orm- prolh a lm m a 3 m m lm 3 m a lm m m a lm m a m lm m m a lm m m Shgga lm. Dktahu bass ar X a lm m Aka tuukka bahwa barsa m lm m X m. X kovrg k X atau X apat tuls a maa R k ga sfat orm (N ) a kombas lar prolh m m m m m m lm m m k Gamatka. No. M 6

7 Kaa Kovrgs Barsa Ruag Norm-(-) Dga lm m ; N Shgga lm m m m kovrg k. Ja trbukt bahwa barsa m ka lm m X ga kata la barsa X aalah kovrg k X ka a haa. Slauta aka ka bahwa apakah ka barsa paa ruag orm- kovrg maka barsa paa ruag orm-(-) uga kovrg. Torma.3c Msal X aalah ruag orm-. X brms maa bass ar X. Jka barsa ruag orm- kovrg maka barsa ruag orm-(-) kovrg. Bukt : Dktahu barsa paa ruag orm- kovrg arta lm m X m. Msal Aka tuukka barsa paa ruag orm-(-) kovrg arta lm m X m Dar (Guawa ) prolh m m ; m lm m m Dktahu bass ar X a lm m ( ). X apat tuls a maa R k ( ) lm m m lm m m m m m m k Gamatka. No. M 7

8 Kaa Kovrgs Barsa Ruag Norm-(-) Dga lm m m lm m ; N Shgga m m lm X ga kata la barsa m kovrg k. Ja trbukt bahwa ka barsa ruag orm- kovrg maka barsa ruag orm-(-) kovrg. 3. Ksmpula Dar hasl plta ag lakuka maka prolh ksmpula sbaga brkut:. Dga mgguaka aspk ortogoaltas Pthagoras Isoscls Brkhoff- Jams a Guawa mmbuktka bahwa ka trfs suatu ruag orm- maka ruag orm-(-) trfs ga.. Trbukt bahwa ka m aalah barsa ag kovrg ruag orm- maka m barsa ag kovrg ruag orm-(-). 3. Trbukt bahwa ka ruag orm- lgkap maka ruag orm-(-) lgkap. Daftar Pustaka Chu Hahg-Yu Sug Ku Cho a Dog Sug Kag. (8). Mappg of Cosrvatv Dstacs Lar -Norm Spacs. Elsvr. Guawa H. (6). G-Orthogoalt -Ir Prouct Spacs. Smposum Matmatka Aalss a Aplkasa. ITS. Surabaa. Guawa H a M. Masha. (). O -Norm Spacs. It. J. Math. Math. Sc Guawa H. (). O -Ir Proucts -Norm a Th Cauch Schwarz Iqualt. Sctal Matmatcal Japacal. Japa Guawa H Masha S. Gmawat a I. Shwagrum. (6). O Orthogoalt -Norm Spacs Rvst. Sctal Matmatcal Japacal. Japa Guawa H. E. Kkat Masha S. Gmawat a I. Shwagrum. (6). Orthogoalt -Norm Spacs. Submtt to J. Ios. Math. Soc. (MIHMI). Kkat Er. (8). Noto of Orthogoalt Norm Spacs. Vctora Uvrst. Mlbour. Krszg Erw. (978). Itrouctor Fuctoal Aalss wth Applcatos. Joh Wl & Sos. Nw York. Mazahr H. a S. Golsta Nzhar. (7). Som Rsults o b-orthogoalt -Norm Lar Spacs. It. Joural of Math. Aalss. Vol Gamatka. No. M 8

On A Generalized Köthe-Toeplitz Duals

On A Generalized Köthe-Toeplitz Duals JMP : Volume 4 Nomor, Ju 202, hal. 3-39 O A Geeralzed Köthe-Toepltz Duals Sumardoo, Supama 2, da Soepara Darmawaa 3 PPPPTK Matematka, smrd2007@gmal.com 2 Mathematcs Departmet, Gadah Mada Uverst, supama@ugm.ac.d

Lebih terperinci

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teoremateorema

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teoremateorema II. LANDAAN TEORI Pada bab II aka dbahas pegerta-pegerta (defs) da teoremateorema ag medukug utuk pembahasa pada bab IV. Pegerta (defs) da teorema tersebut dtulska sebaga berkut.. Teorema Proeks Teorema

Lebih terperinci

MASALAH NORM MINIMUM PADA RUANG HILBERT DAN APLIKASINYA

MASALAH NORM MINIMUM PADA RUANG HILBERT DAN APLIKASINYA Masalah Norm Mmum (Karat) MASALAH NORM MINIMUM PADA RUANG HILBERT DAN APLIKASINYA Karat da Dhorva Urwatul Wutsqa Jurusa Peddka Matematka FMIPA Uverstas Neger Yogakarta Abstract I ths paper, wll be dscussed

Lebih terperinci

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Ruag Baach Sumaag Muhtar Gozal UNIVERSITAS PENDIDIKAN INDONESIA Satu kose etg d kulah Aalss ugsoal adalah teor ruag Baach. Pada baga aka drevu defs, cotoh-cotoh, serta sfat-sfat etg ruag Baach. Kta aka

Lebih terperinci

Delta-Pi: Jurnal Matematika dan Pendidikan Matematika ISSN X Vol. 2, No. 2, Oktober 2013 ALJABAR LINTASAN LEAVITT SEDERHANA

Delta-Pi: Jurnal Matematika dan Pendidikan Matematika ISSN X Vol. 2, No. 2, Oktober 2013 ALJABAR LINTASAN LEAVITT SEDERHANA Dlta-P: Jural Matmatka da Pddka Matmatka ISSN 89-855X Vol., No., Oktobr 3 ALJABAR LINTASAN LAVITT SDRHANA Ida Kura Walyat Program Stud Pddka Matmatka FKIP Urstas Kharu, Trat mal: adhku@gmal.com ABSTRAK

Lebih terperinci

MATEMATIKA INTEGRAL RIEMANN

MATEMATIKA INTEGRAL RIEMANN MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN Ses NGAN INTEGRAL RIEMANN A. NOTASI SIGMA a. Defs Notas Sgma Sgma (Σ) adalah otas matematka megguaka smbol yag mewakl pejumlaha da beberapa suku yag memlk

Lebih terperinci

NORM VEKTOR DAN NORM MATRIKS

NORM VEKTOR DAN NORM MATRIKS NORM VEKTOR DN NORM MTRIK umaag Muhtar Gozal UNIVERIT PENDIDIKN INDONEI. Pedahulua Jka kta membcaraka topk ruag vektor maka cotoh sederhaa yag dapat kta ambl adalah ruag Eucld R. D ruag kta medefska pajag

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam proses penelitian untuk menganalisis aproksimasi fungsi dengan metode

II. TINJAUAN PUSTAKA. Dalam proses penelitian untuk menganalisis aproksimasi fungsi dengan metode II. TINJAUAN PUSTAKA Dalam proses peelta utuk megaalss aproksmas fugs dega metode mmum orm pada ruag hlbert C[ab] (Stud kasus: fugs rasoal) peuls megguaka defs teorema da kosep dasar sebaga berkut:.. Aproksmas

Lebih terperinci

PELABELAN HARMONIS GANJIL PADA GRAF KINCIR ANGIN BELANDA DAN GABUNGAN GRAF KINCIR ANGIN BELANDA

PELABELAN HARMONIS GANJIL PADA GRAF KINCIR ANGIN BELANDA DAN GABUNGAN GRAF KINCIR ANGIN BELANDA PELABELAN HARMONIS GANJIL PADA GRAF KINIR ANGIN BELANDA DAN GABUNGAN GRAF KINIR ANGIN BELANDA Fery Frmasah ), Kk Aryat Sugeg ) Abstrak : Gra G V G, EG dega V G adalah hmpua smpul da G hmpua busur dsebut

Lebih terperinci

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI MINGGU KE-0 HUBUNGAN ANTAR KONVERGENSI Hubuga atar koverges Hrark atar koverges dyataka dalam teorema berkut. Teorema Msalka X da X, X, X 3,... adalah varabel radom yag ddefska pada ruag probabltas yag

Lebih terperinci

INTERVAL KREDIBEL BAYESIAN OBYEKTIF DARI PARAMETER POPULASI BERDISTRIBUSI POISSON DAN EKSPONENSIAL

INTERVAL KREDIBEL BAYESIAN OBYEKTIF DARI PARAMETER POPULASI BERDISTRIBUSI POISSON DAN EKSPONENSIAL INTERVAL KREDIBEL BAYESIAN OBYEKTIF DARI PARAMETER POPULASI BERDISTRIBUSI POISSON DAN EKSPONENSIAL A Sawa Program S Mamaka Isr a Saska Faklas Sas a Mamaka Uvrsas Krs Saya Wacaa Jl Dpogoro 5-6 Salaga 57

Lebih terperinci

KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH. Ariyanto* ABSTRACT

KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH. Ariyanto* ABSTRACT Aryato, Kaja Sfat Keompaa pada Ruag Baah KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH Aryato* ABSTRACT The propertes of ompatess Baah spaes ths paper s a geeralzato of a ompat uderstadg the system o the real

Lebih terperinci

PERBANDINGAN METODE MAXIMUM LIKELIHOOD ESTIMATION (MLE) DAN METODE BAYES DALAM PENDUGAAN PARAMETER DISTRIBUSI EKSPONENSIAL

PERBANDINGAN METODE MAXIMUM LIKELIHOOD ESTIMATION (MLE) DAN METODE BAYES DALAM PENDUGAAN PARAMETER DISTRIBUSI EKSPONENSIAL Bult Ilmah Mat. Stat. a Trapaya (Bmastr) Volum, No. (3), hal. 5 56. PRBANDINGAN MTOD MAXIMUM LIKLIHOOD STIMATION (ML) DAN MTOD BAYS DALAM PNDUGAAN PARAMTR DISTRIBUSI KSPONNSIAL Dw Nurlala, Daa Kusaar,

Lebih terperinci

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teorema-teorema

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teorema-teorema II. LANDASAN TEORI Pada bab II aka dbahas pegerta-pegerta (defs) da teorea-teorea ag edukug utuk pebahasa pada bab IV. Pegerta (defs) da teorea tersebut dtulska sebaga berkut... Teorea Proeks Teorea proeks

Lebih terperinci

SIFAT-SIFAT LANJUT FUNGSI TERBATAS

SIFAT-SIFAT LANJUT FUNGSI TERBATAS Bulet Ilmah Mat. Stat. da Terapaya (Bmaster) Volume 03, No. 2(204), hal 35 42. SIFAT-SIFAT LANJUT FUNGSI TERBATAS Suhard, Helm, Yudar INTISARI Fugs terbatas merupaka fugs yag memlk batas atas da batas

Lebih terperinci

H dinotasikan dengan B H

H dinotasikan dengan B H Delta-P: Jural Matemata da Pedda Matemata ISSN 089-855X Vol., No., Aprl 03 OPERATOR KOMPAK Mustafa A. H. Ruhama Program Stud Pedda Matemata, Uverstas Kharu ABSTRAK Detahu H da H dua ruag Hlbert, B H )

Lebih terperinci

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real.

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real. BAB 5 BARIAN DAN DERET KOMPLEK ecara eses, pembahasa tetag barsa da deret komlpeks sama dega barsa da deret real. 5. Barsa Barsa merupaka sebuah fugs dega doma berupa hmpua blaga asl N. ebuah barsa kompleks

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pada suatu graf sebagai landasan teori pada penelitian ini.

BAB II TINJAUAN PUSTAKA. pada suatu graf sebagai landasan teori pada penelitian ini. BAB II TINJAUAN PUSTAKA Pada bagan n akan dbrkan konsp dasar graf dan blangan kromatk lokas pada suatu graf sbaga landasan tor pada pnltan n 21 Konsp Dasar Graf Bbrapa konsp dasar yang dgunakan dalam pnltan

Lebih terperinci

MODEL LOGIT KUMULATIF UNTUK RESPON ORDINAL

MODEL LOGIT KUMULATIF UNTUK RESPON ORDINAL MODEL LOGIT KUMULATIF UNTUK RESPON ORDINAL Robah P Rahaat da Tatk Wdhah Juusa Matmatka FMIPA UNDIP Jl. Pof. H. Sodato, S.H, Smaag 575 Abstat. Logt umulatv modl s usd to dsb th latoshp btw a spos vaabl

Lebih terperinci

PELABELAN GRACEFUL PADA DIGRAF LINTASAN DAN DIGRAF BIPARTIT LENGKAP

PELABELAN GRACEFUL PADA DIGRAF LINTASAN DAN DIGRAF BIPARTIT LENGKAP PELABELAN GRACEFUL PADA DIGRAF LINTASAN DAN DIGRAF BIPARTIT LENGKAP Lusa Tr Lstyowat Krstaa Waya M Fatekurohma Jurusa Matematka FMIPA Uerstas Jember e-mal: krstaa_waya@yahoocom da m_fatkur@yahoocom Abstract:

Lebih terperinci

EKSISTENSI BASIS ORTHONORMAL PADA RUANG HASIL KALI DALAM

EKSISTENSI BASIS ORTHONORMAL PADA RUANG HASIL KALI DALAM Ed-Math; ol Tah EKITENI BAI ORTHONORMAL PADA RUANG HAIL KALI DALAM Mhammad Kh Abstras at rag etor ag dlegap oleh sat operas ag memeh beberapa asoma tertet damaa Rag Hasl Kal Dalam (RHKD) Pada RHKD deal

Lebih terperinci

BAB III PERSAMAAN PANAS DIMENSI SATU

BAB III PERSAMAAN PANAS DIMENSI SATU BAB III PERSAMAAN PANAS DIMENSI SAU Pada baga sebelumya, kta telah membahas peerapa metoda Ruge-Kutta orde 4 utuk meyelesaka masalah la awal dar persamaa dferesal basa orde. Pada bab, kta aka melakuka

Lebih terperinci

Penelitian Operasional II Teori Permainan TEORI PERMAINAN

Penelitian Operasional II Teori Permainan TEORI PERMAINAN Peelta Operasoal II Teor Permaa 7 2 TEORI PERMAINAN 2 Pegatar 2 Krtera Tekk Permaa : () Terdapat persaga kepetga datara pelaku (2) Setap pema memlk stateg, bak terbatas maupu tak terbatas (3) Far Game

Lebih terperinci

PERLUASAN METODE NEWTON DENGAN PENDEKATAN PARABOLIK

PERLUASAN METODE NEWTON DENGAN PENDEKATAN PARABOLIK PERLUASAN METDE NEWTN DENGAN PENDEKATAN PARABLIK Abdul Rahma, Supriadi Putra, Bustami Mahasiswa Program Studi S Matmatika Dos JurusaMatmatika Fakultas Matmatika da Ilmu Pgtahua Alam Uivrsitas Riau Kampus

Lebih terperinci

SIFAT ASIMTOTIK NORMALITAS DAN KETAKBIASAN PENDUGA KEMUNGKINAN MAKSIMUM PARAMETER DISTRIBUSI GENERALIZED GAMMA

SIFAT ASIMTOTIK NORMALITAS DAN KETAKBIASAN PENDUGA KEMUNGKINAN MAKSIMUM PARAMETER DISTRIBUSI GENERALIZED GAMMA J. Sas MIPA s Khusus Tahu 8 Vo. 4 No. Ha.: 4-46 ISSN 978-873 SIFAT ASIMTOTIK NORMAITAS DAN KTAKBIASAN PNDUGA KMUNGKINAN MAKSIMUM PARAMTR DISTRIBUSI GNRAIZD GAMMA ABSTRACT Da Kurasar Doa Ra Maja Warsoo

Lebih terperinci

PERTIDAKSAMAAN AZUMA PADA MARTINGALE UNTUK MENENTUKAN SUPREMUM PELUANG

PERTIDAKSAMAAN AZUMA PADA MARTINGALE UNTUK MENENTUKAN SUPREMUM PELUANG PERTIDAKSAMAAN AZUMA PADA MARTINGALE UNTUK MENENTUKAN SUPREMUM PELUANG Sudaro Jurusa Matatka FMIPA UNDIP Jl Prof H Sodarto SH Tbalag Sarag 575 Abstract Coutg probablty a two-tald hypothss dtr lvl of th

Lebih terperinci

Persatuan Aktuaris Indonesia Dasar-dasar Matematika Asuransi Jiwa 28 November Untuk soal no. 1 s/d 3 di bawah, diketahui suatu survival function

Persatuan Aktuaris Indonesia Dasar-dasar Matematika Asuransi Jiwa 28 November Untuk soal no. 1 s/d 3 di bawah, diketahui suatu survival function Prsatua ktuars Idosa Dasar-dasar Matmatka suras Jwa 8 Nombr 00 Utuk soal o s/d 3 d bawah, dktahu suatu sural fucto 00 s ( ) utuk 0 00 0 Htuglah F (75) X 0,0 B 0,30 C 0,40 D 0,50 E 0,0 Htuglah f (75) X

Lebih terperinci

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas:

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas: ANALISIS REGRESI Pedahulua Aalss regres berkata dega stud megea ketergatuga satu peubah (peubah terkat) terhadap satu atau lebh peubah laya (peubah pejelas). Jka Y dumpamaka sebaga peubah terkat da X1,X,...,X

Lebih terperinci

PROSIDING ISBN :

PROSIDING ISBN : PROSIDING ISBN : 978 979 6353 3 METODE FINALTI UNTUK MENENTUKAN BERAT SAPI OPTIMAL Olh : H. A. Pahusp da Sska Ayua Pogam Stud Matmatka Idust da Statstka Fakultas Sas da Matmatka (FSM) Uvstas Kst Satya

Lebih terperinci

PRAKTIKUM 20 Interpolasi Polinomial dan Lagrange

PRAKTIKUM 20 Interpolasi Polinomial dan Lagrange Praktkum 0 Iterpolas Polomal da Lagrage PRAKTIKUM 0 Iterpolas Polomal da Lagrage Tuua : Mempelaar berbaga metode Iterpolas ag ada utuk meetuka ttkttk atara dar buah ttk dega megguaka suatu fugs pedekata

Lebih terperinci

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat.

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat. KALKULUS LANJUT Pertemua ke-4 Rey Ra Marlaa, S.S.,M.Stat. Plot Mater Notas Jumlah & Sgma Itegral Tetu Jumlah Rema Pedahulua Luas Notas Jumlah & Sgma Purcell, et all. (page 226,2003): Sebuah fugs yag daerah

Lebih terperinci

TE Dasar Sistem Pengaturan

TE Dasar Sistem Pengaturan TE09346 Daar Stem Pegatura Peracaga otroler : otroler Prooroal Itegral Dfereal Ir. Jo Pramujato, M.Eg. Jurua Tekk Elektro FTI ITS Tel. 594730 Fax.59337 Emal: jo@ee.t.ac. Daar Stem Pegatura 06 Objektf:

Lebih terperinci

LEMMA HENSTOCK PADA INTEGRAL. Muslich Jurusan Matematika FMIPA UNS fine dan integral M

LEMMA HENSTOCK PADA INTEGRAL. Muslich Jurusan Matematika FMIPA UNS fine dan integral M JP : Volue 4 Noor Ju 0 hal. 4-5 LEA HENSTOCK PADA NTEGRAL uslch Jurusa ateata FPA UNS uslch_us@yahoo.co ABSTRACT. Based o the cshae e partto ad cshae tegral t ca be arraged the e partto ad tegral cocepts.

Lebih terperinci

BAB 1 HAMPIRAN TAYLOR DAN ANALISIS GALAT

BAB 1 HAMPIRAN TAYLOR DAN ANALISIS GALAT Catata Kuliah EL Aalisis Numrik BAB HAMPIRAN TAYLOR DAN ANALISIS GALAT. Pgatar Mtod Numrik Ktika kita mylsaika prsamaa-prsamaa matmatika di maa torma-tormaya masih dapat ditrapka, solusi aalitik atau solusi

Lebih terperinci

RUANG FUNGSI GELOMBANG PARTIKEL TUNGGAL (ONE-PARTICLE WAVE FUNCTION SPACE)

RUANG FUNGSI GELOMBANG PARTIKEL TUNGGAL (ONE-PARTICLE WAVE FUNCTION SPACE) RUANG FUNGSI GELOMBANG PARTIKEL TUNGGAL (ONE-PARTICLE WAVE FUNCTION SPACE) Intepetas pobablstk a fungs gelombang t suatu patkel telah kta pelaa yatu t yang menyatakan peluang menemukan patkel paa waktu

Lebih terperinci

PELABELAN KONSEKUTIF (CONSECUTIVE LABELING) PADA GRAF STAR S n DAN GRAF DOUBLE STAR S n,n+1 (n Bilangan Asli) SKRIPSI. Oleh: ABDUL MUIS NIM.

PELABELAN KONSEKUTIF (CONSECUTIVE LABELING) PADA GRAF STAR S n DAN GRAF DOUBLE STAR S n,n+1 (n Bilangan Asli) SKRIPSI. Oleh: ABDUL MUIS NIM. PELABELAN KONSEKUTIF CONSECUTIVE LABELING) PADA GRAF STAR S DAN GRAF DOUBLE STAR S,+ Blaga Asl) SKRIPSI Olh: ABDUL MUIS NIM. 0500 JURUSAN MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI

Lebih terperinci

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER TUGAS ATA KULIAH TEORI RING LANJUT ODUL NOETHER Da Aresta Yuwagsh (/364/PPA/03489) Sebelumya, telah dketahu bahwa sebaga rg dega eleme satua memeuh sfat rata ak utuk deal-deal d. Apabla dpadag sebaga modul,

Lebih terperinci

KOMBINASI PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KOEFISIEN KURTOSIS DAN KOEFISIEN VARIASI

KOMBINASI PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KOEFISIEN KURTOSIS DAN KOEFISIEN VARIASI KOMBINASI PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KOEFISIEN KURTOSIS DAN KOEFISIEN VARIASI Defl Ardh 1, Frdaus, Haposa Srat defl_math@ahoo.com

Lebih terperinci

Penerapan Pendekatan Gabungan Grey Relational Analysis (GRA) dan Principal Component Analysis (PCA) Pada Metode Taguchi Multirespon

Penerapan Pendekatan Gabungan Grey Relational Analysis (GRA) dan Principal Component Analysis (PCA) Pada Metode Taguchi Multirespon JURNL SINS DN SENI IS Vol., No., (Spt. ) ISSN: -98X D-4 Prapa Pdkata Gabuga Gry Rlatoal alyss (GR) da Prcpal Compot alyss (PC) Pada Mtod aguch Multrspo Nur prla Rahmada, Soy Suaryo da Muhammad Sahd kbar

Lebih terperinci

Konsistensi dan Asimtotik Normalitas Model Multivariate Adaptive Regression Spline (Mars) Respon Biner

Konsistensi dan Asimtotik Normalitas Model Multivariate Adaptive Regression Spline (Mars) Respon Biner Jural IMU DASAR, Vol No, Jul 9 : 33-33 Kossts da Asmtotk Normaltas Modl Multvarat Adatv Rgrsso Sl (Mars Rso r Cosstcy ad Asymtotc Normalty of Maxmum klhood Estmator MARS ary Rsos Modl ambag Wdaarko Otok

Lebih terperinci

KARAKTERISTIK FUNGSI DISTRIBUSI FOUR-PARAMETER GENERALIZED-t

KARAKTERISTIK FUNGSI DISTRIBUSI FOUR-PARAMETER GENERALIZED-t Jural -DuMah Volum No Jauar 6 Hlm 8- KARAKTERISTIK FUNGSI DISTRIUSI FOUR-PARAMETER GENERALIZED- Rahma Cahad Warsoo Musoa Usma Da Kurasar Pddka Mamaka STKIP Muhammadah Prgswu Emal: rahma_cahad@ahoocom Mamaka

Lebih terperinci

Hidraulika Komputasi

Hidraulika Komputasi Hdraulka Kompuas Meoda Beda Hgga Ir. Djoko Lukao, M.Sc., Ph.D. Jurusa Tekk Spl Fakulas Tekk Uversas Gadjah Mada Peyelesaa Pedekaa Karea dak dperoleh peyelesaa aals, maka dguaka peyelesaa pedekaa umers.

Lebih terperinci

ESTIMASI PARAMETER MODEL GEOGRAPHICALLY WEIGHTED ORDINAL LOGISTIC REGRESSION (GWOLR)

ESTIMASI PARAMETER MODEL GEOGRAPHICALLY WEIGHTED ORDINAL LOGISTIC REGRESSION (GWOLR) ISBN : 978.60.36.00.0 ESIMASI PARAMEER MODEL GEOGRAPHICALLY WEIGHED ORDINAL LOGISIC REGRESSION (GWOLR) Sylf, Vta Ratnasar Mahasswa Jurusan Statstka Insttut knolog Spuluh Nopmbr (IS), Dosn Jurusan Statstka

Lebih terperinci

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 11-19, Aprl 004, ISSN : 1410-8518 TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM Sudaro Jurusa Matematka FMIPA UNDIP Abstrak Sstem yag dbetuk

Lebih terperinci

Edge Anti-Magic Total Labeling dari

Edge Anti-Magic Total Labeling dari Edge At-Magc Total Labelg dar Charul Imro da Suhud Wahyud Jurusa Matematka Isttut Tekolog Sepuluh Nopember Surabaya mro-ts@matematka.ts.ac.d, suhud@matematka.ts.ac.d C Abstract We wll fd edge at-magc total

Lebih terperinci

V. PENDEKATAN BAYES PADA MODEL ACAK

V. PENDEKATAN BAYES PADA MODEL ACAK 7 V PEDEKT BYES PD MODEL CK 5 Pdahulua Pada aak kasus, srgkal dapat dprolh foras awal ttag paratr ag aka dduga Saga cotoh adalah pada kasus pdugaa produkttas taaa hortkultura ag tlah dahas pada Ba Pada

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel BAB I PENDAHULUAN 1.1 Statstka Deskrptf da Statstka Iferesal Dewasa d berbaga bdag lmu da kehdupa utuk memaham/megetahu sesuatu dperluka dat Sebaga cotoh utuk megetahu berapa bayak rakyat Idoesa yag memerluka

Lebih terperinci

Solusi Persamaan Schrodinger 1-dimensi untuk Potensial Deng Fan MenggunakanKonstruksi Supersimetri

Solusi Persamaan Schrodinger 1-dimensi untuk Potensial Deng Fan MenggunakanKonstruksi Supersimetri ISSN: 57-533X Solusi Prsamaan Shroingr 1-imnsi untuk Potnsial Dng Fan MnggunakanKonstruksi Suprsimtri 1. Wahyulianti, A. Suparmi, C. Cari 1, Program Stui Ilmu Fisika Pasasarjana Univrsitas Sblas Mart,

Lebih terperinci

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2 INTERVAL KEPERCAAAN UNTUK PERBEDAAN KOEFIIEN VARIAI DARI DITRIBUI LOGNORMAL I. Pebrya * Bustam. ugarto Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu Pegetahua Alam Uverstas

Lebih terperinci

SKRIPSI. oleh: FARIDA KARUNIAWATI NIM

SKRIPSI. oleh: FARIDA KARUNIAWATI NIM ANALISIS REGRESI DUMMY VARIABLE MODEL LOGIT (Kasus pada Estmas Huja d Karagploso, Malag) SKRIPSI olh: FARIDA KARUNIAWATI NIM. 0650028 JURUSAN MATEMATIKA FAKULTAS SAIN DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI

Lebih terperinci

UKURAN LOKASI, VARIASI & BENTUK KURVA

UKURAN LOKASI, VARIASI & BENTUK KURVA UKURAN LOKASI, VARIASI & BENTUK KURVA MARULAM MT SIMARMATA, MS STATISTIK TERAPAN FAK HUKUM USI @4 ARTI UKURAN LOKASI DAN VARIASI Suatu Kelompok DATA berupa kumpulan nla VARIABEL [ vaabel ] Ms banyaknya

Lebih terperinci

Metode Iterasi Orde Konvergensi Enam Untuk Penyelesaian Persamaan Nonlinear

Metode Iterasi Orde Konvergensi Enam Untuk Penyelesaian Persamaan Nonlinear Smiar asioal Tkologi Iormasi Komuikasi da Idustri STIKI 9 ISS Pritd : 9- Fakultas Sais da Tkologi UI Sulta Sari Kasim Riau ISS li : 9-6 Pkabaru 8-9 Mi Mtod Itrasi rd Kovrgsi Eam Utuk Plsaia Prsamaa oliar

Lebih terperinci

METODE SECANT-MIDPOINT NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Supriadi Putra

METODE SECANT-MIDPOINT NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Supriadi Putra METODE SENT-MIDPOINT NEWTON UNTUK MENYELESIKN PERSMN NONLINER Supriadi Putra sputra@uri.ac.id Laboratorium Komputasi Jurusa Matmatika Fakultas Matmatika da Ilmu Pgtahua lam Uivrsitas Riau Kampus Biawidya

Lebih terperinci

PENGEMBANGAN METODE ITERASI DUA DAN TIGA LANGKAH DENGAN ORDE KONVERGENSI OPTIMAL

PENGEMBANGAN METODE ITERASI DUA DAN TIGA LANGKAH DENGAN ORDE KONVERGENSI OPTIMAL PENGEMBANGAN METODE ITEASI DUA DAN TIGA LANGKAH DENGAN ODE KONVEGENSI OPTIMAL Supriadi Putra M.Si* Dr. Sasudhuha M.S urusa Matatika FMIPA Uivrsitas iau *sputra@uri.a.id ABSTAK Dala akalah ii disajika dua

Lebih terperinci

ESTIMASI REGRESI MODEL LOGIT DENGAN METODE MAKSIMUM LIKELIHOOD SKRIPSI. Oleh: DINUL WAFA NIM

ESTIMASI REGRESI MODEL LOGIT DENGAN METODE MAKSIMUM LIKELIHOOD SKRIPSI. Oleh: DINUL WAFA NIM STIMASI RGRSI MODL LOGIT DNGAN MTOD MAKSIMUM LIKLIHOOD SKRIPSI Olh: DINUL WAFA NIM. 5548 JURUSAN MATMATIKA FAKULTAS SAINS DAN TKNOLOGI UNIVRSITAS ISLAM NGRI MAULANA MALIK IBRAHIM MALANG 9 STIMASI RGRSI

Lebih terperinci

TEOREMA WEYL UNTUK OPERATOR HYPONORMAL

TEOREMA WEYL UNTUK OPERATOR HYPONORMAL Jural UJMC, Volume 3, Nomor, Hal. - 6 pissn : 460-3333 eissn : 579-907X TEOREMA WEYL UNTUK OPERATOR HYPONORMAL Guawa Uiversitas Muhammadiyah Purwokerto, gu.oge@gmail.com Abstract This paper aims at describig

Lebih terperinci

Metode Iterasi Tiga Langkah dengan Orde Konvergensi Enam untuk Menyelesaikan Persamaan Nonlinear

Metode Iterasi Tiga Langkah dengan Orde Konvergensi Enam untuk Menyelesaikan Persamaan Nonlinear Jural Sais Matmatika da Statistika Vol No Juli 6 ISSN 6-5 Mtod Itrasi Tiga Lagkah dga rd Kovrgsi Eam utuk Mlsaika Prsamaa Noliar M Ari da M M Niam Jurusa Matmatika Fakultas Sais da Tkologi UIN Sulta Sari

Lebih terperinci

FORMULA BINET DAN JUMLAH n SUKU PERTAMA PADA GENERALISASI BILANGAN FIBONACCI DENGAN METODE MATRIKS. Purnamayanti 1 Thresye 2 Na imah Hijriati 3

FORMULA BINET DAN JUMLAH n SUKU PERTAMA PADA GENERALISASI BILANGAN FIBONACCI DENGAN METODE MATRIKS. Purnamayanti 1 Thresye 2 Na imah Hijriati 3 Jural Matematka Mur a eraa ol 6 No Ju : 38-46 ORMULA BINE AN JUMLAH SUKU PERAMA PAA GENERALISASI BILANGAN IBONACCI ENGAN MEOE MARIKS Puramayat hresye Na mah Hrat 3 [] Alum Mahasswa PS Matematka MIPA Uverstas

Lebih terperinci

Modifikasi Varian Metode Newton dengan Orde Konvergensi Tujuh

Modifikasi Varian Metode Newton dengan Orde Konvergensi Tujuh Jural Sais Matmatika da Statistika Vol. No. Juli 0 ISSN 0- Modiikasi Varia Mtod Nwto dga rd Kovrgsi Tujuh Wartoo Ria Rasla Jurusa Matmatika Fakultas Sais da Tkologi UIN Sulta Sari Kasim Riau Jl. HR. Sobratas

Lebih terperinci

USAHA KONVEKSI PAKAIAN JADI

USAHA KONVEKSI PAKAIAN JADI P O L A P E M B I A Y A A N U S A H A K E C I L S Y A R I A H ( P P U K -S Y A R I A H ) U S A H A K O N V E K S I P A K A I A N J A D I P O L A P E M B I A Y A A N U S A H A K E C I L S Y A R I A H (

Lebih terperinci

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua

Lebih terperinci

Lampiran : Kekonvergenan Barisan Alternating Projection pada Himpunan yang tak Semuanya Konveks

Lampiran : Kekonvergenan Barisan Alternating Projection pada Himpunan yang tak Semuanya Konveks DAFTAR PUSTAKA [] Apkara, P., P. Gahet, G Becker. (995), Self-scheduled H Cotrol of Lear Paraeter-varyg Systes : a Desg Eeple, Autoatca, 3, 25-26. [2] Bajerdpogcha, D., (997), Paraetrc Robust Cotroller

Lebih terperinci

ISSN: JURNAL GAUSSIAN, Volume 4, Nomor 4, Tahun 2015, Halaman Online di:

ISSN: JURNAL GAUSSIAN, Volume 4, Nomor 4, Tahun 2015, Halaman Online di: ISSN: 339-541 JURNAL GAUSSIAN, Volum 4, Nomor 4, Tahu 015, Halama 97-936 Ol d: http://joural-s1.udp.ac.d/dx.php/gaussa ANALISIS KEPUTUSAN KONSUMEN MEMILIH BAHAN BAKAR MINYAK (BBM MENGGUNAKAN MODEL REGRESI

Lebih terperinci

ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF

ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF KELOMPOK A I GUSTI BAGUS HADI WIDHINUGRAHA (0860500) NI PUTU SINTYA DEWI (0860507) LUH GEDE PUTRI SUARDANI (0860508) I PUTU INDRA MAHENDRA PRIYADI (0860500)

Lebih terperinci

UJI CHI KUADRAT (χ²) 1.1. Pengertian Frekuensi Observasi dan Frekuensi Harapan

UJI CHI KUADRAT (χ²) 1.1. Pengertian Frekuensi Observasi dan Frekuensi Harapan UJI CHI KUADRAT (χ²) 1. Pndahuluan Uj Ch Kuadrat adalah pngujan hpotss mngna prbandngan antara : frkuns obsrvas/yg bnar-bnar trjad/aktual dngan frkuns harapan/kspktas 1.1. Pngrtan Frkuns Obsrvas dan Frkuns

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 41-48, April 2003, ISSN : MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 41-48, April 2003, ISSN : MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No., 4-48, April 00, ISSN : 40-858 MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA Suryoto Jurusa Matematika F-MIPA Uiversas Dipoegoro Semarag Abstrak Suatu matriks tak

Lebih terperinci

BAB 1 ERROR PERHITUNGAN NUMERIK

BAB 1 ERROR PERHITUNGAN NUMERIK BAB ERROR PERHITUNGAN NUMERIK A. Tujua a. Memaham galat da hampra b. Mampu meghtug galat da hampra c. Mampu membuat program utuk meelesaka perhtuga galat da hampra dega Matlab B. Peragkat da Mater a. Software

Lebih terperinci

JURNAL SAINS DAN SENI POMITS Vol. 2, No.1, (2013) ( X Print) D-1

JURNAL SAINS DAN SENI POMITS Vol. 2, No.1, (2013) ( X Print) D-1 JURNAL SAINS DAN SENI POMITS Vol., No., (3) 33-3 (3-8 Prt) D- Pmodla Partspas Wata dalam Kgata Ekoom Rumah Tagga Nlaya d Pssr Tmur Surabaya (Stud Kasus Kcamata Kcamata Bulak, Mulyorjo, da Kjra) Irma Harlagtyas,

Lebih terperinci

BAB III ISI. x 2. 2πσ

BAB III ISI. x 2. 2πσ BAB III ISI 4. Keadata Normal Multvarat da Sfat-sfatya Keadata ormal multvarat meruaka geeralsas dar keadata ormal uvarat utuk dmes. f ( x) [( x )/ ] / = e x π x = ( x )( ) ( x ). < < (-) (-) Betuk (-)

Lebih terperinci

Bukti Teorema Sisa China dengan Menggunakan Ideal Maksimal

Bukti Teorema Sisa China dengan Menggunakan Ideal Maksimal Vol 5, No, 9-98, Jauar 9 But Teorema Ssa Cha dega egguaa deal asmal Abstra Sstem perogruea yag dapat dcar peyelesaaya secara teor blaga dasar teryata dapat dbuta melalu teor-teor strutur aljabar hususya

Lebih terperinci

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal)

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal) LANGKAH-LANGKAH UJI HIPOTESIS DENGAN (Utuk Data Nomal). Merumuska hpotess (termasuk rumusa hpotess statstk). Data hasl peelta duat dalam etuk tael slag (tael frekues oservas) 3. Meetuka krtera uj atau

Lebih terperinci

Regresi & Korelasi Linier Sederhana

Regresi & Korelasi Linier Sederhana Regres & Korelas Ler Sederhaa. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar la peubah

Lebih terperinci

Karakterisasi Produk Tensor l ( Δ) l. Muslim Ansori

Karakterisasi Produk Tensor l ( Δ) l. Muslim Ansori Ruag Basa Sesh ( Δ ),< < da Bebeaa Pemasaaha Kaatesas Podu Teso ( Δ) ( Δ) Musm Aso Juusa Matemata, FMIPA, Uvestas Lamug J. Soemat Bodoegoo No. Bada Lamug 3545 E-ma: asomath@ahoo.com ABSTRACT I ths ae we

Lebih terperinci

Kata kunci : Regresi logistik, Susenas, menikah muda

Kata kunci : Regresi logistik, Susenas, menikah muda ANALISIS REGRESI LOGISTIK BINER PADA FAKTOR-FAKTOR YANG MEMPENGARUHI WANITA MENIKAH MUDA DI PROVINSI JAWA TIMUR Stud Kasus d Kabuat Probolggo, Bodowoso, Stubodo da Sum Aula Imawat, Ar Ksmato Mahasswa S

Lebih terperinci

BAB X RUANG HASIL KALI DALAM

BAB X RUANG HASIL KALI DALAM BAB X RUANG HASIL KALI DALAM 0. Hasl Kal Dalam Defns. Hasl kal dalam adalah fungs yang mengatkan setap pasangan vektor d ruang vektor V (msalkan pasangan u dan v, dnotaskan dengan u, v ) dengan blangan

Lebih terperinci

OPERASI GABUNGAN, JOIN, KOMPOSISI DAN HASIL KALI KARTESIAN PADA GRAF FUZZY SERTA KOMPLEMENNYA. Tina Anggitta Novia 1 dan Lucia Ratnasari 2

OPERASI GABUNGAN, JOIN, KOMPOSISI DAN HASIL KALI KARTESIAN PADA GRAF FUZZY SERTA KOMPLEMENNYA. Tina Anggitta Novia 1 dan Lucia Ratnasari 2 OPERASI ABUNAN JOIN KOMPOSISI DAN HASIL KALI KARTESIAN PADA RAF FUZZY SERTA KOMPLEMENNYA Tina Anggitta Novia Lucia Ratnasari Program Studi Matmatika FMIPA UNDIP Jl Prof Sodarto SH Smarang 5075 Abstract

Lebih terperinci

PELABELAN TOTAL SISI TAK BERATURAN PADA GRAF GABUNGAN BIPARTIT LENGKAP

PELABELAN TOTAL SISI TAK BERATURAN PADA GRAF GABUNGAN BIPARTIT LENGKAP JMP : Volume 1 Nomor 2, Oktober 2009 PELABELAN TOTAL SISI TAK BERATURAN PADA GRAF GABUNGAN BIPARTIT LENGKAP Tryan dan Nken Larasat Fakultas Sans dan Teknk, Unverstas Jenderal Soedrman Purwokerto, Indonesa

Lebih terperinci

JMP : Volume 5 Nomor 1, Juni 2013, hal SPEKTRUM PADA GRAF REGULER KUAT

JMP : Volume 5 Nomor 1, Juni 2013, hal SPEKTRUM PADA GRAF REGULER KUAT JMP : Volume 5 Nomor, Jun 03, hal. 3 - SPEKTRUM PD GRF REGULER KUT Rzk Mulyan, Tryan dan Nken Larasat Program Stud Matematka, Fakultas Sans dan Teknk Unerstas Jenderal Soedrman Emal : rzky90@gmal.com BSTRCT.

Lebih terperinci

HIMPUNAN RENTANGAN DAN BEBAS LINIER. di V. Vektor w dikatakan sebagai kombinasi linier dari vektor-vektor v, 1

HIMPUNAN RENTANGAN DAN BEBAS LINIER. di V. Vektor w dikatakan sebagai kombinasi linier dari vektor-vektor v, 1 HIMPUNAN RENTANGAN DAN BEBA LINIER HIMPUNAN RENTANGAN Defs (Kombas Ler) Msala V suatu ruag etor atas feld F. w etor d V, da, 1, juga etoretor d V. Vetor w dataa sebaga ombas ler dar etor-etor, 1, ja w

Lebih terperinci

Transformasi Fourier Waktu Diskrit

Transformasi Fourier Waktu Diskrit Praktikum Isyarat da Sistm Topik 5 Trasformasi ourir Waktu Diskrit Tuua Mahasiswa dapat mtuka da mgguaka trasformasi ourir waktu diskrit dalam aalisa suatu sistm LTI Mahasiswa dapat mgguaka MATLAB sbagai

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA. Peahulua Dalam bab aka membahas megea teor-teor tetag statstka oparametrk, korelas parsal tau Keall a korelas parsal meurut Ebuh GU a Oeka ICA.. Statstka Noparametrk Istlah oparametrk

Lebih terperinci

REGRESI & KORELASI LINIER SEDERHANA

REGRESI & KORELASI LINIER SEDERHANA . Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN Idah Vltr, Harso, Haposa Srat Mahassa Program S Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu

Lebih terperinci

Oleh : Diar Ekawati

Oleh : Diar Ekawati APLIKASI MULTIMEDIA PENGENALAN SISTEM PEREDARAN DARAH MANUSIA DENGAN MENGGUNAKAN MACROMEDIA FLASH 8.0 Olh : Diar Ekawati 331 09 104 Latar Blakang Di alam tubuh kita trbagi ari banyak organ ngan bragam

Lebih terperinci

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan Aalsa Numerk Baha Matrkulas PENDAHULUAN Metode umerk merupaka suatu tekk atau cara utuk megaalsa da meyelesaka masalah masalah d dalam bdag rekayasa tekk da sa dega megguaka operas perhtuga matematk Masalah-masalah

Lebih terperinci

ALGORITMA MENENTUKAN HIMPUNAN TERBESAR DARI SUATU MATRIKS INTERVAL DALAM ALJABAR MAX-PLUS

ALGORITMA MENENTUKAN HIMPUNAN TERBESAR DARI SUATU MATRIKS INTERVAL DALAM ALJABAR MAX-PLUS LGORITM MENENTUKN HIMPUNN TERBESR DRI SUTU MTRIKS INTERVL DLM LJBR MX-PLUS Rata Novtasar Program Stud Matematka FMIP UNDIP JlProfSoedarto SH Semarag 575 bstract Ths research dscussed about how to obtaed

Lebih terperinci

KOMBINASI METODE NEWTON DENGAN METODE ITERASI YANG DITURUNKAN BERDASARKAN KOMBINASI LINEAR BEBERAPA KUADRATUR UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR

KOMBINASI METODE NEWTON DENGAN METODE ITERASI YANG DITURUNKAN BERDASARKAN KOMBINASI LINEAR BEBERAPA KUADRATUR UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Vol. 0. No. 0 Jural Sais Tkologi da Idustri KOMINSI METODE NEWTON DENGN METODE ITERSI YNG DITURUNKN ERDSRKN KOMINSI LINER EERP KUDRTUR UNTUK MENYELESIKN PERSMN NONLINER Supriadi Putra gusi Yudi Prima Rstu

Lebih terperinci

FUNGSI EKSPONEN, TRIGONOMETRI DAN HYPERBOLIK BAB I FUNGSI EKSPONEN

FUNGSI EKSPONEN, TRIGONOMETRI DAN HYPERBOLIK BAB I FUNGSI EKSPONEN BAB I FUNGSI EKSPONEN Dfinisi Fungsi ksponn aalah fungsi f yang mnntukan k. Rumusnya ialah f(. Fungsi ksponn ngan pubah bbas + yi ( an y bilangan ral aalah (cos y + i sin y. Dari finisi ini, jika : y 0

Lebih terperinci

SAP. Pertemu Materi Pokok Sub-Materi Tugas KBM Bentuk. Matriks. Projector/Vie proses penunjang. software. pembelajaran. Sistem

SAP. Pertemu Materi Pokok Sub-Materi Tugas KBM Bentuk. Matriks. Projector/Vie proses penunjang. software. pembelajaran. Sistem Mata kuliah Bobot Deskripsi Mata Kuliah SAP : Matriks & Ruag Vektor : 2 SKS/IT043231 : Mata kuliah ii merupaka fodasi keragka berfikir mahasiswa dalam memahami da meyelesaika masalah berbasis ruag melalui

Lebih terperinci

PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN VARIASI DAN MEDIAN

PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN VARIASI DAN MEDIAN PENAKI AIO UNTUK ATA-ATA POPULAI PADA AMPLING ACAK EDEHANA MENGGUNAKAN KOEFIIEN VAIAI DAN MEDIAN sk ahmada *, Arsma Ada, Haposa rat Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da

Lebih terperinci

0,8 9 0,9 4 1,2 4 7,1 6 %

0,8 9 0,9 4 1,2 4 7,1 6 % P O L A P E M B I A Y A A N U S A H A K E C I L ( P P U K ) E M P I N G M E L I N J O P O L A P E M B I A Y A A N U S A H A K E C I L ( P P U K ) E M P I N G M E L I N J O B A N K I N D O N E S I A K A

Lebih terperinci

MENENTUKAN POLINOMIAL MINIMAL ATAS GF p YANG MEMBANGUN GF p. Nunung Andriani 1 dan Bambang Irawanto 2

MENENTUKAN POLINOMIAL MINIMAL ATAS GF p YANG MEMBANGUN GF p. Nunung Andriani 1 dan Bambang Irawanto 2 MENENTUKAN POLINOMIAL MINIMAL ATAS GF YANG MEMBANGUN GF Nuug Ara 1 a Bambag Irawato 1 Jurusa Matematka FMIPA UNDIP Jl Pro H Soearto SH Tembalag Semarag Abstract Let F s te el wth elemets eote by GF I E

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI A II LANDASAN TEORI. Distribusi Pluag Diisi. (Walpol da M rs 995) Jika X adalah suatu variabl radom kotiu maka ugsi dsitas pluaga adalah suatu ugsi ag mmuhi kodisi: i. ; utuk x (- ) ii. = iii. = (.) Diisi.

Lebih terperinci

MODIFIKASI SEDERHANA DARI VARIAN METODE NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

MODIFIKASI SEDERHANA DARI VARIAN METODE NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT MODIFIKASI SEDERHANA DARI VARIAN METODE NEWTON UNTUK MENYELESAIKAN Supriadi Putra Jurusa Matmatika Fakultas Matmatika da Ilmu Pgtahua Alam Uivrsitas Riau, Pkabaru ABSTRAT This articl discusss a simpl modiicatio

Lebih terperinci

REPRESENTASI BILANGAN FIBONACCI DALAM BENTUK KOMBINATORIAL

REPRESENTASI BILANGAN FIBONACCI DALAM BENTUK KOMBINATORIAL REPRESENTASI BILANGAN FIBONACCI DALAM BENTUK KOMBINATORIAL Rzky Maulaa Nugraha Tekk Iformatka Isttut Tekolog Badug Blok Sumurwed I RT/RW 4/, Haurgeuls, Idramayu, 4564 e-mal: laa_cfre@yahoo.com ABSTRAK

Lebih terperinci

STUDI SIMULASI DALAM ESTIMASI BAYESIAN OBYEKTIF

STUDI SIMULASI DALAM ESTIMASI BAYESIAN OBYEKTIF STUDI SIMULASI DALAM ESTIMASI BAYESIAN OBYEKTIF A Seawa Program Su Maemaka Iusr a Saska Fakulas Sas a Maemaka Uversas Krse Saya Wacaa Jl Dpoegoro 52-6 Salaga 57 Ioesa e-mal: a_sea_3@yahoocom Absrak Dega

Lebih terperinci

Sudaryatno Sudirham. Permutasi dan Kombinasi

Sudaryatno Sudirham. Permutasi dan Kombinasi Sudaryato Sudrham Permutas da Kombas Permutas Permutas adalah bayakya peelompoka sejumlah tertetu kompoe ya dambl dar sejumlah kompoe ya terseda; dalam setap kelompok uruta kompoe dperhatka Msalka terseda

Lebih terperinci

BAB 4 IMPLEMENTASI DAN EVALUASI

BAB 4 IMPLEMENTASI DAN EVALUASI 65 BAB IMPLEMENTASI DAN EVALUASI. Penyaan Data Hasl Peneltan Data-ata hasl peneltan yang gunakan alam pengolahan ata aalah sebaga berkut: a. ata waktu kera karyawan b. ata umlah permntaan konsumen c. ata

Lebih terperinci

3.1 Hubungan Dasar Probabilitas Probabilitas adalah harga perbandingan jumlah kejadian (A) yang mungkin dapat

3.1 Hubungan Dasar Probabilitas Probabilitas adalah harga perbandingan jumlah kejadian (A) yang mungkin dapat . Hubuga Dasar rbabltas rbabltas adalah harga prbadga jumlah kjada A yag mugk dapat trjad trhadap jumlah ksluruha kjada yag mugk trjad dalam sbuah prstwa. Cth:. luag utuk mdapatka agka gap dar lmpara sbuah

Lebih terperinci

Metode Iterasi Tiga Langkah Bebas Turunan Orde Konvergensi Delapan untuk Menyelesaikan Persamaan Nonlinear

Metode Iterasi Tiga Langkah Bebas Turunan Orde Konvergensi Delapan untuk Menyelesaikan Persamaan Nonlinear Jural Sais Matmatika da Statistika Vol o Jauari ISS - prit/iss - oli Mtod Itrasi Tiga Lagkah Bbas Turua rd Kovrgsi Dlapa utuk Mlsaika Prsamaa oliar M Muhaiir L L ada Jurusa Matmatika Fakultas Sais da Tkologi

Lebih terperinci