BAB 1 ERROR PERHITUNGAN NUMERIK
|
|
- Sri Wibowo
- 3 tahun lalu
- Tontonan:
Transkripsi
1 BAB ERROR PERHITUNGAN NUMERIK A. Tujua a. Memaham galat da hampra b. Mampu meghtug galat da hampra c. Mampu membuat program utuk meelesaka perhtuga galat da hampra dega Matlab B. Peragkat da Mater a. Software Matlab b. Mater Galat da Hampra C. Dasar Teor (Hampra) Cotoh : Htuglah Peelesaa : sampa empat agka desmal. Megguaka algortma utuk meghtug perkala, pembaga, da pejumlaha sebaga berkut :,, utuk =,3,4,... Dega megguaka algortma d atas, dperoleh, utuk =,3,4,... 3, 7 3, , Atau dalam betuk pecaha desmal : dega megguaka operas , , , , Jad, hampra sampa empat agka desmal utuk adalah Implemetas dega Matlab Berkut lagkah-lagkah percobaa utuk meelesaka persoala d atas: a. Buka program Matlab b. Buat programa d Commad Wdows
2 >> =; >> e=; >> whle e > , =; =(+/)/ e=abs(-); ed =.5000 =.467 =.44 =.44 >> fprtf('%5.7f',);.4436 c. Ada dapat megubah batas la e utuk medapatka tgkat keakurata ag dgka. Defs Kesalaha (Galat) Yatu kesalaha ag dtmbulka karea proses pegukura atau pegguaa hampra (aproksmas). Berkut merupaka sumber galat (error) pada suatu hampra peelesaa ag dperoleh dega megguaka suatu metode komputas umerk (Volkof,990:8, dalam buku Komputas Numerk dega Matlab, 005 oleh Sahd :3) adalah :. Model matematka utuk suatu feomea alam. Galat bawaa dar masuka (parameter masuka) 3. Metode Peelesaa 4. Adaa pembulata dalam melakuka operas-operas artmetka. Cotoh : Galat Pejumlaha da Peguraga Teor : Dar hubuga la eksak dperoleh : e e ( ) ( e e )
3 Jad galat pejumlaha sama dega jumlah galat suku-suku ag djumlahka, atau dapat dtuls : e e e Galat relatf pejumlaha adalah : r e e e Utuk peguraga e e ( ) ( e e ) Jad, aalog dega pejumlaha, galat peguraga sama dega selsh galat, atau dapat dtulska : e e e Galat relatf peguraga adalah : r e e e Dar persamaa terakhr dapat dpaham bahwa, apabla maka galat relatf peguraga kedua hampra aka semak besar. Msalka,...,, dguaka sebaga hampra utuk X, X,..., X dega maksmum galat ag mugk utuk masg-masg hampra adalah E. Dega kata la : E X E, utuk,,..., Dega mejumlahka la-la tersebut dperoleh : E X E Atau X E Jad, galat jumlah la hampra tersebut adalah jumlah maksmum galat masg-masg hampra. Cotoh Kasus : Htuglah jumlah dega megguaka pembulata sampa dua agka desmal (d belakag koma). Berapakah maksmum galat pejumlaha tersebut? Berapakah galat ag sesugguha?
4 Peelesaa : Kta dapat megguaka Matlab utuk meghtug jumlaha tersebut. Dalam megguaka Matlab perhtuga (megguaka 6 agka sgfka). Utuk meghtug sampa dua agka desmal, masg-masg akar dkalka 00 da dbulatka. Hasla sama dega 00 kal jumlah tersebut. Implemetas dega Matlab: a. Bukalah program Matlab b. Buatlah program berkut pada commad wdows > s=0; for k=:00, s=s+roud(00*sqrt(k)); ed;s=s/00 s= > s=fprtf('%5.f',s); c. Jad, perhtuga megguaka dua agka desmal meghaslka jumlah Oleh karea setap akar dhtug sampa dua agka desmal, maka galat maksum masgmasg suku adalah Oleh karea tu, maksmum galat hampra jumlah tersebut adalah d. Nla ag sebeara dapat dhtug dega megguaka Matlab berkut, tuls program pada commad wdows : >> s=0; for k=:00, s=s+sqrt(k); ed;s=s s = >> s=fprtf('%5.6f',s); Jad, galat ag sesugguha adalah sektar 0.07, lebh kecl darpada maksmum galata. Apabla dkerjaka dega Matlab tapa adalaa loopg adalah sebaga berkut : >> format log g barsa=:00;
5 >> s=sum(roud(00*sqrt(barsa))/00); >> s=sum(sqrt(barsa)); >> s=s s = >> s=s s =
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,
PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel
Praktkum 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa
BAB III PERSAMAAN PANAS DIMENSI SATU
BAB III PERSAMAAN PANAS DIMENSI SAU Pada baga sebelumya, kta telah membahas peerapa metoda Ruge-Kutta orde 4 utuk meyelesaka masalah la awal dar persamaa dferesal basa orde. Pada bab, kta aka melakuka
PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan
Aalsa Numerk Baha Matrkulas PENDAHULUAN Metode umerk merupaka suatu tekk atau cara utuk megaalsa da meyelesaka masalah masalah d dalam bdag rekayasa tekk da sa dega megguaka operas perhtuga matematk Masalah-masalah
PRAKTIKUM 5 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel
Praktkum 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa
PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM
PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka
BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.
BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska
Penarikan Contoh Acak Sederhana (Simple Random Sampling)
Pearka Cotoh Acak Sederhaa (Smple Radom Samplg) Defs Jka sebuah cotoh berukura dambl dar suatu populas sedemka rupa sehgga setap cotoh berukura ag mugk memlk peluag sama utuk terambl, maka prosedur tu
KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat.
KALKULUS LANJUT Pertemua ke-4 Rey Ra Marlaa, S.S.,M.Stat. Plot Mater Notas Jumlah & Sgma Itegral Tetu Jumlah Rema Pedahulua Luas Notas Jumlah & Sgma Purcell, et all. (page 226,2003): Sebuah fugs yag daerah
Uji Statistika yangb digunakan dikaitan dengan jenis data
Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas
BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier
BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres
II. TINJAUAN PUSTAKA. Dalam proses penelitian untuk menganalisis aproksimasi fungsi dengan metode
II. TINJAUAN PUSTAKA Dalam proses peelta utuk megaalss aproksmas fugs dega metode mmum orm pada ruag hlbert C[ab] (Stud kasus: fugs rasoal) peuls megguaka defs teorema da kosep dasar sebaga berkut:.. Aproksmas
SOLUSI TUGAS I HIMPUNAN
Program Stud S1 Tekk Iformatka Fakultas Iformatka, Telkom Uversty SOLUSI TUGAS I HIMPUNAN Matematka Dskrt (MUG2A3) Halama 1 dar 6 Soal 1 Tetukalah eleme-eleme dar hmpua berkut! 2 x x adalah blaga real
BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel
BAB I PENDAHULUAN 1.1 Statstka Deskrptf da Statstka Iferesal Dewasa d berbaga bdag lmu da kehdupa utuk memaham/megetahu sesuatu dperluka dat Sebaga cotoh utuk megetahu berapa bayak rakyat Idoesa yag memerluka
BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real.
BAB 5 BARIAN DAN DERET KOMPLEK ecara eses, pembahasa tetag barsa da deret komlpeks sama dega barsa da deret real. 5. Barsa Barsa merupaka sebuah fugs dega doma berupa hmpua blaga asl N. ebuah barsa kompleks
BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah
BAB III INEGRAL RIEMANN-SIELJES. Pedahulua Pada Bab, telah dsggug bahwa ukura meghtug merupaka salah satu pedekata utuk membetuk proses ttk. Berkata dega masalah perhtuga, ada hal meark yag perlu amat,
MATEMATIKA INTEGRAL RIEMANN
MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN Ses NGAN INTEGRAL RIEMANN A. NOTASI SIGMA a. Defs Notas Sgma Sgma (Σ) adalah otas matematka megguaka smbol yag mewakl pejumlaha da beberapa suku yag memlk
Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB
Pearka Cotoh Gerombol (Cluster Samplg) Departeme Statstka FMIPA IPB Radom samplg (Revew) Smple radom samplg Stratfed radom samplg Rato, regresso, ad dfferece estmato Systematc radom samplg Cluster radom
PRAKTIKUM 20 Interpolasi Polinomial dan Lagrange
Praktkum 0 Iterpolas Polomal da Lagrage PRAKTIKUM 0 Iterpolas Polomal da Lagrage Tuua : Mempelaar berbaga metode Iterpolas ag ada utuk meetuka ttkttk atara dar buah ttk dega megguaka suatu fugs pedekata
Notasi Sigma. Fadjar Shadiq, M.App.Sc &
Notas Sgma Fadjar Shadq, M.App.Sc (fadjar_pg@yahoo.com & www.fadjarpg.wordpress.com Notas sgma memag jarag djumpa dalam kehdupa sehar-har, tetap otas tersebut aka bayak djumpa pada baga matematka yag la,
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Bab aka mejelaska megea ladasa teor yag dpaka oleh peuls dalam peelta. Bab dbag mejad beberapa baga, yag masg masg aka mejelaska Prcpal Compoet Aalyss (PCA), Egeface, Klusterg K-Meas,
STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran
Kurkulum 013/006 matematka K e l a s XI STATISTIKA: UKURAN PEMUSATAN Tujua Pembelajara Setelah mempelajar mater, kamu dharapka memlk kemampua berkut. 1. Dapat meetuka rata-rata data tuggal da data berkelompok..
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB PENDAHULUAN. Latar Belakag Dalam pemodela program ler, semua parameter yag dguaka dalam model dasumska dapat dketahu secara past. Parameter-parameter terdr dar koefse batasa ( ) a, la kuattas batasa
BAB 5. ANALISIS REGRESI DAN KORELASI
BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh
SIFAT-SIFAT LANJUT FUNGSI TERBATAS
Bulet Ilmah Mat. Stat. da Terapaya (Bmaster) Volume 03, No. 2(204), hal 35 42. SIFAT-SIFAT LANJUT FUNGSI TERBATAS Suhard, Helm, Yudar INTISARI Fugs terbatas merupaka fugs yag memlk batas atas da batas
LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal)
LANGKAH-LANGKAH UJI HIPOTESIS DENGAN (Utuk Data Nomal). Merumuska hpotess (termasuk rumusa hpotess statstk). Data hasl peelta duat dalam etuk tael slag (tael frekues oservas) 3. Meetuka krtera uj atau
PENDAHULUAN. Di dalam modul ini Anda akan mempelajari teori gangguan bebas waktu yang mencakup:
PENDAULUAN D dalam modul Ada aka mempelajar teor gaggua bebas waktu yag mecakup: teor gaggua tak degeeras bebas waktu, teor gaggua degeeras bebas waktu, da efek Stark. Oleh karea tu, sebelum mempelajar
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,
UKURAN GEJALA PUSAT DAN UKURAN LETAK
UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu
3.1 Biaya Investasi Pipa
BAB III Model Baya Pada model baya [8] d tugas akhr, baya tahua total utuk megoperaska jarga ppa terdr dar dua kompoe, yatu baya operasoal da baya vestas. Baya operasoal terdr dar baya operasoal ppa da
POLIGON TERBUKA TERIKAT SEMPURNA
MODUL KULIAH ILMU UKUR TANAH POLIGON TERBUKA TERIKAT SEMPURNA Pegerta : peetua azmuth awal da akhr, peetuat kesalaha peutup sudut,koreks sudut, kesalaha lear da koreks lear kearah sumbu X da Y, Peetua
NORM VEKTOR DAN NORM MATRIKS
NORM VEKTOR DN NORM MTRIK umaag Muhtar Gozal UNIVERIT PENDIDIKN INDONEI. Pedahulua Jka kta membcaraka topk ruag vektor maka cotoh sederhaa yag dapat kta ambl adalah ruag Eucld R. D ruag kta medefska pajag
BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP
BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP Msal dguaka kode ler C[, k, d] dega matrks pembagu G da matrks cek partas H. Sebuah blok formas x = x 1 x 2 x k, x = 0 atau 1, yag aka dkrm terlebh
IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB
Semar Nasoal Tekolog 007 (SNT 007) ISSN : 978 9777 IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB Krsawat STMIK AMIKOM Yogyakarta e-mal : krsa@amkom.ac.d
TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER
TUGAS ATA KULIAH TEORI RING LANJUT ODUL NOETHER Da Aresta Yuwagsh (/364/PPA/03489) Sebelumya, telah dketahu bahwa sebaga rg dega eleme satua memeuh sfat rata ak utuk deal-deal d. Apabla dpadag sebaga modul,
INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2
INTERVAL KEPERCAAAN UNTUK PERBEDAAN KOEFIIEN VARIAI DARI DITRIBUI LOGNORMAL I. Pebrya * Bustam. ugarto Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu Pegetahua Alam Uverstas
4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data
//203 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas Ukura
BAB 2. Tinjauan Teoritis
BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut
BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu
BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl
8. MENGANALISIS HASIL EVALUASI
8. MENGANALISIS HASIL EVALUASI Tujua : Mampu megaalsa tgkat kesukara hasl evaluas utuk megkatka hasl proses pembelajara Kegata megaals hasl evaluas merupaka upaya utuk memperbak programprogram pembelajara
Pertemuan 3 Luas Daerah Bidang Datar, dan Volume Benda Padat dengan Metode Bidang Irisan Sejajar
ertemua 3 Luas Daerah Bdag Datar, da Volume Beda adat dega Metode Bdag Irsa Sejajar A. Luas Daerah Bdag Datar 1. Luas Daerah Bdag Datar Yag Datas Oleh Kura f, sumu X, Gars a da Gars DEFINISI: Msalka D
ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF
ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF KELOMPOK A I GUSTI BAGUS HADI WIDHINUGRAHA (0860500) NI PUTU SINTYA DEWI (0860507) LUH GEDE PUTRI SUARDANI (0860508) I PUTU INDRA MAHENDRA PRIYADI (0860500)
II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teoremateorema
II. LANDAAN TEORI Pada bab II aka dbahas pegerta-pegerta (defs) da teoremateorema ag medukug utuk pembahasa pada bab IV. Pegerta (defs) da teorema tersebut dtulska sebaga berkut.. Teorema Proeks Teorema
Deret Taylor dan Analisis Galat
Deret Taylor da Aalss Galat Des : Adakata da semua turuaya,,,, meerus d dalam selag [a,b]. Msalka : o є[a,b], maka la-la d sektar o da є[a,b], dapat dperluas dekspas ke dalam deret Taylor :...!...! 1!
TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas
TEKNIK SAMPLING Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uverstas Adalas Defs Suatu cotoh gerombol adalah suatu cotoh acak sederhaa dmaa setap ut pearka cotoh adalah kelompok atau gerombol dar
ALGORITMA MENENTUKAN HIMPUNAN TERBESAR DARI SUATU MATRIKS INTERVAL DALAM ALJABAR MAX-PLUS
LGORITM MENENTUKN HIMPUNN TERBESR DRI SUTU MTRIKS INTERVL DLM LJBR MX-PLUS Rata Novtasar Program Stud Matematka FMIP UNDIP JlProfSoedarto SH Semarag 575 bstract Ths research dscussed about how to obtaed
Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA
Ruag Baach Sumaag Muhtar Gozal UNIVERSITAS PENDIDIKAN INDONESIA Satu kose etg d kulah Aalss ugsoal adalah teor ruag Baach. Pada baga aka drevu defs, cotoh-cotoh, serta sfat-sfat etg ruag Baach. Kta aka
BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai
BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres
BAB 2 : BUNGA, PERTUMBUHAN DAN PELURUHAN
Jl. Raya Wagu Kel. Sdagsar Kota Bogor Telp. 0251-8242411, emal: prohumas@smkwkrama.et, webste : www.smkwkrama.et BAB 2 : BUNGA, PERTUBUHAN DAN PELURUHAN PENGERTIAN BUNGA Buga adalah jasa dar smpaa atau
( ) ( ) ( ) ( ) ( ) III MODEL. , θ Ω. 1 Pendugaan parameter dengan metode maximum lkelihood estimation dapat diperoleh dari:
5 Mamum Lkelhood Estmato Defs Fugs Lkelhood Msalka X, X,, X adalah eubah acak d dega fugs massa eluag ( ; θ, dega θ dasumska skalar da tdak dketahu, maka rosedur fugs lkelhood daat dtulska sebaga berkut
STUDI KELAYAKAN: ASPEK FINANSIAL. F.Hafiz Saragih SP, MSc
STUDI KELAYAKAN: ASPEK FINANSIAL F.Hafz Saragh SP, MSc Pajak Baya bag perusahaa/ usahata, sehgga merupaka peguraga dar beeft Subsd FINANSIAL Peguraga baya bag perusahaa/ usahata, sehgga merupaka tambaha
Ukuran Pemusatan Data. Arum Handini P., M.Sc Ayundyah K., M.Si.
Ukura Pemusata Data Arum Had P., M.Sc Ayudyah K., M.S. Notas utuk Populas da Sampel Notas: Mea (rata-rata) Sample x Populas μ Varas s 2 σ 2 Smpaga baku s σ Ukura Pemusata Data 1. Mea (rata-rata) 2. Meda
Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2
M 81 STTISTIK DSR SEMESTER II 11/1 KK STTISTIK, FMIP IT SOLUSI UJIN TENGH SEMESTER (UTS) Sabtu, 1 Me 1, Pukul 9. 1.4 WI (1 met) Kelas 1. Pegajar: Udjaa S. Pasarbu/Rr. Kura Novta Sar, Kelas. Pegajar: Utrwe
WAKTU PERGANTIAN ALAT BERAT JENIS WHEEL LOADER DENGAN METODE LEAST COST
Koferes Nasoal Tekk Spl 3 (KoNTekS 3) Jakarta, 6 7 Me 009 WAKTU PERGANTIAN ALAT BERAT JENIS WHEEL LOADER DENGAN METODE LEAST COST Maksum Taubrata Program Stud Tekk Spl, Uverstas Krste Maraatha Badug Jl.
ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS
ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS = 1 + + + + k k + u PowerPot Sldes baa Rohmaa Educato Uverst of Idoesa 007 Laboratorum Ekoom & Koperas Publshg Jl. Dr. Setabud
INTERPOLASI. FTI-Universitas Yarsi
BAB VI INTERPOLASI FTI-Uverstas Yars Pedahulua Bla dketahu taulas ttk-ttk (y seaga erkut (yag dalam hal rumus ugs y ( tdak dketahu secara eksplst: Htug taksra la y utuk 3.8! FTI-Uverstas Yars Persoala
FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani
FMDAM (2) Chartas Fbra Techque for Order Preferece by Smlarty to Ideal Soluto () ddasarka pada kosep dmaa alteratf terplh yag terbak tdak haya memlk jarak terpedek dar solus deal postf, amu juga memlk
PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN
PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN Idah Vltr, Harso, Haposa Srat Mahassa Program S Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu
BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI
BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI 9.1. Dstrbus Kotu Dstrbus memlk sfat kotu dmaa data yag damat berjala secara kesambuga da tdak terputus. Maksudya adalah bahwa data yag damat tersebut tergatug
STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi
STATISTIKA A. Des Umum. Pegerta statstk Statstk adalah kumpula akta yag berbetuk agka da dsusu dalam datar atau tabel yag meggambarka suatu persoala. Cotoh: statstk kurs dolar Amerka, statstk pertumbuha
BAB III METODE PENELITIAN
BAB METODE PENELTAN 3.1 Tempat da Waktu Peelta Peelta dlaksaaka d areal/wlaah koses huta PT. Sarmeto Parakata Tmber, Kalmata Tegah pada bula Aprl sampa dega Me 007. 3. Baha da Alat Baha ag dguaka utuk
SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS
C. Pembelajara 3 1. Slabus N o STANDA R KOMPE TENSI KOMPE TENSI DASAR INDIKATOR MATERI TUGAS BUKTI BELAJAR KON TEN INDIKA TOR WAK TU SUM BER BELA JAR Meerap ka atura kosep statstka dalam pemecah a masalah
KODE SIKLIK (CYCLIC CODES)
Pegatar Teor Pegkodea (Codg Theory) KODE SIKLIK (CYCLIC CODES) Dose Pegampu : Al Sutjaa DISUSUN OLEH: Nama : M Zak Ryato Nm : /5679/PA/8944 Program Stud : Matematka JURUSAN MATEMATIKA FAKULTAS MATEMATIKA
METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc.
METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/0 SUGENG00 Copyright 996-98 Dale Caregie & Associates, Ic. Kesalaha ERROR: Selisih atara ilai perkiraa dega ilai eksakilai
S2 MP Oleh ; N. Setyaningsih
S2 MP Oleh ; N. Setyagsh MATERI PERTEMUAN 1-3 (1)Pedahulua pera statstka dalam peelta ; (2)Peyaja data : dalam betuk (a) tabel da (b) dagram; (3) ukura tedes setaral da ukura peympaga (4)dstrbus ormal
Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu
KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua
KODE SIKLIK (CYCLIC CODES)
Codg Theory KODE SIKLIK (CYCLIC CODES) Muhamad Zak Ryato NIM: 2/56792/PA/8944 E-mal: zak@malugmacd http://zakmathwebd Dose Pembmbg: Drs Al Sutjaa, MSc Pedahulua Salah satu bahasa yag palg petg pada lear
2.2.3 Ukuran Dispersi
3 Ukura Dspers Yag aka dbahas ds adalah smpaga baku da varas karea dua ukura dspers yag palg serg dguaka Hubuga atara smpaga baku dega varas adalah Varas = Kuadrat dar Smpaga baku otas yag umum dguaka
Penggunaan Aritmetika Modulo dan Balikan Modulo pada Modifikasi Algoritma Knapsack
Pegguaa Artmetka Modulo da Balka Modulo pada Modfkas Algortma Kapsack Sesdka Sasa NIM 3507047 Jurusa Tekk Iformatka ITB, Badug, Jl. Gaesha 0, emal: f7047@studets.f.tb.ac.d Abstract Makalah membahas megea
BAB III UKURAN PEMUSATAN DATA
BAB III UKURAN PEMUSATAN DATA A. Ukura Gejala Pusat Ukura pemusata adalah suatu ukura yag meujukka d maa suatu data memusat atau suatu kumpula pegamata memusat (megelompok). Ukura pemusata data adalah
Penurunan Persamaan Perpetuitas dan Anuitas
SEMINR NSIONL MTEMTIK DN PENDIDIKN MTEMTIK UNY 2016 Peurua Persamaa Perpetutas da utas T - 6 Bud Fresdy Fakultas Ekoom da Bss Uverstas Idosa bstrak Mahasswa bss da akutas, debtor bak, da vestor memerluka
MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI
MINGGU KE-0 HUBUNGAN ANTAR KONVERGENSI Hubuga atar koverges Hrark atar koverges dyataka dalam teorema berkut. Teorema Msalka X da X, X, X 3,... adalah varabel radom yag ddefska pada ruag probabltas yag
Regresi & Korelasi Linier Sederhana
Regres & Korelas Ler Sederhaa. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar la peubah
I adalah himpunan kotak terbatas dan tertutup yang berisi lebih dari satu
METODE FUNGS QUAS-FED SATU ARAMETER UNTUK MENYEESAKAN MASAAH ROGRAM NTEGER TAK NEAR Ra Hardyat (M4) ABSTRAK Dalam kehdupa sehar-har serg djumpa masalah optmas yag membutuhka hasl teger Masalah tersebut
BAB 6 PRINSIP INKLUSI DAN EKSKLUSI
BB 6 PRINSIP INKLUSI DN EKSKLUSI Pada baga aka ddskuska topk berkutya yatu eumeras yag damaka Prsp Iklus da Eksklus. Kosep dalam bab merupaka perluasa de dalam Dagram Ve beserta oepras rsa da gabuga, amu
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA. Peahulua Dalam bab aka membahas megea teor-teor tetag statstka oparametrk, korelas parsal tau Keall a korelas parsal meurut Ebuh GU a Oeka ICA.. Statstka Noparametrk Istlah oparametrk
Dasar Ekonomi Teknik: Matematika Uang. Ekonomi Teknik TIP FTP UB
Dasar Ekoom Tekk: Matematka Uag Ekoom Tekk TIP TP UB Bahasa lra Kas (Cash low Tme Value of Moey Buga Ekvales Cash low Tata alra uag masuk da keluar per perode waktu pada suatu perusahaa lra kas aka terjad
ESTIMASI UKURAN SENSITIVITAS KEUNTUNGAN SAHAM DALAM PORTOFOLIO PADA SINGLE INDEX MODEL
Bulet Ilmah Mat. Stat. da Terapaya (Bmaster) Volume 0, No. (03), hal. 57-6 ESTIMASI UKUAN SENSITIVITAS KEUNTUNGAN SAHAM DALAM POTOFOLIO PADA SINGLE INDEX MODEL Eka Kurawat, Helm, Neva Satyahadew INTISAI
Muniya Alteza
RISIKO DAN RETURN 1. Estmas Retur da Rsko Idvdual. Kosep Dversfkas 3. Kovaras da Koefse Korelas 4. Estmas Retur da Rsko Portofolo Muya Alteza m_alteza@uy.ac.d Estmas Retur da Rsko 1) Estmas Realzed Retur
STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis
STATISTIK Ukura Gejala Pusat Ukura Letak Ukura Smpaga, Dspers da Varas Mome, Kemrga, da Kurtoss Notas Varabel dyataka dega huruf besar Nla dar varabel dyataka dega huruf kecl basaya dtuls Tmes New Roma
3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut
3/9/202 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas
Integrasi 1. Metode Integral Reimann Metode Integral Trapezoida Metode Integral Simpson. Integrasi 1
Itegras Metode Itegral Rema Metode Itegral Trapezoda Metode Itegral Smpso Itegras Permasalaa Itegras Pertuga tegral adala pertuga dasar yag dguaka dalam kalkulus, dalam bayak keperlua. Itegral secara det
REGRESI & KORELASI LINIER SEDERHANA
. Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar
Pembayaran pertama yang dilakukan pada setiap akhir tahun selama n tahun
Husa Arfah, M.Sc : Autas Dasar Emal : husaarfah@uy.ac. ANUITAS DASAR 3. Peahulua Autas aalah seragkaa pembayara yag lakuka paa terval waktu yag sama (per tahu atau sebalkya). Pembayara utuk jagka waktu
Pendahuluan. Relasi Antar Variabel. Relasi Antar Variabel. Relasi Antar Variabel 4/6/2015. Oleh : Fauzan Amin
4/6/015 Oleh : Fauza Am Se, 06 Aprl 015 GDL 11 (07.30-10.50) Pedahulua Aalsa regres dguaka utuk mempelajar da megukur hubuga statstk ag terjad atara dua atau lebh varbel. Dalam regres sederhaa dkaj dua
TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL
TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL Hesty ala, Arsma Ada, Bustam hestyfala@ymalcom Mahasswa Program S Matematka MIPA-UR Dose Matematka MIPA-UR
Penelitian Operasional II Teori Permainan TEORI PERMAINAN
Peelta Operasoal II Teor Permaa 7 2 TEORI PERMAINAN 2 Pegatar 2 Krtera Tekk Permaa : () Terdapat persaga kepetga datara pelaku (2) Setap pema memlk stateg, bak terbatas maupu tak terbatas (3) Far Game
b) Untuk data berfrekuensi fixi Data (Xi)
B. Meghtug ukura pemusata, ukura letak da ukura peyebara data serta peafsraya A. Ukura Pemusata Data Msalka kumpula data berkut meujukka hasl pegukura tgg bada dar orag sswa. 0 cm 30 cm 5 cm 5 cm 35 cm
Penyelesaian Sistem Persamaan Linier Kompleks Dengan Invers Matriks Menggunakan Metode Faddev (Contoh Kasus: SPL Kompleks dan Hermit)
Jural Sas Matematka da Statstka, Vol., No. I, Jauar ISSN - Peyelesaa Sstem Persamaa Ler Kompleks Dega Ivers Matrks Megguaka Metode Faddev Cotoh Kasus: SPL Kompleks da Hermt F. rya da Tka Rzka, Jurusa Matematka,
STATISTIKA. A. Tabel Langkah untuk mengelompokkan data ke dalam tabel distribusi frekuensi data berkelompok/berinterval: a. Rentang/Jangkauan (J)
STATISTIKA A. Tabel Lagkah utuk megelompokka data ke dalam tabel dstrbus frekues data berkelompok/berterval: a. Retag/Jagkaua (J) J X maks X m b. Bayak kelas (k) Megguaka atura Sturgess, yatu k,. log c.
BAB I TEORI KETAKPASTIAN
Teor Ketakpasta BAB I TEORI KETAKPASTIAN 1. KETEPATAN PENGUKURAN Pegukura merupaka aktvtas ag bertujua utuk megetahu kualtas atau kuattas suatu besara. Pegukura dalam fska tdak luput dar ketakpasta, arta
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA.1 Pedahulua Sebelum membahas megea prosedur peguja hpotess, terlebh dahulu aka djelaska beberapa teor da metode yag meujag utuk mempermudah pembahasa. Adapu teor da metode tersebut
TATAP MUKA III UKURAN PEMUSATAN DATA (MEAN, MEDIAN DAN MODUS) Fitri Yulianti, SP. Msi.
TATAP MUKA III UKURAN PEMUSATAN DATA (MEAN, MEDIAN DAN MODUS) Ftr Yulat, SP. Ms. UKURAN DATA Ukura data Ukura Pemusata data Ukura letak data Ukura peyebara data Mea Meda Jagkaua Meda Kuartl Jagkaua atar
On A Generalized Köthe-Toeplitz Duals
JMP : Volume 4 Nomor, Ju 202, hal. 3-39 O A Geeralzed Köthe-Toepltz Duals Sumardoo, Supama 2, da Soepara Darmawaa 3 PPPPTK Matematka, smrd2007@gmal.com 2 Mathematcs Departmet, Gadah Mada Uverst, supama@ugm.ac.d
H. MEMECAHKAN MASALAH KEUANGAN DENGAN KONSEP MATEMATIKA
H. EECAHKAN ASALAH KEUANGAN DENGAN KONSE ATEATIKA eyelesaka asalah Buga Tuggal da Buga ajemuk Dalam Keuaga Buga Tuggal egerta Buga erse Datas Seratus da erse Dbawah Seratus erse D atas Seratus erse datas
Mengubah bahan baku menjadi produk yang lebih bernilai melalui sintesis kimia banyak dilakukan di industri
Megubah baha baku mead produk yag lebh berla melalu stess kma bayak dlakuka d dustr Asam sulfat, ammoa, etlea, proplea, asam fosfat, klor, asam trat, urea, bezea, metaol, etaol, da etle glkol Serat/beag,
INTERPOLASI INTERPOLASI LINIER INTERPOLASI KUADRATIK
INTERPOASI INTERPOASI INIER INTERPOASI KUADRATIK INTERPOASI POINOMIA Dua ttk data : Gars Tga ttk data : Kuadratk g Empat ttk data :Polomal tgkat-3 Dketahu: ttk data ( y ) ( y ) ( y ) D ttk data :Polomal
STATISTIKA: UKURAN PENYEBARAN DATA. Tujuan Pembelajaran
KTSP & K-3 matemata K e l a s XI STATISTIKA: UKURAN PENYEBARAN DATA Tujua Pembelajara Setelah mempelajar mater, amu dharapa meml emampua berut.. Memaham defs uura peyebara data da jes-jesya.. Dapat meetua
Bab II Teori Pendukung
Bab II Teor Pedukug.. asar Statstka Utuk keperlua peaksra outstadg clams lablty, pegetahua dalam statstka mead hal yag petg. asar statstka yag dguaka dalam tess atara la :. strbus ormal Sebuah peubah acak
Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( )
Regres & Korelas Ler Sederhaa 1. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk yag memugkka peramala la suatu peubah takbebas (depedet varable) dar