Transformasi Fourier Waktu Diskrit

Ukuran: px
Mulai penontonan dengan halaman:

Download "Transformasi Fourier Waktu Diskrit"

Transkripsi

1 Praktikum Isyarat da Sistm Topik 5 Trasformasi ourir Waktu Diskrit Tuua Mahasiswa dapat mtuka da mgguaka trasformasi ourir waktu diskrit dalam aalisa suatu sistm LTI Mahasiswa dapat mgguaka MATLAB sbagai alat batu utuk msimulasi suatu sistm LTI yag diyataka dga trasformasi ourir waktu diskrit 2 Tori Sigkat Rumus Dasar trasformasi ourir waktu diskrit Dalam aalisa siyal da sistm kita prlu mgaalisa dalam raah frkusi Prlu mgguaka suatu mtod utuk mrprstasika siyal maupu sistm yag sblumya kita kal dalam raah waktu (tim-domai) diubah dalam raah frkusi (frqucy domai) Pada praktikum sblumya tlah diplaari ttag trasformasi ourir waktu kotiu maupu trasformasi ourir balik waktu kotiu Pada praktikum kali ii kita aka mmbahas mgai trasformasi ourir waktu diskrit Rumus dasar trasformasi ourir waktu diskrit Prsamaa sitsis : Prsamaa aalisa : d 2 2 Prsamaa aalisa diguaka utuk mgubah suatu isyarat atau taggapa sistm dari raah waktu madi raah frkusi Sdagka prsamaa sitsis diguaka utuk mgubah suatu isyarat atau taggapa sistm dari raah frkusi kmbali madi raah waktu

2 Sifat-sifat Trasformasi ourir waktu diskrit : Sprti pada trasformasi ourir waktu kotiu, trasformasi ourir waktu diskrit mmiliki bbrapa sifat-sifat ptig, yaitu : Liiritas ax [ by[ a by Prgsra waktu x ] 0 [ 0 Prgsra frkusi 0 0 Diffrsiasi (mirip diffrsiasi pada raah waktu) ] Akumulasi (mirip itgrasi pada raah waktu) k Sifat kovolusi x [ * y[ Y Sifat-sifat yag laiya dapat dilihat pada tabl 5 halama 6 da pasaga-pasaga trasformasi ourir dapat dilihat pada tbl 62 pada halama 64 Cotoh Implmtasi mgguaka Program MATLAB Mcari Tasformasi ourir MATLAB mydiaka fugsi bawaa utuk trasformasi ourir waktu diskrit, yaitu fugsi fft (fast fourir trasform) Brikut ii adalah cotoh pgguaa dari fft : t=-2*pi:0:2*pi; x=si(t); % alih ragam fourir waktu diskrit =fft(x); % mcari fugsi ral ral_=ral(); % mcari fugsi imair imag_=imag();

3 % mcari magitud magitudo_=abs(); %mcari phas agl_=agl(); % mgubah agl_ dlm radia agl_dg_=rad2dg(agl_); % mtuka frkusi radia (wf) w=0:(lgth(x)-); wf=w/lgth(x)*pi; % mgubah sumbu x dalam raah pi subplot(2); plot(wf,ral_);grid o; subplot(222); plot(wf,imag_);grid o; subplot(22); plot(wf,magitudo_);grid o; subplot(224); plot(wf,agl_dg_);grid o; tambaha : ika igi mtuka alih ragam ourir pada N sampl guaka : % fft(x,n) ika igi mysuaika hasil alih ragam pada itrval pi sd pi guaka : % fftshift(); 2 Mcari trasformasi ourir balik Utuk mcari trasformasi ourir balik dapat dilakuka dga mgguaka fugsi ifft (ivrs fast fourir trasform) Brikut ii adalah cotoh pgguaa dari fugsi ii : t=-2*pi:0:2*pi; x=si(t); %%%%%%Cari trasformasi ourir%%%%%% =fft(x); %%%%%%Cari ivrsya%%%%%%% y=ifft(); yral=ral(y); plot(t,x,'b',t,yral,'o'); Mampilka taggapa magitudo da fasa dari suatu taggapa frkusi sistm MATLAB mydiaka fugsi utuk mampilka taggapa frkusi dari sistm, yaitu mliputi taggapa magitudo da taggapa fasaya ugsi yag dapat diguaka adalah fugsi frqz Jika igi mampilka taggapa frkusi dari sistm yag mmiliki taggapa frkusi sbagai brikut :

4 H Kod program : b=[2 0 0]; a=[ -/4 /8]; frqz(b,a); 4 Mghitug kluara dari sistm yag dikaraktrtrisasi dga taggapa frkusiya MATLAB mydiaka fugsi utuk mghitug kluara dari sistm yag dikaraktrisasi dga taggapa frkusiya ika dibri masuka trttu ugsi yag dapat diguaka adalah fugsi filtr Prhatika sistm pada poit (), ika dibri masuka impuls utuk 0, maka kluaraya dapat dihitug dga : =0:; b=[2 0 0]; a=[ -/4 /8]; x=[ ]; y=filtr(b,a,x); stm(,y); 5 Ekspasi Pcaha Parsial utuk sistm waktu diskrit Misalka diktahui suatu sistm dga hubuga atara masuka da kluara yag diyataka dga prsamaa prbdaa sbagai brikut : y [ 2] y[ ] 0y[ Carilah taggapa frkusi da taggapa impuls dari sistm di atas! Jika sistm trsbut dibri masuka si utuk 0 gambarlah kluara sistm trsbut dga mgguaka MATLAB! Jawaba : y [ 2] y[ ] 0y[ Dga mlakuka alih ragam ourir aka didapatka : 2 Y 0 Y H taggapa frkusi dari sistm 2 0

5 H 2 0 A B Dga mlakuka oprasi pcaha parsial aka didapatka : A 7 B 7 Shigga aka didapatka : H Taggapa impuls sistm dapat dicari dga mgguaka tabl Trasformasi ourir waktu diskrit, shigga didapatka hasil: h[ u[ u[ Cotoh implmtasi program MATLAB pada sistm di atas: =0:; x=si(pi*); %taggapa impuls sistm h=(-/)^-(/)*(-/)^; %alih ragam ourir =fft(x); H=fft(h); % kovolusi Y=*H; % ivrs alih ragam fourir y=ifft(y); stm(,ral (y)); 6 Mlakuka oprasi pcaha parsial dga mgguaka MATLAB MATLAB mydiaka fugsi rsidu utuk mlakuka oprasi pcaha parsial Prhatika sistm pada poit (5) di bawah ii : Y H 2 0 Kod program-ya: b=[0 0 ]; a=[ 0];

6 [R,P,K]=rsidu (b,a) Hasilya xkusi program trsbut: R = - P = - - K = [] Prhatika hasil yag diprolh dapat diyataka dga : H NB : Prhatika bagaimaa prbdaa pulisa vktor kofisi b da a pada fugsi rsidu dga filtr atau frqz!

BAB 1 HAMPIRAN TAYLOR DAN ANALISIS GALAT

BAB 1 HAMPIRAN TAYLOR DAN ANALISIS GALAT Catata Kuliah EL Aalisis Numrik BAB HAMPIRAN TAYLOR DAN ANALISIS GALAT. Pgatar Mtod Numrik Ktika kita mylsaika prsamaa-prsamaa matmatika di maa torma-tormaya masih dapat ditrapka, solusi aalitik atau solusi

Lebih terperinci

BAB 2 SOLUSI NUMERIK PERSAMAAN

BAB 2 SOLUSI NUMERIK PERSAMAAN BAB SOLUSI NUMERIK PERSAMAAN Dalam sais da rkayasa, kita srigkali harus mcari akar solusi dari prsamaa f 0. Jika f mrupaka fugsi poliomial liar atau kuadratis, solusi ksakya mudah utuk didapatka kara rumusya

Lebih terperinci

Transformasi Z Materi :

Transformasi Z Materi : 4 Trasformasi Z Matri : Dfiisi Trasformasi Darah Kovrgsi (Rgio of Covrgc) Diagram Pol Zro Sifat Trasformasi Trasformasi dalam Btu Poliomial Rasioal Fugsi Sistm atau Fugsi Trasfr H() dari Sistm Liir Tida

Lebih terperinci

S - 1 Penggunaan Metode Bayesian Obyektif dalam Analisis Pengukuran Tingkat Kepuasan Pelanggan Berdasarkan Kuesioner

S - 1 Penggunaan Metode Bayesian Obyektif dalam Analisis Pengukuran Tingkat Kepuasan Pelanggan Berdasarkan Kuesioner PROSIDING ISBN : 978 979 6353 6 3 S - Pgguaa Mtod Baysia Obyktif dalam Aalisis Pgukura Tigkat Kpuasa Plagga Brdasarka Kusior Adi Stiawa Program Studi Matmatika, Fakultas Sais da Matmatika Uivrsitas Krist

Lebih terperinci

TURUNAN FUNGSI. Definisi. 3.1 Pengertian Turunan Fungsi. Turunan fungsi f adalah fungsi f yang nilainya di c adalah. h asalkan limit ini ada.

TURUNAN FUNGSI. Definisi. 3.1 Pengertian Turunan Fungsi. Turunan fungsi f adalah fungsi f yang nilainya di c adalah. h asalkan limit ini ada. 3 TURUNAN FUNGSI 3. Pgrtia Turua Fugsi Diisi Turua ugsi adala ugsi yag ilaiya di c adala c c c asalka it ii ada. Coto Jika 3 4, maka turua di adala 3 4 3.. 4 3 4 4 4 4 4 4 3 3 3 4 Jika mmpuyai turua di

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI A II LANDASAN TEORI. Distribusi Pluag Diisi. (Walpol da M rs 995) Jika X adalah suatu variabl radom kotiu maka ugsi dsitas pluaga adalah suatu ugsi ag mmuhi kodisi: i. ; utuk x (- ) ii. = iii. = (.) Diisi.

Lebih terperinci

ESTIMASI TITIK BAYESIAN OBYEKTIF

ESTIMASI TITIK BAYESIAN OBYEKTIF ESTIMASI TITIK BAYESIAN OBYEKTIF Adi Stiawa (adi_stia_3@yahoo.com) Program Studi Matmatika, Fakultas Sais da Matmatika Uivrsitas Krist Satya Wacaa Jl Dipogoro 52-6 Salatiga 57, Idosia Abstrak Estimasi

Lebih terperinci

INTEGRAL FOURIER. DISUSUN OLEH : Kelompok III (Tiga)

INTEGRAL FOURIER. DISUSUN OLEH : Kelompok III (Tiga) INTEGRA FOURIER DISUSUN OEH : Klompok III (Tiga). Maruah (7 6). Yusi Oktavia (7 45 ) 3. Widya Elvi AS (7 45) 4. Azar Saarudi (7 454) 5. Irmaati (7 455) Mata Kuliah Dos Pgasuh Klas : Matmatika ajuta : Fadli,

Lebih terperinci

TEORI ANTRIAN. Elemen Dasar Model Antrian. Distribusi Poisson dan eksponensial. =, t 0, dimana E { t}

TEORI ANTRIAN. Elemen Dasar Model Antrian. Distribusi Poisson dan eksponensial. =, t 0, dimana E { t} Elm Dasar Modl Atria. TEORI ANTRIAN Aktor utama customr da srvr. Elm dasar :. distribusi kdataga customr.. distribusi waktu playaa. 3. disai fasilitas playaa (sri, parall atau jariga). 4. disipli atria

Lebih terperinci

METODE SECANT-MIDPOINT NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Supriadi Putra

METODE SECANT-MIDPOINT NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Supriadi Putra METODE SENT-MIDPOINT NEWTON UNTUK MENYELESIKN PERSMN NONLINER Supriadi Putra sputra@uri.ac.id Laboratorium Komputasi Jurusa Matmatika Fakultas Matmatika da Ilmu Pgtahua lam Uivrsitas Riau Kampus Biawidya

Lebih terperinci

BAB II LANDASAN TEORI. kesetimbangan, linearisasi, bilangan reproduksi dasar, analisa kestabilan, kriteria

BAB II LANDASAN TEORI. kesetimbangan, linearisasi, bilangan reproduksi dasar, analisa kestabilan, kriteria BAB II LANDASAN EORI Pada bab ii aka dibahas tori tori pdukug yag aka diguaka pada bab slajutya, atara lai modl matmatika, modl pidmik SIR klasik, ilai ig, prsamaaa difrsial, sistm prsamaa difrsial, titik

Lebih terperinci

Dasar Sistem Pengaturan - Transformasi Laplace. Transformasi Laplace bilateral atau dua sisi dari sinyal bernilai riil x(t) didefinisikan sebagai :

Dasar Sistem Pengaturan - Transformasi Laplace. Transformasi Laplace bilateral atau dua sisi dari sinyal bernilai riil x(t) didefinisikan sebagai : Defiisi Trasformasi Laplace Trasformasi Laplace Bilateral Trasformasi Laplace bilateral atau dua sisi dari siyal berilai riil x(t) didefiisika sebagai : X B x(t)e Operasi trasformasi Laplace bilateral

Lebih terperinci

Metode Iterasi Tiga Langkah dengan Orde Konvergensi Enam untuk Menyelesaikan Persamaan Nonlinear

Metode Iterasi Tiga Langkah dengan Orde Konvergensi Enam untuk Menyelesaikan Persamaan Nonlinear Jural Sais Matmatika da Statistika Vol No Juli 6 ISSN 6-5 Mtod Itrasi Tiga Lagkah dga rd Kovrgsi Eam utuk Mlsaika Prsamaa Noliar M Ari da M M Niam Jurusa Matmatika Fakultas Sais da Tkologi UIN Sulta Sari

Lebih terperinci

PERLUASAN METODE NEWTON DENGAN PENDEKATAN PARABOLIK

PERLUASAN METODE NEWTON DENGAN PENDEKATAN PARABOLIK PERLUASAN METDE NEWTN DENGAN PENDEKATAN PARABLIK Abdul Rahma, Supriadi Putra, Bustami Mahasiswa Program Studi S Matmatika Dos JurusaMatmatika Fakultas Matmatika da Ilmu Pgtahua Alam Uivrsitas Riau Kampus

Lebih terperinci

MODUL 2 BILANGAN KOMPLEKS

MODUL 2 BILANGAN KOMPLEKS Diktat Kuliah EL- Matmatika Tkik I MODUL BILANGAN KOMPLEKS Satua Acara Prkuliaha Mdul (Bilaga Kmplks sbagai brikut Ptmua k- Pkk/Sub PkkBahasa TuuaPmblaara Bilaga Kmplks Pgatar Bilaga Kmplks Lambag Bilaga

Lebih terperinci

PENALA NADA ALAT MUSIK MENGGUNAKAN ALIHRAGAM FOURIER

PENALA NADA ALAT MUSIK MENGGUNAKAN ALIHRAGAM FOURIER PENL ND L MUSIK MENGGUNKN LIHRGM OURIER Olh : di Kuria (L57) Jurusa kik Elktro akultas kik Uivrsitas Dipogoro Jl. Pro. H Sudarto S. H., mbalag, Smarag -mail : Katrosid@Yahoo.com bstrak - Mlalui pristiwa

Lebih terperinci

MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA

MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA TEOREMA LIMIT PUSAT DAN TERAPANNYA Telah dikeal bahwa X 1, X 2...X sampel radom dari distribusi ormal dega mea µ da variasi σ 2, maka x µ σ/ atau xi µ σ

Lebih terperinci

BAB 2. Teori Pendukung Lingkungan. Misalkan z. adalah suatu titik pada bidang dan r adalah bilangan nyata. positif. Lingkungan r bagi z

BAB 2. Teori Pendukung Lingkungan. Misalkan z. adalah suatu titik pada bidang dan r adalah bilangan nyata. positif. Lingkungan r bagi z BAB Toi Pdukug.. Ligkuga Misalka z adalah suatu titik pada bidag da adalah bilaga yata positi. Ligkuga bagi z -ighbohood o z didiisika sbagai sluuh titik z pada bidag, sdmikia shigga z z < ; ditulis z,.

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

PEMBELAJARAN KONVERGENSI BARISAN BILANGAN DAN FUNGSI REAL DENGAN MATLAB dan GEOGEBRA

PEMBELAJARAN KONVERGENSI BARISAN BILANGAN DAN FUNGSI REAL DENGAN MATLAB dan GEOGEBRA Bidag Kajia : Pdidika Matmatika PEMBELAJARAN KONVERGENSI BARISAN BILANGAN DAN FUNGSI REAL DENGAN MATLAB da GEOGEBRA H.A. Parhusip Program Studi Matmatika Fakultas Sais da Matmatika Uivrsitas Krist Satya

Lebih terperinci

Respon Frekuensi pada FIR Filter. Oleh:Tri Budi Sanrtoso ITS

Respon Frekuensi pada FIR Filter. Oleh:Tri Budi Sanrtoso ITS Rpo Frui pada FIR Filtr Olh:Tri Budi Sartoo Lab Siyal,, EEPIS-ITS ITS 1 Rpo iuoida pada itm FIR Suatu itm FIR diyataa: y[ ] b x[ ] h[ ] x[ ] 0 0 (1 Siyal iput cara umum mrupaa btu ompl dirit x[ ] x[ A

Lebih terperinci

KONVERGENSI MODIFIKASI METODE NEWTON GANDA DENGAN MENGGUNAKAN KELENGKUNGAN KURVA

KONVERGENSI MODIFIKASI METODE NEWTON GANDA DENGAN MENGGUNAKAN KELENGKUNGAN KURVA Vol. 9. No. Jural Sais Tkologi da Idustri KONVERGENSI MODIFIKASI METODE NEWTON GANDA DENGAN MENGGUNAKAN KELENGKUNGAN KURVA Yuslita Muda Wartoo Novi Maulaa Laboratorium Matmatika Trapa Jurusa Matmatika

Lebih terperinci

TEORI ANTRIAN. A. Definisi dan Unsur-unsur Dasar Model Antrian

TEORI ANTRIAN. A. Definisi dan Unsur-unsur Dasar Model Antrian TEORI ANTRIAN Tori atria mrupaka studi matmatis mgai atria atau waitig lis yag di dalamya disdiaka bbrapa altratif modl matmatika yag dapat diguaka utuk mtuka bbrapa karaktristik da optimasi dalam pgambila

Lebih terperinci

Transformasi Fourier Sinyal Waktu Kontinyu. oleh: : Tri Budi Santoso DSP Group, EEPIS-ITS

Transformasi Fourier Sinyal Waktu Kontinyu. oleh: : Tri Budi Santoso DSP Group, EEPIS-ITS Siyal da Sism Trasformasi Fourir Siyal Waku Koiyu olh: : Tri Budi Saoso DSP Group, EEPIS-ITS ITS Tujua: - Siswa mampu mylsaika buk rprsasi alraif pada siyal da sism waku koiyu. - Siswa mjlaska kmbali pyusua

Lebih terperinci

Modifikasi Metode Bahgat tanpa Turunan Kedua dengan Orde Konvergensi Optimal

Modifikasi Metode Bahgat tanpa Turunan Kedua dengan Orde Konvergensi Optimal Smiar Nasioal Tkologi Iformasi, Komuikasi da Idustri (SNTIKI 9 ISSN (Pritd : 79-77 Fakultas Sais da Tkologi, UIN Sulta Syarif Kasim Riau ISSN (Oli : 79-406 Pkabaru, -9 Mi 07 Modifikasi Mtod Bahgat tapa

Lebih terperinci

MODUL E LEARNING SEKSI -9 MATA KULIAH : KALKULUS LANJUT KODE MATA KULIAH : INF 221 : 5099 : DRA ENDANG SUMARTINAH,MA

MODUL E LEARNING SEKSI -9 MATA KULIAH : KALKULUS LANJUT KODE MATA KULIAH : INF 221 : 5099 : DRA ENDANG SUMARTINAH,MA MODUL E LEARNING SEKSI -9 MATA KULIAH : KALKULUS LANJUT KODE MATA KULIAH : INF DOSEN : 5099 : DRA ENDANG SUMARTINAH,MA TUJUAN MATA KULIAH : A.URAIAN DAN TUJUAN MATA KULIAH : Mahasiswa mmplajari Fugsi a

Lebih terperinci

ANALISIS CEPSTRUM SINYAL SUARA

ANALISIS CEPSTRUM SINYAL SUARA MAKALAH ANALII CEPTRUM INYAL UARA Disusu Ol: NENI ARYANI L2F 300 543 JURUAN TEKNIK ELEKTRO FAKULTA TEKNIK UNIVERITA DIPONEGORO E M A R A N G 2 0 0 2 DAFTAR II JUDUL... 1 ABTRAK... 1 1. Pdaulua.... 1 2.

Lebih terperinci

Definisi Integral Tentu

Definisi Integral Tentu Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.

Lebih terperinci

MODIFIKASI SEDERHANA DARI VARIAN METODE NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

MODIFIKASI SEDERHANA DARI VARIAN METODE NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT MODIFIKASI SEDERHANA DARI VARIAN METODE NEWTON UNTUK MENYELESAIKAN Supriadi Putra Jurusa Matmatika Fakultas Matmatika da Ilmu Pgtahua Alam Uivrsitas Riau, Pkabaru ABSTRAT This articl discusss a simpl modiicatio

Lebih terperinci

METODE ITERASI BARU UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR

METODE ITERASI BARU UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Vol. 9. No., 0 Jural Sais, Tkologi da Idustri METODE ITERASI BARU UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Supriadi Putra, Ria Kuriawati, Asmara Karma sputra@uri.ac.id Laboratorium Matmatika Trapa Jurusa

Lebih terperinci

Metode Iterasi Orde Konvergensi Enam Untuk Penyelesaian Persamaan Nonlinear

Metode Iterasi Orde Konvergensi Enam Untuk Penyelesaian Persamaan Nonlinear Smiar asioal Tkologi Iormasi Komuikasi da Idustri STIKI 9 ISS Pritd : 9- Fakultas Sais da Tkologi UI Sulta Sari Kasim Riau ISS li : 9-6 Pkabaru 8-9 Mi Mtod Itrasi rd Kovrgsi Eam Utuk Plsaia Prsamaa oliar

Lebih terperinci

KONVERGENSI MODIFIKASI METODE POTRA - PTAK DENGAN MENGGUNAKAN KELENGKUNGAN KURVA TUGAS AKHIR

KONVERGENSI MODIFIKASI METODE POTRA - PTAK DENGAN MENGGUNAKAN KELENGKUNGAN KURVA TUGAS AKHIR KNVERGENSI MDIFIKASI METDE PTRA - PTAK DENGAN MENGGUNAKAN KELENGKUNGAN KURVA TUGAS AKHIR Diajuka sbagai Salah Satu Sarat utuk Mmprolh Glar Sarjaa Sais pada Jurusa Matmatika lh: YUZI ANDRI SUHARYN 0800086

Lebih terperinci

Modifikasi Metode Iterasi Dua Langkah dengan Satu Parameter

Modifikasi Metode Iterasi Dua Langkah dengan Satu Parameter Smiar Nasioal Tkologi Iormasi, Komuikasi da Idustri SNTIKI 9 ISSN Pritd : 79-77 Fakultas Sais da Tkologi, UIN Sulta Sari Kasim Riau ISSN Oli : 79-406 Pkabaru, 8-9 Mi 07 Modiikasi Mtod Itrasi Dua Lagkah

Lebih terperinci

III Sistem LTI Waktu Diskrit Sistem LTI Operasi Konvolusi Watak sistem LTI Stabilitas sistem LTI Kausalitas sistem LTI

III Sistem LTI Waktu Diskrit Sistem LTI Operasi Konvolusi Watak sistem LTI Stabilitas sistem LTI Kausalitas sistem LTI III Sistem LTI Waktu Diskrit Sistem LTI Operasi Kovolusi Watak sistem LTI Stabilitas sistem LTI Kausalitas sistem LTI lts 1 III.1 Sistem LTI Sistem LTI Liear Time Ivariat Liear Tak-ubah-Waktu Liear Shift

Lebih terperinci

Himpunan/Selang Kekonvergenan

Himpunan/Selang Kekonvergenan oki eswa (fmipa-itb) Deret Pagkat Kita aka mempelajari beberapa tehik utuk meyajika suatu fugsi f (x) dalam betuk deret pagkat (power series), yaitu meetuka derat pagkat c (x a) sehigga f (x) = c (x a)

Lebih terperinci

1001 Pembahasan UTS Kalkulus II KATA PENGANTAR

1001 Pembahasan UTS Kalkulus II KATA PENGANTAR KATA PENGANTAR 00 Pmbahasa UTS Kalkulus II Sbagaia bsar mahasiswa mgagga bahwa Mata Kuliah yag brhubuga dga mghitug yag salah satuya Kalkulus adalah susah, rumit da mmusigka. Alhasil jala kluar yag ditmuh

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakag Salah satu pera da fugsi statistik dalam ilmu pegetahua adalah sebagai. alat aalisis da iterpretasi data kuatitatif ilmu pegetahua, sehigga didapatka suatu kesimpula

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LADASA TEORI.1. Tori Musik.1.1. Musik Musik adalah suatu si yag brbtuk suara yag didapatka dari pggabuga brbagai l yag jadikaya ak utuk didgarka. Murut filsuf Yuai da Idia kuo, usik rupaka kupula ada-ada

Lebih terperinci

SISTEM PENGOLAHAN ISYARAT. Kuliah 7 Transformasi Fourier Cepat

SISTEM PENGOLAHAN ISYARAT. Kuliah 7 Transformasi Fourier Cepat TKE 43 SISTEM PEGOLAHA ISYARAT Kuliah 7 Tasomasi Foui Cpat FFT : Fast Foui Tasom Idah Susilaati, S.T., M.Eg. Pogam Studi Tkik Elkto Fakultas Tkik da Ilmu Komput Uivsitas Mcu Buaa Yogyakata 9 KULIAH 7 SISTEM

Lebih terperinci

Bab III Aplikasi Teori Kontrol H 2 Pada Sistem Suspensi

Bab III Aplikasi Teori Kontrol H 2 Pada Sistem Suspensi Bab III Alikasi Tori Kotrol H Pada Sistm Sssi 36 Bab III Alikasi Tori Kotrol H Pada Sistm Sssi Pggaa tori kotrol H tlah bayak digaka Olh kara it brikt ii aka dirkalka da macam alikasi tori kotrol H ii

Lebih terperinci

Teorema Nilai Rata-rata

Teorema Nilai Rata-rata Nilai Kus Prihatoso April 27, 2012 Yogyakarta Nilai Suatu Fugsi Masih igatkah ada tetag ilai rata-rata dari sekmpula bilaga? Berapakah ilai rata-rata dari sebayak bilaga y 1, y 2,..., y? Nilai Suatu Fugsi

Lebih terperinci

PENERIMAAN APLIKASI KAMUS ISTILAH AKUNTANSI PADA SMARTPHONE DENGAN METODE UTAUT

PENERIMAAN APLIKASI KAMUS ISTILAH AKUNTANSI PADA SMARTPHONE DENGAN METODE UTAUT PENERIMAAN APLIKASI KAMUS ISTILAH AKUNTANSI PADA SMARTPHONE DENGAN METODE UTAUT Qoriai Widayati 1, Fbriyati Pajaita 2 Dos Uivrsitas Bia Darma 1, Dos Uivrsitas Bia Darma 2 Jala Jdral Ahmad Yai No.12 Palmbag

Lebih terperinci

MODUL 2 SINYAL WAKTU DISKRIT DALAM KAWASAN WAKTU DAN FREKUENSI

MODUL 2 SINYAL WAKTU DISKRIT DALAM KAWASAN WAKTU DAN FREKUENSI MODUL SINYAL WAKTU DISKRIT DALAM KAWASAN WAKTU DAN FREKUENSI I. Tugas Pedahulua Peritah atau fugsi pada MATLAB dapat dilihat da dipelajari dega olie help pada Commad widow. Cotoh ketiklah : help plot.

Lebih terperinci

Modifikasi Metode Newton-Steffensen Bebas Turunan

Modifikasi Metode Newton-Steffensen Bebas Turunan Smiar Nasioal Tkologi Iormasi Komuikasi da Idustri SNTIKI 7 ISSN :08-990 Pkabaru Novmbr 0 Modiikasi Mtod Nto-Sts Bbas Turua M. Niam M.Y Jurusa Matmatika Fakultas Sais da Tkologi UIN Sulta Sari Kasim Riau

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

JURNAL TEKNIK ITS Vol. 5, No. 2, (2016) ISSN: ( Print) 54

JURNAL TEKNIK ITS Vol. 5, No. 2, (2016) ISSN: ( Print) 54 JURNAL TEKNIK ITS Vol. 5, No., (06) ISSN: 337-3539 (30-97 Pri 54 Pracaga Kotrolr PID-Fuzzy utuk Sistm Pgatura Cascad Lvl da Flow pada Basic Procss Rig 38-00 Dwi Arki Pritadi, Joko Susila, Eka Iskadar Jurusa

Lebih terperinci

Klasifikasi Berita Twitter Menggunakan Metode Improved Naïve Bayes

Klasifikasi Berita Twitter Menggunakan Metode Improved Naïve Bayes Jural gmbaga Tkologi Iformasi da Ilmu Komputr -ISSN: -X Vol., No., Oktobr, hlm. - http://j-ptiik.ub.ac.id Klasifikasi Brita Twittr Mgguaka Mtod Improvd Naïv Bays Budi Kuriawa, Mochammad Ali auzi, Agus

Lebih terperinci

MATEMATIKA DISKRIT FUNGSI

MATEMATIKA DISKRIT FUNGSI 1 MATEMATIKA DISKRIT FUNGSI Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari

Lebih terperinci

PENGEMBANGAN METODE ITERASI DUA DAN TIGA LANGKAH DENGAN ORDE KONVERGENSI OPTIMAL

PENGEMBANGAN METODE ITERASI DUA DAN TIGA LANGKAH DENGAN ORDE KONVERGENSI OPTIMAL PENGEMBANGAN METODE ITEASI DUA DAN TIGA LANGKAH DENGAN ODE KONVEGENSI OPTIMAL Supriadi Putra M.Si* Dr. Sasudhuha M.S urusa Matatika FMIPA Uivrsitas iau *sputra@uri.a.id ABSTAK Dala akalah ii disajika dua

Lebih terperinci

STUDI TERHADAP SEBARAN STASIONER PADA SISTEM BONUS MALUS SWISS

STUDI TERHADAP SEBARAN STASIONER PADA SISTEM BONUS MALUS SWISS STUDI TERHDP SEBRN STSIONER PD SISTEM BONUS MLUS SWISS Olh : RENSY ERMWTY G PROGRM STUDI MTEMTIK FKULTS MTEMTIK DN ILMU PENGETHUN LM INSTITUT PERTNIN BOGOR BSTRK RENSY ERMWTY Studi Trhadap Sbara Stasior

Lebih terperinci

STATISTIKA MATEMATIKA I

STATISTIKA MATEMATIKA I STATISTIKA MATEMATIKA I Disusu Olh : (005005) PROGRAM STUDI PENDIDIKAN MATEMATIKA SEKOLAH TINGGI KEGURUAN DAN PENDIDIKAN (STKIP) PGRI SUMATERA BARAT 0 BAB I PELUANG. Ruag Sampl da Kjadia Ruag sampl atau

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya PENS. Probability and Random Process. Topik 10. Regresi

Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya PENS. Probability and Random Process. Topik 10. Regresi Program Pasca Sarjaa Terapa Politekik Elektroika Negeri Surabaya Probability ad Radom Process Topik 10. Regresi Prima Kristalia Jui 015 1 Outlie 1. Kosep Regresi Sederhaa. Persamaa Regresi Sederhaa 3.

Lebih terperinci

Sudaryatno Sudirham ing Utari. Mengenal Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1)

Sudaryatno Sudirham ing Utari. Mengenal Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1) Sudaryato Sudirham ig Utari Mgal Sifat-Sifat Matrial () - Sudaryato S & Nig Utari, Mgal Sifat-Sifat Matrial () BAB Sifat-Sifat Thrmal Sjumlah rgi bisa ditambahka k dalam matrial mlalui pmaasa, mda listrik,

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Vol. 6. No., 97-09, Agustus 003, ISSN : 40-858 METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak Tulisa ii membahas peetua persamaa ruag

Lebih terperinci

3. Rangkaian Logika Kombinasional dan Sequensial 3.1. Rangkaian Logika Kombinasional Enkoder

3. Rangkaian Logika Kombinasional dan Sequensial 3.1. Rangkaian Logika Kombinasional Enkoder 3. Ragkaia Logika Kombiasioal da Sequesial Ragkaia Logika secara garis besar dibagi mejadi dua, yaitu ragkaia logika Kombiasioal da ragkaia logika Sequesial. Ragkaia logika Kombiasioal adalah ragkaia yag

Lebih terperinci

Bab 5 Sinyal dan Sistem Waktu Diskrit. Oleh: Tri Budi Santoso Laboratorium Sinyal, EEPIS-ITS

Bab 5 Sinyal dan Sistem Waktu Diskrit. Oleh: Tri Budi Santoso Laboratorium Sinyal, EEPIS-ITS Bab 5 Siyal da Sistem Watu Disrit Oleh: Tri Budi Satoso Laboratorium Siyal, EEPIS-ITS Materi: Represetasi matemati pada siyal watu disrit, domai watu da freuesi pada suatu siyal watu disrit, trasformasi

Lebih terperinci

Perumusan Fungsi Green Sistem Osilator Harmonik dengan Menggunakan Metode Integral Lintasan (Path Integral)

Perumusan Fungsi Green Sistem Osilator Harmonik dengan Menggunakan Metode Integral Lintasan (Path Integral) Prumusa Fugsi Gr Sistm Osilator Harmoik dga Mgguaka Mtod Itgral Litasa (Path Itgral) Sutisa Abstrat: Th path itgral is a mthod that oft usd i th uatum problms alulatio. For xampl; th alulatio of uatum

Lebih terperinci

5. KARAKTERISTIK RESPON

5. KARAKTERISTIK RESPON 5. ARATERISTI RESPON Adalah ciri-ciri khusus perilaku diamik (spesifikasi performasi) Taggapa (respo) output sistem yag mucul akibat diberikaya suatu siyal masuka tertetu yag khas betukya (disebut sebagai

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2012) 1-6 1

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2012) 1-6 1 JURAL TEKIK POMITS Vol., o., () -6 PERACAGA DA IMPLEMETASI KOTROLLER PID-FUZZY UTUK MEJAGA STABILITAS ILAI FREKUESI TEGAGA TERBAGKIT PADA PEMBAGKIT LISTRIK KAPASITAS KVA DEGA PEGGERAK UTAMA MOTOR BAKAR

Lebih terperinci

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari A ke B kita meuliska f : A

Lebih terperinci

PERCOBAAN 4 VARIABEL ACAK DAN DISTRIBUSI PROBABILITASNYA

PERCOBAAN 4 VARIABEL ACAK DAN DISTRIBUSI PROBABILITASNYA PERCOBAAN 4 VARIABEL ACAK DAN DISTRIBUSI PROBABILITASNYA 4.. Tujua : Setelah melaksaaka praktikum ii mahasiswa diharapka mampu : Membedaka data berdasarka jeis variabelya Mapatka mea da varias dari distribusi

Lebih terperinci

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari A ke B kita meuliska f : A

Lebih terperinci

Metode Iterasi Tiga Langkah Bebas Turunan Orde Konvergensi Delapan untuk Menyelesaikan Persamaan Nonlinear

Metode Iterasi Tiga Langkah Bebas Turunan Orde Konvergensi Delapan untuk Menyelesaikan Persamaan Nonlinear Jural Sais Matmatika da Statistika Vol o Jauari ISS - prit/iss - oli Mtod Itrasi Tiga Lagkah Bbas Turua rd Kovrgsi Dlapa utuk Mlsaika Prsamaa oliar M Muhaiir L L ada Jurusa Matmatika Fakultas Sais da Tkologi

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Defiisi Persamaa diferesial adalah persamaa yag melibatka variabelvariabel tak bebas da derivatif-derivatifya terhadap variabel-variabel bebas. Berikut ii adalah

Lebih terperinci

Bab 5: Discrete Fourier Transform dan FFT

Bab 5: Discrete Fourier Transform dan FFT BAB 5 Dicrt Fourir Traform da FFT Bab 5: Dicrt Fourir Traform da FFT Dicrt Fourir Traform DFT. Dfiii Tuua Blaar Prta dapat mdfiiia DFT, da mghitugya. Utu mlaua aalii frui dari iyal watu dirit maa prlu

Lebih terperinci

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN KALKULUS Dra. D. L. Crispia Pardede DEA. SARMAG TEKNIK MESIN KALKULUS - SILABUS. Deret Fourier.. Fugsi Periodik.2. Fugsi Geap da Gajil.3. Deret Trigoometri.. Betuk umum Deret Fourier.. Kodisi Dirichlet.6.

Lebih terperinci

Matematika Terapan Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 3

Matematika Terapan Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 3 Matematika Terapa Dose : Zaid Romegar Mair ST. M.Cs Pertemua 3 PROGRAM STUDI TEKNIK INFORMATIKA Jl. Koloel Wahid Udi Lk. I Kel. Kayuara Sekayu 30711 web:www.polsky.ac.id mail: polsky@polsky.ac.id Tel.

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

Penyelesaian Persamaan Nonlinear Menggunakan Metode Iterasi Tiga Langkah

Penyelesaian Persamaan Nonlinear Menggunakan Metode Iterasi Tiga Langkah Smiar Nasioal Tkologi Iormasi, Komuikasi da Idustri SNTIKI ISSN Pritd : -1 Fakultas Sais da Tkologi, UIN Sulta Sari Kasim Riau ISSN li : -0 Pkabaru, 1-1 Mi 01 Plsaia Prsamaa Noliar Mgguaka Mtod Itrasi

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

Persamaan Non-Linear

Persamaan Non-Linear Persamaa No-Liear Peyelesaia persamaa o-liear adalah meghitug akar suatu persamaa o-liear dega satu variabel,, atau secara umum dituliska : = 0 Cotoh: 2 5. 5 4 9 2 0 2 5 5 4 9 2 2. 2 0 2 5. e 0 Metode

Lebih terperinci

Bab 3 Metode Interpolasi

Bab 3 Metode Interpolasi Baha Kuliah 03 Bab 3 Metode Iterpolasi Pedahulua Iterpolasi serig diartika sebagai mecari ilai variabel tergatug tertetu, misalya y, pada ilai variabel bebas, misalya, diatara dua atau lebih ilai yag diketahui

Lebih terperinci

APLIKASI RESIDU KOMPLEKS PADA PERSAMAAN DIFERENSIAL HOMOGEN CAUCHY- EULER ORDE DUA SKRIPSI. Oleh: YUDIA ISMAIL SYAFITRI NIM:

APLIKASI RESIDU KOMPLEKS PADA PERSAMAAN DIFERENSIAL HOMOGEN CAUCHY- EULER ORDE DUA SKRIPSI. Oleh: YUDIA ISMAIL SYAFITRI NIM: APLIKASI RESIDU KOMPLEKS PADA PERSAMAAN DIFERENSIAL HOMOGEN CAUCHY- EULER ORDE DUA SKRIPSI Olh: YUDIA ISMAIL SYAFITRI NIM: 4547 UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG FAKULTAS SAINS DAN

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Statistika iferesi merupaka salah satu cabag statistika yag bergua utuk meaksir parameter. Peaksira dapat diartika sebagai dugaa atau perkiraa atas sesuatu yag aka terjadi

Lebih terperinci

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B.

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B. TUGAS ANALISIS REAL LANJUT NOVEMBER 207 () (a) Jika b > 0, B > 0, da a b < A, buktika ab < ba. Kemudia buktika B a b < a + A b + B < A B. (b) Buktika [ 2 (a + b)] 2 2 (a2 + b 2 ). Kemudia tujukka bahwa

Lebih terperinci

METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT

METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT METODE NUMERIK TKM4104 Kuliah ke- DERET TAYLOR DAN ANALISIS GALAT DERET TAYLOR o Deret Taylor adalah alat yag utama utuk meuruka suatu metode umerik. o Deret Taylor bergua utuk meghampiri ugsi ke dalam

Lebih terperinci

METODE ITERASI BARU UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR

METODE ITERASI BARU UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Vol. 9. No. 1, 011 Jural Sais, Tekologi da Idustri METODE ITERASI BARU UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Supriadi Putra 1, Ria Kuriawati 1 Laboratorium Matematika Terapa Jurusa Matematika Program

Lebih terperinci

STATISTIKA NON PARAMETRIK

STATISTIKA NON PARAMETRIK . PENDAHULUAN STATISTIKA NON PARAMETRIK Kelebiha Uji No Parametrik: - Perhituga sederhaa da cepat - Data dapat berupa data kualitatif (Nomial atau Ordial) - Distribusi data tidak harus Normal Kelemaha

Lebih terperinci

Hendra Gunawan. 14 Februari 2014

Hendra Gunawan. 14 Februari 2014 MA20 MATEMATIKA 2A Hedra Guawa Semester II, 203/204 4 Februari 204 Sasara Kuliah Hari Ii 9. Barisa Tak Terhigga Memeriksa kekovergea suatu barisa da, bila mugki, meghitug limitya 9.2 Deret Tak Terhigga

Lebih terperinci

Modifikasi Varian Metode Newton dengan Orde Konvergensi Tujuh

Modifikasi Varian Metode Newton dengan Orde Konvergensi Tujuh Jural Sais Matmatika da Statistika Vol. No. Juli 0 ISSN 0- Modiikasi Varia Mtod Nwto dga rd Kovrgsi Tujuh Wartoo Ria Rasla Jurusa Matmatika Fakultas Sais da Tkologi UIN Sulta Sari Kasim Riau Jl. HR. Sobratas

Lebih terperinci

SISTEM LINIER. Oleh : Kholistianingsih, S.T., M.Eng. lts 1

SISTEM LINIER. Oleh : Kholistianingsih, S.T., M.Eng. lts 1 SISTEM LINIER Oleh : Kholistiaigsih, S.T., M.Eg. lts 1 2 Isyarat Waktu Diskrit di kawasa waktu. 2.1 Represetasi Isyarat Waktu Diskrit 2.2 Klasifikasi Rutu 2.3 Rutu rutu Dasar 2.4 Operasi di kawasa waktu

Lebih terperinci

BAB 6. DERET TAYLOR DAN DERET LAURENT Deret Taylor

BAB 6. DERET TAYLOR DAN DERET LAURENT Deret Taylor Bab 6 Deret Taylor da Deret Lauret BAB 6 DERET TAYLOR DAN DERET LAURENT 6 Deret Taylor Misal fugsi f aalitik pada - < R ligkara dega pusat di da jari-jari R Maka utuk setiap titik pada ligkara itu f dapat

Lebih terperinci

BAB VI DERET TAYLOR DAN DERET LAURENT

BAB VI DERET TAYLOR DAN DERET LAURENT BAB VI DERET TAYLOR DAN DERET LAURENT. Deret Taylor Misal fugsi f() aalitik pada - < R ( ligkara dega pusat di da jari-jari R ). Maka utuk setiap titik pada ligkara itu, f() dapat diyataka sebagai : f

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Model Pertumbuha Betuk ugsi pertumbuha satu jeis spesies pada umumya megguaka otasi ugsi aalitik yag diyataka dalam satu persamaa. Secara umum ugsi pertumbuha meyataka hubuga

Lebih terperinci

THE APPLICATION OF FOURIER TRANSFORMATION ON ANALOG SIGNAL PROCESSING

THE APPLICATION OF FOURIER TRANSFORMATION ON ANALOG SIGNAL PROCESSING Prodig of Iraioal Cofr O Rsarh, Implmaio Ad Eduaio Of Mahmais Ad Sis 5, Yogyakara Sa Uivrsiy, 7-9 May 5 HE APPLICAION OF FOURIER RANSFORMAION ON ANALOG SIGNAL PROCESSING M 4 Nikasih Biaari, Emi Nugroho

Lebih terperinci

Kalkulus Rekayasa Hayati DERET

Kalkulus Rekayasa Hayati DERET Kalkulus Rekayasa Hayati DERET 1 Isi Bab Pedahulua Barisa tak-higga Deret tak-higga Deret Positif : Uji kekovergea Deret Gati Tada Deret Pagkat Deret Taylor da Maclauri 2 Kompetesi Dasar Setelah megikuti

Lebih terperinci

Jurnal Mutiara Pendidikan Indonesia, 10/08 (2016), 67-73

Jurnal Mutiara Pendidikan Indonesia, 10/08 (2016), 67-73 67, 1/ (16), 67-73 STUDI OPARASI IPLEENTASI URIULU PADA PEBELAJARAN ASELERASI DAN PEBELAJARAN REGULER (ajia pada las XI CI+BI IPA da las XI IPA di SAN 1 Padag) Yssi Rifmasari STIP Adzkia Padag Email :

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemua VI Sebara Pearika Cotoh Septia Rahardiatoro - STK IPB 1 Sebara Pearika Cotoh Megidetifikasi sebara suatu fugsi dari cotoh ketika diambil dari suatu populasi X

Lebih terperinci

ANUITAS. 9/19/2012 MK. Aktuaria Darmanto,S.Si.

ANUITAS. 9/19/2012 MK. Aktuaria Darmanto,S.Si. ANUITAS 9/19/2012 MK. Aktuaria Darmato,S.Si. 1 OVERVIEW Auitas adl suatu pembayara dalam jumlah tertetu, yag dilakuka setiap selag waktu da lama tertetu, secara berkelajuta. Suatu auitas yg pasti dilakuka

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

APLIKASI RESIDU UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL CAUCHY - EULER ORDE-n SKRIPSI. Oleh: IKE NORMA YUNITA NIM

APLIKASI RESIDU UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL CAUCHY - EULER ORDE-n SKRIPSI. Oleh: IKE NORMA YUNITA NIM APLIKASI RESIDU UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL CAUCHY - EULER ORDE- SKRIPSI Olh: IKE NORMA YUNITA NIM. 65 JURUSAN MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI (UIN) MAULANA

Lebih terperinci

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu Secara umum persamaa rekursif liier tigkat-k bisa dituliska dalam betuk: dega C 0 0. C 0 x + C 1 x 1 + C 2 x 2 + + C k x k = b, Jika b = 0 maka persamaa rekursif tersebut diamaka persamaa rekursif liier

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Permasalaha peugasa atau assigmet problem adalah suatu persoala dimaa harus melakuka peugasa terhadap sekumpula orag yag kepada sekumpula job yag ada, sehigga tepat satu

Lebih terperinci

BARISAN DAN DERET. Nurdinintya Athari (NDT)

BARISAN DAN DERET. Nurdinintya Athari (NDT) BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga

Lebih terperinci

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP Permasalaha dalam tugas akhir ii dibatasi haya pada peaksira besarya koefisie korelasi polychoric da tidak dilakuka peguia terhadap koefisie korelasi

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

Penggunaan Transformasi z

Penggunaan Transformasi z Pegguaa Trasformasi pada Aalisa Respo Freuesi Sistem FIR Oleh: Tri Budi Satoso E-mail:tribudi@eepis-its.eduits.edu Lab Siyal,, EEPIS-ITS ITS /3/6 osep pemiira domais of represetatio Domai- discrete time:

Lebih terperinci

MODIFIKASI METODE NEWTON DENGAN KEKONVERGENAN ORDE TIGA.

MODIFIKASI METODE NEWTON DENGAN KEKONVERGENAN ORDE TIGA. MDIFIKASI METDE NEWTN DENGAN KEKNVERGENAN RDE TIGA Fby Satrya HP ), Agusi ), Musraii ) bysatrya@ymail.om ) Mahasiswa Program Studi S Matmatia ) Dos Matmatia, Jurusa Matmatia Faultas Matmatia da Ilmu Pgtahua

Lebih terperinci

Makalah ANALISIS REGRESI DAN REGRESI GANDA

Makalah ANALISIS REGRESI DAN REGRESI GANDA 1 Makalah ANALISIS REGRESI DAN REGRESI GANDA Disusu oleh : 1. Rudii mulya ( 41610010035 ). Falle jatu awar try ( 41610010036 ) 3. Novia ( 41610010034 ) Tekik Idustri Uiversitas Mercu Buaa Jakarta 010 Rudii

Lebih terperinci