H dinotasikan dengan B H

Ukuran: px
Mulai penontonan dengan halaman:

Download "H dinotasikan dengan B H"

Transkripsi

1 Delta-P: Jural Matemata da Pedda Matemata ISSN X Vol., No., Aprl 03 OPERATOR KOMPAK Mustafa A. H. Ruhama Program Stud Pedda Matemata, Uverstas Kharu ABSTRAK Detahu H da H dua ruag Hlbert, B H ) merupaa oles semua operator fugs lear otu) dar H e H. Ja H separabel dega bass orthoormal : N maa T B H ) dsebut operator Hlbert-Schmdt ja Te e. Koles semua operator Hlbert-Shcmdt dar ruag Hlbert separabel H e ruag Hlbert separabel H dotasa dega H B. T B H ) H yag terbatas, terdapat dsebut operator ompa ja utu setap barsa barsa baga ) T ) H dotasa dega B H T yag overge. Koles semua operator ompa dar ruag Hlbert H e ruag Hlbert dtujua setap B H, ) T merupaa operator ompa. H 0. Aa Kata Kuc: Ruag Hlbert Separabel, Operator Hlbert-Schmdt, da Operator Kompa PENDAHULUAN Hmpua yag terdr atas eleme - eleme yag memeuh asoma - asoma tertetu dsebut ruag. D dalam aalss moder, beberapa ruag yag serg dbcaraa adalah ruag lear, ruag metr, ruag berorma, ruag Baach, ruag pre-hlbert da ruag Hlbert. Salah satu top yag juga mear dbahas dalam aalss moder adalah teor operator. Pegerta operator adalah fugs lear otu atau lear terbatas dar suatu ruag Hlbert e ruag Hlbert yag la. Ruag Hlbert yag mempuya barsa yag total dsebut ruag Hlbert separabel. Pada peelta yag dbcaraa adalah operator ompa dar suatu ruag Hlbert separabel e ruag Hlbert separabel yag la. Barsa terbatas pada ruag Hlbert da overge sagat petg dalam membcaraa operator ompa. METODE PENELITIAN Metode peelta yag dguaa adalah stud lteratur, yatu megumpula matermater peelta yag dmbl dar beberapa buu aalss yag memuat tetag ruag Hlbert da operator ompa. Selajutya mempelajar da membahas mater tersebut. 93

2 Delta-P: Jural Matemata da Pedda Matemata ISSN X Vol., No., Aprl 03 PEMBAHASAN.. Ladasa Teor 3.. Operas Ber Secara tutf suatu operas ber atas suatu hmpua S adalah suatu atura yag meggabuga dua usur dar S mejad satu usur dar S. Sebelum medefsa operas ber dalam otes yag lebh umum, perlu dbera defs tetag relas suatu hmpua sebaga berut: Defs 3... Detahu A da B masg-masg dua hmpua yag ta osog. Suatu relas R dar A e B adalah hmpua baga dar A B = {, y): A & y B}. Dega perataa la suatu relas R dar A e B adalah suatu atura yag meghubuga usur dar A e B. Adaa R adalah relas dar A e B, da msala R meghubuga A e y B. Hubuga dotasa dega Ry atau, y) R. Defs 3... Suatu operas ber atas suatu hmpua S adalah suatu relas yag meghubuga setap pasaga beruruta, y) dar usur-usur d S e tepat satu z S, da dotasa dega y = z. 3.. Ruag Lear Sebelum membahas ruag lear ruag vetor) terlebh dahulu dbera tetag pegerta grup omutatf da lapaga fled). Defs 3... V hmpua ta osog dega operas ber merupaa grup omutatf abela) ja memeuh: ). Utu setap v, v V berlau v v = v v. ). Utu setap v, v, v 3 V berlau v v v 3 ) = v v ) v 3. ). Terdapat usur e sehgga utu setap v V berlau v e = e v = v. e dsebut usur dettas terhadap operas. v). Utu setap v V terdapat v V sehgga berlau v v = v v = e. v dsebut vers terhadap operas. Suatu grup V dega operas ber dotasa dega V, ). Defs 3... F hmpua ta osog dega dua operas ber, yag dotasa dega da merupaa lapaga ja memeuh: ). F, ) grup omutatf. ). F, ) grup omutatf. ). Utu setap a, b, c F berlau 94

3 Delta-P: Jural Matemata da Pedda Matemata ISSN X Vol., No., Aprl 03 a b c) = a b a c da a b) c = a c b c. Cotoh R merupaa hmpua blaga real yata) dega operas pejumlaha basa merupaa grup omutatf, sebab ). Utu setap, y R berlau + y = y +. ). Utu setap, y, z R berlau + y + z) = + y) + z. ). Terdapat usur 0 R sehgga utu setap R berlau + 0 = 0 + =. 0 dsebut usur dettas terhadap operas pejumlaha. v). Utu setap R terdapat R sehgga berlau + ) = ) + = 0. dsebut vers terhadap operas pejumlaha.. R dega operas pejumlaha +) da perala ) basa merupaa lapaga, sebab ). R, +) grup omutatf. ). R, ) grup omutatf. ). Utu setap, y, z R berlau y + z) = y + z da + y) z = y + y z. Defs Detahu V, +) grup omutatf da F,, ) lapaga. V dsebut ruag lear lear space) atau ruag vetor vector space) atas F ja terdapat operas atara eduaya sehgga utu setap V da α F meetua dega tuggal α yag memeuh sfat-sfat: ). α + y) = α + α y, ). α β) = α + β, ). α β) = α β), v). =, utu setap, y V da α, β F. Utu peyederhaaa peulsa α cuup dtuls α, α β cuup dtuls α + β, da α β cuup dtuls dega αβ, asala ta ada salah pegerta. Aggota ruag vetor dsebut vetor sedaga aggota F dsebut salar. Cotoh Dbera sebarag blaga asl atau N da dbetu R = { =,,, ): R, }. Operas pejumlaha da perala salar ddefsa sebaga berut: + y = + y, + y,, + y ) 95

4 Delta-P: Jural Matemata da Pedda Matemata ISSN X Vol., No., Aprl 03 α = α, α,, α ) utu setap =,,, ), y = y, y,, y ) R da α R. R merupaa ruag vetor real.. V = C[a, b], yatu oles semua fugs otu dar [a, b] e R. Operas pejumlaha +) pada C[a, b] ddefsa sebaga berut: Utu setap f, g C[a, b], fugs f + g ddefsa sebaga f + g)) = f) + g), [a, b] maa V merupaa grup omutatf, dega f)) = f) utu setap [a, b].ja utu setap f V = C[a, b] da α R ddefsa fugs αf, dega rumus αf)) = αf), [a, b] maa dapat dlhat bahwa αf V. V merupaa ruag vetor real Ruag Berorma Defs Dbera ruag lear X. Fugs X, yag mempuya sfat-sfat: N ). 0, utu setap X. 0, ja da haya ja, vetor ol). N )., utu setap salar da X. N 3). y y, utu setap salar, y X dsebut orma orm) pada X da blaga oegatf dsebut orma vetor. Ruag lear X yag dlegap dega orma. dsebut ruag berorma da dtulsa sgat dega X,. atau X saja asala ormaya telah detahu. Cotoh Koles semua barsa blaga omples dtulsa dega S. Utu p ddefsa oles barsa : l : S da. l merupaa ruag berorma terhadap orma, utu setap l. 96

5 Delta-P: Jural Matemata da Pedda Matemata ISSN X Vol., No., Aprl 03 Defs Detahu ruag berorma X,. da barsa vetor X. ).Barsa X dataa overge, ja terdapat X sehgga utu setap blaga 0 terdapat blaga asl 0sehgga utu setap blaga asl dega 0 berlau, dalam hal dotasa dega, utu atau lm atau lm 0. ).Barsa X dsebut barsa Cauchy, ja utu setap blaga 0 terdapat blaga asl 0sehgga utu setap dua blaga asl m, 0 berlau m. ). Barsa X m, dega dataa terbatas, ja terdapat blaga real M 0 sehgga M Fugs Lear Kotu Defs Detahu X da Y masg-masg ruag berorma da T : X Y. ).T dataa lear ja utu setap, y X da sebarag salar berlau sfatsfat T y) T ) T y) da T ) T ). ). T dataa otu d 0 X ja utu setap blaga 0 terdapat blaga 0 sehgga utu setap X dega 0 berlau T 0 ) T ). Selajutya T otu pada X ja T otu d setap X. ). T dar ruag berorma X e ruag berorma Y dataa terbatas ja ada blaga 0 M sehgga M Teorema Detahu T, utu setap X. X da Y masg-masg ruag berorma. Ja T : X Y fugs lear, maa peryataa berut euvale: ). T otu pada X. ). T otu d 0 X. ). T otu d X. v). T ) : X da terbatas. v). T terbatas. 97

6 Delta-P: Jural Matemata da Pedda Matemata ISSN X Vol., No., Aprl Ruag Pre-Hlbert Defs Detahu ruag lear P. Fugs.,. : PP C yag memeuh : I )., y y,, utu setap, y P I ). y, z, y, z, utu setap, y, z P I 3 )., y, y, utu setap, y P da sebarag salar I 4 )., 0 ja da haya ja, utu setap P dsebut produ salarscalar product/er product). Ruag lear dperlegap dega produ salar dsebut ruag pre-hlbert. Cotoh P yag Koles semua barsa blaga omples dtulsa dega S. Utu p ddefsa oles barsa l : pre-hlbert terhadap er product: S da merupaa ruag But., y y, utu setap l merupaa ruag lear. Tggal meujua Hlbert. Utu setap, y y l I )., y y y y, I )., y y y, y, y y l da salar, dperoleh. l merupaa ruag pre- I 3 ). y, z y ) z z y z ) z y z, z y, z I 4 ). 0 ada sehgga 0, 0. Teorema Setap ruag pre-hlbert P merupaa ruag berorma terhadap orma :,, utu setap P 98

7 Delta-P: Jural Matemata da Pedda Matemata ISSN X Vol., No., Aprl 03 Defs Ruag pre-hlbert dataa legap ja setap barsa Cauchy d dalamya overge. Defs Detahu ruag pre-hlbert P. Hmpua S P dataa total ja vetor yag tega lurus dega semua aggota S hayalah vetor. Barsa vetor P dataa barsa total ja vetor yag tega lurus dega setap P hayalah vetor. Defs Detahu P suatu ruag pre-hlbert. Dua vetor, y P dataa salg tega lurus orthogoal), da dotasa dega y, ja, y 0. Defs Detahu P suatu ruag pre-hlbert. Barsa tega lurus orthogoal) ja, utu setap j. j P dataa Defs Detahu P ruag pre-hlbert da barsa P. dsebut barsa orthoormal ja orthogoal da, utu setap blaga asl Ruag Hlbert da Operator Hlbert-Schmdt Defs Ruag pre-hlbert yag legap dsebut ruag Hlbert. Pada pembcaraa selajutya ruag Hlbert selalu dotasa dega H. Cotoh l merupaa ruag Hlbert. But. Pada Cotoh 3..5.,, y y, utu setap Tggal membuta ) ) ) dega,,... l merupaa ruag pre-hlbert terhadap er product:, y y l. l ) l legap. Dambl sebarag barsa Cauchy, utu setap. Jad utu setap blaga 0 terdapat blaga asl 0 sehgga utu setap blaga asl m) ) ) ) m. 3 Hal berabat bahwa utu setap m, 0 berlau m, dega m, 0 berlau m) ), utu setap. 3 99

8 Delta-P: Jural Matemata da Pedda Matemata ISSN X Vol., No., Aprl 03 Dega ata la dperoleh utu setap ) barsa Cauchy d dalam atau C. Karea da C legap maa overge, artya terdapat C) sehgga ) Dar hal tersebut dperoleh pula a). ) b). Barsa lm ) lm atau lm ) 0, utu setap. m) ) m 3 dega ) ) ) ) ) 3 l.) dega ata la terbut Utu setap 0, dperoleh ) ) lm m ) m) lm m 3 ) m) dega ata la ) overge e.) Berdasara.) da.) dsmpula bahwa Hlbert. l legap atau l merupaa ruag Defs Detahu ruag Hlbert H. Barsa H dsebut bass orthoormal ja barsa orthoormal da total. 00

9 Delta-P: Jural Matemata da Pedda Matemata ISSN X Vol., No., Aprl 03 Defs Ruag Hlbert H dataa separable ja H mempuya barsa total. Defs Detahu H da H ruag Hlbert separabel. Operator T B H dsebut operator Hlbert-Schmdt ja dega e Te : N bass orthoormal H. Koles semua operator Hlbert-Shcmdt dar ruag Hlbert separabel H e ruag Hlbert separabel H dotasa dega B H. Selajutya aa dtujua setap T B H, ) merupaa operator ompa. Utu eperlua H tersebut dbcaraa dulu apa yag dmasud operator ompa Operator Kompa Defs Dbera dua ruag Hlbert H da H. Operator T B H ) dsebut operator ompa ja utu setap barsa H yag terbatas, terdapat barsa baga ) T ) T yag overge. Koles semua operator ompa dar ruag Hlbert H e ruag Hlbert H dotasa dega H B. 0 Teorema Dbera dua ruag Hlbert H da H. Ja S T B H, ) maa, 0 H T da S T merupaa operator ompa, utu sebarag ; jad B0 H, H) ruag lear. But: Dambl sebarag barsa H terbatas, utu memudaha daggap utu setap N. Karea T ompa maa terdapat barsa baga ) T ) T yag overge. Oleh area tu. T ) T ) overge, utu sebarag da. Terdapat barsa baga m, sehgga S m) S ) S ) overge sehgga dperoleh T S) ) T ) S ) m m m yag overge. 0

10 Delta-P: Jural Matemata da Pedda Matemata ISSN X Vol., No., Aprl 03 Defs Detahu H da H ruag Hlbert. Operator T B H ) dataa berdmes hgga ja T H) H berdmes hgga. Teorema Dbera dua ruag Hlbert H da H. Setap operator T B H ) berdmes hgga merupaa operator ompa. But: Karea operator T berdmes hgga, maa terdapat bass orthoormal, z z pada ruag Hlbert H) z,..., sehgga T) H T sehgga utu setap y T H ) tetu ada y terdapat,..., C, sehgga T ) z z... z T ) f ) z f ) z... f ) T ) f ) z z dega ) utu setap,,.., merupaa salar-salar yag dtetua f dega tuggal utu setap H. Jad, utu setap,,..,, f merupaa fugsoal lear otu pada H da f ) T, z, T z utu setap,,..,. f merupaa operator ompa, sebab utu sebarag H yatu terdapat M 0 sehgga m M, utu setap m N berlau f m) Tm, z Tm z T m z M T z m terbatas, maa terdapat barsa baga T, T, yag overge. Oleh area tu m z terdapat blaga sehgga barsa T, overge e da barsa T T, z z m m overge e m z m z z, utu setap Teorema dperoleh T merupaa operator ompa.,,...,. Jad, meurut Teorema Dbera H ruag Hlbert. Ja S, T B H) dega T operator ompa, maa ST da TS operator ompa. But: Meurut yag detahu, utu sebarag barsa H utu setap dega N terdapat barsa T ) yag overge e suatu y H. Hal berabat barsa ST ) overge e S y) atau terbut ST ompa. Utu sebarag barsa H dega utu setap N terdapat barsa 0

11 Delta-P: Jural Matemata da Pedda Matemata ISSN X Vol., No., Aprl 03 S ) ddalam H. Karea T ompa maa barsa ) TS ompa. Teorema Detahu H da TS overge atau terbut H ruag Hlbert. Ja T B H ) merupaa barsa operator ompa yag overge e suatu T B H ), maa T merupaa operator ompa. But: But dega memafaata prosedur dagoalsas. Dambl sebarag barsa H terbatas, daggap utu setap N. Meurut yag detahu ). T operator ompa, berart terdapat barsa baga T, H T overge, ). T operator ompa da, H,, sehgga, H Secara umum utu setap,, terbatas da barsa baga,, sehgga T, H Dambl dagoalsas) barsa,, dperoleh T, H. Meurut yag detahu, sehgga yag terbatas, berart terdapat barsa baga T overge, da seterusya. T operator ompa, maa terdapat overge. overge, utu setap T overge e T, artya utu setap blaga 0 terdapat blaga asl 0 sehgga utu setap blaga asl dega 0 berlau T T. 6 Hal berabat, utu setap 0 T,, ) T ) Oleh area tu utu setap 0, dperoleh T T ),. 3 T m, m, ) T ) T m m) T m, m ) T m, m) T, ) T, ) T,, ) T ) T ) T ) T ) T ) T ) m, m m, m m, m,,, Jad, barsa T, merupaa barsa Cauchy d dalam ruag Hlbert H. Oleh area tu T, overge. Dega ata la T merupaa operator ompa. 03

12 Delta-P: Jural Matemata da Pedda Matemata ISSN X Vol., No., Aprl 03 Abat Detahu H da H ruag Hlbert. Ja B H ) T barsa operator berdmes hgga yag overge e suatu T B H ) maa T merupaa operator ompa. Teorema Detahu H da H dua ruag Hlbert yag separabel. Ja T B H, ) maa T B H, ); oleh area tu B H ) B H, ). H 0 H But: Meurut yag detahu, terdapat barsa orthoormal 0 H e : N ddalam H. Karea T B H, H ) maa Te. Karea H ruag Hlbert separabel maa H mempuya bass orthoormal, ataa H dperoleh d : N. Jad, utu setap Utu setap T) H da T ) T, d d N, dbetu T : H H dega T ) T, d d T, d d T, d d T,d d dega lm T T ) d T ) d... T ) T ) T, d, T d, utu setap, ) T ), utu setap H d,,...,. Terlhat bahwa. Karea T merupaa barsa operator berdmes hgga da overge e T B H, ), maa meurut Teorema H da Abat , T merupaa operator ompa. Oleh area tu B H, H) B0 H, H) KESIMPULAN Berdasara pembahasa, da H tga ruag Hlbert dperoleh esmpula sebaga berut:. Ja S T B H, ) maa T da S T merupaa operator ompa, utu, 0 H sebarag ; jad B H, ) ruag lear. 0 H. Setap operator T B H ) berdmes hgga merupaa operator ompa. 04

13 Delta-P: Jural Matemata da Pedda Matemata ISSN X Vol., No., Aprl Ja S, T B H) dega T operator ompa, maa ST da TS operator ompa. 4. Ja B H ) T merupaa barsa operator ompa yag overge e suatu T B H ), maa T merupaa operator ompa. 5. Ja B H ) T barsa operator berdmes hgga yag overge e suatu T B H ) maa T merupaa operator ompa. 6. Detahu H da H dua ruag Hlbert yag separabel. Ja T B H, H ) maa T B H, ); oleh area tu B H ) B H, ). 0 H 0 H DAFTAR PUSTAKA Berbera, S.K., 96. Itroducto to Hlbert Space, Oford Uversty Press, New Yor. Coway, J. B., 990. A Course Fuctoal Aalyss, Sprger-Verlag, New Yor. Debath, L ad Musńs, P., 999. Itroducto to Hlbert Spaces wth Applcatos, Academc Press. Kreyszg, Erw.,978. Itroductory Fuctoal Aalyss wth Applcatos, Joh Wley & Sos, New Yor. Royde.L., 989. Real Aalyss, Macmlla Publshg Compay, New Yor. Sah Suwlo, d Aljabar Abstra, Suatu Pegatar, USU Press, Meda. Soepara Darmawjaya, 007. Pegatar Aalss Abstra, Jurusa Matemata FMIPA Uverstas Gadjah Mada, Yogyaarta. Wedma, Joachm., 980. Lear Operator Hlbert Space, Sprger-Verlag, New Yor. 05

KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH. Ariyanto* ABSTRACT

KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH. Ariyanto* ABSTRACT Aryato, Kaja Sfat Keompaa pada Ruag Baah KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH Aryato* ABSTRACT The propertes of ompatess Baah spaes ths paper s a geeralzato of a ompat uderstadg the system o the real

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab bers defs-defs da sfat-sfat yag petg yag berhubuga dega modul. Hal-hal tersebut dperlua dalam pembahasa megea modul jetf pada Bab III. 2.1. Modul Mata ulah Aljabar Ler membahas

Lebih terperinci

Bukti Teorema Sisa China dengan Menggunakan Ideal Maksimal

Bukti Teorema Sisa China dengan Menggunakan Ideal Maksimal Vol 5, No, 9-98, Jauar 9 But Teorema Ssa Cha dega egguaa deal asmal Abstra Sstem perogruea yag dapat dcar peyelesaaya secara teor blaga dasar teryata dapat dbuta melalu teor-teor strutur aljabar hususya

Lebih terperinci

HIMPUNAN RENTANGAN DAN BEBAS LINIER. di V. Vektor w dikatakan sebagai kombinasi linier dari vektor-vektor v, 1

HIMPUNAN RENTANGAN DAN BEBAS LINIER. di V. Vektor w dikatakan sebagai kombinasi linier dari vektor-vektor v, 1 HIMPUNAN RENTANGAN DAN BEBA LINIER HIMPUNAN RENTANGAN Defs (Kombas Ler) Msala V suatu ruag etor atas feld F. w etor d V, da, 1, juga etoretor d V. Vetor w dataa sebaga ombas ler dar etor-etor, 1, ja w

Lebih terperinci

LOCALLY DAN GLOBALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA [a,b]

LOCALLY DAN GLOBALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA [a,b] PROSIING ISBN : 978 979 6353 9 4 LOCALLY AN GLOBALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-UNFOR PAA [a,b] A-8 Solh, Y Suato, St Khabbah 3,,3 Jurusa Mateata, Faultas Sas da Mateata, Uverstas poegoro

Lebih terperinci

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Ruag Baach Sumaag Muhtar Gozal UNIVERSITAS PENDIDIKAN INDONESIA Satu kose etg d kulah Aalss ugsoal adalah teor ruag Baach. Pada baga aka drevu defs, cotoh-cotoh, serta sfat-sfat etg ruag Baach. Kta aka

Lebih terperinci

Functionally Small Riemann Sums Fungsi Terintegral Henstock-Dunford pada [a,b]

Functionally Small Riemann Sums Fungsi Terintegral Henstock-Dunford pada [a,b] Jural Sas da Matemata Vol (3): 58-63 () Fuctoally Small Rema Sums Fugs Tertegral Hestoc-uford ada [a,b] Solh, Sumato, St Khabbah 3,,3 Program Stud Matemata, FSM UNIP Jl Prof Soedarto, SH Semarag, 575 E-mal:

Lebih terperinci

LEMMA HENSTOCK PADA INTEGRAL. Muslich Jurusan Matematika FMIPA UNS fine dan integral M

LEMMA HENSTOCK PADA INTEGRAL. Muslich Jurusan Matematika FMIPA UNS fine dan integral M JP : Volue 4 Noor Ju 0 hal. 4-5 LEA HENSTOCK PADA NTEGRAL uslch Jurusa ateata FPA UNS uslch_us@yahoo.co ABSTRACT. Based o the cshae e partto ad cshae tegral t ca be arraged the e partto ad tegral cocepts.

Lebih terperinci

SIFAT-SIFAT LANJUT FUNGSI TERBATAS

SIFAT-SIFAT LANJUT FUNGSI TERBATAS Bulet Ilmah Mat. Stat. da Terapaya (Bmaster) Volume 03, No. 2(204), hal 35 42. SIFAT-SIFAT LANJUT FUNGSI TERBATAS Suhard, Helm, Yudar INTISARI Fugs terbatas merupaka fugs yag memlk batas atas da batas

Lebih terperinci

BAB II KONSEP DASAR. adalah koleksi dari peubah acak. Untuk setiap t dalam himpunan indeks T, N ( t)

BAB II KONSEP DASAR. adalah koleksi dari peubah acak. Untuk setiap t dalam himpunan indeks T, N ( t) BAB II KONSEP DASAR Kosep dasar yag dtuls dalam bab, merupaa beberapa dasar acua yag aa dguaa utu megaalsa model rso las da meetua fugs sebara peluag bertaha dalam model rso las Datara dasar acua tersebut

Lebih terperinci

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real.

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real. BAB 5 BARIAN DAN DERET KOMPLEK ecara eses, pembahasa tetag barsa da deret komlpeks sama dega barsa da deret real. 5. Barsa Barsa merupaka sebuah fugs dega doma berupa hmpua blaga asl N. ebuah barsa kompleks

Lebih terperinci

STATISTIKA: UKURAN PENYEBARAN DATA. Tujuan Pembelajaran

STATISTIKA: UKURAN PENYEBARAN DATA. Tujuan Pembelajaran KTSP & K-3 matemata K e l a s XI STATISTIKA: UKURAN PENYEBARAN DATA Tujua Pembelajara Setelah mempelajar mater, amu dharapa meml emampua berut.. Memaham defs uura peyebara data da jes-jesya.. Dapat meetua

Lebih terperinci

GARIS DAN BIDANG DALAM RUANG EUCLID BERDIMENSI N

GARIS DAN BIDANG DALAM RUANG EUCLID BERDIMENSI N GARIS DAN BIDANG DALAM RUANG EUCLID BERDIMENSI N SKRIPSI Dajua dalam raga meelesaa Stud Strata Satu utu mecapa gelar Sarjaa Sas Oleh Nama : M SOLIKIN ADRIANSAH NIM : 4504009 Program Stud Jurusa : Matemata

Lebih terperinci

EKSISTENSI BASIS ORTHONORMAL PADA RUANG HASIL KALI DALAM

EKSISTENSI BASIS ORTHONORMAL PADA RUANG HASIL KALI DALAM Ed-Math; ol Tah EKITENI BAI ORTHONORMAL PADA RUANG HAIL KALI DALAM Mhammad Kh Abstras at rag etor ag dlegap oleh sat operas ag memeh beberapa asoma tertet damaa Rag Hasl Kal Dalam (RHKD) Pada RHKD deal

Lebih terperinci

SEPUTAR IDEAL DARI GELANGGANG POLINOM MIRING AROUND IDEAL OF THE SKEW POLYNOMIAL RING

SEPUTAR IDEAL DARI GELANGGANG POLINOM MIRING AROUND IDEAL OF THE SKEW POLYNOMIAL RING SEPUTAR IDEAL DARI GELANGGANG POLINOM MIRING Afra, Ar Kaal Ar da Nur Erawaty Jurusa Mateata Faultas Mateata da Ilu Pegetahua Ala Uverstas Hasaudd (UNHAS) Jl. Perts Keerdeaa KM.0 Maassar 90245, Idoesa thalabu@gal.co

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belaag Metode aalss yag telah dbcaraa hgga saat adalah aalss terhadap data megea sebuah araterst atau atrbut da megea sebuah varabel dsrt atau otu. Tetap, sebagamaa dsadar, baya

Lebih terperinci

KEKONVERGENAN INTEGRAL HENSTOCK-PETTIS. PADA RUANG EUCLIDE R (Henstock-Pettis Integral Convergence in Euclidean Space)

KEKONVERGENAN INTEGRAL HENSTOCK-PETTIS. PADA RUANG EUCLIDE R (Henstock-Pettis Integral Convergence in Euclidean Space) Harur Rahma da Soeara Darmawjaya, Keovergea Itegral Hestoc KEKONVERGENN INTEGRL HENSTOCK-PETTIS PD RUNG EUCLIDE R (Hestoc-Petts Itegral Covergece Eucldea Sace Harur Rahma da Soeara Darmawjaya 2 Uverstas

Lebih terperinci

On A Generalized Köthe-Toeplitz Duals

On A Generalized Köthe-Toeplitz Duals JMP : Volume 4 Nomor, Ju 202, hal. 3-39 O A Geeralzed Köthe-Toepltz Duals Sumardoo, Supama 2, da Soepara Darmawaa 3 PPPPTK Matematka, smrd2007@gmal.com 2 Mathematcs Departmet, Gadah Mada Uverst, supama@ugm.ac.d

Lebih terperinci

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER TUGAS ATA KULIAH TEORI RING LANJUT ODUL NOETHER Da Aresta Yuwagsh (/364/PPA/03489) Sebelumya, telah dketahu bahwa sebaga rg dega eleme satua memeuh sfat rata ak utuk deal-deal d. Apabla dpadag sebaga modul,

Lebih terperinci

LOCALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA RUANG n EUCLIDE

LOCALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA RUANG n EUCLIDE LOLLY SMLL RIMNN SUMS FUNGSI TRINTGRL HNSTOK-UNFOR P RUNG ULI Solh Program Stud Matemata Faultas Sas da Matemata UNIP Jl Prof Soedarto, SH Semarag 575, sol_erf@yahoocom BSTRK I ths aer we study Hestoc-uford

Lebih terperinci

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teoremateorema

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teoremateorema II. LANDAAN TEORI Pada bab II aka dbahas pegerta-pegerta (defs) da teoremateorema ag medukug utuk pembahasa pada bab IV. Pegerta (defs) da teorema tersebut dtulska sebaga berkut.. Teorema Proeks Teorema

Lebih terperinci

JEMBATAN PADA GRAF FUZZY INTUITIONISTIC

JEMBATAN PADA GRAF FUZZY INTUITIONISTIC JEMTN PD GRF FUZZY INTUITIONISTIC St lfatur Rohmaah, au Surarso, da ambag Irawato 3 Uverstas Islam Darul Ulum Lamoga, a0304@gmalcom Uverstas Dpoegoro Semarag 3 Uverstas Dpoegoro Semarag bstract tutostc

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belaag Metode aalss yag telah dbcaraa hgga searag adalah aalss terhadap data megea sebuah araterst atau atrbut (ja data tu ualtatg) da megea sebuah araterst (ja data tu uattatf).

Lebih terperinci

BAB II KAJIAN TEORI. tertentu (Martono, 1999). Sistem bilangan real dinotasikan dengan R. Untuk

BAB II KAJIAN TEORI. tertentu (Martono, 1999). Sistem bilangan real dinotasikan dengan R. Untuk 5 BAB II KAJIAN TEOI A. Sstem Blaga eal Sstem blaga real adalah hmpua blaga real ag dserta dega operas pejumlaha da perala sehgga memeuh asoma tertetu (Martoo, 999). Sstem blaga real dotasa dega. Utu lebh

Lebih terperinci

SOLUSI TUGAS I HIMPUNAN

SOLUSI TUGAS I HIMPUNAN Program Stud S1 Tekk Iformatka Fakultas Iformatka, Telkom Uversty SOLUSI TUGAS I HIMPUNAN Matematka Dskrt (MUG2A3) Halama 1 dar 6 Soal 1 Tetukalah eleme-eleme dar hmpua berkut! 2 x x adalah blaga real

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDAAN TEORI Dalam bab aa djelasa teor-teor yag berhubuga dega peelta yag dapat djada sebaga ladasa teor atau teor peduug dalam peelta Ladasa teor aa mempermudah pembahasa hasl peelta pada bab 3 Adapu

Lebih terperinci

Digraf eksentris dari turnamen kuat

Digraf eksentris dari turnamen kuat Dgraf esetrs dar turame uat Hazrul Iswad Departeme Matemata da IPA MIPA) Uverstas Surabaya UBAYA), Jala Raya Kalrugut, Teggls, Surabaya, e-mal : us679@wolfubayaacd Abstra Esetrstas eu) suatu tt u d dgraf

Lebih terperinci

NORM VEKTOR DAN NORM MATRIKS

NORM VEKTOR DAN NORM MATRIKS NORM VEKTOR DN NORM MTRIK umaag Muhtar Gozal UNIVERIT PENDIDIKN INDONEI. Pedahulua Jka kta membcaraka topk ruag vektor maka cotoh sederhaa yag dapat kta ambl adalah ruag Eucld R. D ruag kta medefska pajag

Lebih terperinci

METODE NUMERIK ROSENBERG DENGAN ARAH PENCARIAN TERMODIFIKASI PENAMBAHAN KONSTANTA l k

METODE NUMERIK ROSENBERG DENGAN ARAH PENCARIAN TERMODIFIKASI PENAMBAHAN KONSTANTA l k Prma: Jural Program Stud Pedda da Peelta Matemata Vol. 6, No., Jauar 07, hal. 7-59 P-ISSN: 0-989 METODE NUMERIK ROSENBERG DENGAN ARAH PENCARIAN TERMODIFIKASI PENAMBAHAN KONSTANTA l UNTUK BEBERAPA NILAI

Lebih terperinci

Extra 4 Pengantar Teori Modul

Extra 4 Pengantar Teori Modul Extra 4 Pegatar Teor odul Apabla selama dkealka suatu kosep aljabar megea ruag vektor, maka modul merupaka perumuma dar ruag vektor. Pada modul, syarat skalar dperumum mejad eleme pada suatu rg da buka

Lebih terperinci

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas II. TINJAUAN PUSTAKA 2.1 Ruag Vektor Defiisi 2.1.1 (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da (F,,. ) lapaga dega eleme idetitas 1. V disebut ruag vektor (vector space) atas F jika ada operasi

Lebih terperinci

Keywords: Convergen Series, Banach Space, Sequence space cs, Dual-α, Dual-

Keywords: Convergen Series, Banach Space, Sequence space cs, Dual-α, Dual- Jural MIPA FST UNDANA, Volume 2, Nomor, April 26 DUAL-, DUAL- DAN DUAL- DARI RUANG BARISAN CS Albert Kumaereg, Ariyato 2, Rapmaida 3,2,3 Jurusa Matematia, Faultas Sais da Tei Uiversitas Nusa Cedaa ABSTRACT

Lebih terperinci

MASALAH NORM MINIMUM PADA RUANG HILBERT DAN APLIKASINYA

MASALAH NORM MINIMUM PADA RUANG HILBERT DAN APLIKASINYA Masalah Norm Mmum (Karat) MASALAH NORM MINIMUM PADA RUANG HILBERT DAN APLIKASINYA Karat da Dhorva Urwatul Wutsqa Jurusa Peddka Matematka FMIPA Uverstas Neger Yogakarta Abstract I ths paper, wll be dscussed

Lebih terperinci

adalah nilai-nilai yang mungkin diambil oleh parameter jika H

adalah nilai-nilai yang mungkin diambil oleh parameter jika H Uj Nsbah Kemuga Lema Neyma-Pearso dapat dguaa utu meemua uj palg uasa bag hpotess sederhaa bla sebara dataya haya dtetua oleh satu parameter yag tda detahu. Lema tersebut juga adaalaya dapat dguaa utu

Lebih terperinci

UKURAN LEBESGUE DALAM GARIS BILANGAN REAL SKRIPSI

UKURAN LEBESGUE DALAM GARIS BILANGAN REAL SKRIPSI UKURAN LEBESGUE DALAM GARIS BILANGAN REAL SKRIPSI Oleh: MUTHMAINNAH NIM : 0450004 JURUSAN MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI (UIN) MALANG Otober 008 UKURAN LEBESGUE DALAM

Lebih terperinci

Prosiding Seminar Nasional Matematika dan Pembelajarannya. Jurusan Matematika, FMIPA UM. 13 Agustus 2016

Prosiding Seminar Nasional Matematika dan Pembelajarannya. Jurusan Matematika, FMIPA UM. 13 Agustus 2016 Prosdg Semar Nasoal Matemata da Pembelajaraya. Jurusa Matemata, FMIPA UM. Agustus 06 METODE NUMERIK STEPEST DESCENT DENGAN ARAH PENCARIAN RERATA ARITMATIKA Rumoo Bud Utomo Uverstas Muhammadyah Tagerag

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI Utu mempermudah dalam meyeleaa pembahaa pada bab, maa aa dbera beberapa def da beberapa teor daar yag meduug... Teor Teor Peduug... Rua Gar Def. Rua Gar Ja ada d R atau 3 R, maa ebuah

Lebih terperinci

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat.

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat. KALKULUS LANJUT Pertemua ke-4 Rey Ra Marlaa, S.S.,M.Stat. Plot Mater Notas Jumlah & Sgma Itegral Tetu Jumlah Rema Pedahulua Luas Notas Jumlah & Sgma Purcell, et all. (page 226,2003): Sebuah fugs yag daerah

Lebih terperinci

BAB 2 KAJIAN TEORITIS

BAB 2 KAJIAN TEORITIS BAB KAJIAN TEORITIS Desrps Teor Utu ebera dasar peulsa srps, terlebh dahulu pada baga aa dgabara secara rgas osep dasar yag berhubuga dega rptograf sepert defs rptograf, algorta rptograf, sste rptograf,

Lebih terperinci

PEMBUKTIAN SIFAT RUANG BANACH PADA D(K)

PEMBUKTIAN SIFAT RUANG BANACH PADA D(K) JMP : Volume 4 Nomor 1, Jui 2012, hal. 41-50 PEMBUKTIAN SIFAT RUANG BANACH PADA D(K) Malahayati Program Studi Matematia Faultas Sais da Teologi UIN Sua Kalijaga malahayati_01@yahoo.co.id ABSTRACT. I this

Lebih terperinci

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI MINGGU KE-0 HUBUNGAN ANTAR KONVERGENSI Hubuga atar koverges Hrark atar koverges dyataka dalam teorema berkut. Teorema Msalka X da X, X, X 3,... adalah varabel radom yag ddefska pada ruag probabltas yag

Lebih terperinci

ALGORITMA MENENTUKAN HIMPUNAN TERBESAR DARI SUATU MATRIKS INTERVAL DALAM ALJABAR MAX-PLUS

ALGORITMA MENENTUKAN HIMPUNAN TERBESAR DARI SUATU MATRIKS INTERVAL DALAM ALJABAR MAX-PLUS LGORITM MENENTUKN HIMPUNN TERBESR DRI SUTU MTRIKS INTERVL DLM LJBR MX-PLUS Rata Novtasar Program Stud Matematka FMIP UNDIP JlProfSoedarto SH Semarag 575 bstract Ths research dscussed about how to obtaed

Lebih terperinci

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teorema-teorema

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teorema-teorema II. LANDASAN TEORI Pada bab II aka dbahas pegerta-pegerta (defs) da teorea-teorea ag edukug utuk pebahasa pada bab IV. Pegerta (defs) da teorea tersebut dtulska sebaga berkut... Teorea Proeks Teorea proeks

Lebih terperinci

METODE PRIMAL AFFINE-SKALING UNTUK MASALAH PROGRAM LINEAR

METODE PRIMAL AFFINE-SKALING UNTUK MASALAH PROGRAM LINEAR PLGI ERUPKN INDKN IDK ERPUJI EODE PRIL FFINE-SKLING UNUK SLH PROGR LINER Srps Dajua utu emeuh Salah Satu Sarat emperoleh Gelar Sarjaa Sas Program Stud atemata Oleh: jeg Retojwat NI : 343 PROGR SUDI EIK

Lebih terperinci

BAB III TEORI PERRON-FROBENIUS

BAB III TEORI PERRON-FROBENIUS BB III : EORI PERRON-FROBENIUS 34 BB III EORI PERRON-FROBENIUS Pada Bab III aa dbahas megea eor Perro-Frobeus, yatu teor hasl otrbus dar seorag matematawa asal Germa, Osar Perro da Ferdad Georg Frobeus

Lebih terperinci

BAB 3 Interpolasi. 1. Beda Hingga

BAB 3 Interpolasi. 1. Beda Hingga BAB Iterpolas. Hgga. Iterpolas Lear da Kuadrat. Iterpolas -Maju da -Mudur Newto 4. Polo Iterpolas Terbag Newto 5. Polo Iterpolas Lagrage . Hgga Msala dbera suatu tabel la-la uers j j dar suatu ugs pada

Lebih terperinci

8.4 GENERATING FUNCTIONS

8.4 GENERATING FUNCTIONS 8.4 GEERATIG FUCTIOS Fugs pembagt Fugs pembagt dguaa utu merepresetasa barsa secara efse dega megodea usur barsa sebaga oefse deret pagat dalam varabel. Fugs pembagt dapat dguaa utu: memecaha berbaga masalah

Lebih terperinci

Aproksimasi Terbaik dalam Ruang Metrik Konveks

Aproksimasi Terbaik dalam Ruang Metrik Konveks Aprosimasi Terbai dalam Ruag etri Koves Oleh : Suharsoo S Jurusa atematia FIPA Uiversitas Lampug Abstra asalah esistesi da etuggala aprosimasi terbai suatu titi dalam ruag berorm telah dipelajari oleh

Lebih terperinci

ANALISIS DISKRIMINAN (Kasus : Lebih dari 2 Kelompok)

ANALISIS DISKRIMINAN (Kasus : Lebih dari 2 Kelompok) ANALSS DSRNAN (asus : Lebh dar elompo) Hazmra Yozza Jur. atemata FPA Uad LOGO POP POP POP 4 : POP Uura sampel : Sampel telah detahu dar elompo maa berasal Terhadap masg-masg obe damat/duur p peubah POP

Lebih terperinci

BAB IX. STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik:

BAB IX. STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik: BAB IX. STATISTIKA Pegerta Statsta da Statst: Statsta adalah lmu pegetahua yag membahas metode-metode lmah tetag ara-ara pegumpula data, pegolaha, pegaalsa da peara esmpula. Statst adalah umpula data,

Lebih terperinci

PENAKSIR RANTAI RASIO-CUM-DUAL UNTUK RATA-RATA POPULASI PADA SAMPLING GANDA

PENAKSIR RANTAI RASIO-CUM-DUAL UNTUK RATA-RATA POPULASI PADA SAMPLING GANDA PEAKI ATAI AIO-CUM-DUAL UTUK ATA-ATA POPULAI PADA AMPLIG GADA Holla Maalu Bustam Haposa rat Mahasswa Program Matemata Dose Jurusa Matemata Faultas Matemata da Ilmu Pegetahua Alam Uverstas au Kampus Bawda

Lebih terperinci

STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik:

STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik: STATISTIKA Pegerta Statsta da Statst: Statsta adalah lmu pegetahua yag membahas metode-metode lmah tetag ara-ara pegumpula data, pegolaha, pegaalsa da peara esmpula. Statst adalah umpula data, blaga ataupu

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN MATRIKS TERREDUKSI REGULER DALAM ALJABAR MAX-PLUS INTERVAL

NILAI EIGEN DAN VEKTOR EIGEN MATRIKS TERREDUKSI REGULER DALAM ALJABAR MAX-PLUS INTERVAL NILAI EIGEN DAN VEKTOR EIGEN MATRIKS TERREDUKSI REGULER DALAM ALJABAR MAX-PLUS INTERVAL A-12 Sswato 1, Ar Suparwato 2, M Ady Rudhto 3 1 Mahasswa S3 Matematka FMIPA UGM da Staff Pegajar FMIPA UNS Surakarta,

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam proses penelitian untuk menganalisis aproksimasi fungsi dengan metode

II. TINJAUAN PUSTAKA. Dalam proses penelitian untuk menganalisis aproksimasi fungsi dengan metode II. TINJAUAN PUSTAKA Dalam proses peelta utuk megaalss aproksmas fugs dega metode mmum orm pada ruag hlbert C[ab] (Stud kasus: fugs rasoal) peuls megguaka defs teorema da kosep dasar sebaga berkut:.. Aproksmas

Lebih terperinci

SIFAT-SIFAT RADIKAL DARI SUATU SUBMODUL DARI MODUL PERKALIAN BEBAS. Saniagus Munendra 1) Hery Susanto 2)

SIFAT-SIFAT RADIKAL DARI SUATU SUBMODUL DARI MODUL PERKALIAN BEBAS. Saniagus Munendra 1) Hery Susanto 2) SIFAT-SIFAT RADIKAL DARI SUATU SUBMODUL DARI MODUL PERKALIAN BEBAS Saagu Muedra 1) Hery Suato 2) Abtra: Sfat-fat yag berlau pada radal uatu deal teryata tda emuaya berlau pada oep radal uatu ubmodul Raaee

Lebih terperinci

I adalah himpunan kotak terbatas dan tertutup yang berisi lebih dari satu

I adalah himpunan kotak terbatas dan tertutup yang berisi lebih dari satu METODE FUNGS QUAS-FED SATU ARAMETER UNTUK MENYEESAKAN MASAAH ROGRAM NTEGER TAK NEAR Ra Hardyat (M4) ABSTRAK Dalam kehdupa sehar-har serg djumpa masalah optmas yag membutuhka hasl teger Masalah tersebut

Lebih terperinci

IDEAL DALAM ALJABAR LINTASAN LEAVITT

IDEAL DALAM ALJABAR LINTASAN LEAVITT Delta-P: Jural Matematka da Peddka Matematka ISSN 289-855X Vol., No. 2, Oktober 22 IDAL DALAM ALJABAR LINTASAN LAVITT Ida Kura Walyat Program Stud Peddka Matematka Jurusa Peddka MIPA FKIP Uverstas Kharu

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Aalss Regres Perubaha la suatu varabel tda selalu terjad dega sedrya amu perubaha la varabel tu dapat pula dsebaba oleh berubahya varabel la yag berhubuga dega varabel tersebut. Utu

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel BAB I PENDAHULUAN 1.1 Statstka Deskrptf da Statstka Iferesal Dewasa d berbaga bdag lmu da kehdupa utuk memaham/megetahu sesuatu dperluka dat Sebaga cotoh utuk megetahu berapa bayak rakyat Idoesa yag memerluka

Lebih terperinci

SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA

SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA KELAS D(K) Malahayati Program Studi Matematia Faultas Sais da Teologi UIN Sua Kalijaga Yogyaarta e-mail: malahayati_01@yahoo.co.id ABSTRAK Himpua

Lebih terperinci

Edge Anti-Magic Total Labeling dari

Edge Anti-Magic Total Labeling dari Edge At-Magc Total Labelg dar Charul Imro da Suhud Wahyud Jurusa Matematka Isttut Tekolog Sepuluh Nopember Surabaya mro-ts@matematka.ts.ac.d, suhud@matematka.ts.ac.d C Abstract We wll fd edge at-magc total

Lebih terperinci

titik tengah kelas ke i k = banyaknya kelas

titik tengah kelas ke i k = banyaknya kelas STATISTIKA Bab 0 UKURAN PEMUSATAN DAN PENYEBARAN. Mea X. a. Data Tuggal... 3 b. Data Kelompo ( dstrbus frewes) f. f. f.... f. 3 3 f f f... f = f. f 3 Ket : tt tegah elas e = bayaya elas f frewes elas e

Lebih terperinci

Pelabelan Total Super Sisi Ajaib Pada Graf Caterpillar Teratur

Pelabelan Total Super Sisi Ajaib Pada Graf Caterpillar Teratur Jural Matemata Itegrat ISSN 4-4 Vol. 9 No. Otober 0 pp. -9 Pelabela Total Super Ss Ajab Pada Gra Caterpllar Teratur Trya St Rahmah Nursham Muta Nur Estr Program Stud Matemata Jurusa MIPA Faultas Sas da

Lebih terperinci

KODE SIKLIK (CYCLIC CODES)

KODE SIKLIK (CYCLIC CODES) Pegatar Teor Pegkodea (Codg Theory) KODE SIKLIK (CYCLIC CODES) Dose Pegampu : Al Sutjaa DISUSUN OLEH: Nama : M Zak Ryato Nm : /5679/PA/8944 Program Stud : Matematka JURUSAN MATEMATIKA FAKULTAS MATEMATIKA

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,

Lebih terperinci

Created by Simpo PDF Creator Pro (unregistered version)

Created by Simpo PDF Creator Pro (unregistered version) Created by Smpo PDF Creator Pro (uregstered verso) http://www.smpopdf.com Statst Bss : BAB V. UKURA PEYEBARA DATA.1 Peyebara Uura peyebara data adalah uura statst yag meggambara bagamaa berpecarya data

Lebih terperinci

KODE SIKLIK (CYCLIC CODES)

KODE SIKLIK (CYCLIC CODES) Codg Theory KODE SIKLIK (CYCLIC CODES) Muhamad Zak Ryato NIM: 2/56792/PA/8944 E-mal: zak@malugmacd http://zakmathwebd Dose Pembmbg: Drs Al Sutjaa, MSc Pedahulua Salah satu bahasa yag palg petg pada lear

Lebih terperinci

BAB III UKURAN PEMUSATAN DATA

BAB III UKURAN PEMUSATAN DATA BAB III UKURAN PEMUSATAN DATA A. Ukura Gejala Pusat Ukura pemusata adalah suatu ukura yag meujukka d maa suatu data memusat atau suatu kumpula pegamata memusat (megelompok). Ukura pemusata data adalah

Lebih terperinci

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas:

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas: ANALISIS REGRESI Pedahulua Aalss regres berkata dega stud megea ketergatuga satu peubah (peubah terkat) terhadap satu atau lebh peubah laya (peubah pejelas). Jka Y dumpamaka sebaga peubah terkat da X1,X,...,X

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab II ini, akan dijelaskan tentang teori yang dipakai dalam

BAB II LANDASAN TEORI. Pada bab II ini, akan dijelaskan tentang teori yang dipakai dalam BAB II LANDASAN TEORI Pada bab II, aa djelasa tetag teor yag dpaa dalam semvarogram asotrop. Sela tu juga aa dbahas megea teor peduug dalam melaua peasra aduga cadaga baust d daerah Mempawah Kalmata, dataraya

Lebih terperinci

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI BB 6 PRINSIP INKLUSI DN EKSKLUSI Pada baga aka ddskuska topk berkutya yatu eumeras yag damaka Prsp Iklus da Eksklus. Kosep dalam bab merupaka perluasa de dalam Dagram Ve beserta oepras rsa da gabuga, amu

Lebih terperinci

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah BAB III INEGRAL RIEMANN-SIELJES. Pedahulua Pada Bab, telah dsggug bahwa ukura meghtug merupaka salah satu pedekata utuk membetuk proses ttk. Berkata dega masalah perhtuga, ada hal meark yag perlu amat,

Lebih terperinci

ALJABAR LINTASAN LEAVITT SEMIPRIMA

ALJABAR LINTASAN LEAVITT SEMIPRIMA ALJABAR LINTASAN LAVITT SMIPRIMA Ngrum Astrawat Program Stud Tekka, Akadem Martm Yogyakarta astramath@gmal.com ABSTRA. Suatu graf dapat drepresetaska sebaga aljabar ltasa da jka graf tersebut dperluas

Lebih terperinci

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

II. LANDASAN TEORI. Wallpole (1995), mendefinisikan data kategori sebagai data yang diklasifikasikan

II. LANDASAN TEORI. Wallpole (1995), mendefinisikan data kategori sebagai data yang diklasifikasikan II. LANDASAN TEORI.1. Data Kategor Wallpole (1995, medefsa data ategor sebaga data yag dlasfasa meurut rtera tertetu. Data ategor dsebut uga data ometr atau data yag bua merupaa hasl peguura. Data ategor

Lebih terperinci

BAB IX. STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik:

BAB IX. STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik: BAB IX. STATISTIKA Pegerta Statsta da Statst: Statsta adalah lmu pegetahua yag membahas metode-metode lmah tetag ara-ara pegumpula data, pegolaha, pegaalsa da peara esmpula. Statst adalah umpula data,

Lebih terperinci

STATISTIKA ELEMENTER

STATISTIKA ELEMENTER STATISTIKA ELEMENTER Statsta Apa tu statsta? Apa beda statsta dega statst? Populas? Sampel? Parameter? Sala Peguura: Nomal Ordal 3 Iterval 4 Raso Bagamaa r-r eempat sala d atas? Bera masg-masg otoh sala

Lebih terperinci

PELABELAN GRACEFUL PADA DIGRAF LINTASAN DAN DIGRAF BIPARTIT LENGKAP

PELABELAN GRACEFUL PADA DIGRAF LINTASAN DAN DIGRAF BIPARTIT LENGKAP PELABELAN GRACEFUL PADA DIGRAF LINTASAN DAN DIGRAF BIPARTIT LENGKAP Lusa Tr Lstyowat Krstaa Waya M Fatekurohma Jurusa Matematka FMIPA Uerstas Jember e-mal: krstaa_waya@yahoocom da m_fatkur@yahoocom Abstract:

Lebih terperinci

Kajian Hubungan Koefisien Korelasi Pearson (r), Spearman-rho (ρ), Kendall-Tau (τ), Gamma (G), dan Somers ( d

Kajian Hubungan Koefisien Korelasi Pearson (r), Spearman-rho (ρ), Kendall-Tau (τ), Gamma (G), dan Somers ( d Jural Grade Vol4 No Jul 008 : 37-38 Kaja Hubuga Koefse Korelas Pearso (r), Spearma-rho (ρ), Kedall-Tau (τ), Gamma (G), da Somers ( d yx ) Sgt Nugroho, Syahrul Abar, da Res Vusvtasar Jurusa Matemata, Faultas

Lebih terperinci

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar (pengertian) yang akan digunakan dalam. pembahasan penelitian. 2.

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar (pengertian) yang akan digunakan dalam. pembahasan penelitian. 2. II. LANDASAN TEORI Pada bab ii aka diberika beberapa kosep dasar (pegertia) yag aka diguaka dalam pembahasa peelitia 2.1 Ruag Vektor Defiisi 3.1.1 (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da

Lebih terperinci

ANALISIS REGRESI. Untuk mengetahui bentuk linear atau nonlinear dapat dilakukan dengan membuat scatterplot seperti berikut : Gambar.

ANALISIS REGRESI. Untuk mengetahui bentuk linear atau nonlinear dapat dilakukan dengan membuat scatterplot seperti berikut : Gambar. ANALISIS REGRESI Berdasara betu eleara data, model regres dapat dlasfasa mead dua macam yatu lear da o-lear. Ja pola data lear maa dguaa pemodela lear. Begtu uga sebalya apabla pola data tda lear maa dguaa

Lebih terperinci

BAB II KAJIAN PUSTAKA. Aljabar Max-Plus adalah himpunan { } himpunan semua bilangan real yang dilengkapi dengan operasi

BAB II KAJIAN PUSTAKA. Aljabar Max-Plus adalah himpunan { } himpunan semua bilangan real yang dilengkapi dengan operasi BAB II KAJIAN PUSTAKA A. Aljabar Max-Plus 1. Pegerta Aljabar Max-Plus Aljabar Max-Plus adalah hmpua { } dega hmpua semua blaga real yag dlegkap dega operas maksmum, dotaska dega da operas pejumlaha yag

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

Analisa Probabilistik Algoritma Routing pada Jaringan Hypercube

Analisa Probabilistik Algoritma Routing pada Jaringan Hypercube Aalsa Probablst Algortma Routg pada Jarga ypercube Zuherma Rustam Jurusa Matemata Uverstas Idoesa Depo 644. E-mal : rustam@maara.cso.u.ac.d Abstra Algortma routg pada suatu arga teroes suatu measme utu

Lebih terperinci

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 11-19, Aprl 004, ISSN : 1410-8518 TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM Sudaro Jurusa Matematka FMIPA UNDIP Abstrak Sstem yag dbetuk

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA Beberapa teor yag dperlua utu meduug pembahasa dataraya adalah varabel radom, regres lear bergada, metode uadrat terecl (MKT), peguja asums aalss regres, pecla (outler), regres robust,

Lebih terperinci

INTEGRAL LEBESGUE PADA FUNGSI TERBATAS SKRIPSI

INTEGRAL LEBESGUE PADA FUNGSI TERBATAS SKRIPSI INTGRAL LBSGU PADA FUNGSI TRBATAS SKRIPSI Dajuka Kepada Fakultas Matematka da Ilmu Pegetahua Alam Uverstas Neger Yogyakarta utuk memeuh sebaga persyarata gua memperoleh gelar Sarjaa Sas Dsusu Oleh : Fauzah

Lebih terperinci

b) Untuk data berfrekuensi fixi Data (Xi)

b) Untuk data berfrekuensi fixi Data (Xi) B. Meghtug ukura pemusata, ukura letak da ukura peyebara data serta peafsraya A. Ukura Pemusata Data Msalka kumpula data berkut meujukka hasl pegukura tgg bada dar orag sswa. 0 cm 30 cm 5 cm 5 cm 35 cm

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

HUBUNGAN MATRIKS AB DAN BA PADA STRUKTUR JORDAN NILPOTEN

HUBUNGAN MATRIKS AB DAN BA PADA STRUKTUR JORDAN NILPOTEN HUBUNGAN ARKS AB DAN BA ADA SRUKUR ORDAN NLOEN Sodag uraasar aaha (sodag@ub-ut.ac.d) UB-U eda Elva Herawaty FA ateata Uverstas Suatera Utara ABSRAC ths aer, we gve aother roof about the relatosh betwee

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

Prosiding SPMIPA. pp , 2006 ISBN : PERKEMBANGAN ESTIMATOR DENSITAS NON PARAMETRIK DAN APLIKASINYA

Prosiding SPMIPA. pp , 2006 ISBN : PERKEMBANGAN ESTIMATOR DENSITAS NON PARAMETRIK DAN APLIKASINYA Prosdg SPMIP. pp. 4-46, 6 ISBN : 979.74.47. PERKEMBNGN ESTIMTOR DENSITS NON PRMETRIK DN PLIKSINY Hasb Yas, Supart Staf PS Statsta, urusa Matemata, FMIP, UNDIP l. Prof. Sudarto, Kampus UNDIP Tembalag, Semarag

Lebih terperinci

UKURAN GEJALA PUSAT DAN UKURAN LETAK

UKURAN GEJALA PUSAT DAN UKURAN LETAK UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu

Lebih terperinci

TEOREMA CAYLEY-HAMILTON SEBAGAI SALAH SATU METODE DALAM PENGHITUNGAN FUNGSI MATRIKS

TEOREMA CAYLEY-HAMILTON SEBAGAI SALAH SATU METODE DALAM PENGHITUNGAN FUNGSI MATRIKS Jural Matematia Vol.6 No. November 6 [ 5 : ] TEOREMA CAYLEY-HAMILTON SEBAGAI SALAH SATU METODE DALAM PENGHITUNGAN FUNGSI MATRIKS Ooy Rohaei Jurusa Matematia, UNISBA, Jala Tamasari No, Badug,6, Idoesia

Lebih terperinci

ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF

ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF KELOMPOK A I GUSTI BAGUS HADI WIDHINUGRAHA (0860500) NI PUTU SINTYA DEWI (0860507) LUH GEDE PUTRI SUARDANI (0860508) I PUTU INDRA MAHENDRA PRIYADI (0860500)

Lebih terperinci

BAB III PERSAMAAN PANAS DIMENSI SATU

BAB III PERSAMAAN PANAS DIMENSI SATU BAB III PERSAMAAN PANAS DIMENSI SAU Pada baga sebelumya, kta telah membahas peerapa metoda Ruge-Kutta orde 4 utuk meyelesaka masalah la awal dar persamaa dferesal basa orde. Pada bab, kta aka melakuka

Lebih terperinci

III. METODOLOGI PENELITIAN

III. METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN 3.. Watu da Temat Peelta Peelta srs dlaua d Jurusa Matemata Faultas Matemata da Ilmu Pegetahua Alam Uverstas Lamug ada tahu aadem 2009/200. 3.2. Metode Peelta Secara umum, elasaaa

Lebih terperinci

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar

Lebih terperinci

Laporan Penelitian. Analisis Ketunggalan Polinomial Interpolasi untuk Aproksimasi Fungsi

Laporan Penelitian. Analisis Ketunggalan Polinomial Interpolasi untuk Aproksimasi Fungsi Lapora Peelta Aalss Ketuggala Polomal Iterpolas utu Aprosmas Fugs Peelt: Drs. Sahd, MSc. Jurusa Pedda Matemata Faultas Matemata da Ilmu Pebetahua Alam Uverstas eger Yogyaarta ============================================

Lebih terperinci

TEOREMA TITIK TETAP BANACH. Skripsi. Diajukan untuk Memenuhi Salah satu Syarat. Memperoleh Gelar Sarjana Matematika. Program Studi Matematika

TEOREMA TITIK TETAP BANACH. Skripsi. Diajukan untuk Memenuhi Salah satu Syarat. Memperoleh Gelar Sarjana Matematika. Program Studi Matematika TEOREMA TITIK TETAP BANACH Skrps Dajuka utuk Memeuh Salah satu Syarat Memperoleh Gelar Sarjaa Matematka Program Stud Matematka Oleh: Wdaryata Ctra Nursata NIM : 348 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA

Lebih terperinci