LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal)

Ukuran: px
Mulai penontonan dengan halaman:

Download "LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal)"

Transkripsi

1 LANGKAH-LANGKAH UJI HIPOTESIS DENGAN (Utuk Data Nomal). Merumuska hpotess (termasuk rumusa hpotess statstk). Data hasl peelta duat dalam etuk tael slag (tael frekues oservas) 3. Meetuka krtera uj atau tael. 4. Meghtug la oservas ( o), utuk dperluka tael frekues harapa (asums Ho dterma) 5. Memadgka la o dega t 6. Krtera: Jka o > t ; maka Ho dtolak Jka o t ; maka Ho dterma 7. Kesmpula Rumus: ( fo fh fh ) (Catata: Jka data eretuk terval, maka harus duat kategork leh dulu.) Cotoh: = jes kelam; = tgkat peddka Apakah ada huuga atara jes kelam dega tgkat peddka? Peguja:. Hpotess: H : 0 (ada huuga atara jes kelam dega tgkat peddka) H o : = 0 (tdak ada huuga atara jes kelam dega tgkat peddka). Tael slag: Tgkat Jes Kelam Peddka Lak-lak perempua Jumlah Redah Sedag Tgg Jumlah

2 3. t dmaa; d = ( )(k ) = (3 )( ) = t (0,05; ) = 5,99 4. Frekues harapa (dmaa raso peradga lak-lak : perempua = 3 : ) Lak-lak: perempua: 3/5 60 = 96 /5 60 = 64 3/5 70 = 0 /5 70 = 68 3/5 70 = 0 /5 70 = 68 Tgkat Jes Kelam Peddka Lak-lak perempua Jumlah Redah Sedag Tgg Jumlah Guakarumus: (80 96) (80 64) (00 0) (70 68) (0 0) (50 68) o o = 4,7 5. o = 4,7 > t (0,05; ) = 5,99 erart Ho dtolak 6. Kesmpula: Ada huuga atara jes kelam dega tgkat peddka 7. Koefse kotges = koefse asosas o o 4,9 54,9 0,7 = 0,7 = 0,09 0,03 Jad tgkat peddka dapat dtetuka oleh jes kelam varasa haa 3%

3 LANGKAH-LANGKAH UJI HIPOTESIS DENGAN (Utuk Data Ordal). Rumuska hpotess. Data dalam etuk tael slag 3. Meetuka statstk uj (Z t ) 4. Meghtug Gamma: N s = Jumlah hasl kal pasaga ag Ns Nd G Ns Nd kosste N d = Jumlah hasl kal pasaga ag tdak kosste 5. Trasformas Z: Ns Nd o ( G ) N( G ) 6. Badgka Zo da Z t 7. Krtera: Zo > Z t ; maka Ho dtolak Zo Z t ; maka Ho dterma 8. Kesmpula Cotoh: = status sosal ekoom; = tgkat peddka Apakah ada huuga postf atara status sosal ekoom dega tgkat peddka? (Huuga postf arta: semak tgg tgkat status sosal ekoom maka tgkat peddkaa juga harus semak tgg) Peguja:. Ho: = 0 (tdak ada huuga atara status sosal ekoom dega tgkat peddka) H : > 0 (ada huuga postf atara status sosal ekoom dega tgkat peddka). Tael slag:

4 Tgkat Status sosal ekoom Peddka Redah Sedag Tgg Jumlah Redah Sedag Tgg Jumlah Z t ( = 0,05) Z t =,645 (Luas kurva 0,5 0,05 = 0,450 terletak pada la z =,645) 4. Meghtug Gamma: kosste; jka status sosal ekoom redah maka tgkat peddka juga redah da sealka jka status sosal ekoom tgg maka tgkat peddka juga tgg. tdak kosste; jka status sosal ekoom redah tap tgkat peddka tgg da sealka jka status sosal ekoom tgg tap tgkat peddka redah. N s = 80 ( ) + 80 ( ) + 70 ( ) + 60 (40) = 3.00 N d = 40 ( ) + 80 ( ) + 70 ( ) + 60 (30) = G , Z o ( 0, 0). =, 500( 0, ) 6. Zo =, > Z t =,645 erart Ho dtolak 7. Kesmpula: Terdapat huuga postf atara status sosal ekoom dega tgkat peddka 8. G = 0, = 0,04 00% = 4% Varas tgkat peddka dapat dtetuka oleh status sosal ekoom haa 4%

5 REGRESI LINIER SEDERHANA Persamaa regres sa dguaka jka da erkorelas. Model Regres: Y Y = + X + Fugs Taksra: a = tg θ 0 Ŷ = a + Persamaa regres tertetu jka la a da dketahu. Utuk meghtug la a da dperluka pasaga data (, ) ag ddapat dar peelta.. Rumus Regres: a Dmaa:. X X X X Y Y Y Y. Kemuda htug la ΣY, ΣY, Σ, ΣX, ΣX, Σ, ΣXY, Σ. Guaka rumus regres utuk mecar la a da, sehgga aka ddapat fugs taksra. 3. Seelum fugs taksra dguaka, terleh dahulu melakuka Uj Keerarta da Uj Kelera dega ANAVA.

6 4. Seelum memuat tael ANAVA, data X harus durutka dar ag terkecl sampa teresar. Data ag memlk la ag sama, djadka dalam satu kelompok (k). 5. Buat tael ANAVA dega terleh dahulu meetuka sumer varas, atu: Total, Regres (a), Regres (/a), Ssa, Tua cocok, da Galat. Setap sumer varas dtetuka la Jumlah Kuadrat (JK) da derajat eas (d). Kemuda meghtug la Rata-rata Jumlah Kuadrat (RJK) Rumus JK da RJK: JK ( T ) JK ( G) JK ( a) JK ( / a). JK(S) = JK (T) JK (a) JK (/a) JK (Tc)= JK (S) JK (G) RJK = JK / d k X X Rumus d: d (T) = d (a) = d (/a)= d (S) = d (Tc) = k d (G) = k 6. Tetuka la F htug (F o ) dega rumus: F o ( / a) RJK ( / a) RJK ( S) da F o ( Tc) RJK ( Tc) RJK ( G) 7. Tetuka la F tael (,k; ), dega megguaka: F t (/a) dmaa: d Reg (/a) kolom, da d ssa ars F t (Tc) dmaa: d Tua cocok kolom, da d galat ars 8. Badgka la F htug dega la F tael. Jka F o (/a) > F t maka Ho dtolak, erart regres sgfka Jka F o (/a) < F t maka Ho dterma, erart regres tdak sgfka Jka F o (Tc) > F t (ttk-ttk pada dagram semak mejauh gars regres), erart regres tdak ler Jka F o (Tc) < F t (ttk-ttk pada dagram semak medekat gars regres), erart regres ler. 9. Meghtug koefse korelas dega rumus: R.

7 0. Tetuka la t htug: t o R da la t tael t(d;) R. Badgka la t htug da t tael Jka t o > t t maka Ho dtolak, erart Koefse korelas sgfka (ada huuga postf atara da dalam populas). Jka t o < t t maka Ho dterma, erart koefse korelas tdak sgfka (tdak ada huuga atara da dalam populas).. Htug la koefse determas: R 00% Cotoh:. Meetuka Fugs taksra dar data X da Y erkut: X Y X Y XY Jumlah Y ( ) (79) ,5

8 X ( ) (85) 69 6, 9 ( X )( Y) XY 998 (85)(79),75,75 6,9,9 Y a X (,9) 3,5 (,9)(7,08) 4, Fugs Taksra: Yˆ 4,, 9X. Megurutka data X dar la ag terkecl da meetuka kelompok: X Y Kelompok Uj lertas da sgfka dega ANAVA Meghtug la-la Jumlah Kuadrat (JK), derajat eas (d), da Rata-rata Jumlah Kuadrat (RJK) pada sumer varas: JK ( T ) JK ( a) 6486,75 JK ( / a). (,9).(,75) 8,05 JK(S) = JK (T) JK (a) JK (/a) = ,75 8,05 = 56,9 k JK ( G) X X , ,67 4 3

9 JK (Tc) = JK (S) JK (G) = 56,9 39,67 = 6,5 RJK (/a) = JK (/a) / d = 8,05 / = 8,05 RJK (S) = JK (S) / d = 56,9 / 0 = 5,69 RJK (Tc) = JK (Tc) / d = 6,5 / 3 = 5,5 RJK (G) = JK (G) / d = 39,67 / 7 = 5,67 d (T) = = d (a) = d (/a) = d (S) = = = 0 d (Tc) = k = 5 = 3 d (G) = k = 5 = 7 4. Meghtug la F o : RJK( / a) 8,06 RJK( Tc) 5,5 F o ( / a) 4,99 F o ( Tc) 0, 98 RJK( S) 5,69 RJK( G) 5,67 5. Tetuka la F tael dega = 0,05 da = 0,0 F(0, ; 0.05) = 4,96 F(0,; 0.0) = 0,04 F(7,3; 0.05) = 4,35 F(7,3; 0.0) = 8,45 Sumer Varas JK d RJK F os F tael Total 657,00 = 0,05 = 0,0 Regres (a) Regres (/a) 6486,75 8,06-8,06-4,99-4,96-0,04 Ssa 56,9 0 5,69 Tua cocok Galat 6,5 39, ,5 5,67 0,98 4,35 8,45 6. Kesmpula: F o (/a) = 4,99 > F t = 4,96 erart Regres sgfka. F o (Tc) = 0,98 < F t = 4,35 erart Regres ler.,75 7. Meghtug koefse korelas: R 0, 58. (6,9).(84,5)

10 R 0, Meetuka la t htug: t o, 5 R 0,58 Meetuka la t tael: t (0; 0.05) =,8 9. Kesmpula: t o =,5 > t t =,8 maka Ho dtolak erart Koefse korelas sgfka (ada huuga postf atara X da Y dalam populas) 0. Koefse determas = 0,58 00% = 33,6% Kesmpula: Nla Y dtetuka oleh la X dega varas seesar 33,6 % Utuk megaml kesmpula, sa juga lagsug megguaka Uj Korelas. Tap kta perlu melakuka Uj Regres, karea:. Rumus R haa sa dguaka jka korelasa ler, jka tdak. ler maka persamaa tdak sa dguaka utuk megaml kesmpula.. Fugs regres dguaka utuk mempredks la Y. Galat taksra, G = ˆ, harus ormal Tua cocok adalah pempaga dar galat taksra. Tc = 0 Ttk-ttk (la Ŷ) melekat pada gars.

11 REGRESI MULTIPEL DENGAN PREDIKTOR Model: o Fugs taksra: Yˆ o X X o,, ddapat dar pasaga data (X, X, Y) ag dperoleh dar peelta. Meetuka la : ΣY = ΣX = ΣX = ΣX Y = ΣX Y = ΣX X = ΣY = ΣX = ΣX = Σ = Σ = Σ = da ddapat dar formula smulta seaga erkut: Mecar la o : o Y X X Uj sgfka persamaa regres dega ANAVA: Sumer Varas: Total, Regres, da Ssa Meghtug la Jumlah Kuadrat (JK) dar sumer varas: JK (T) = Σ JK (Reg) = + JK (S) = Σ JK (Reg) Meghtug derajat eas (d) sumer varas: d (T) = d (Reg) = k d (S) = k Meghtug Rata-rata Jumlah Kuadrat (RJK) sumer varas: RJK (Reg) = JK(Re g) d(re g) RJK (S) = JK( S) d( S) = aaka pegamata k = aaka varael eas (X)

12 Meghtug F oservas: F os = RJK(Re g) RJK( S) Meetuka Koefse Korelas Multpel (R. ) da Koefse determas (R. ) R. JK(Re g) Cotoh: X X Y Tetukalah: a) Fugs taksra ) Uj sgfka dega ANAVA c) Koefse korelas multpel da koefse determas

13 Peelesaa: a) Mecar Fugs taksra X X Y X X Y X Y X Y X X Jumlah Y ( Y ) ( X) (79) 657 (56) 5636 X ( X ) (85) 69 X 84,5 74,667 6,9 ( X )( Y) (56)(79) XY ( X )( Y) (85)(79) X Y 998,75 ( X)( X ) (56)(85) XX 85 38,667 Persamaa Smulta: 74, ,667 = 7 38, ,9 =,75

14 Meetuka la o,, da : 7 38,667,75 6,9 = 74,667 38,667 38,667 6,9 38, ,9 0,78 74, ,667,75 = 74,667 38,667 38,667 6,9 75,03 460,9-0,4965 o Y X X Y X X = (0,78) ( 0,4965) = 0,8 o Fugs Taksra Persamaa Regres: Ŷ = 0,8 + 0,78 X 0,4965 X ) Uj sgfka Persamaa Regres dega ANAVA: Meetuka la Jumlah Kuadrat (JK) masg-masg sumer varas: JK (T) = Σ = 84,5 JK (Reg) = + = (0,78)(7) + (- 0,4965)(,75) = 80,46 JK (S) = Σ JK (Reg) = 84,5 80,46 =3,789 Meetuka derajat eas (d) masg-masg sumer varas: d (T) = = = d (Reg) = k = d (S) = k = = 9 Meghtug la RJK masg-masg sumer varas: RJK (Reg) = JK (Re g) = d(re g) 80,46 = 40,3 RJK (S) = JK ( S) d( S) = 3,789 9 = 0,4

15 Meghtug la F oservas: F os = RJK (Re g) RJK ( S) = Memuat tael ANAVA: Sumer Varas 40,3 0,4 = 95,558 JK d RJK F os F tael = 0,05 = 0,0 Regres 80,46 40,3 95,558 4,6 8,0 Ssa 3, ,4 Total 84,5 F os = 95,558 > F tael = 8,0 Berart: Regres Multpel sagat sgfka c) Koefse Korelas Multpel: R. JK(Re g) = 80,46 84,5 = 0,977 Koefse determas: R. = (0,977) = 0,955 X 00% = 95,5 % Arta: 95,5 % Varas Y dapat dtetuka (djelaska) oleh X da X secara ersama-sama Koefse korelas sederhaa atara X da Y: r Σ Σ. 7 (74,667)( 84,5) 0,9645 Koefse korelas sederhaa atara X da Y: r Σ Σ.Σ,75 0,576 (6,9)(84,5) Koefse korelas sederhaa atara X da X : r Σ Σ.Σ 38,667 (74,667)( 6,9) 0,7

16 UJI KEBERARTIAN KOEFISIEN REGRESI da t o RJK( S) kesalaha aku.( R ) RJK(S) 0,4 0,005 0, 07.( R ) (74,667)( 0,7 ) RJK(S) 0,4 0,05 0, 4.( R ) (6,9)( 0,7 ) t o 0,78 = 0, 99 0,07 t 0,4695 o =, 096 0,4 t t (0,05;9) =,83 da t t (0,0;9) =,8 t o =,66 > t t (0,05) =,83 Koefse korelas sagat sgfka t o =,77 < t t (0,05) =,83 Koefse korelas tdak sgfka Kesmpula: Jka pegaruh X dkotrol (msala dsamaka), maka huuga X dega Y sgfka Jka pegaruh X dkotrol, maka huuga X dega Y tdak sgfka

BAB 5. ANALISIS REGRESI DAN KORELASI

BAB 5. ANALISIS REGRESI DAN KORELASI BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh

Lebih terperinci

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

Analisis Korelasi dan Regresi

Analisis Korelasi dan Regresi Aalss Korelas da Regres Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uad LOGO www.themegaller.com LOGO Data varat Data dega dua varael Terhadap satu pegamata dlakuka pegukurapegamata terhadap varael

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi dalam statistika adalah salah satu metode untuk menentukan tingkat

BAB 2 LANDASAN TEORI. Regresi dalam statistika adalah salah satu metode untuk menentukan tingkat 0 BAB LANDASAN TEORI. Pegerta Regres Regres dalam statstka adalah salah satu metode utuk meetuka tgkat pegaruh suatu varael terhadap varael yag la. Varael yag pertama dseut dega ermacam-macam stlah: varael

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 0 BAB LANDASAN TEORI. Pegerta Regres da Korelas.. Pegerta Regres Regres adalah suatu metode statstka yag ergua utuk memerksa atau memodelka huuga datara varael-varael. Varael-varael terseut dega megguaka

Lebih terperinci

REGRESI & KORELASI LINIER SEDERHANA

REGRESI & KORELASI LINIER SEDERHANA 1. Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable)

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,

Lebih terperinci

REGRESI & KORELASI LINIER SEDERHANA

REGRESI & KORELASI LINIER SEDERHANA . Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling BAB LANDASAN TEORI Kosep Dasar Aalss Regres Aalss regres adalah suatu proses memperkraka secara sstemats tetag apa yag palg mugk terjad dmasa yag aka datag berdasarka formas yag sekarag dmlk agar memperkecl

Lebih terperinci

Uji Statistika yangb digunakan dikaitan dengan jenis data

Uji Statistika yangb digunakan dikaitan dengan jenis data Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas

Lebih terperinci

Regresi & Korelasi Linier Sederhana

Regresi & Korelasi Linier Sederhana Regres & Korelas Ler Sederhaa. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar la peubah

Lebih terperinci

Pendahuluan. Relasi Antar Variabel. Relasi Antar Variabel. Relasi Antar Variabel 4/6/2015. Oleh : Fauzan Amin

Pendahuluan. Relasi Antar Variabel. Relasi Antar Variabel. Relasi Antar Variabel 4/6/2015. Oleh : Fauzan Amin 4/6/015 Oleh : Fauza Am Se, 06 Aprl 015 GDL 11 (07.30-10.50) Pedahulua Aalsa regres dguaka utuk mempelajar da megukur hubuga statstk ag terjad atara dua atau lebh varbel. Dalam regres sederhaa dkaj dua

Lebih terperinci

II. TINJAUAN PUSTAKA. variabel. Dalam regresi sederhana dikaji dua variabel, sedangkan dalam regresi

II. TINJAUAN PUSTAKA. variabel. Dalam regresi sederhana dikaji dua variabel, sedangkan dalam regresi 3 II. TINJAUAN PUSTAKA. Aalss Regres Aalss regres merupaka salah satu metode statstka ag dguaka utuk mempelajar da megukur huuga statstk ag terjad atara dua atau leh varael. Dalam regres sederhaa dkaj

Lebih terperinci

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( )

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( ) Regres & Korelas Ler Sederhaa 1. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk yag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Pegerta Regres Regres dalam statstka adalah salah satu metode utuk meetuka tgkat pegaruh suatu varael terhadap varael ag la. Varael ag pertama dseut dega ermacam-macam stlah: varael

Lebih terperinci

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka

Lebih terperinci

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS = 1 + + + + k k + u PowerPot Sldes baa Rohmaa Educato Uverst of Idoesa 007 Laboratorum Ekoom & Koperas Publshg Jl. Dr. Setabud

Lebih terperinci

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua

Lebih terperinci

Regresi Linier Sederhana Definisi Pengaruh

Regresi Linier Sederhana Definisi Pengaruh Regres Ler Sederhaa Dah Idra Baga Bostatstka da Kepeduduka Fakultas Kesehata Masyarakat Uverstas Arlagga Defs Pegaruh Jka terdapat varabel, msalka da yag data-dataya dplot sepert gambar dbawah 3 Defs Pegaruh

Lebih terperinci

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar

Lebih terperinci

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel BAB LANDASAN TEORI.1 Pegerta Regres Regres dalam statstka adalah salah satu metode utuk meetuka tgkat pegaruh suatu varabel terhadap varabel yag la. Varabel yag pertama dsebut dega bermacam-macam stlah:

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. regresi berkenaan dengan studi ketergantungan antara dua atau lebih variabel yaitu

BAB 2 TINJAUAN TEORITIS. regresi berkenaan dengan studi ketergantungan antara dua atau lebih variabel yaitu BAB TINJAUAN TEORITIS. Pegerta Aalsa Regres Istlah regres pertama kal dperkealka oleh Fracs Galto. Meurutya, aalss regres berkeaa dega stud ketergatuga atara dua atau lebh varabel yatu varabel yag meeragka

Lebih terperinci

8. MENGANALISIS HASIL EVALUASI

8. MENGANALISIS HASIL EVALUASI 8. MENGANALISIS HASIL EVALUASI Tujua : Mampu megaalsa tgkat kesukara hasl evaluas utuk megkatka hasl proses pembelajara Kegata megaals hasl evaluas merupaka upaya utuk memperbak programprogram pembelajara

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA. Peahulua Dalam bab aka membahas megea teor-teor tetag statstka oparametrk, korelas parsal tau Keall a korelas parsal meurut Ebuh GU a Oeka ICA.. Statstka Noparametrk Istlah oparametrk

Lebih terperinci

Metode Statistika Pertemuan XII. Analisis Korelasi dan Regresi

Metode Statistika Pertemuan XII. Analisis Korelasi dan Regresi Metode Statstka Pertemua XII Aalss Korelas da Regres Aalss Hubuga Jes/tpe hubuga Ukura Keterkata Skala pegukura varabel Pemodela Keterkata Relatoshp vs Causal Relatoshp Tdak semua hubuga (relatoshp) berupa

Lebih terperinci

S2 MP Oleh ; N. Setyaningsih

S2 MP Oleh ; N. Setyaningsih S2 MP Oleh ; N. Setyagsh MATERI PERTEMUAN 1-3 (1)Pedahulua pera statstka dalam peelta ; (2)Peyaja data : dalam betuk (a) tabel da (b) dagram; (3) ukura tedes setaral da ukura peympaga (4)dstrbus ormal

Lebih terperinci

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES * PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Pedahulua Sebelum membahas megea prosedur peguja hpotess, terlebh dahulu aka djelaska beberapa teor da metode yag meujag utuk mempermudah pembahasa. Adapu teor da metode tersebut

Lebih terperinci

Penarikan Contoh Acak Sederhana (Simple Random Sampling)

Penarikan Contoh Acak Sederhana (Simple Random Sampling) Pearka Cotoh Acak Sederhaa (Smple Radom Samplg) Defs Jka sebuah cotoh berukura dambl dar suatu populas sedemka rupa sehgga setap cotoh berukura ag mugk memlk peluag sama utuk terambl, maka prosedur tu

Lebih terperinci

STATISTICAL STUDENT OF IST AKPRIND

STATISTICAL STUDENT OF IST AKPRIND STATISTICAL STUDNT OF IST AKPRIND Sekretarat : Jl. Bmasakt No:3 Pegok Yogakarta 55 Tlp. 74 54454 -mal : statstkasta@ahoo.com Blog : http://sssta.wordpress.com/ Aalss Regres Lses Dokume: Coprght sssta.wordpress.com

Lebih terperinci

UKURAN GEJALA PUSAT DAN UKURAN LETAK

UKURAN GEJALA PUSAT DAN UKURAN LETAK UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu

Lebih terperinci

3 Departemen Statistika FMIPA IPB

3 Departemen Statistika FMIPA IPB Supleme Respos Pertemua ANALISIS DATA KATEGORIK (STK51) Departeme Statstka FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referes Waktu U potess Tga Cotoh atau Lebh U Kruskal-Walls (aalss ragam satu-arah berdasarka

Lebih terperinci

REGRESI DAN KORELASI LINEAR SEDERHANA. Regresi Linear

REGRESI DAN KORELASI LINEAR SEDERHANA. Regresi Linear REGRESI DAN KORELASI LINEAR SEDERHANA Regres Lnear Tujuan Pembelajaran Menjelaskan regres dan korelas Menghtung dar persamaan regres dan standard error dar estmas-estmas untuk analss regres lner sederhana

Lebih terperinci

FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani

FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani FMDAM (2) Chartas Fbra Techque for Order Preferece by Smlarty to Ideal Soluto () ddasarka pada kosep dmaa alteratf terplh yag terbak tdak haya memlk jarak terpedek dar solus deal postf, amu juga memlk

Lebih terperinci

PRAKTIKUM 5 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel

PRAKTIKUM 5 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel Praktkum 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa

Lebih terperinci

PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel

PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel Praktkum 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa

Lebih terperinci

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS C. Pembelajara 3 1. Slabus N o STANDA R KOMPE TENSI KOMPE TENSI DASAR INDIKATOR MATERI TUGAS BUKTI BELAJAR KON TEN INDIKA TOR WAK TU SUM BER BELA JAR Meerap ka atura kosep statstka dalam pemecah a masalah

Lebih terperinci

b) Untuk data berfrekuensi fixi Data (Xi)

b) Untuk data berfrekuensi fixi Data (Xi) B. Meghtug ukura pemusata, ukura letak da ukura peyebara data serta peafsraya A. Ukura Pemusata Data Msalka kumpula data berkut meujukka hasl pegukura tgg bada dar orag sswa. 0 cm 30 cm 5 cm 5 cm 35 cm

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertan Regres Regres pertama kal dpergunakan sebaga konsep statstka oleh Sr Francs Galton (1822 1911). Belau memperkenalkan model peramalan, penaksran, atau pendugaan, yang

Lebih terperinci

INTERPOLASI INTERPOLASI LINIER INTERPOLASI KUADRATIK

INTERPOLASI INTERPOLASI LINIER INTERPOLASI KUADRATIK INTERPOASI INTERPOASI INIER INTERPOASI KUADRATIK INTERPOASI POINOMIA Dua ttk data : Gars Tga ttk data : Kuadratk g Empat ttk data :Polomal tgkat-3 Dketahu: ttk data ( y ) ( y ) ( y ) D ttk data :Polomal

Lebih terperinci

ANALISIS REGRESI. . Berdasarkan sample acak, persamaan regresi populasi (1) akan ditaksir, ini dilakukan dengan jalan menaksir parameter-parameter 1

ANALISIS REGRESI. . Berdasarkan sample acak, persamaan regresi populasi (1) akan ditaksir, ini dilakukan dengan jalan menaksir parameter-parameter 1 ANALII REGREI. PENDAHULUAN Jka kta memlk data yag terdr atas dua atau lebh varabel, adalah sewajarya utuk suatu cara bagamaa varabel-varabel tersebut berhubuga. Hubuga yag dperoleh pada umumya dyataka

Lebih terperinci

BAB 2 LANDASAN TEORI. Teori Galton berkembang menjadi analisis regresi yang dapat digunakan sebagai alat

BAB 2 LANDASAN TEORI. Teori Galton berkembang menjadi analisis regresi yang dapat digunakan sebagai alat BAB LANDASAN TEORI. 1 Analsa Regres Regres pertama kal dpergunakan sebaga konsep statstk pada tahun 1877 oleh Sr Francs Galton. Galton melakukan stud tentang kecenderungan tngg badan anak. Teor Galton

Lebih terperinci

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI BB 6 PRINSIP INKLUSI DN EKSKLUSI Pada baga aka ddskuska topk berkutya yatu eumeras yag damaka Prsp Iklus da Eksklus. Kosep dalam bab merupaka perluasa de dalam Dagram Ve beserta oepras rsa da gabuga, amu

Lebih terperinci

PROGRAM LINIEAR DENGAN METODE SIMPLEX

PROGRAM LINIEAR DENGAN METODE SIMPLEX POGAM LINIEA DENGAN METODE SIMPLEX A. TEKNIK PENYELESAIAN Betuk Soal Progra Lear Kedala utaa asalah rogra lear daat eretuk a atau a atau a. Kedala yag eretuk ertdaksaaa daoat duah ead ersaaa seaga erkut

Lebih terperinci

menyelesaikan permasalahan dalan penulisan.

menyelesaikan permasalahan dalan penulisan. BAB 5 : IMPLEMENTASI SISTEM Ba n mengurakan proses pengolahan data dengan program yang akan dgunakan yatu SPSS yang memantu dalam menyelesakan permasalahan dalan penulsan. BAB 6 : KESIMPULAN DAN SARAN

Lebih terperinci

Tabel Distribusi Frekuensi

Tabel Distribusi Frekuensi Tabel Dstrbus Frekues Tabel dstrbus frekues adalah susua data meurut kelas-kelas terval tertetu atau meurut kategor tertetu dalam sebuah daftar. Dar dstrbus frekues, dapat dperoleh keteraga atau gambara

Lebih terperinci

Analisis Regresi. Oleh : Dewi Rachmatin

Analisis Regresi. Oleh : Dewi Rachmatin Aalss Regres Oleh : Dew Rachmat Pedahulua Dalam peelta basaya dguaka suatu model atau hubuga fugsoal atara peubah. Dega model kta berusaha memaham, meeragka, megedalka da kemuda mempredkska kelakua sstem

Lebih terperinci

BAB 2 LANDASAN TEORI. Istilah regresi diperkenalkan oleh seorang yang bernama Francis Gulton dalam

BAB 2 LANDASAN TEORI. Istilah regresi diperkenalkan oleh seorang yang bernama Francis Gulton dalam BAB LANDASAN TEORI Pengertan Regres Istlah regres dperkenalkan oleh seorang yang ernama Francs Gulton dalam makalah erjudul Regresson Towerd Medacraty n Heredtary Stature Menurut hasl peneltan elau, meskpun

Lebih terperinci

UKURAN GEJALA PUSAT (UGP)

UKURAN GEJALA PUSAT (UGP) UKURAN GEJALA PUSAT (UGP) Pegerta: Rata-rata (average) alah suatu la yag mewakl suatu kelompok data. Nla dsebut juga ukura gejala pusat karea pada umumya mempuya kecederuga terletak d tegah-tegah da memusat

Lebih terperinci

BAB 1 STATISTIKA RINGKASAN MATERI

BAB 1 STATISTIKA RINGKASAN MATERI BAB STATISTIKA A RINGKASAN MATERI. Pegerta Data adalah kumpula keteraga-keteraga atau catata-catata megea suatu kejada, dapat berupa blaga, smbol, sat atau kategor. Masg-masg keteraga dar data dsebut datum.

Lebih terperinci

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut 3/9/202 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas

Lebih terperinci

MODUL ANALISIS REGRESI DAN KORELASI

MODUL ANALISIS REGRESI DAN KORELASI ANALISIS REGRESI DAN KORELASI MODUL 13 ANALISIS REGRESI DAN KORELASI Dalam kehdupa sehar-har, sergkal djumpa hubuga atara suatu varabel dega satu atau lebh varabel la. D dalam bdag pertaa sebaga cotoh,

Lebih terperinci

PENDITEKSIAN PENCILAN (OUTLIER) DAN RESIDUAL PADA REGRESI LINIER

PENDITEKSIAN PENCILAN (OUTLIER) DAN RESIDUAL PADA REGRESI LINIER PENDITEKSIAN PENCILAN (OUTLIER) DAN RESIDUAL PADA REGRESI LINIER Outler ad Resdual Detecto the Lear Regresso Iwa Sugkawa Jurusa Statstka Fakultas Sas da Tekolog, Uverstas Ba Nusatara Jakarta ABSTRACT Ths

Lebih terperinci

ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET

ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET Prosdg Semar Nasoal Peelta, Peddka da Peerapa MIPA Fakultas MIPA, Uverstas Neger Yogyakarta, 6 Me 9 ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET Sty Rachyay Pusat Pemafaata Sas Atarksa,

Lebih terperinci

Uji Modifikasi Peringkat Bertanda Wilcoxon Untuk Masalah Dua Sampel Berpasangan 1 Wili Solidayah 2 Siti Sunendiari 3 Lisnur Wachidah

Uji Modifikasi Peringkat Bertanda Wilcoxon Untuk Masalah Dua Sampel Berpasangan 1 Wili Solidayah 2 Siti Sunendiari 3 Lisnur Wachidah Prosdg Statstka ISSN 40-45 Uj Modfkas Pergkat Bertada Wlcoxo Utuk Masalah Dua Sampel Berpasaga 1 Wl Soldayah St Suedar 3 Lsur Wachdah 1, Statstka, Fakultas MIPA, Uverstas Islam Badug, Jl. Tamasar No. 1

Lebih terperinci

BAB V ANALISIS HIDROLOGI

BAB V ANALISIS HIDROLOGI ANALISIS HIDROLOGI 64 BAB V ANALISIS HIDROLOGI 5.. Tjaua Umum Utuk meetuka debt recaa, dapat dguaka beberapa metode atau cara. Metode yag dguaka sagat tergatug dar data yag terseda, data data tersebut

Lebih terperinci

Statistika Deskriptif

Statistika Deskriptif Statstka Deskrptf Statstka Deskrptf Statstka deskrptf (descrptve statstcs) berkata dega peerapa metode statstk utuk megumpulka, megolah, meyajka, da megaalss data kuattatf secara deskrptf. Statstka Deskrptf

Lebih terperinci

Pertemuan 3 Luas Daerah Bidang Datar, dan Volume Benda Padat dengan Metode Bidang Irisan Sejajar

Pertemuan 3 Luas Daerah Bidang Datar, dan Volume Benda Padat dengan Metode Bidang Irisan Sejajar ertemua 3 Luas Daerah Bdag Datar, da Volume Beda adat dega Metode Bdag Irsa Sejajar A. Luas Daerah Bdag Datar 1. Luas Daerah Bdag Datar Yag Datas Oleh Kura f, sumu X, Gars a da Gars DEFINISI: Msalka D

Lebih terperinci

REGRESI DAN INTERPOLASI

REGRESI DAN INTERPOLASI http://starto.sta.ugm.ac.d REGRESI DAN INTERPOLASI Curve Fttg Curve Fttg http://starto.sta.ugm.ac.d Acua Chapra, S.C., Caale R.P., 99, Numercal Methods or Egeers, d Ed., McGraw-Hll Book Co., New York.

Lebih terperinci

4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data

4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data //203 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas Ukura

Lebih terperinci

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara BAB LANDASAN TEORI Unverstas Sumatera Utara . Pengertan Regres Istlah regres pertama kal dperkenalkan oleh Francs Galtom. Menurut Galtom, analss regres erkenaan dengan stud ketergantungan dar satu varael

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB METODE PENELTAN 3.1 Tempat da Waktu Peelta Peelta dlaksaaka d areal/wlaah koses huta PT. Sarmeto Parakata Tmber, Kalmata Tegah pada bula Aprl sampa dega Me 007. 3. Baha da Alat Baha ag dguaka utuk

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 47 BAB III METODE PENELITIAN 3.. Metode Peelta 3... Desa Peelta Desa peelta adalah dega metode surve. Pemlha da pegguaa desa terkat dega tujua peelta, atu utuk megaalss pegaruh suatu varabel terhadap varabel

Lebih terperinci

Pemodelan Regresi Linier Menggunakan Metode Theil (Studi Kasus: Kompensasi Pegawai di Badan Kepegawaian Daerah Kota Samarinda)

Pemodelan Regresi Linier Menggunakan Metode Theil (Studi Kasus: Kompensasi Pegawai di Badan Kepegawaian Daerah Kota Samarinda) Jural EKSPONENSIAL Volume 4, Nomor 1, Me 2013 ISSN 2085-7829 Pemodela Regres Ler Megguaka Metode Thel (Stud Kasus: Kompesas Pegawa d Bada Kepegawaa Daerah Kota Samarda) Lear Regresso Modelg Wth Thel Method

Lebih terperinci

PEMODELAN STATISTIKA DENGAN TRANSFORMASI BOX COX

PEMODELAN STATISTIKA DENGAN TRANSFORMASI BOX COX JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 3, 8-7, Desemer 4, ISSN : 4-858 PEMODELAN STATISTIKA DENGAN TRANSFORMASI BO CO Dw Ispryat Staf Pegajar Jurusa Matematka Fakultas MIPA UNDIP Semarag Astrak Aalss

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Propinsi Gorontalo tahun pelajaran 2012/2013.

BAB III METODOLOGI PENELITIAN. Propinsi Gorontalo tahun pelajaran 2012/2013. BAB III METODOLOGI PENELITIAN 3.. Tempat da Waktu Peelta Peelta dlaksaaka d SMP Neger 3 Gorotalo kota Gorotalo Props Gorotalo tahu pelajara 0/03. D SMP Neger 3 Gorotalo memlk 6 romboga belajar yag terdr

Lebih terperinci

METODE PENELITIAN. Kota Bogor. Kecamatan Bogor Barat. Purposive. Kelurahan Cilendek Barat RW 05 N1= 113. Cluster random sampling.

METODE PENELITIAN. Kota Bogor. Kecamatan Bogor Barat. Purposive. Kelurahan Cilendek Barat RW 05 N1= 113. Cluster random sampling. METODE PENELITIAN Desa, Tempat da Waktu Peelta Peelta megguaka desa cross sectoal study. Lokas peelta d Kota Bogor. Pemlha lokas peelta secara purposve dega pertmbaga merupaka salah satu kecamata dega

Lebih terperinci

Dasar Ekonomi Teknik: Matematika Uang. Ekonomi Teknik TIP FTP UB

Dasar Ekonomi Teknik: Matematika Uang. Ekonomi Teknik TIP FTP UB Dasar Ekoom Tekk: Matematka Uag Ekoom Tekk TIP TP UB Bahasa lra Kas (Cash low Tme Value of Moey Buga Ekvales Cash low Tata alra uag masuk da keluar per perode waktu pada suatu perusahaa lra kas aka terjad

Lebih terperinci

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis STATISTIK Ukura Gejala Pusat Ukura Letak Ukura Smpaga, Dspers da Varas Mome, Kemrga, da Kurtoss Notas Varabel dyataka dega huruf besar Nla dar varabel dyataka dega huruf kecl basaya dtuls Tmes New Roma

Lebih terperinci

XI. ANALISIS REGRESI KORELASI

XI. ANALISIS REGRESI KORELASI I ANALISIS REGRESI KORELASI Aalss regres mempelajar betuk hubuga atara satu atau lebh peubah bebas dega satu peubah tak bebas dalam peelta peubah bebas basaya peubah yag dtetuka oelh peelt secara bebas

Lebih terperinci

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi STATISTIKA A. Des Umum. Pegerta statstk Statstk adalah kumpula akta yag berbetuk agka da dsusu dalam datar atau tabel yag meggambarka suatu persoala. Cotoh: statstk kurs dolar Amerka, statstk pertumbuha

Lebih terperinci

BAB III LANDASAN TEORI. Pengisian data hujan yang hilang dapat dilakukan dengan reciprocal method

BAB III LANDASAN TEORI. Pengisian data hujan yang hilang dapat dilakukan dengan reciprocal method BAB III LANDASAN TEORI 3.1 Perbaka Data Pegsa data huja yag hlag dapat dlakuka dega recprocal method P x 1 1 P L 1 L (3.1) Px = data stasu huja yag hlag P = data huja d stasu L = jarak ke stasu 3. Uj Kosstes

Lebih terperinci

BAB II LANDASAN TEORI. teori dan definisi mengenai variabel random, regresi linier, metode kuadrat

BAB II LANDASAN TEORI. teori dan definisi mengenai variabel random, regresi linier, metode kuadrat BAB II LANDASAN TEORI Sebaga pedukug dalam pembahasa selajutya, dperluka beberapa teor da defs megea varabel radom, regres ler, metode kuadrat terkecl, peguja asums aalss regres, outler, da regres robust.

Lebih terperinci

METODOLOGI PENELITIAN. pengaruh atau akibat dari suatu perlakuan atau treatment, dalam hal ini yaitu

METODOLOGI PENELITIAN. pengaruh atau akibat dari suatu perlakuan atau treatment, dalam hal ini yaitu 47 III. METODOLOGI PENELITIAN A. Metode Peelta Metode peelta yag dguaka dalam peelta adalah metode eksperme. Metode dguaka atas pertmbaga bahwa sfat peelta ekspermetal yatu mecobaka suatu program latha

Lebih terperinci

Ukuran Pemusatan Data. Arum Handini P., M.Sc Ayundyah K., M.Si.

Ukuran Pemusatan Data. Arum Handini P., M.Sc Ayundyah K., M.Si. Ukura Pemusata Data Arum Had P., M.Sc Ayudyah K., M.S. Notas utuk Populas da Sampel Notas: Mea (rata-rata) Sample x Populas μ Varas s 2 σ 2 Smpaga baku s σ Ukura Pemusata Data 1. Mea (rata-rata) 2. Meda

Lebih terperinci

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl

Lebih terperinci

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi.

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi. Mea utuk Data Tuggal Des. Jka suatu sampel berukura dega aggota x1, x, x3,, x, maka mea sampel ddesska : 1... N 1 Mea utuk Data Kelompok Des Mea dar data yag dkelompoka adalah : x x 1 1 1 dega : x = ttk

Lebih terperinci

(Drs. Saliman, M.Pd.)

(Drs. Saliman, M.Pd.) (Drs. Salma, M.Pd.) Stadar Kompetes Sesudah megkut mata kulah, mahasswa dharapka mampu megguaka statstka secara tepat dalam kegata peelta lmah. Mafaat Mata Kulah Mata kulah sagat bermafaat bag mahasswa

Lebih terperinci

Penelitian Operasional II Teori Permainan TEORI PERMAINAN

Penelitian Operasional II Teori Permainan TEORI PERMAINAN Peelta Operasoal II Teor Permaa 7 2 TEORI PERMAINAN 2 Pegatar 2 Krtera Tekk Permaa : () Terdapat persaga kepetga datara pelaku (2) Setap pema memlk stateg, bak terbatas maupu tak terbatas (3) Far Game

Lebih terperinci

PEMODELAN STATISTIKA DENGAN TRANSFORMASI BOX COX

PEMODELAN STATISTIKA DENGAN TRANSFORMASI BOX COX Vol. 7. No. 3, 8-7, Desemer 4, ISSN : 4-858 PEMODELAN STATISTIKA DENGAN TRANSFORMASI BO CO Dw Ispryat Staf Pegajar Jurusa Matematka Fakultas MIPA UNDIP Semarag Astrak Aalss regres adalah salah satu tekk

Lebih terperinci

Beberapa Metode Alternatif untuk Analisis Data Sampel Berpasangan

Beberapa Metode Alternatif untuk Analisis Data Sampel Berpasangan Prosdg Statstka ISSN 46-6456 Beberapa Metode Alteratf utuk Aalss Data Sampel Berpasaga Rma Rzka Yuar Tet Sofa Yat, 3 Abdul Kudus,,3 Statstka, Fakultas MIPA, Uverstas Islam Badug, Jl Tamasar No Badug 46

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDAAN TORI. Regres Ler ederhaa Dalam beberapa masalah terdapat dua atau lebh varabel yag hubugaya tdak dapat dpsahka, da hal tersebut basaya dseldk sfat hubugaya. Aalss regres adalah sebuah tekk

Lebih terperinci

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas TEKNIK SAMPLING Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uverstas Adalas Defs Suatu cotoh gerombol adalah suatu cotoh acak sederhaa dmaa setap ut pearka cotoh adalah kelompok atau gerombol dar

Lebih terperinci

ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL

ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL Prosdg Semar Nasoal Peelta, Peddka da Peerapa MIPA, Fakultas MIPA, Uverstas Neger Yogyakarta, 4 Me ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL Ksmat Jurusa Peddka

Lebih terperinci

k N 1 = s X Dimana : = Jumlah pengamatan yang seharusnya dilakukan.

k N 1 = s X Dimana : = Jumlah pengamatan yang seharusnya dilakukan. Uj Kecukupa da keseragama Data Uj kecukupa data dguaka utuk meetuka bahwa jumlah sampel data yag dambl telah cukup utuk proses veres ataupu pegolaha sata pada proses selajutya. Dalam uj aka dguaka persamaa

Lebih terperinci

STATISTIKA DASAR. Oleh

STATISTIKA DASAR. Oleh STATISTIKA DASAR Oleh Suryo Gurto cara peyaja data - tabel - grak meghtug harga-harga petg : - ukura lokas - ukura sebara/peympaga apabla data mempuya observasya cukup bayak perlu dsusu secara sstematk

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di SMP Negeri 15 di kota Gorontalo

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di SMP Negeri 15 di kota Gorontalo BAB III METODOLOGI PENELITIAN 3. Tempat Da Waktu Peelta 3.. Tempat peelta Peelta dlaksaaka d SMP Neger 5 d kota Gorotalo 3.. Waktu peelta Peelta dlaksaaka sejak bula oktober hgga bula desember, yag melput

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL Hesty ala, Arsma Ada, Bustam hestyfala@ymalcom Mahasswa Program S Matematka MIPA-UR Dose Matematka MIPA-UR

Lebih terperinci

ANALISA GARIS KEINGINAN PERGERAKAN DI KABUPATEN BOLAANG MONGONDOW UTARA

ANALISA GARIS KEINGINAN PERGERAKAN DI KABUPATEN BOLAANG MONGONDOW UTARA Jural Ilmah MEDIA ENGINEERING Vol., No., Jul 0 ISSN 087-9334 (96-0) ANALISA GARIS KEINGINAN PERGERAKAN DI KABUPATEN BOLAANG MONGONDOW UTARA Johas E. Lolog Dose Jurusa Spl Fakultas Tekk Uverstas Sam Ratulag

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMAN 1 Terusan Nunyai. Populasi dalam penelitian

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMAN 1 Terusan Nunyai. Populasi dalam penelitian 3 III. METODE PENELITIAN A. Populas da Sampel Peelta dlaksaaka d SMAN Teusa Nuya. Populas dalam peelta adalah seluuh sswa kelas X SMAN Teusa Nuya semeste geap tahu pelajaa / yag bejumlah lma kelas. Kemampua

Lebih terperinci

Iwa Sungkawa. Fakultas Sain dan Teknologi UBINUS ABSTRAK

Iwa Sungkawa. Fakultas Sain dan Teknologi UBINUS ABSTRAK PROSIDING SEMINAR NASIONAL HIMPUNAN INFORMATIKA PERTANIAN INDONESIA 009 Pegkata Kualtas Iformas pada Proses Pegolaha da Aalss Data Kasus : Kaja Resdual dalam Megatas Data Pecla (outler) pada Pegguaa Regres

Lebih terperinci

BAB 2 LANDASAN TEORI. persamaan penduga dibentuk untuk menerangkan pola hubungan variabel-variabel

BAB 2 LANDASAN TEORI. persamaan penduga dibentuk untuk menerangkan pola hubungan variabel-variabel BAB LANDASAN TEORI. Analss Regres Regres merupakan suatu alat ukur yang dgunakan untuk mengukur ada atau tdaknya hubungan antar varabel. Dalam analss regres, suatu persamaan regres atau persamaan penduga

Lebih terperinci

PENGUJIAN HIPOTESIS PROSEDUR UMUM PROSEDUR UMUM PROSEDUR UMUM. Langkah 1 : tentukan hipotesis 0 (H 0 ) dan anti hipotesis (H 1 )

PENGUJIAN HIPOTESIS PROSEDUR UMUM PROSEDUR UMUM PROSEDUR UMUM. Langkah 1 : tentukan hipotesis 0 (H 0 ) dan anti hipotesis (H 1 ) PENGUJIAN HIPOTESIS PROSEDUR UMUM Lagkah : tetuka hpote 0 (H 0 ) da at hpote (H ) malya: H 0 : µ 00 H : µ 00 atau H : µ > 00 atau H : µ < 00 PROSEDUR UMUM Lagkah : tetuka je dtrbu yag cocok: bla > 30 da

Lebih terperinci

REGRESI NONPARAMETRIK SPLINE UNTUK DATA BERAT BADAN BALITA MENURUT UMUR DI KABUPATEN BOJONEGORO TAHUN 2010

REGRESI NONPARAMETRIK SPLINE UNTUK DATA BERAT BADAN BALITA MENURUT UMUR DI KABUPATEN BOJONEGORO TAHUN 2010 REGRESI NONPARAMETRIK SPLINE UNTUK DATA BERAT BADAN BALITA MENURUT UMUR DI KABUPATEN BOJONEGORO TAUN Mahasswa Yulda Federka 9 5 6 Dose Pembmbg Ir. Mutah Salamah,M.Kes da Jerry Dw T.P.,S.S,M.S ABSTRAK Pertumbuha

Lebih terperinci

BAB II TINJAUAN PUSTAKA. dua sampel berpasangan akan menggunakan statistik uji T 2 -Hotelling. Untuk itu,

BAB II TINJAUAN PUSTAKA. dua sampel berpasangan akan menggunakan statistik uji T 2 -Hotelling. Untuk itu, BAB II TINJAUAN PUSTAKA. Pedahulua Dalam bab aka dbahas tetag uj t utuk meguj sebuah parameter rata-rata da selsh dua parameter rata-rata dua sampel berpasaga dbawah asums populas berdstrbus ormal. Pada

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Berdasarkan permasalahan yang akan diteliti oleh penulis, maka metode

BAB III METODOLOGI PENELITIAN. Berdasarkan permasalahan yang akan diteliti oleh penulis, maka metode 4 BAB III METODOLOGI PENELITIAN A. Metode da Desa Peelta Berdasarka permasalaha yag aka dtelt oleh peuls, maka metode peelta yag dguaka yatu metode deskrptf komparatf (descrptvecomparatve). Sebagamaa yag

Lebih terperinci

PENGARUH MODAL KERJA DAN KREDIT YANG DISALURKAN TERHADAP LABA OPERASIONAL (Study Kasus Pada PT. BPR Mitra Kopjaya Mandiri Manonjaya Tasikmalaya)

PENGARUH MODAL KERJA DAN KREDIT YANG DISALURKAN TERHADAP LABA OPERASIONAL (Study Kasus Pada PT. BPR Mitra Kopjaya Mandiri Manonjaya Tasikmalaya) PENGARUH MODAL KERJA DAN KREDIT YANG DISALURKAN TERHADAP LABA OPERASIONAL (Study Kasus Pada PT. BPR Mtra Kopjaya Madr Maojaya Taskmalaya) Ie Yulat (083403036) Emal : eyulat57@yahoo.com Program Stud Akutas

Lebih terperinci

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB Pearka Cotoh Gerombol (Cluster Samplg) Departeme Statstka FMIPA IPB Radom samplg (Revew) Smple radom samplg Stratfed radom samplg Rato, regresso, ad dfferece estmato Systematc radom samplg Cluster radom

Lebih terperinci

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan Aalsa Numerk Baha Matrkulas PENDAHULUAN Metode umerk merupaka suatu tekk atau cara utuk megaalsa da meyelesaka masalah masalah d dalam bdag rekayasa tekk da sa dega megguaka operas perhtuga matematk Masalah-masalah

Lebih terperinci