LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal)

Ukuran: px
Mulai penontonan dengan halaman:

Download "LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal)"

Transkripsi

1 LANGKAH-LANGKAH UJI HIPOTESIS DENGAN (Utuk Data Nomal). Merumuska hpotess (termasuk rumusa hpotess statstk). Data hasl peelta duat dalam etuk tael slag (tael frekues oservas) 3. Meetuka krtera uj atau tael. 4. Meghtug la oservas ( o), utuk dperluka tael frekues harapa (asums Ho dterma) 5. Memadgka la o dega t 6. Krtera: Jka o > t ; maka Ho dtolak Jka o t ; maka Ho dterma 7. Kesmpula Rumus: ( fo fh fh ) (Catata: Jka data eretuk terval, maka harus duat kategork leh dulu.) Cotoh: = jes kelam; = tgkat peddka Apakah ada huuga atara jes kelam dega tgkat peddka? Peguja:. Hpotess: H : 0 (ada huuga atara jes kelam dega tgkat peddka) H o : = 0 (tdak ada huuga atara jes kelam dega tgkat peddka). Tael slag: Tgkat Jes Kelam Peddka Lak-lak perempua Jumlah Redah Sedag Tgg Jumlah

2 3. t dmaa; d = ( )(k ) = (3 )( ) = t (0,05; ) = 5,99 4. Frekues harapa (dmaa raso peradga lak-lak : perempua = 3 : ) Lak-lak: perempua: 3/5 60 = 96 /5 60 = 64 3/5 70 = 0 /5 70 = 68 3/5 70 = 0 /5 70 = 68 Tgkat Jes Kelam Peddka Lak-lak perempua Jumlah Redah Sedag Tgg Jumlah Guakarumus: (80 96) (80 64) (00 0) (70 68) (0 0) (50 68) o o = 4,7 5. o = 4,7 > t (0,05; ) = 5,99 erart Ho dtolak 6. Kesmpula: Ada huuga atara jes kelam dega tgkat peddka 7. Koefse kotges = koefse asosas o o 4,9 54,9 0,7 = 0,7 = 0,09 0,03 Jad tgkat peddka dapat dtetuka oleh jes kelam varasa haa 3%

3 LANGKAH-LANGKAH UJI HIPOTESIS DENGAN (Utuk Data Ordal). Rumuska hpotess. Data dalam etuk tael slag 3. Meetuka statstk uj (Z t ) 4. Meghtug Gamma: N s = Jumlah hasl kal pasaga ag Ns Nd G Ns Nd kosste N d = Jumlah hasl kal pasaga ag tdak kosste 5. Trasformas Z: Ns Nd o ( G ) N( G ) 6. Badgka Zo da Z t 7. Krtera: Zo > Z t ; maka Ho dtolak Zo Z t ; maka Ho dterma 8. Kesmpula Cotoh: = status sosal ekoom; = tgkat peddka Apakah ada huuga postf atara status sosal ekoom dega tgkat peddka? (Huuga postf arta: semak tgg tgkat status sosal ekoom maka tgkat peddkaa juga harus semak tgg) Peguja:. Ho: = 0 (tdak ada huuga atara status sosal ekoom dega tgkat peddka) H : > 0 (ada huuga postf atara status sosal ekoom dega tgkat peddka). Tael slag:

4 Tgkat Status sosal ekoom Peddka Redah Sedag Tgg Jumlah Redah Sedag Tgg Jumlah Z t ( = 0,05) Z t =,645 (Luas kurva 0,5 0,05 = 0,450 terletak pada la z =,645) 4. Meghtug Gamma: kosste; jka status sosal ekoom redah maka tgkat peddka juga redah da sealka jka status sosal ekoom tgg maka tgkat peddka juga tgg. tdak kosste; jka status sosal ekoom redah tap tgkat peddka tgg da sealka jka status sosal ekoom tgg tap tgkat peddka redah. N s = 80 ( ) + 80 ( ) + 70 ( ) + 60 (40) = 3.00 N d = 40 ( ) + 80 ( ) + 70 ( ) + 60 (30) = G , Z o ( 0, 0). =, 500( 0, ) 6. Zo =, > Z t =,645 erart Ho dtolak 7. Kesmpula: Terdapat huuga postf atara status sosal ekoom dega tgkat peddka 8. G = 0, = 0,04 00% = 4% Varas tgkat peddka dapat dtetuka oleh status sosal ekoom haa 4%

5 REGRESI LINIER SEDERHANA Persamaa regres sa dguaka jka da erkorelas. Model Regres: Y Y = + X + Fugs Taksra: a = tg θ 0 Ŷ = a + Persamaa regres tertetu jka la a da dketahu. Utuk meghtug la a da dperluka pasaga data (, ) ag ddapat dar peelta.. Rumus Regres: a Dmaa:. X X X X Y Y Y Y. Kemuda htug la ΣY, ΣY, Σ, ΣX, ΣX, Σ, ΣXY, Σ. Guaka rumus regres utuk mecar la a da, sehgga aka ddapat fugs taksra. 3. Seelum fugs taksra dguaka, terleh dahulu melakuka Uj Keerarta da Uj Kelera dega ANAVA.

6 4. Seelum memuat tael ANAVA, data X harus durutka dar ag terkecl sampa teresar. Data ag memlk la ag sama, djadka dalam satu kelompok (k). 5. Buat tael ANAVA dega terleh dahulu meetuka sumer varas, atu: Total, Regres (a), Regres (/a), Ssa, Tua cocok, da Galat. Setap sumer varas dtetuka la Jumlah Kuadrat (JK) da derajat eas (d). Kemuda meghtug la Rata-rata Jumlah Kuadrat (RJK) Rumus JK da RJK: JK ( T ) JK ( G) JK ( a) JK ( / a). JK(S) = JK (T) JK (a) JK (/a) JK (Tc)= JK (S) JK (G) RJK = JK / d k X X Rumus d: d (T) = d (a) = d (/a)= d (S) = d (Tc) = k d (G) = k 6. Tetuka la F htug (F o ) dega rumus: F o ( / a) RJK ( / a) RJK ( S) da F o ( Tc) RJK ( Tc) RJK ( G) 7. Tetuka la F tael (,k; ), dega megguaka: F t (/a) dmaa: d Reg (/a) kolom, da d ssa ars F t (Tc) dmaa: d Tua cocok kolom, da d galat ars 8. Badgka la F htug dega la F tael. Jka F o (/a) > F t maka Ho dtolak, erart regres sgfka Jka F o (/a) < F t maka Ho dterma, erart regres tdak sgfka Jka F o (Tc) > F t (ttk-ttk pada dagram semak mejauh gars regres), erart regres tdak ler Jka F o (Tc) < F t (ttk-ttk pada dagram semak medekat gars regres), erart regres ler. 9. Meghtug koefse korelas dega rumus: R.

7 0. Tetuka la t htug: t o R da la t tael t(d;) R. Badgka la t htug da t tael Jka t o > t t maka Ho dtolak, erart Koefse korelas sgfka (ada huuga postf atara da dalam populas). Jka t o < t t maka Ho dterma, erart koefse korelas tdak sgfka (tdak ada huuga atara da dalam populas).. Htug la koefse determas: R 00% Cotoh:. Meetuka Fugs taksra dar data X da Y erkut: X Y X Y XY Jumlah Y ( ) (79) ,5

8 X ( ) (85) 69 6, 9 ( X )( Y) XY 998 (85)(79),75,75 6,9,9 Y a X (,9) 3,5 (,9)(7,08) 4, Fugs Taksra: Yˆ 4,, 9X. Megurutka data X dar la ag terkecl da meetuka kelompok: X Y Kelompok Uj lertas da sgfka dega ANAVA Meghtug la-la Jumlah Kuadrat (JK), derajat eas (d), da Rata-rata Jumlah Kuadrat (RJK) pada sumer varas: JK ( T ) JK ( a) 6486,75 JK ( / a). (,9).(,75) 8,05 JK(S) = JK (T) JK (a) JK (/a) = ,75 8,05 = 56,9 k JK ( G) X X , ,67 4 3

9 JK (Tc) = JK (S) JK (G) = 56,9 39,67 = 6,5 RJK (/a) = JK (/a) / d = 8,05 / = 8,05 RJK (S) = JK (S) / d = 56,9 / 0 = 5,69 RJK (Tc) = JK (Tc) / d = 6,5 / 3 = 5,5 RJK (G) = JK (G) / d = 39,67 / 7 = 5,67 d (T) = = d (a) = d (/a) = d (S) = = = 0 d (Tc) = k = 5 = 3 d (G) = k = 5 = 7 4. Meghtug la F o : RJK( / a) 8,06 RJK( Tc) 5,5 F o ( / a) 4,99 F o ( Tc) 0, 98 RJK( S) 5,69 RJK( G) 5,67 5. Tetuka la F tael dega = 0,05 da = 0,0 F(0, ; 0.05) = 4,96 F(0,; 0.0) = 0,04 F(7,3; 0.05) = 4,35 F(7,3; 0.0) = 8,45 Sumer Varas JK d RJK F os F tael Total 657,00 = 0,05 = 0,0 Regres (a) Regres (/a) 6486,75 8,06-8,06-4,99-4,96-0,04 Ssa 56,9 0 5,69 Tua cocok Galat 6,5 39, ,5 5,67 0,98 4,35 8,45 6. Kesmpula: F o (/a) = 4,99 > F t = 4,96 erart Regres sgfka. F o (Tc) = 0,98 < F t = 4,35 erart Regres ler.,75 7. Meghtug koefse korelas: R 0, 58. (6,9).(84,5)

10 R 0, Meetuka la t htug: t o, 5 R 0,58 Meetuka la t tael: t (0; 0.05) =,8 9. Kesmpula: t o =,5 > t t =,8 maka Ho dtolak erart Koefse korelas sgfka (ada huuga postf atara X da Y dalam populas) 0. Koefse determas = 0,58 00% = 33,6% Kesmpula: Nla Y dtetuka oleh la X dega varas seesar 33,6 % Utuk megaml kesmpula, sa juga lagsug megguaka Uj Korelas. Tap kta perlu melakuka Uj Regres, karea:. Rumus R haa sa dguaka jka korelasa ler, jka tdak. ler maka persamaa tdak sa dguaka utuk megaml kesmpula.. Fugs regres dguaka utuk mempredks la Y. Galat taksra, G = ˆ, harus ormal Tua cocok adalah pempaga dar galat taksra. Tc = 0 Ttk-ttk (la Ŷ) melekat pada gars.

11 REGRESI MULTIPEL DENGAN PREDIKTOR Model: o Fugs taksra: Yˆ o X X o,, ddapat dar pasaga data (X, X, Y) ag dperoleh dar peelta. Meetuka la : ΣY = ΣX = ΣX = ΣX Y = ΣX Y = ΣX X = ΣY = ΣX = ΣX = Σ = Σ = Σ = da ddapat dar formula smulta seaga erkut: Mecar la o : o Y X X Uj sgfka persamaa regres dega ANAVA: Sumer Varas: Total, Regres, da Ssa Meghtug la Jumlah Kuadrat (JK) dar sumer varas: JK (T) = Σ JK (Reg) = + JK (S) = Σ JK (Reg) Meghtug derajat eas (d) sumer varas: d (T) = d (Reg) = k d (S) = k Meghtug Rata-rata Jumlah Kuadrat (RJK) sumer varas: RJK (Reg) = JK(Re g) d(re g) RJK (S) = JK( S) d( S) = aaka pegamata k = aaka varael eas (X)

12 Meghtug F oservas: F os = RJK(Re g) RJK( S) Meetuka Koefse Korelas Multpel (R. ) da Koefse determas (R. ) R. JK(Re g) Cotoh: X X Y Tetukalah: a) Fugs taksra ) Uj sgfka dega ANAVA c) Koefse korelas multpel da koefse determas

13 Peelesaa: a) Mecar Fugs taksra X X Y X X Y X Y X Y X X Jumlah Y ( Y ) ( X) (79) 657 (56) 5636 X ( X ) (85) 69 X 84,5 74,667 6,9 ( X )( Y) (56)(79) XY ( X )( Y) (85)(79) X Y 998,75 ( X)( X ) (56)(85) XX 85 38,667 Persamaa Smulta: 74, ,667 = 7 38, ,9 =,75

14 Meetuka la o,, da : 7 38,667,75 6,9 = 74,667 38,667 38,667 6,9 38, ,9 0,78 74, ,667,75 = 74,667 38,667 38,667 6,9 75,03 460,9-0,4965 o Y X X Y X X = (0,78) ( 0,4965) = 0,8 o Fugs Taksra Persamaa Regres: Ŷ = 0,8 + 0,78 X 0,4965 X ) Uj sgfka Persamaa Regres dega ANAVA: Meetuka la Jumlah Kuadrat (JK) masg-masg sumer varas: JK (T) = Σ = 84,5 JK (Reg) = + = (0,78)(7) + (- 0,4965)(,75) = 80,46 JK (S) = Σ JK (Reg) = 84,5 80,46 =3,789 Meetuka derajat eas (d) masg-masg sumer varas: d (T) = = = d (Reg) = k = d (S) = k = = 9 Meghtug la RJK masg-masg sumer varas: RJK (Reg) = JK (Re g) = d(re g) 80,46 = 40,3 RJK (S) = JK ( S) d( S) = 3,789 9 = 0,4

15 Meghtug la F oservas: F os = RJK (Re g) RJK ( S) = Memuat tael ANAVA: Sumer Varas 40,3 0,4 = 95,558 JK d RJK F os F tael = 0,05 = 0,0 Regres 80,46 40,3 95,558 4,6 8,0 Ssa 3, ,4 Total 84,5 F os = 95,558 > F tael = 8,0 Berart: Regres Multpel sagat sgfka c) Koefse Korelas Multpel: R. JK(Re g) = 80,46 84,5 = 0,977 Koefse determas: R. = (0,977) = 0,955 X 00% = 95,5 % Arta: 95,5 % Varas Y dapat dtetuka (djelaska) oleh X da X secara ersama-sama Koefse korelas sederhaa atara X da Y: r Σ Σ. 7 (74,667)( 84,5) 0,9645 Koefse korelas sederhaa atara X da Y: r Σ Σ.Σ,75 0,576 (6,9)(84,5) Koefse korelas sederhaa atara X da X : r Σ Σ.Σ 38,667 (74,667)( 6,9) 0,7

16 UJI KEBERARTIAN KOEFISIEN REGRESI da t o RJK( S) kesalaha aku.( R ) RJK(S) 0,4 0,005 0, 07.( R ) (74,667)( 0,7 ) RJK(S) 0,4 0,05 0, 4.( R ) (6,9)( 0,7 ) t o 0,78 = 0, 99 0,07 t 0,4695 o =, 096 0,4 t t (0,05;9) =,83 da t t (0,0;9) =,8 t o =,66 > t t (0,05) =,83 Koefse korelas sagat sgfka t o =,77 < t t (0,05) =,83 Koefse korelas tdak sgfka Kesmpula: Jka pegaruh X dkotrol (msala dsamaka), maka huuga X dega Y sgfka Jka pegaruh X dkotrol, maka huuga X dega Y tdak sgfka

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

REGRESI & KORELASI LINIER SEDERHANA

REGRESI & KORELASI LINIER SEDERHANA 1. Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable)

Lebih terperinci

REGRESI & KORELASI LINIER SEDERHANA

REGRESI & KORELASI LINIER SEDERHANA . Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling BAB LANDASAN TEORI Kosep Dasar Aalss Regres Aalss regres adalah suatu proses memperkraka secara sstemats tetag apa yag palg mugk terjad dmasa yag aka datag berdasarka formas yag sekarag dmlk agar memperkecl

Lebih terperinci

Uji Statistika yangb digunakan dikaitan dengan jenis data

Uji Statistika yangb digunakan dikaitan dengan jenis data Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas

Lebih terperinci

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( )

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( ) Regres & Korelas Ler Sederhaa 1. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk yag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES * PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka

Lebih terperinci

S2 MP Oleh ; N. Setyaningsih

S2 MP Oleh ; N. Setyaningsih S2 MP Oleh ; N. Setyagsh MATERI PERTEMUAN 1-3 (1)Pedahulua pera statstka dalam peelta ; (2)Peyaja data : dalam betuk (a) tabel da (b) dagram; (3) ukura tedes setaral da ukura peympaga (4)dstrbus ormal

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Pedahulua Sebelum membahas megea prosedur peguja hpotess, terlebh dahulu aka djelaska beberapa teor da metode yag meujag utuk mempermudah pembahasa. Adapu teor da metode tersebut

Lebih terperinci

STATISTICAL STUDENT OF IST AKPRIND

STATISTICAL STUDENT OF IST AKPRIND STATISTICAL STUDNT OF IST AKPRIND Sekretarat : Jl. Bmasakt No:3 Pegok Yogakarta 55 Tlp. 74 54454 -mal : statstkasta@ahoo.com Blog : http://sssta.wordpress.com/ Aalss Regres Lses Dokume: Coprght sssta.wordpress.com

Lebih terperinci

UKURAN GEJALA PUSAT DAN UKURAN LETAK

UKURAN GEJALA PUSAT DAN UKURAN LETAK UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu

Lebih terperinci

FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani

FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani FMDAM (2) Chartas Fbra Techque for Order Preferece by Smlarty to Ideal Soluto () ddasarka pada kosep dmaa alteratf terplh yag terbak tdak haya memlk jarak terpedek dar solus deal postf, amu juga memlk

Lebih terperinci

PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel

PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel Praktkum 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa

Lebih terperinci

REGRESI DAN KORELASI LINEAR SEDERHANA. Regresi Linear

REGRESI DAN KORELASI LINEAR SEDERHANA. Regresi Linear REGRESI DAN KORELASI LINEAR SEDERHANA Regres Lnear Tujuan Pembelajaran Menjelaskan regres dan korelas Menghtung dar persamaan regres dan standard error dar estmas-estmas untuk analss regres lner sederhana

Lebih terperinci

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS C. Pembelajara 3 1. Slabus N o STANDA R KOMPE TENSI KOMPE TENSI DASAR INDIKATOR MATERI TUGAS BUKTI BELAJAR KON TEN INDIKA TOR WAK TU SUM BER BELA JAR Meerap ka atura kosep statstka dalam pemecah a masalah

Lebih terperinci

b) Untuk data berfrekuensi fixi Data (Xi)

b) Untuk data berfrekuensi fixi Data (Xi) B. Meghtug ukura pemusata, ukura letak da ukura peyebara data serta peafsraya A. Ukura Pemusata Data Msalka kumpula data berkut meujukka hasl pegukura tgg bada dar orag sswa. 0 cm 30 cm 5 cm 5 cm 35 cm

Lebih terperinci

Tabel Distribusi Frekuensi

Tabel Distribusi Frekuensi Tabel Dstrbus Frekues Tabel dstrbus frekues adalah susua data meurut kelas-kelas terval tertetu atau meurut kategor tertetu dalam sebuah daftar. Dar dstrbus frekues, dapat dperoleh keteraga atau gambara

Lebih terperinci

INTERPOLASI INTERPOLASI LINIER INTERPOLASI KUADRATIK

INTERPOLASI INTERPOLASI LINIER INTERPOLASI KUADRATIK INTERPOASI INTERPOASI INIER INTERPOASI KUADRATIK INTERPOASI POINOMIA Dua ttk data : Gars Tga ttk data : Kuadratk g Empat ttk data :Polomal tgkat-3 Dketahu: ttk data ( y ) ( y ) ( y ) D ttk data :Polomal

Lebih terperinci

BAB 2 LANDASAN TEORI. Teori Galton berkembang menjadi analisis regresi yang dapat digunakan sebagai alat

BAB 2 LANDASAN TEORI. Teori Galton berkembang menjadi analisis regresi yang dapat digunakan sebagai alat BAB LANDASAN TEORI. 1 Analsa Regres Regres pertama kal dpergunakan sebaga konsep statstk pada tahun 1877 oleh Sr Francs Galton. Galton melakukan stud tentang kecenderungan tngg badan anak. Teor Galton

Lebih terperinci

ANALISIS REGRESI. . Berdasarkan sample acak, persamaan regresi populasi (1) akan ditaksir, ini dilakukan dengan jalan menaksir parameter-parameter 1

ANALISIS REGRESI. . Berdasarkan sample acak, persamaan regresi populasi (1) akan ditaksir, ini dilakukan dengan jalan menaksir parameter-parameter 1 ANALII REGREI. PENDAHULUAN Jka kta memlk data yag terdr atas dua atau lebh varabel, adalah sewajarya utuk suatu cara bagamaa varabel-varabel tersebut berhubuga. Hubuga yag dperoleh pada umumya dyataka

Lebih terperinci

PROGRAM LINIEAR DENGAN METODE SIMPLEX

PROGRAM LINIEAR DENGAN METODE SIMPLEX POGAM LINIEA DENGAN METODE SIMPLEX A. TEKNIK PENYELESAIAN Betuk Soal Progra Lear Kedala utaa asalah rogra lear daat eretuk a atau a atau a. Kedala yag eretuk ertdaksaaa daoat duah ead ersaaa seaga erkut

Lebih terperinci

Analisis Regresi. Oleh : Dewi Rachmatin

Analisis Regresi. Oleh : Dewi Rachmatin Aalss Regres Oleh : Dew Rachmat Pedahulua Dalam peelta basaya dguaka suatu model atau hubuga fugsoal atara peubah. Dega model kta berusaha memaham, meeragka, megedalka da kemuda mempredkska kelakua sstem

Lebih terperinci

UKURAN GEJALA PUSAT (UGP)

UKURAN GEJALA PUSAT (UGP) UKURAN GEJALA PUSAT (UGP) Pegerta: Rata-rata (average) alah suatu la yag mewakl suatu kelompok data. Nla dsebut juga ukura gejala pusat karea pada umumya mempuya kecederuga terletak d tegah-tegah da memusat

Lebih terperinci

BAB 1 STATISTIKA RINGKASAN MATERI

BAB 1 STATISTIKA RINGKASAN MATERI BAB STATISTIKA A RINGKASAN MATERI. Pegerta Data adalah kumpula keteraga-keteraga atau catata-catata megea suatu kejada, dapat berupa blaga, smbol, sat atau kategor. Masg-masg keteraga dar data dsebut datum.

Lebih terperinci

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut 3/9/202 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas

Lebih terperinci

PENDITEKSIAN PENCILAN (OUTLIER) DAN RESIDUAL PADA REGRESI LINIER

PENDITEKSIAN PENCILAN (OUTLIER) DAN RESIDUAL PADA REGRESI LINIER PENDITEKSIAN PENCILAN (OUTLIER) DAN RESIDUAL PADA REGRESI LINIER Outler ad Resdual Detecto the Lear Regresso Iwa Sugkawa Jurusa Statstka Fakultas Sas da Tekolog, Uverstas Ba Nusatara Jakarta ABSTRACT Ths

Lebih terperinci

Pertemuan 3 Luas Daerah Bidang Datar, dan Volume Benda Padat dengan Metode Bidang Irisan Sejajar

Pertemuan 3 Luas Daerah Bidang Datar, dan Volume Benda Padat dengan Metode Bidang Irisan Sejajar ertemua 3 Luas Daerah Bdag Datar, da Volume Beda adat dega Metode Bdag Irsa Sejajar A. Luas Daerah Bdag Datar 1. Luas Daerah Bdag Datar Yag Datas Oleh Kura f, sumu X, Gars a da Gars DEFINISI: Msalka D

Lebih terperinci

REGRESI DAN INTERPOLASI

REGRESI DAN INTERPOLASI http://starto.sta.ugm.ac.d REGRESI DAN INTERPOLASI Curve Fttg Curve Fttg http://starto.sta.ugm.ac.d Acua Chapra, S.C., Caale R.P., 99, Numercal Methods or Egeers, d Ed., McGraw-Hll Book Co., New York.

Lebih terperinci

MODUL ANALISIS REGRESI DAN KORELASI

MODUL ANALISIS REGRESI DAN KORELASI ANALISIS REGRESI DAN KORELASI MODUL 13 ANALISIS REGRESI DAN KORELASI Dalam kehdupa sehar-har, sergkal djumpa hubuga atara suatu varabel dega satu atau lebh varabel la. D dalam bdag pertaa sebaga cotoh,

Lebih terperinci

Pemodelan Regresi Linier Menggunakan Metode Theil (Studi Kasus: Kompensasi Pegawai di Badan Kepegawaian Daerah Kota Samarinda)

Pemodelan Regresi Linier Menggunakan Metode Theil (Studi Kasus: Kompensasi Pegawai di Badan Kepegawaian Daerah Kota Samarinda) Jural EKSPONENSIAL Volume 4, Nomor 1, Me 2013 ISSN 2085-7829 Pemodela Regres Ler Megguaka Metode Thel (Stud Kasus: Kompesas Pegawa d Bada Kepegawaa Daerah Kota Samarda) Lear Regresso Modelg Wth Thel Method

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 47 BAB III METODE PENELITIAN 3.. Metode Peelta 3... Desa Peelta Desa peelta adalah dega metode surve. Pemlha da pegguaa desa terkat dega tujua peelta, atu utuk megaalss pegaruh suatu varabel terhadap varabel

Lebih terperinci

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis STATISTIK Ukura Gejala Pusat Ukura Letak Ukura Smpaga, Dspers da Varas Mome, Kemrga, da Kurtoss Notas Varabel dyataka dega huruf besar Nla dar varabel dyataka dega huruf kecl basaya dtuls Tmes New Roma

Lebih terperinci

Dasar Ekonomi Teknik: Matematika Uang. Ekonomi Teknik TIP FTP UB

Dasar Ekonomi Teknik: Matematika Uang. Ekonomi Teknik TIP FTP UB Dasar Ekoom Tekk: Matematka Uag Ekoom Tekk TIP TP UB Bahasa lra Kas (Cash low Tme Value of Moey Buga Ekvales Cash low Tata alra uag masuk da keluar per perode waktu pada suatu perusahaa lra kas aka terjad

Lebih terperinci

XI. ANALISIS REGRESI KORELASI

XI. ANALISIS REGRESI KORELASI I ANALISIS REGRESI KORELASI Aalss regres mempelajar betuk hubuga atara satu atau lebh peubah bebas dega satu peubah tak bebas dalam peelta peubah bebas basaya peubah yag dtetuka oelh peelt secara bebas

Lebih terperinci

(Drs. Saliman, M.Pd.)

(Drs. Saliman, M.Pd.) (Drs. Salma, M.Pd.) Stadar Kompetes Sesudah megkut mata kulah, mahasswa dharapka mampu megguaka statstka secara tepat dalam kegata peelta lmah. Mafaat Mata Kulah Mata kulah sagat bermafaat bag mahasswa

Lebih terperinci

Ukuran Pemusatan Data. Arum Handini P., M.Sc Ayundyah K., M.Si.

Ukuran Pemusatan Data. Arum Handini P., M.Sc Ayundyah K., M.Si. Ukura Pemusata Data Arum Had P., M.Sc Ayudyah K., M.S. Notas utuk Populas da Sampel Notas: Mea (rata-rata) Sample x Populas μ Varas s 2 σ 2 Smpaga baku s σ Ukura Pemusata Data 1. Mea (rata-rata) 2. Meda

Lebih terperinci

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl

Lebih terperinci

Beberapa Metode Alternatif untuk Analisis Data Sampel Berpasangan

Beberapa Metode Alternatif untuk Analisis Data Sampel Berpasangan Prosdg Statstka ISSN 46-6456 Beberapa Metode Alteratf utuk Aalss Data Sampel Berpasaga Rma Rzka Yuar Tet Sofa Yat, 3 Abdul Kudus,,3 Statstka, Fakultas MIPA, Uverstas Islam Badug, Jl Tamasar No Badug 46

Lebih terperinci

k N 1 = s X Dimana : = Jumlah pengamatan yang seharusnya dilakukan.

k N 1 = s X Dimana : = Jumlah pengamatan yang seharusnya dilakukan. Uj Kecukupa da keseragama Data Uj kecukupa data dguaka utuk meetuka bahwa jumlah sampel data yag dambl telah cukup utuk proses veres ataupu pegolaha sata pada proses selajutya. Dalam uj aka dguaka persamaa

Lebih terperinci

ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL

ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL Prosdg Semar Nasoal Peelta, Peddka da Peerapa MIPA, Fakultas MIPA, Uverstas Neger Yogyakarta, 4 Me ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL Ksmat Jurusa Peddka

Lebih terperinci

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi.

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi. Mea utuk Data Tuggal Des. Jka suatu sampel berukura dega aggota x1, x, x3,, x, maka mea sampel ddesska : 1... N 1 Mea utuk Data Kelompok Des Mea dar data yag dkelompoka adalah : x x 1 1 1 dega : x = ttk

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL Hesty ala, Arsma Ada, Bustam hestyfala@ymalcom Mahasswa Program S Matematka MIPA-UR Dose Matematka MIPA-UR

Lebih terperinci

ANALISA GARIS KEINGINAN PERGERAKAN DI KABUPATEN BOLAANG MONGONDOW UTARA

ANALISA GARIS KEINGINAN PERGERAKAN DI KABUPATEN BOLAANG MONGONDOW UTARA Jural Ilmah MEDIA ENGINEERING Vol., No., Jul 0 ISSN 087-9334 (96-0) ANALISA GARIS KEINGINAN PERGERAKAN DI KABUPATEN BOLAANG MONGONDOW UTARA Johas E. Lolog Dose Jurusa Spl Fakultas Tekk Uverstas Sam Ratulag

Lebih terperinci

Penelitian Operasional II Teori Permainan TEORI PERMAINAN

Penelitian Operasional II Teori Permainan TEORI PERMAINAN Peelta Operasoal II Teor Permaa 7 2 TEORI PERMAINAN 2 Pegatar 2 Krtera Tekk Permaa : () Terdapat persaga kepetga datara pelaku (2) Setap pema memlk stateg, bak terbatas maupu tak terbatas (3) Far Game

Lebih terperinci

Iwa Sungkawa. Fakultas Sain dan Teknologi UBINUS ABSTRAK

Iwa Sungkawa. Fakultas Sain dan Teknologi UBINUS ABSTRAK PROSIDING SEMINAR NASIONAL HIMPUNAN INFORMATIKA PERTANIAN INDONESIA 009 Pegkata Kualtas Iformas pada Proses Pegolaha da Aalss Data Kasus : Kaja Resdual dalam Megatas Data Pecla (outler) pada Pegguaa Regres

Lebih terperinci

PENGUJIAN HIPOTESIS PROSEDUR UMUM PROSEDUR UMUM PROSEDUR UMUM. Langkah 1 : tentukan hipotesis 0 (H 0 ) dan anti hipotesis (H 1 )

PENGUJIAN HIPOTESIS PROSEDUR UMUM PROSEDUR UMUM PROSEDUR UMUM. Langkah 1 : tentukan hipotesis 0 (H 0 ) dan anti hipotesis (H 1 ) PENGUJIAN HIPOTESIS PROSEDUR UMUM Lagkah : tetuka hpote 0 (H 0 ) da at hpote (H ) malya: H 0 : µ 00 H : µ 00 atau H : µ > 00 atau H : µ < 00 PROSEDUR UMUM Lagkah : tetuka je dtrbu yag cocok: bla > 30 da

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Berdasarkan permasalahan yang akan diteliti oleh penulis, maka metode

BAB III METODOLOGI PENELITIAN. Berdasarkan permasalahan yang akan diteliti oleh penulis, maka metode 4 BAB III METODOLOGI PENELITIAN A. Metode da Desa Peelta Berdasarka permasalaha yag aka dtelt oleh peuls, maka metode peelta yag dguaka yatu metode deskrptf komparatf (descrptvecomparatve). Sebagamaa yag

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di SMP Negeri 15 di kota Gorontalo

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di SMP Negeri 15 di kota Gorontalo BAB III METODOLOGI PENELITIAN 3. Tempat Da Waktu Peelta 3.. Tempat peelta Peelta dlaksaaka d SMP Neger 5 d kota Gorotalo 3.. Waktu peelta Peelta dlaksaaka sejak bula oktober hgga bula desember, yag melput

Lebih terperinci

STATISTIKA DASAR. Oleh

STATISTIKA DASAR. Oleh STATISTIKA DASAR Oleh Suryo Gurto cara peyaja data - tabel - grak meghtug harga-harga petg : - ukura lokas - ukura sebara/peympaga apabla data mempuya observasya cukup bayak perlu dsusu secara sstematk

Lebih terperinci

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan Aalsa Numerk Baha Matrkulas PENDAHULUAN Metode umerk merupaka suatu tekk atau cara utuk megaalsa da meyelesaka masalah masalah d dalam bdag rekayasa tekk da sa dega megguaka operas perhtuga matematk Masalah-masalah

Lebih terperinci

PENGARUH MODAL KERJA DAN KREDIT YANG DISALURKAN TERHADAP LABA OPERASIONAL (Study Kasus Pada PT. BPR Mitra Kopjaya Mandiri Manonjaya Tasikmalaya)

PENGARUH MODAL KERJA DAN KREDIT YANG DISALURKAN TERHADAP LABA OPERASIONAL (Study Kasus Pada PT. BPR Mitra Kopjaya Mandiri Manonjaya Tasikmalaya) PENGARUH MODAL KERJA DAN KREDIT YANG DISALURKAN TERHADAP LABA OPERASIONAL (Study Kasus Pada PT. BPR Mtra Kopjaya Madr Maojaya Taskmalaya) Ie Yulat (083403036) Emal : eyulat57@yahoo.com Program Stud Akutas

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam proses penelitian untuk menganalisis aproksimasi fungsi dengan metode

II. TINJAUAN PUSTAKA. Dalam proses penelitian untuk menganalisis aproksimasi fungsi dengan metode II. TINJAUAN PUSTAKA Dalam proses peelta utuk megaalss aproksmas fugs dega metode mmum orm pada ruag hlbert C[ab] (Stud kasus: fugs rasoal) peuls megguaka defs teorema da kosep dasar sebaga berkut:.. Aproksmas

Lebih terperinci

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB Pearka Cotoh Gerombol (Cluster Samplg) Departeme Statstka FMIPA IPB Radom samplg (Revew) Smple radom samplg Stratfed radom samplg Rato, regresso, ad dfferece estmato Systematc radom samplg Cluster radom

Lebih terperinci

Y = f(x1, X2,..., Xp) + error (2.1) = komp. sistematik + komp. non-sistematik dugaan Y = f(x1, X2,..., Xp) (2.2)

Y = f(x1, X2,..., Xp) + error (2.1) = komp. sistematik + komp. non-sistematik dugaan Y = f(x1, X2,..., Xp) (2.2) Bab. MODEL REGRESI LINEAR SEDERHANA Oleh Bambag Juada Pegerta Model & Tujua Pemodela Perumusa masalah Model Model: Abstraks realtas dlm pers matematka Model ekoometrka: model statstk yg mecakup error Y

Lebih terperinci

BAB I PENDAHULUAN. dengan masalah peramalan, karena dapat digunakan untuk menyelesaikan masalah

BAB I PENDAHULUAN. dengan masalah peramalan, karena dapat digunakan untuk menyelesaikan masalah BAB I PENDAHULUAN. Latar Belakag Topk Para lmua, ekoom, pskolog, da sosolog selalu berkepetga dega masalah peramala, karea dapat dguaka utuk meyelesaka masalah dalam pegelolaa da maajeme. Salah satu metode

Lebih terperinci

Analisis Regresi Logistik Ordinal terhadap Faktor-faktor yang Mempengaruhi Predikat Kelulusan Mahasiswa S1 di ITS Surabaya

Analisis Regresi Logistik Ordinal terhadap Faktor-faktor yang Mempengaruhi Predikat Kelulusan Mahasiswa S1 di ITS Surabaya JURNAL SAINS DAN SENI POMITS Vol., No., (013) ISSN: 337-350 (301-98X Prt) D-177 Aalss Regres Logstk Ordal terhadap Faktor-faktor yag Mempegaruh Predkat Kelulusa Mahasswa S1 d ITS Surabaya Stt Imaslhkah,

Lebih terperinci

; θ ) dengan parameter θ,

; θ ) dengan parameter θ, Vol. 4. No. 3, 5-59, Desember 00, ISSN : 40-858 APLIKASI METODE BESARAN PIVOTAL DALAM PENENTUAN SELANG KEYAKINAN TAKSIRAN PARAMETER POPULASI. Agus Rusgyoo Jurusa Matematka FMIPA UNDIP Abstraks Dberka populas

Lebih terperinci

Prosiding SNaPP2011 Sains, Teknologi, dan Kesehatan. 1 Joko Riyono. (Kampus A Jl.Kiyai Tapa No.1,Jakarta11440)

Prosiding SNaPP2011 Sains, Teknologi, dan Kesehatan. 1 Joko Riyono. (Kampus A Jl.Kiyai Tapa No.1,Jakarta11440) Prosdg NaPP as, Tekolog, da Kesehata IN:89-58 MODIFIKAI TATITIK UJI-t PADA TET INFERENIA MEAN MEREDUKI PENGARUH KEAIMETRIKAN POPULAI MENGGUNAKAN EKPANI CORNIH-FIHER Joko Ryoo taf.pegajar Fakultas Tekolog

Lebih terperinci

REGRESI LINIER GANDA

REGRESI LINIER GANDA REGRESI LINIER GANDA Secara umum, data hasil pegamata Y bisa terjadi karea akibat variabelvariabel bebas,,, k. Aka ditetuka hubuga atara Y da,,, k sehigga didapat regresi Y atas,,, k amu masih meujukka

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Dalam pemodela program ler, semua parameter yag dguaka dalam model dasumska dapat dketahu secara past. Parameter-parameter terdr dar koefse batasa ( ) a, la kuattas batasa

Lebih terperinci

PENAKSIR RATIO-CUM-PRODUCT YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS

PENAKSIR RATIO-CUM-PRODUCT YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS PEASIR RATIO-UM-PRODUT AG EFISIE UTU RATA-RATA POPULASI PADA SAMPLIG AA SEDERHAA MEGGUAA OEFISIE VARIASI DA OEFISIE URTOSIS Lza armata *, Arsma Ada, Frdaus Mahasswa Program S Matematka Dose Jurusa Matematka

Lebih terperinci

BAB I TEORI KETAKPASTIAN

BAB I TEORI KETAKPASTIAN Teor Ketakpasta BAB I TEORI KETAKPASTIAN 1. KETEPATAN PENGUKURAN Pegukura merupaka aktvtas ag bertujua utuk megetahu kualtas atau kuattas suatu besara. Pegukura dalam fska tdak luput dar ketakpasta, arta

Lebih terperinci

PEDOMAN STATISTIK UJI PROFISIENSI

PEDOMAN STATISTIK UJI PROFISIENSI DPLP 3 Rev. 0 PEDOMAN STATISTIK UJI PROFISIENSI Komte Akredtas Nasoal Natoal Accredtato Body of Idoesa Gedug Maggala Waabakt, Blok IV, Lt. 4 Jl. Jed. Gatot Subroto, Seaya, Jakarta 070 Idoesa Tel. : 6 5747043,

Lebih terperinci

Analisis Regresi Linear Sederhana

Analisis Regresi Linear Sederhana Analss Regres Lnear Sederhana Al Muhson Pendahuluan Menggunakan metode statstk berdasarkan data yang lalu untuk mempredks konds yang akan datang Menggunakan pengalaman, pernyataan ahl dan surve untuk mempredks

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab aka mejelaska megea ladasa teor yag dpaka oleh peuls dalam peelta. Bab dbag mejad beberapa baga, yag masg masg aka mejelaska Prcpal Compoet Aalyss (PCA), Egeface, Klusterg K-Meas,

Lebih terperinci

Uji Homogenitas Varians

Uji Homogenitas Varians Uj Homogentas Varans I. DUA VARIANS Pengujan hpotess dua varans dlakukan untuk mengetahu varans dua populas sama (homogen atau tdak (heterogen. S dan S merupakan penduga σ dan σ Rumus varans : x ( x S

Lebih terperinci

LOGO ANALISIS REGRESI LINIER

LOGO ANALISIS REGRESI LINIER LOGO ANALISIS REGRESI LINIER BERGANDA Hazmra Yozza Jur. Maemaka FMIPA Uv. Adalas KOMPETENSI megdefkaska model regres ler bergada dalam oas aljabar basa maupu oas marks da asumsya medapaka model regres

Lebih terperinci

Pendahuluan. Pendahuluan. Pendahuluan PERANCANGAN PERCOBAAN (PERBANDINGAN BERGANDA) Dari analisis ragam

Pendahuluan. Pendahuluan. Pendahuluan PERANCANGAN PERCOBAAN (PERBANDINGAN BERGANDA) Dari analisis ragam Pedahulua PERANCANGAN PERCOBAAN (PERBANDINGAN BERGANDA) Oleh: Dr. Drvamea Boer Dar aalss ragam Bla uj F tdak yata, maka hpotess ol dterma artya semua perlakua yag dcobaka member hasl yag sama tdak perlu

Lebih terperinci

PENENTUAN MODEL KURVA PERTUMBUHAN PADA TULANG RAMUS

PENENTUAN MODEL KURVA PERTUMBUHAN PADA TULANG RAMUS Prosdg SPMIPA. pp. 6-69. 6 ISBN : 979.74.47. PENENUAN MODEL KURVA PERUMBUHAN PADA ULANG RAMUS Sudaro Jurusa Matematka FMIPA UNDIP Jl. Prof. Soedarto, Kampus UNDIP embalag, Semarag Abstrak: Model kurva

Lebih terperinci

47 Soal dengan Pembahasan, 46 Soal Latihan

47 Soal dengan Pembahasan, 46 Soal Latihan Galer Soal 7 Soal dega Pembahasa, Soal Latha Dragkum Oleh: ag Wbowo, S.Pd Jauar 0 MatkZoe s Seres Emal : matkzoe@gmal.com log : www.matkzoe.wordpress.com HP : 0 97 97 Hak pta Dldug Udag-udag. Dlarag megkutp

Lebih terperinci

Statistik Industri. Pengertian

Statistik Industri. Pengertian Statstk Idustr Pertemua ke- Pegerta Ilmu megumpulka, megolah, mergkas, meya jka da terpretas data utuk dasar pegambla keputusa Pegelompoka Deskrpt: Statstka yag megguaka data pada suatu kelompok utuk mejelaska

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini merupakan studi eksperimen dengan populasi penelitian yaitu

III. METODE PENELITIAN. Penelitian ini merupakan studi eksperimen dengan populasi penelitian yaitu 4 III. METODE PENELITIAN A. Populas Peneltan Peneltan n merupakan stud ekspermen dengan populas peneltan yatu seluruh sswa kelas VIII C SMP Neger Bukt Kemunng pada semester genap tahun pelajaran 01/013

Lebih terperinci

DATA & VARIABEL. Variabel adalah karakteristik data yang menjadi perhatian.

DATA & VARIABEL. Variabel adalah karakteristik data yang menjadi perhatian. STATISTIK INDUSTRI DATA & VARIABEL Data adalah sekumpula datum yag bers fakta-fakta serta gambara suatu feomea yag dkumpulka, dragkum, daalss da selajutya dterpretaska. Varabel adalah karakterstk data

Lebih terperinci

HAND OUT STATISTIKA DASAR (MT308) Oleh : Dewi Rachmatin, S.Si., M.Si.

HAND OUT STATISTIKA DASAR (MT308) Oleh : Dewi Rachmatin, S.Si., M.Si. HAND OUT STATISTIKA DASAR (MT308) Oleh : Dew Rachmat, S.S., M.S. JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN IPA UNIVERSITAS PENDIDIKAN INDONESIA 008 Idettas Mata Kulah. Nama Mata

Lebih terperinci

PENGARUH KECUKUPAN MODAL DAN KUALITAS AKTIVA PRODUKTIF TERHADAP RENTABILITAS BANK (Studi Kasus Pada PT. BPR POLADANA Tasikmalaya)

PENGARUH KECUKUPAN MODAL DAN KUALITAS AKTIVA PRODUKTIF TERHADAP RENTABILITAS BANK (Studi Kasus Pada PT. BPR POLADANA Tasikmalaya) PENGARUH KECUKUPAN MODAL DAN KUALITAS AKTIVA PRODUKTIF TERHADAP RENTABILITAS BANK (Stud Kasus Pada PT. BPR POLADANA Taskmalaya) Rud Rohmat (083403046) Emal : rudrohmat90@gmal.com Program Stud Akutas Fakultas

Lebih terperinci

Bab I Pendahuluan & Statistika Deskriptif

Bab I Pendahuluan & Statistika Deskriptif Bab I Pedahulua & Statstka Deskrptf Pegerta Statstka Dstrbus Frekues Cetral Tedecy Measure of Dsperso Pegerta Statstka Statstk (statstc) vs statstka (statstcs) Statstk: agka-agka Statstka: pegguaa data

Lebih terperinci

BAB X PENGUKURAN TRAFIK

BAB X PENGUKURAN TRAFIK 97 BAB X PENGUKURAN TRAFIK. Kovers carred traffc ke offered traffc Dalam pegukura yag tdak memaka computer, trafk yag dtawarka (A) tdak segera ddapat. Yag dukur adalah trafk yag dolah (Y) sedagka trafk

Lebih terperinci

Statistika. Menyajikan Data dalam Bentuk Diagram ;

Statistika. Menyajikan Data dalam Bentuk Diagram ; Statstka Meyajka Data dalam Betuk Dagram ; Meyajka Data dalam Betuk Tabel Dstrbus Frekues ; Meghtug Ukura Pemusata, Ukura Letak, da Ukura ; Peyebara Data Kalau kamu ke kator keluraha, kator pajak, kator

Lebih terperinci

Angka Banding Manfaat dan Biaya

Angka Banding Manfaat dan Biaya METODE ANALISIS PERENCANAAN 2 Mater 3 : TPL 311 Oleh : Ke Marta Kaskoe Agka Badg Mafaat da Baya Dalam proyek pembagua, perlu dketahu apa mafaat dar proyek tersebut? Bagamaa keutuga ekoom atau keutuga sosal

Lebih terperinci

100% r n. besarnya %. n. h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m =. 400

100% r n. besarnya %. n. h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m =. 400 h t t p : / / m a t e m a t r c k. b l o g p o t. c o m Meetuka uur-uur pada dagram lgkara atau batag Rgkaa Mater : Uur uur pada dagram lgkara yag pokok haya hal :. Meetuka bear baga dalam lgkara ( dapat

Lebih terperinci

PENYUSUNAN TABEL HAYAT. oleh NIA RACHMADANI G

PENYUSUNAN TABEL HAYAT. oleh NIA RACHMADANI G PENYUSUNAN TABEL HAYAT oleh NIA RACHMADANI G543 PROGRAM STUDI MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 6 ABSTRAK NIA RACHMADANI. Peusua Tabel Haat. Dbmbg

Lebih terperinci

ANALISIS REGRESI LINIER PIECEWISE DUA SEGMEN. Keywords: two-segment piecewise linear regression, X-knots, discharge, bedload transport.

ANALISIS REGRESI LINIER PIECEWISE DUA SEGMEN. Keywords: two-segment piecewise linear regression, X-knots, discharge, bedload transport. JURNAL GAUSSIAN, Volume, Nomor, Tahu 0, Halama 9-8 Ole d: htt://ejoural-s.ud.ac.d/dex.h/gaussa ANALISIS REGRESI LINIER PIECEWISE DUA SEGMEN Sylf, Dw Isryat, Dah Saftr 3 Mahasswa Jurusa Statstka FSM Uverstas

Lebih terperinci

BAB III METODOLOGI PENELITIAN. melakukan wawancara dan tanya jawab terhadap responden (pelanggan-pelanggan

BAB III METODOLOGI PENELITIAN. melakukan wawancara dan tanya jawab terhadap responden (pelanggan-pelanggan BAB III METODOLOGI PENELITIAN 3.1 Metode yag Dguaka Metode peelta yag aka dlakuka adalah survey samplg dega melakuka wawacara da taya jawab terhadap respode (pelagga-pelagga PDAM Trtaweg Kota Badug yag

Lebih terperinci

BAB 2 LANDASAN TEORITIS. yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama.

BAB 2 LANDASAN TEORITIS. yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama. BAB 2 LANDASAN TEORITIS 2.1 Pegerta Peramala Peramala ( forecastg ) adalah kegata memperkraka atau mempredkska apa yag aka terjad pada masa yag aka datag dega waktu yag relatf lama. Sedagka ramala adalah

Lebih terperinci

BAB IV TRIP GENERATION

BAB IV TRIP GENERATION BAB IV TRIP GENERATION 4.1 PENDAHULUAN Trp Generaton td : 1. Trp Producton 2. Trp Attracton j Generator Attractor - Setap tempat mempunya fktor untuk membangktkan dan menark pergerakan - Bangktan, Tarkan

Lebih terperinci

Rancangan Acak Kelompok

Rancangan Acak Kelompok Racaga Acak Kelompok Saua percoaa dak seragam dlakuka pegelompoka egacaka dlakuka per kelompok Model : Y j μ + β + τ + ε dega : Y j respos pada perlakua ke -, ulaga ke - j μ raaa umum j τ pegaruh perlakuake

Lebih terperinci

PENYELESAIAN PERSAMAAN NON LINIER

PENYELESAIAN PERSAMAAN NON LINIER BAB 3 PENYELESAIAN PERSAMAAN NON LINIER. METODE BAGI DUA BISECTION METHOD Jka f kotu pada a da b da fa.fb < maka terdapat palg sedkt akar pada terval tersebut. Lokas akar Gambar 3. Proses mecar akar dg

Lebih terperinci

HANDOUT ANALISIS REGRESI. Kismiantini NIP

HANDOUT ANALISIS REGRESI. Kismiantini NIP HANDOUT ANALISIS REGRESI Ksmat NIP 9798 JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI OGAKARTA Aalss Regres da Aalss Korelas Aalss Regres Aalss Korelas

Lebih terperinci

IV HASIL DAN PEMBAHASAN

IV HASIL DAN PEMBAHASAN 9 3.3.2.6 Perbadga Kualtas Data dega Parameter Statstka Parameter statstka yag dguaka sebaga alat batu pelaa perbadga kualtas kedua data adalah raso, korelas, MAE, da RMSE. Raso Data CH Dugaa R Data CH

Lebih terperinci

METODE NONPARAMETRIK UNTUK REGRESI MONOTONIK (NONPARAMETRIC METHOD FOR MONOTONIC REGRESSION) Suyitno

METODE NONPARAMETRIK UNTUK REGRESI MONOTONIK (NONPARAMETRIC METHOD FOR MONOTONIC REGRESSION) Suyitno Jural EKSPONENSIALVolume, Nomor, September 00 ISSN 085-789 METODE NONPARAMETRIK UNTUK REGRESI MONOTONIK (NONPARAMETRIC METHOD FOR MONOTONIC REGRESSION) Suyto Program Stud Statstka FMIPA Uverstas Mulawarma

Lebih terperinci

1. Ruang Sampel dan Peristiwa

1. Ruang Sampel dan Peristiwa . Ruag Sampel da Perstwa. Ruag Sampel Defs Ruag sampel (Sample Space), S : totaltas semua hasl yag mugk dar sebuah percobaa. Ttk sampel atau outcome : eleme dar tap sel. Perstwa/kejada (Evet) : kumpula

Lebih terperinci

adalah nilai-nilai yang mungkin diambil oleh parameter jika H

adalah nilai-nilai yang mungkin diambil oleh parameter jika H Uj Nsbah Kemuga Lema Neyma-Pearso dapat dguaa utu meemua uj palg uasa bag hpotess sederhaa bla sebara dataya haya dtetua oleh satu parameter yag tda detahu. Lema tersebut juga adaalaya dapat dguaa utu

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

3.1 Biaya Investasi Pipa

3.1 Biaya Investasi Pipa BAB III Model Baya Pada model baya [8] d tugas akhr, baya tahua total utuk megoperaska jarga ppa terdr dar dua kompoe, yatu baya operasoal da baya vestas. Baya operasoal terdr dar baya operasoal ppa da

Lebih terperinci

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 11-19, Aprl 004, ISSN : 1410-8518 TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM Sudaro Jurusa Matematka FMIPA UNDIP Abstrak Sstem yag dbetuk

Lebih terperinci

BAB 1 STATISTIKA. Gambar 1.1

BAB 1 STATISTIKA. Gambar 1.1 STANDAR KOMPETENSI: BAB 1 STATISTIKA Megguaka atura statstka, kadah pecacaha, da sat-sat peluag dalam pemecaha masalah. Kompetes Dasar 1. Membaca data dalam betuk tabel da dagram batag, gars, lgkara, da

Lebih terperinci

ANALISIS REGRESI. Untuk mengetahui bentuk linear atau nonlinear dapat dilakukan dengan membuat scatterplot seperti berikut : Gambar.

ANALISIS REGRESI. Untuk mengetahui bentuk linear atau nonlinear dapat dilakukan dengan membuat scatterplot seperti berikut : Gambar. ANALISIS REGRESI Berdasara betu eleara data, model regres dapat dlasfasa mead dua macam yatu lear da o-lear. Ja pola data lear maa dguaa pemodela lear. Begtu uga sebalya apabla pola data tda lear maa dguaa

Lebih terperinci

Analisis Kriteria Investasi

Analisis Kriteria Investasi Uverstas Guadarma TUJUAN Setelah mempelajar Bab dharapka mahasswa dapat memaham: Apakah gagasa usaha (proyek) yag drecaaka dapat memberka mafaat (beeft), bak dlhat dar facal beeft maupu socal beeft. Pelaa

Lebih terperinci

( ) TINJAUAN PUSTAKA. dengan. juga disebut fungsi kuantil yang didefinisikan sebagai

( ) TINJAUAN PUSTAKA. dengan. juga disebut fungsi kuantil yang didefinisikan sebagai TINJAUAN PUSTAKA Rsko Setap trasaks yag melbatka ketdakpasta d masa yag aka datag memlk rsko. Pelaku bss dalam melakuka kegata vestas tetu meggka keutuga da megdar keruga. Pada dua vestas, aktvtas utuk

Lebih terperinci