BAB X RUANG HASIL KALI DALAM

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB X RUANG HASIL KALI DALAM"

Transkripsi

1 BAB X RUANG HASIL KALI DALAM 0. Hasl Kal Dalam Defns. Hasl kal dalam adalah fungs yang mengatkan setap pasangan vektor d ruang vektor V (msalkan pasangan u dan v, dnotaskan dengan u, v ) dengan blangan rl dan memenuh 4 aksoma, yatu:. Smetrs : u, v v, u. Adtvtas : u+ v, u, + v,. Homogentas : ku, v k u, v, k skalar 4. Postvtas : u, u ³ 0 dan ( u, u 0 «u 0) Ruang vektor yang dlengkap hasl kal dalam sepert d atas dsebut ruang hasl kal dalam yang basa dsebut RHD. Contoh 0. Tunjukkan baha operas perkalan ttk-ttk standar d R Eucldes merupakan hasl kal dalam! Penyelesaan: Akan dtunjukkan baha perkalan ttk standar memenuh keempat aksoma hasl kal dalam, yatu: a, a,a b, b,b c c, c,c maka a, b, c Î Msalkan a ( ), b ( ), ( ). Smetrs. Adtvtas a, b ( a. b) ( ab ab ab) ( b a b a b a ) b, a...(terpenuh) Langkah Past Menuju Sukses 86

2 ( ) ( a b, a b, a b).( c, c,c ) ( ac bc) ( ac bc) ( ac bc ) ( ac ac ac) ( bc bc bc) ( a. c) ( b. c) a + b, c a + b. c a, c + b,c...(terpenuh). Homogentas ka, b ( ka. b) ( kab kab kab) k( ab ab ab) k( a. b) k a, b...(terpenuh) 4. Postvtas a, a ( a. a) ( a + a + a(terpenuh) ) ³ 0... Dan a, a a + a + a(terpenuh) 0(0,0,0) «a... 0 ( ) RHD yang memlk hasl kal dalam berupa perkalan ttk standar sepert d atas basa dsebut RHD Eucldes. Contoh 0. Dketahu u, v ad + cf dengan u (a, b, c) dan v (d, e, f). Apakah u, v tersebut merupakan hasl kal dalam? Penyelesaan: Akan dtunjukkan apakah u, v tersebut memenuh keempat aksoma hasl kal dalam. Smetrs u, v ad + cf da + fc v, u K K K (terpenuh) Langkah Past Menuju Sukses 87

3 . Adtvtas Msalkan (g, h, ) u + v, (a + d,b + e,c + f),(g,h,). Homogentas ku, v () kad + ckf (a + d)g+ ( c + f) (ag+ c) + ( dg+ f) u, + v, K K K (terpenuh) k() ad + cf k u, v K K K (terpenuh) 4. Postvtas u, u u. u a + c(terpenuh) ³ 0 K K K ( ) ( ) Dan u, u a + c 0(0,0,0) tdak selalu «u 0 karena untuk nla ( ) u (0, b,0) dengan b ¹ 0 maka nla (tdak u, u terpenuh 0 K K K ) Aksoma postvtas tdak terpenuh maka u, v ad + cf dengan u (a, b, c) dan v (d, e, f) bukan merupakan hasl kal dalam. 0. Panjang Vektor, Jarak Antar Vektor, dan Besar Sudut dalam RHD Ketka kta membahas tentang panjang vektor, maka kta harus menghlangkan rumusan yang selama n kta gunakan mengena panjang vektor dalam ruang n Eucldes berdasarkan operas hasl kal ttk. Kta akan menghtung panjang suatu berdasarkan hasl kal dalam yang telah dberkan, dan sudah dbuktkan bersama sama baha hasl kal ttk dalan ruang n Eucldes juga merupakan hasl kal dalam jad konsep yang dgunakan n akan lebh luas darpada konsep sebelumnya. Msalkan V merupakan ruang hasl kal dalam, u, v Î V maka a. Panjang u u, u b. Jarak u dan v, d(u, v) u- v, u- v c. Msalkan f sudut antara u dan v dalam RHD, maka besar cosf adalah: cosf u, v u v Jka u dan v salng tegak lurus maka u+ v u + v Langkah Past Menuju Sukses 88

4 Contoh 0. Dketahu V adalah RHD dengan hasl kal dalam u, v ( u v + u v + u v ) dengan u ( u, u,u ), ( v, v,v ) v. Jka vektor-vektor u, v Î V dengan a (,,) dan b (,,), tentukan a. Besar cos a jka sudut yang dbentuk antara a dan b adalah a! b. Jarak antara a dan b! Penyelesaan: a, b cosf a b a, b. +.(.) +. 5 a b Jad cosf a, b 5 5 a b Bass Orthonormal Dketahu V ruang hasl kal dalam dan v,v, K,vn adalah vektor-vektor dalam V. Beberapa defns pentng a. H { v,v, K,v } dsebut hmpunan orthogonal bla setap vektor dalam V n salng tegak lurus, yatu v,v 0 untuk ¹ j j dan, j,,,n. b. G { v,v, K,vn} dsebut hmpunan orthonormal bla - G hmpunan orthogonal - Norm dar v,,,, n atau v,v Metode Gramm-Schmdt Metode Gramm-Schmdt dgunakan untuk merubah suatu hmpunan vektor yang bebas lner menjad hmpunan yang orthonormal. Jad, dalam hal n dsyaratkan hmpunan yang dtransformaskan ke hmpunan orthonormal adalah hmpunan yang bebas lner. Jka yang akan dtransformaskan adalah hmpunan vektor yang merupakan bass dar ruang vektor V maka metode Gramm-Schmdt akan menghaslkan bass orthonormal untuk V. Langkah Past Menuju Sukses 89

5 Sebelum membahas tentang metode n, akan dbahas tentang proyeks orthogonal vektor terhadap ruang yang dbangun oleh hmpunan vektor. Dketahu H { v,v, K,v } adalah hmpunan vektor yang bebas lner dar ruang n vektor V dengan dm ³ n dan S {,, K, } merupakan hmpunan yang n orthonormal. Jka W menyatakan ruang yang dbangun oleh,, K,n maka untuk setap vektor z dalam W, dapat dtulskan z k + k + K + knn dengan k, k, K, k n skalar. Jka u adalah sembarang vektor dalam V, maka tentunya u dapat dtulskan sebaga jumlah dar dua vektor yang salng tegak lurus msalkan z dan z, jad dapat dtulskan u z + z. Karena z dalam W, maka sebenarnya z merupakan proyeks orthogonal u terhadap W, sedangkan z merupakan komponen vektor u yang tegak lurus terhadap W. Jad untuk menentukan z, maka harus dtentukan nla k, k,, k n sedemkan hngga nla k merupakan panjang proyeks u terhadap, k merupakan panjang proyeks u terhadap dan seterusnya sehngga k n merupakan panjang proyeks u terhadap n. Proyeks orthogonal u terhadap adalah proy W (u) < u, >, dkarenakan,,, n merupakan vektor vektor yang orthonormal. Jad dapat dtulskan baha proyeks orthogonal u terhadap W adalah : Proy W (u) z < u, > + < u, > < u, n > n dengan {,,, n } merupakan hmpunan orthonormal. Komponen u yang tegak lurus terhadap W adalah: z u (< u, > + < u, > < u, n > n ) Msal dketahu K { v,v, K,vn} adalah hmpunan yang bebas lner, maka K dapat drubah menjad hmpunan S {,,, n } yang orthonormal dengan metode Gramm-Schmdt yatu: v. v. n proses normalsas yang palng sederhana karena hanya melbatkan satu vektor saja. Pembagan dengan v bertujuan agar memlk panjang, pada akhr langkah n ddapatkan orthonormal. v - v, v - v, Pada akhr langkah n ddapatkan dua vektor dan yang orthonormal.. M v - v, - v, v - v, - v, Langkah Past Menuju Sukses 90

6 n. n v - v, - v, - L v, n n n n n- n- v - v, - v, - L v, n n n n n- n- Secara umum oleh,,, -. v - v - pro pro W W () v () v dengan W merupakan ruang yang dbangun Pada metode n, pemlhan v,v, K,vn tdak harus mengkut urutan vektor yang dberkan tetap bebas sesua kengnan kta karena satu hal yang perlu dngat baha bass suatu ruang vektor tdak tunggal. Jad dengan mengubah urutan dar v,v,,v sangat memungknkan ddapatkan jaaban yang berbeda-beda. K n Pemlhan urutan dar v,v, K,vn yang dsarankan adalah yang mengandung hasl kal dalam yang bernla 0 yatu < v, v j > 0, dalam kasus n bsa dambl v v dan v v j dan seterusnya. Contoh 0.4 Dketahu H { a, b, c } dengan a (,, ), b (,, ), c (,,0 ) a. Apakah H bass R? b. Jka ya, transformaskan H menjad bass orthonormal dengan menggunakan hasl kal dalam Eucldes! Penyelesaan: a. Karena dm(r ) dan jumlah vektor dalam H, maka untuk menentukan apakah H merupakan bass R atau bukan, adalah dengan cara menghtung determnan matrks koefsen dar SPL Ax b dengan b adalah sembarang vektor é - dalam R, yatu det. Jka det 0 maka berart H bukan merupakan 0 ë bass R, sebalknya jka det ¹ 0 maka berart vektor-vektor d H bebas lner dan membangun R, jad H merupakan bass R. Dengan ekspans kofaktor sepanjang bars ketga, dperoleh: Karena det, n berart H merupakan bass dar R. b. Hasl kal dalam antara a, b, dan c a, b 4, a, c 0, b, c Langkah Past Menuju Sukses 9

7 Untuk memlh bass yang perhtungannya lebh sederhana dapat dambl v a, v c, v b a. b. a (,,) a c- c, c (-,,0) c- c, c {Karena a, c 0 maka c, a a, c c, 0} a a c. b- b,, -, -, - b b b a a b c c b- b, -, b b- b, a a- b, c c b- é é é é- 6 é 4 b, a a- b, c c ë ë ë - ë ë b- 6 b, a a- b, c c 6 6 Jad é s 6 -ë Normalsas hmpunan orthogonal ke hmpunan orthonormal Dketahu V RHD dan H { v,v, K,vn} Î V merupakan hmpunan orthogonal dengan v 0 maka bsa ddapatkan hmpunan orthonormal yang ddefnskan v sebaga S { s, s,, s n } dengan s,,,...,n. Kalau dlhat secara v seksama, sebenarnya rumusan n merupakan rumusan dar metode Gramm Schmdt yang telah mengalam reduks yatu untuk nla proy W (v) 0 akbat dar v, v,, v n yang salng orthogonal. Proses untuk mendapatkan vektor yang orthonormal basa dsebut dengan menormalsaskan vektor. Jka dm (V) n, maka S juga merupakan bass orthonormal dar V. Langkah Past Menuju Sukses 9

8 Contoh 0.5 Dketahu a (,, ), b (,5, ), c (,0, ) dan a, b,c Î. Jka R merupakan RHD Eucldes, Transformaskan a, b, c ke bass orthonormal! Penyelesaan a, b 0, a, c 0, b, c 0 a b c ( ) ( ) 0 5 Msalkan H {a, b, c} maka H merupakan hmpunan orthogonal. Dm(R ) jad dapat dtentukan bass orthonormal untuk R. a b c Msalkan s (,-,),(,5,),( s,0,) s - a 6 b 0 c 5 Bass orthonormal untuk R ì adalah ï ü í (,-,),(,5,),(,0,) - ï ý ïî ïþ 0.4 Perubahan Bass Sepert dketahu baha suatu ruang vektor bsa memlk beberapa bass. Dar sfat nlah tentunya jka terdapat sembarang vektor x dalam suatu ruang vektor V yang memlk hmpunan vektor A dan B sebaga bassnya maka x tentunya merupakan kombnas lner dar vektor-vektor d A dan B. Kajan yang dlakukan sekarang n adalah melhat hubungan antar kombnas lner tersebut. Secara sstemats, langkah-langkahnya dapat dlhat sepert berkut n; Jka V ruang vektor, S { s, s,, s n } merupakan bass V maka untuk sembarang x Î V, dapat dtulskan : x ks + ks + K + k n sn dengan k, k,, k n skalar. k, k,, k n juga dsebut koordnat x relatf terhadap bass S. ék k x s dsebut matrks x relatf terhadap bass S. M k ë \n [ ] Jka S merupakan bass orthonormal, maka Langkah Past Menuju Sukses 9

9 [ x] é x, s, s x s M, ë x sn Jka A {x, x } dan B {y, y } berturut-turut merupakan bass dar V, maka untuk sembarang z Î V z z dan [ z ] B? bsa ddapatkan [ ] A é é ëb ëd éa x ddapatkan x a + b...() ëb y y a c MIsalkan [ x ] B dan [ x ] B Dar [ ] B Dar [ ] B Untuk [ ] éc x ddapatkan x c + d...() ëd y y ék z ddapatkan z k A x + k x...() ëk dan [ z ] B. Bagamana hubungan [ ] A Dengan melakukan substtus dar persamaan dan ke persamaan ddapatkan: z k ()() ay + by + k cy + dy ()() k a + k c y + k b + k d y In berart [ z] P[ z] B ék a + k c éa cé k k b + k d ëb d k ë ë P dsebut matrks transs dar bass A ke bass B. Secara umum, jka A { x, x,, x n } dan B { y, y,, y n } berturut-turut merupakan bass dar ruang vektor V, maka matks transs bass A ke bass B adalah: P é[ ] [ ] [ ] ë x x B L x B n B Jka P dapat dbalk, maka P - merupakan matrks transs dar bass B ke bass A. A Langkah Past Menuju Sukses 94

10 Contoh 0.6 Dketahu A { v, } dan B { x, y } berturut-turut merupaka bass R, dengan v (,), (,), x (,) dan y (-, -) Tentukan: a. Matrks transs dar bass A ke bass B! éæ - ö b. Htung ç ç ë çè ø A c. Htung éæ - ö ç ç ë çè ø B dengan menggunakan hasl pada (b)! d. Matrks transs dar bass B ke bass A! Penyelesaan éa é a. Msalkan [ v] B maka é - é a éa é 0, ddapatkan dan untuk ëb ë ë - ë b ëb ë- éc é é - é c éc é- [ ] B maka, maka ddapatkan ëd ë- ë - ë d ëd ë- 5 b. Msalkan Jad matrks transs dar bass A ke bass B adalah: éæ - ö ék ék é maka, ddapatkan ë A k -ë ë ç çè ø k ë 0 P é - ë c. Dar (a) dan (b) ddapatkan P é - ë P éæ - ö é - ç é é ç 5 ëè ø A ë ë ë dan éæ - ö é ç ç ëè ø - A ë sehngga d. Matrks transs dar bass B ke bass A adalah P - dengan P merupakan matrks transs terhadap bass A ke bass B. 5 Jad P é merupakan matrks transs dar bass B ke bass A. 4 ë 0 Langkah Past Menuju Sukses 95

11 Lathan. Dketahu a, b ab + a b dengan a) (a,a dan b) (b,b. Tunjukkan sfat Hasl kal dalam yang tdak dpenuh!. Dketahu a, b ab - ab + ab dengan a (a,a,) a dan b (b,b,) b. Perksa apakah a, b merupakan hasl kal dalam atau tdak! Jka tdak tentukan aksoma mana yang tdak dpenuh!. R merupakan RHD dengan hasl kal dalam u, v u v + u v + u v dengan u (u,u,) u dan v (v,v,) v. W adalah subruang R yang memlk bass B { (-,, ), (,, -) } a. Transformaskan B menjad bass orthonormal! b. Msalkan x (,, -4) d R, nyatakan x y + z dengan y Î orthogonal terhadap W. W dan z 4. R merupakan RHD dengan hasl kal dalam u, v u v + u v + u v dengan u (u,u,) u dan v (v,v,) v. W adalah subruang R yang memlk bass C { b (-, 0, -), b (,, ) } a. Htung sn b jka b adalah sudut antara b dan b! b. Tentukan jarak antara b dan b! c. Msalkan x (,, -) d R, nyatakan y dan z adalah komponen dar x, dengan y Î W dan z orthogonal terhadap W. Tentukan y dan z! é 5. Dketahu P merupakan matrks transs dar bass A terhadap bass B, -ë dengan A { a, a } dan B { b, b } merupakan bass R. Jka x a a, tentukan [x] B! ì é é0 é ü ì é é0 é ü - 6. Dketahu A ï í,, ï ý dan B ï í 0,, - ï ý ïî ë ë ë ïþ 0 ïî ë ë ë ïþ tentukan a. x b. Matrks transs dar bass A ke bass B c. [x] B, bass R. Jka [ ] é x, A ë Langkah Past Menuju Sukses 96

ALJABAR LINIER LANJUT

ALJABAR LINIER LANJUT ALABAR LINIER LANUT Ruang Bars dan Ruang Kolom suatu Matrks Msalkan A adalah matrks mnatas lapangan F. Bars pada matrks A merentang subruang F n dsebut ruang bars A, dnotaskan dengan rs(a) dan kolom pada

Lebih terperinci

81 Bab 6 Ruang Hasilkali Dalam

81 Bab 6 Ruang Hasilkali Dalam 8 Bab Rang Haslkal Dalam Bab RUANG HASIL KALI DALAM Rang hasl kal dalam merpakan rang ektor yang dlengkap dengan operas hasl kal dalam. Sepert halnya rang ektor rang haslkal dalam bermanfaat dalam beberapa

Lebih terperinci

Bab 1 Ruang Vektor. R. Leni Murzaini/0906577381

Bab 1 Ruang Vektor. R. Leni Murzaini/0906577381 Bab 1 Ruang Vektor Defns Msalkan F adalah feld, yang elemen-elemennya dnyatakansebaga skalar. Ruang vektor atas F adalah hmpunan tak kosong V, yang elemen-elemennya merupakan vektor, bersama dengan dua

Lebih terperinci

BAB V INTEGRAL KOMPLEKS

BAB V INTEGRAL KOMPLEKS 6 BAB V INTEGRAL KOMPLEKS 5.. INTEGRAL LINTASAN Msal suatu lntasan yang dnyatakan dengan : (t) = x(t) + y(t) dengan t rl dan a t b. Lntasan dsebut lntasan tutup bla (a) = (b). Lntasan tutup dsebut lntasan

Lebih terperinci

BAB III FUNGSI MAYOR DAN MINOR. Pada bab ini akan dibahas konsep-konsep dasar dari fungsi mayor dan fungsi

BAB III FUNGSI MAYOR DAN MINOR. Pada bab ini akan dibahas konsep-konsep dasar dari fungsi mayor dan fungsi BAB III FUNGSI MAYOR DAN MINOR Pada bab n akan dbahas konsep-konsep dasar dar fungs mayor dan fungs mnor dar suatu fungs yang terdefns pada suatu nterval tertutup. Pendefnsan fungs mayor dan mnor tersebut

Lebih terperinci

Dekomposisi Nilai Singular dan Aplikasinya

Dekomposisi Nilai Singular dan Aplikasinya A : Dekomposs Nla Sngular dan Aplkasnya Gregora Aryant Dekomposs Nla Sngular dan Aplkasnya Oleh : Gregora Aryant Program Stud Penddkan Matematka nverstas Wdya Mandala Madun aryant_gregora@yahoocom Abstrak

Lebih terperinci

Teori Himpunan. Modul 1 PENDAHULUAN. impunan sebagai koleksi (pengelompokan) dari objek-objek yang

Teori Himpunan. Modul 1 PENDAHULUAN. impunan sebagai koleksi (pengelompokan) dari objek-objek yang Modul 1 Teor Hmpunan PENDAHULUAN Prof SM Nababan, PhD Drs Warsto, MPd mpunan sebaga koleks (pengelompokan) dar objek-objek yang H dnyatakan dengan jelas, banyak dgunakan dan djumpa dberbaga bdang bukan

Lebih terperinci

Bab III Analisis Rantai Markov

Bab III Analisis Rantai Markov Bab III Analss Ranta Markov Sstem Markov (atau proses Markov atau ranta Markov) merupakan suatu sstem dengan satu atau beberapa state atau keadaan, dan dapat berpndah dar satu state ke state yang lan pada

Lebih terperinci

SEARAH (DC) Rangkaian Arus Searah (DC) 7

SEARAH (DC) Rangkaian Arus Searah (DC) 7 ANGKAAN AUS SEAAH (DC). Arus Searah (DC) Pada rangkaan DC hanya melbatkan arus dan tegangan searah, yatu arus dan tegangan yang tdak berubah terhadap waktu. Elemen pada rangkaan DC melput: ) batera ) hambatan

Lebih terperinci

APLIKASI METODE SINGULAR VALUE DECOMPOSITION(SVD) PADA SISTEM PERSAMAAN LINIER KOMPLEKS

APLIKASI METODE SINGULAR VALUE DECOMPOSITION(SVD) PADA SISTEM PERSAMAAN LINIER KOMPLEKS Vol No Jurnal Sans Teknolog Industr APLIKASI METODE SINGULAR VALUE DECOMPOSITION(SVD) PADA SISTEM PERSAMAAN LINIER KOMPLEKS Ftr Aryan Dew Yulant Jurusan Matematka Fakultas Sans Teknolog UIN SUSKA Rau Emal:

Lebih terperinci

BAB III HASILKALI TENSOR PADA RUANG VEKTOR. Misalkan V ruang vektor atas lapangan F. Suatu transformasi linear f L ( V, F )

BAB III HASILKALI TENSOR PADA RUANG VEKTOR. Misalkan V ruang vektor atas lapangan F. Suatu transformasi linear f L ( V, F ) 28 BAB III HASILKALI TENSOR PADA RUANG VEKTOR III.1 Ruang Dual Defns III.1.2: Ruang Dual [10] Msalkan V ruang vektor atas lapangan F. Suatu transformas lnear f L ( V, F ) dkatakan fungsonal lnear (atau

Lebih terperinci

IV. UKURAN SIMPANGAN, DISPERSI & VARIASI

IV. UKURAN SIMPANGAN, DISPERSI & VARIASI IV. UKURAN SIMPANGAN, DISPERSI & VARIASI Pendahuluan o Ukuran dspers atau ukuran varas, yang menggambarkan derajat bagamana berpencarnya data kuanttatf, dntaranya: rentang, rentang antar kuartl, smpangan

Lebih terperinci

LAMPIRAN A PENURUNAN PERSAMAAN NAVIER-STOKES

LAMPIRAN A PENURUNAN PERSAMAAN NAVIER-STOKES LAMPIRAN A PENURUNAN PERSAMAAN NAVIER-STOKES Hubungan n akan dawal dar gaya yang beraks pada massa fluda. Gaya-gaya n dapat dbag ke dalam gaya bod, gaya permukaan, dan gaya nersa. a. Gaya Bod Gaya bod

Lebih terperinci

BAB VB PERSEPTRON & CONTOH

BAB VB PERSEPTRON & CONTOH BAB VB PERSEPTRON & CONTOH Model JST perseptron dtemukan oleh Rosenblatt (1962) dan Mnsky Papert (1969). Model n merupakan model yang memlk aplkas dan pelathan yang lebh bak pada era tersebut. 5B.1 Arstektur

Lebih terperinci

SISTEM LINEAR MAX-PLUS KABUR WAKTU INVARIANT AUTONOMOUS

SISTEM LINEAR MAX-PLUS KABUR WAKTU INVARIANT AUTONOMOUS SISTEM LINEAR MAX-PLUS KABUR WAKTU INVARIANT AUTONOMOUS A8 M. Andy Rudhto 1 1 Program Stud Penddkan Matematka FKIP Unverstas Sanata Dharma Kampus III USD Pangan Maguwoharjo Yogyakarta 1 e-mal: arudhto@yahoo.co.d

Lebih terperinci

MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM

MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM Tut Susant, Mashad, Sukamto Mahasswa Program S Matematka Dosen Jurusan Matematka Fakultas Matematka dan Ilmu Pengetahuan Alam

Lebih terperinci

RANGKAIAN SERI. 1. Pendahuluan

RANGKAIAN SERI. 1. Pendahuluan . Pendahuluan ANGKAIAN SEI Dua elemen dkatakan terhubung ser jka : a. Kedua elemen hanya mempunya satu termnal bersama. b. Ttk bersama antara elemen tdak terhubung ke elemen yang lan. Pada Gambar resstor

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LINEAR KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI QR TUGAS AKHIR

PENYELESAIAN SISTEM PERSAMAAN LINEAR KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI QR TUGAS AKHIR PENYELESAIAN SISTEM PERSAMAAN LINEAR KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI QR TUGAS AKHIR Dajukan sebaga Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sans pada Jurusan Matematka Oleh : IIS ERIANTI

Lebih terperinci

Bab 3. Teori Comonotonic. 3.1 Pengurutan Variabel Acak

Bab 3. Teori Comonotonic. 3.1 Pengurutan Variabel Acak Bab 3 Teor Comonotonc Pada bab n konsep teor comonotonc akan dpaparkan dar awal dan berakhr pada konsep teor n untuk jumlah dar peubah - peubah acak 1. Setelah tu untuk membantu pemahaman akan dberkan

Lebih terperinci

Sifat-sifat Operasi Perkalian Modular pada Graf Fuzzy

Sifat-sifat Operasi Perkalian Modular pada Graf Fuzzy SEMINAR MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 07 Sfat-sfat Operas Perkalan Modular pada raf Fuzzy T - 3 Tryan, ahyo Baskoro, Nken Larasat 3, Ar Wardayan 4,, 3, 4 Unerstas Jenderal Soedrman transr@yahoo.com.au

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 3, , Desember 2002, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 3, , Desember 2002, ISSN : JURNAL MATEMATIKA AN KOMPUTER Vol. 5. No. 3, 161-167, esember 00, ISSN : 1410-8518 PENGARUH SUATU ATA OBSERVASI ALAM MENGESTIMASI PARAMETER MOEL REGRESI Hern Utam, Rur I, dan Abdurakhman Jurusan Matematka

Lebih terperinci

Tinjauan Algoritma Genetika Pada Permasalahan Himpunan Hitting Minimal

Tinjauan Algoritma Genetika Pada Permasalahan Himpunan Hitting Minimal 157 Vol. 13, No. 2, 157-161, Januar 2017 Tnjauan Algortma Genetka Pada Permasalahan Hmpunan Httng Mnmal Jusmawat Massalesse, Bud Nurwahyu Abstrak Beberapa persoalan menark dapat dformulaskan sebaga permasalahan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 2 LNDSN TEORI 2. Teor engamblan Keputusan Menurut Supranto 99 keputusan adalah hasl pemecahan masalah yang dhadapnya dengan tegas. Suatu keputusan merupakan jawaban yang past terhadap suatu pertanyaan.

Lebih terperinci

KAJIAN DAN ALGORITMA PELABELAN PSEUDO EDGE-MAGIC. memiliki derajat maksimum dan tidak ada titik yang terisolasi. Jika n i adalah

KAJIAN DAN ALGORITMA PELABELAN PSEUDO EDGE-MAGIC. memiliki derajat maksimum dan tidak ada titik yang terisolasi. Jika n i adalah BAB III KAJIAN DAN ALGORITMA PELABELAN PSEUDO EDGE-MAGIC III. Batas Bawah Magc Number pada Pelabelan Total Pseudo Edge-Magc Teorema 3.. Anggap G = (,E) adalah sebuah graf dengan n-ttk dan m-ss dan memlk

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Fuzzy Set Pada tahun 1965, Zadeh memodfkas teor hmpunan dmana setap anggotanya memlk derajat keanggotaan yang bernla kontnu antara 0 sampa 1. Hmpunan n dsebut dengan hmpunaan

Lebih terperinci

BEBERAPA SIFAT TERKAIT SUBMODUL SEMIPRIMA

BEBERAPA SIFAT TERKAIT SUBMODUL SEMIPRIMA BEBERAPA SIFAT TERKAIT SUBMODUL SEMIPRIMA A-3 Dan Aresta Yuwanngsh 1 1 Mahasswa S Matematka UGM dan.aresta17@yahoo.com Abstrak Dberkan R merupakan rng dengan elemen satuan, M R-modul kanan, dan R S End

Lebih terperinci

BAB III PEMBAHASAN. Pada bab ini akan dibahas mengenai ring embedding dan faktorisasi. tunggal pada ring komutatif tanpa elemen kesatuan.

BAB III PEMBAHASAN. Pada bab ini akan dibahas mengenai ring embedding dan faktorisasi. tunggal pada ring komutatif tanpa elemen kesatuan. BAB III PEMBAHASAN Pada bab n akan dbahas mengena rng embeddng dan faktorsas tunggal pada rng komutatf tanpa elemen kesatuan. A. Rng Embeddng Defns 3.1 (Malk et al. 1997: 318 Suatu rng R dkatakan embedded

Lebih terperinci

ANALISIS DATA KATEGORIK (STK351)

ANALISIS DATA KATEGORIK (STK351) Suplemen Respons Pertemuan ANALISIS DATA KATEGORIK (STK351) 7 Departemen Statstka FMIPA IPB Pokok Bahasan Sub Pokok Bahasan Referens Waktu Korelas Perngkat (Rank Correlaton) Bag. 1 Koefsen Korelas Perngkat

Lebih terperinci

PEMBUATAN GRAFIK PENGENDALI BERDASARKAN ANALISIS KOMPONEN UTAMA (PRINCIPAL COMPONENT ANALYSIS)

PEMBUATAN GRAFIK PENGENDALI BERDASARKAN ANALISIS KOMPONEN UTAMA (PRINCIPAL COMPONENT ANALYSIS) PEMBUATAN GRAFIK PENGENDALI BERDASARKAN ANALISIS KOMPONEN UTAMA (PRINCIPAL COMPONENT ANALYSIS) Wrayant ), Ad Setawan ), Bambang Susanto ) ) Mahasswa Program Stud Matematka FSM UKSW Jl. Dponegoro 5-6 Salatga,

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fska Dasar I (FI-31) Topk har n (mnggu 5) Usaha dan Energ Usaha dan Energ Energ Knetk Teorema Usaha Energ Knetk Energ Potensal Gravtas Usaha dan Energ Potensal Gravtas Gaya Konservatf dan Non-Konservatf

Lebih terperinci

BAB 3 PEMBAHASAN. 3.1 Prosedur Penyelesaian Masalah Program Linier Parametrik Prosedur Penyelesaian untuk perubahan kontinu parameter c

BAB 3 PEMBAHASAN. 3.1 Prosedur Penyelesaian Masalah Program Linier Parametrik Prosedur Penyelesaian untuk perubahan kontinu parameter c 6 A PEMAHASA Pada bab sebelumnya telah dbahas teor-teor yang akan dgunakan untuk menyelesakan masalah program lner parametrk. Pada bab n akan dperlhatkan suatu prosedur yang lengkap untuk menyelesakan

Lebih terperinci

Pendahuluan. 0 Dengan kata lain jika fungsi tersebut diplotkan, grafik yang dihasilkan akan mendekati pasanganpasangan

Pendahuluan. 0 Dengan kata lain jika fungsi tersebut diplotkan, grafik yang dihasilkan akan mendekati pasanganpasangan Pendahuluan 0 Data-data ang bersfat dskrt dapat dbuat contnuum melalu proses curve-fttng. 0 Curve-fttng merupakan proses data-smoothng, akn proses pendekatan terhadap kecenderungan data-data dalam bentuk

Lebih terperinci

Fisika Dasar I (FI-321) Usaha dan Energi

Fisika Dasar I (FI-321) Usaha dan Energi Fska Dasar I (FI-31) Topk har n (mnggu 5) Usaha dan Energ Usaha Menyatakan hubungan antara gaya dan energ Energ menyatakan kemampuan melakukan usaha Usaha,,, yang dlakukan oleh gaya konstan pada sebuah

Lebih terperinci

ANALISIS BENTUK HUBUNGAN

ANALISIS BENTUK HUBUNGAN ANALISIS BENTUK HUBUNGAN Analss Regres dan Korelas Analss regres dgunakan untuk mempelajar dan mengukur hubungan statstk yang terjad antara dua varbel atau lebh varabel. Varabel tersebut adalah varabel

Lebih terperinci

III PEMBAHASAN. merupakan cash flow pada periode i, dan C. berturut-turut menyatakan nilai rata-rata dari V. dan

III PEMBAHASAN. merupakan cash flow pada periode i, dan C. berturut-turut menyatakan nilai rata-rata dari V. dan Pada bab n akan dbahas mengena penyelesaan masalah ops real menggunakan pohon keputusan bnomal. Dalam menentukan penlaan proyek, dapat dgunakan beberapa metode d antaranya dscounted cash flow (DF). DF

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Di dalam matematika mulai dari SD, SMP, SMA, dan Perguruan Tinggi

BAB I PENDAHULUAN. 1.1 Latar Belakang. Di dalam matematika mulai dari SD, SMP, SMA, dan Perguruan Tinggi Daftar Is Daftar Is... Kata pengantar... BAB I...1 PENDAHULUAN...1 1.1 Latar Belakang...1 1.2 Rumusan Masalah...2 1.3 Tujuan...2 BAB II...3 TINJAUAN TEORITIS...3 2.1 Landasan Teor...4 BAB III...5 PEMBAHASAN...5

Lebih terperinci

Pembayaran harapan yang berkaitan dengan strategi murni pemain P 2. Pembayaran Harapan bagi Pemain P1

Pembayaran harapan yang berkaitan dengan strategi murni pemain P 2. Pembayaran Harapan bagi Pemain P1 Lecture : Mxed Strategy: Graphcal Method A. Metode Campuran dengan Metode Grafk Metode grafk dapat dgunakan untuk menyelesakan kasus permanan dengan matrks pembayaran berukuran n atau n. B. Matrks berukuran

Lebih terperinci

BAB V TEOREMA RANGKAIAN

BAB V TEOREMA RANGKAIAN 9 angkaan strk TEOEM NGKIN Pada bab n akan dbahas penyelesaan persoalan yang muncul pada angkaan strk dengan menggunakan suatu teorema tertentu. Dengan pengertan bahwa suatu persoalan angkaan strk bukan

Lebih terperinci

Bab 3 Analisis Ralat. x2 x2 x. y=x 1 + x 2 (3.1) 3.1. Menaksir Ralat

Bab 3 Analisis Ralat. x2 x2 x. y=x 1 + x 2 (3.1) 3.1. Menaksir Ralat Mater Kulah Ekspermen Fska Oleh : Drs. Ishaft, M.S. Program Stud Penddkan Fska Unverstas Ahmad Dahlan, 07 Bab 3 Analss Ralat 3.. Menaksr Ralat Msalna suatu besaran dhtung dar besaran terukur,,..., n. Jka

Lebih terperinci

3 METODE HEURISTIK UNTUK VRPTW

3 METODE HEURISTIK UNTUK VRPTW 12 3 METODE HEURISTIK UNTUK VRPTW 3.1 Metode Heurstk Metode heurstk merupakan salah satu metode penentuan solus optmal dar permasalahan optmas kombnatoral. Berbeda dengan solus eksak yang menentukan nla

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. Deskrps Data Hasl Peneltan Satelah melakukan peneltan, penelt melakukan stud lapangan untuk memperoleh data nla post test dar hasl tes setelah dkena perlakuan.

Lebih terperinci

REGRESI DAN KORELASI LINEAR SEDERHANA. Regresi Linear

REGRESI DAN KORELASI LINEAR SEDERHANA. Regresi Linear REGRESI DAN KORELASI LINEAR SEDERHANA Regres Lnear Tujuan Pembelajaran Menjelaskan regres dan korelas Menghtung dar persamaan regres dan standard error dar estmas-estmas untuk analss regres lner sederhana

Lebih terperinci

APLIKASI PERKONGRUENAN DALAM MENYELESAIKAN SISTEM PERSAMAAN LINEAR DUA PEUBAH. Yuni Yulida dan Muhammad Ahsar K

APLIKASI PERKONGRUENAN DALAM MENYELESAIKAN SISTEM PERSAMAAN LINEAR DUA PEUBAH. Yuni Yulida dan Muhammad Ahsar K Jurnal Matematka Murn dan Terapan Vol. 3 No. Desember 009: 4-6 APLIKASI PERKONGRUENAN DALAM MENYELESAIKAN SISTEM PERSAMAAN LINEAR DUA PEUBAH Yun Yulda dan Muhammad Ahsar K Program Stud Matematka Unverstas

Lebih terperinci

P n e j n a j d a u d a u l a a l n a n O pt p im i a m l a l P e P m e b m a b n a g n k g i k t Oleh Z r u iman

P n e j n a j d a u d a u l a a l n a n O pt p im i a m l a l P e P m e b m a b n a g n k g i k t Oleh Z r u iman OTIMISASI enjadualan Optmal embangkt Oleh : Zurman Anthony, ST. MT Optmas pengrman daya lstrk Dmaksudkan untuk memperkecl jumlah keseluruhan baya operas dengan memperhtungkan rug-rug daya nyata pada saluran

Lebih terperinci

VLE dari Korelasi nilai K

VLE dari Korelasi nilai K VLE dar orelas nla Penggunaan utama hubungan kesetmbangan fasa, yatu dalam perancangan proses pemsahan yang bergantung pada kecenderungan zat-zat kma yang dberkan untuk mendstrbuskan dr, terutama dalam

Lebih terperinci

KONSEP DASAR PROBABILITAS

KONSEP DASAR PROBABILITAS KONSEP DASAR PROBABILITAS TI2131 TEORI PROBABILITAS MINGGU KE-3 & KE-4 1 Defns 1 Probabltas dar sebuah kejadan A adalah jumlah bobot dar tap ttk sampel yang termasuk dalam A. Selanjutnya: 0 < P(A) < 1,

Lebih terperinci

DIMENSI PARTISI GRAF GIR

DIMENSI PARTISI GRAF GIR Jurnal Matematka UNAND Vol. 1 No. 2 Hal. 21 27 ISSN : 2303 2910 c Jurusan Matematka FMIPA UNAND DIMENSI PARTISI GRAF GIR REFINA RIZA Program Stud Matematka, Fakultas Matematka dan Ilmu Pengetahuan Alam,

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN. Latar Belakang Matematka sebaga bahasa smbol yang bersfat unversal memegang peranan pentng dalam perkembangan suatu teknolog. Matematka sangat erat hubungannya dengan kehdupan nyata.

Lebih terperinci

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara BAB 2 LANDASAN TEORI 2.1 Pengertan Analsa Regres Dalam kehdupan sehar-har, serng kta jumpa hubungan antara satu varabel terhadap satu atau lebh varabel yang lan. Sebaga contoh, besarnya pendapatan seseorang

Lebih terperinci

DISTRIBUSI HASIL PENGUKURAN DAN NILAI RATA-RATA

DISTRIBUSI HASIL PENGUKURAN DAN NILAI RATA-RATA DISTRIBUSI HASIL PENGUKURAN DAN NILAI RATA-RATA Dstrbus Bnomal Msalkan dalam melakukan percobaan Bernoull (Bernoull trals) berulang-ulang sebanyak n kal, dengan kebolehjadan sukses p pada tap percobaan,

Lebih terperinci

Pendeteksian Data Pencilan dan Pengamatan Berpengaruh pada Beberapa Kasus Data Menggunakan Metode Diagnostik

Pendeteksian Data Pencilan dan Pengamatan Berpengaruh pada Beberapa Kasus Data Menggunakan Metode Diagnostik Pendeteksan Data Penclan dan Pengamatan Berpengaruh pada Beberapa Kasus Data Menggunakan Metode Dagnostk Sally Indra 1, Dod Vonanda, Rry Srnngsh 3 1 Student of Mathematcs Department State Unversty of Padang,

Lebih terperinci

Didownload dari ririez.blog.uns.ac.id BAB I PENDAHULUAN

Didownload dari ririez.blog.uns.ac.id BAB I PENDAHULUAN BAB I PENDAHULUAN Sebuah jarngan terdr dar sekelompok node yang dhubungkan oleh busur atau cabang. Suatu jens arus tertentu berkatan dengan setap busur. Notas standart untuk menggambarkan sebuah jarngan

Lebih terperinci

PENENTUAN LOKASI PEMANCAR TELEVISI MENGGUNAKAN FUZZY MULTI CRITERIA DECISION MAKING

PENENTUAN LOKASI PEMANCAR TELEVISI MENGGUNAKAN FUZZY MULTI CRITERIA DECISION MAKING Meda Informatka, Vol. 2, No. 2, Desember 2004, 57-64 ISSN: 0854-4743 PENENTUAN LOKASI PEMANCAR TELEVISI MENGGUNAKAN FUZZY MULTI CRITERIA DECISION MAKING Sr Kusumadew Jurusan Teknk Informatka, Fakultas

Lebih terperinci

SOLUTION INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA

SOLUTION INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA ISTITUT TEKOLOGI BADUG FAKULTAS MATEMATIKA DA ILMU PEGETAHUA ALAM PROGRAM STUDI FISIKA FI-500 Mekanka Statstk SEMESTER/ Sem. - 06/07 PR#4 : Dstrbus bose Ensten dan nteraks kuat Kumpulkan d Selasa 9 Aprl

Lebih terperinci

P(A S) = P(A S) = P(B A) = dengan P(A) > 0.

P(A S) = P(A S) = P(B A) = dengan P(A) > 0. 0 3.5. PELUANG BERSYARAT Jka kta menghtung peluang sebuah pestwa, maka penghtungannya selalu ddasakan pada uang sampel ekspemen. Apabla A adalah sebuah pestwa, maka penghtungan peluang da pestwa A selalu

Lebih terperinci

UJI PRIMALITAS. Sangadji *

UJI PRIMALITAS. Sangadji * UJI PRIMALITAS Sangadj * ABSTRAK UJI PRIMALITAS. Makalah n membahas dan membuktkan tga teorema untuk testng prmaltas, yatu teorema Lucas, teorema Lucas yang dsempurnakan dan teorema Pocklngton. D sampng

Lebih terperinci

Contoh 5.1 Tentukan besar arus i pada rangkaian berikut menggunakan teorema superposisi.

Contoh 5.1 Tentukan besar arus i pada rangkaian berikut menggunakan teorema superposisi. BAB V TEOEMA-TEOEMA AGKAIA 5. Teorema Superposs Teorema superposs bagus dgunakan untuk menyelesakan permasalahan-permasalahan rangkaan yang mempunya lebh dar satu sumber tegangan atau sumber arus. Konsepnya

Lebih terperinci

Bab 2 AKAR-AKAR PERSAMAAN

Bab 2 AKAR-AKAR PERSAMAAN Analsa Numerk Bahan Matrkulas Bab AKAR-AKAR PERSAMAAN Pada kulah n akan dpelajar beberapa metode untuk mencar akar-akar dar suatu persamaan yang kontnu. Untuk persamaan polnomal derajat, persamaannya dapat

Lebih terperinci

BAB IV PEMBAHASAN HASIL PENELITIAN

BAB IV PEMBAHASAN HASIL PENELITIAN BAB IV PEMBAHASAN HASIL PENELITIAN A. Hasl Peneltan Pada peneltan yang telah dlakukan penelt selama 3 mnggu, maka hasl belajar matematka pada mater pokok pecahan d kelas V MI I anatussbyan Mangkang Kulon

Lebih terperinci

PADA GRAF PRISMA BERCABANG

PADA GRAF PRISMA BERCABANG PELABELAN TOTAL SUPER (a, d)-busur ANTI AJAIB PADA GRAF PRISMA BERCABANG Achmad Fahruroz,, Dew Putre Lestar,, Iffatul Mardhyah, Unverstas Gunadarma Depok Program Magster Fakultas MIPA Unverstas Indonesa

Lebih terperinci

BAB IX. STATISTIKA. CONTOH : HASIL ULANGAN MATEMATIKA 5 SISWA SBB: PENGERTIAN STATISTIKA DAN STATISTIK:

BAB IX. STATISTIKA. CONTOH : HASIL ULANGAN MATEMATIKA 5 SISWA SBB: PENGERTIAN STATISTIKA DAN STATISTIK: BAB IX. STATISTIKA. CONTOH : HASIL ULANGAN MATEMATIKA 5 SISWA SBB: PENGERTIAN STATISTIKA DAN STATISTIK: BAB IX. STATISTIKA Contoh : hasl ulangan Matematka 5 sswa sbb: 6 8 7 6 9 Pengertan Statstka dan

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN Latar elakang Sekolah merupakan salah satu bagan pentng dalam penddkan Oleh karena tu sekolah harus memperhatkan bagan-bagan yang ada d dalamnya Salah satu bagan pentng yang tdak dapat dpsahkan

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini merupakan studi eksperimen yang telah dilaksanakan di SMA

III. METODE PENELITIAN. Penelitian ini merupakan studi eksperimen yang telah dilaksanakan di SMA III. METODE PENELITIAN A. Waktu dan Tempat Peneltan Peneltan n merupakan stud ekspermen yang telah dlaksanakan d SMA Neger 3 Bandar Lampung. Peneltan n dlaksanakan pada semester genap tahun ajaran 2012/2013.

Lebih terperinci

BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE

BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE 6B.1 Pelathan ADALINE Model ADALINE (Adaptve Lnear Neuron) dtemukan oleh Wdrow & Hoff (1960) Arstekturnya mrp dengan perseptron Perbedaan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertan Regres Regres pertama kal dpergunakan sebaga konsep statstka oleh Sr Francs Galton (1822 1911). Belau memperkenalkan model peramalan, penaksran, atau pendugaan, yang

Lebih terperinci

BAB III. Monte Carlo dan metode least-square, maka pada bab ini diantaranya akan

BAB III. Monte Carlo dan metode least-square, maka pada bab ini diantaranya akan BAB III METODE LEAST-SQUARE MONTE CARLO Pada bab sebelumnya telah delaskan antara lan mengena smulas Monte Carlo dan metode least-square, maka pada bab n dantaranya akan dbahas penggunaan kedua metode

Lebih terperinci

2.1 Sistem Makroskopik dan Sistem Mikroskopik Fisika statistik berangkat dari pengamatan sebuah sistem mikroskopik, yakni sistem yang sangat kecil

2.1 Sistem Makroskopik dan Sistem Mikroskopik Fisika statistik berangkat dari pengamatan sebuah sistem mikroskopik, yakni sistem yang sangat kecil .1 Sstem Makroskopk dan Sstem Mkroskopk Fska statstk berangkat dar pengamatan sebuah sstem mkroskopk, yakn sstem yang sangat kecl (ukurannya sangat kecl ukuran Angstrom, tdak dapat dukur secara langsung)

Lebih terperinci

JMP : Volume 5 Nomor 1, Juni 2013, hal SPEKTRUM PADA GRAF REGULER KUAT

JMP : Volume 5 Nomor 1, Juni 2013, hal SPEKTRUM PADA GRAF REGULER KUAT JMP : Volume 5 Nomor, Jun 03, hal. 3 - SPEKTRUM PD GRF REGULER KUT Rzk Mulyan, Tryan dan Nken Larasat Program Stud Matematka, Fakultas Sans dan Teknk Unerstas Jenderal Soedrman Emal : rzky90@gmal.com BSTRCT.

Lebih terperinci

PROPERTY DAN PERDAGANGAN SEBAGAI SEKTOR DOMINAN PADA DATA BURSA SAHAM. DENGAN Principal Component Analysis (PCA)

PROPERTY DAN PERDAGANGAN SEBAGAI SEKTOR DOMINAN PADA DATA BURSA SAHAM. DENGAN Principal Component Analysis (PCA) PROPERT DAN PERDAGANGAN SEBAGAI SEKTOR DOMINAN PADA DATA BURSA SAHAM DENGAN Prncpal Component Analyss (PCA) Oleh : Hanna aa Parhusp, usp, Deva eawdyananto a dan Bernadeta Desnova Kr Program Stud Statstka

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi Game Theory

BAB II DASAR TEORI. 2.1 Definisi Game Theory BAB II DASAR TEORI Perkembangan zaman telah membuat hubungan manusa semakn kompleks. Interaks antar kelompok-kelompok yang mempunya kepentngan berbeda kemudan melahrkan konflk untuk mempertahankan kepentngan

Lebih terperinci

BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER

BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER 5.1 Pembelajaran Dengan Fuzzy Program Lner. Salah satu model program lnear klask, adalah : Maksmumkan : T f ( x) = c x Dengan batasan : Ax b x 0 n m mxn Dengan

Lebih terperinci

Bab 2 Tinjauan Pustaka 2.1 Penelitian Terdahulu

Bab 2 Tinjauan Pustaka 2.1 Penelitian Terdahulu Bab 2 Tnjauan Pustaka 2.1 Peneltan Terdahulu Pemlhan stud pustaka tentang sstem nformas penlaan knerja karyawan n juga ddasar pada peneltan sebelumnya yang berjudul Penerapan Metode TOPSIS untuk Pemberan

Lebih terperinci

BAB 3 PRINSIP INKLUSI EKSKLUSI

BAB 3 PRINSIP INKLUSI EKSKLUSI BAB 3 PRINSIP INKLUSI EKSKLUSI. Tentukan banyak blangan bulat dar sampa dengan 0.000 yang tdak habs dbag 4, 6, 7 atau 0. Jawab: Msal: S = {, 2, 3, 4, 5,..., 0.000} a = {sfat habs dbag 4} a 2 = {sfat habs

Lebih terperinci

REGRESI DAN KORELASI. Penduga Kuadrat Terkecil. Penduga b0 dan b1 yang memenuhi kriterium kuadrat terkecil dapat ditemukan dalam dua cara berikut :

REGRESI DAN KORELASI. Penduga Kuadrat Terkecil. Penduga b0 dan b1 yang memenuhi kriterium kuadrat terkecil dapat ditemukan dalam dua cara berikut : BAHAN AJAR EKONOMETRIKA AGUS TRI BASUKI UNIVERSITAS MUHAMMADIYAH YOGYAKARTA REGRESI DAN KORELASI Tujuan metode kuadrat terkecl adalah menemukan nla dugaan b0 dan b yang menghaslkan jumlah kesalahan kuadrat

Lebih terperinci

BAB 1 PENDAHULUAN. Pertumbuhan dan kestabilan ekonomi, adalah dua syarat penting bagi kemakmuran

BAB 1 PENDAHULUAN. Pertumbuhan dan kestabilan ekonomi, adalah dua syarat penting bagi kemakmuran BAB 1 PENDAHULUAN 1.1. Latar Belakang Pertumbuhan dan kestablan ekonom, adalah dua syarat pentng bag kemakmuran dan kesejahteraan suatu bangsa. Dengan pertumbuhan yang cukup, negara dapat melanjutkan pembangunan

Lebih terperinci

II. TEORI DASAR. Definisi 1. Transformasi Laplace didefinisikan sebagai

II. TEORI DASAR. Definisi 1. Transformasi Laplace didefinisikan sebagai II. TEORI DASAR.1 Transormas Laplace Ogata (1984) mengemukakan bahwa transormas Laplace adalah suatu metode operasonal ang dapat dgunakan untuk menelesakan persamaan derensal lnear. Dengan menggunakan

Lebih terperinci

Teori Himpunan. Modul 1 PENDAHULUAN

Teori Himpunan. Modul 1 PENDAHULUAN Modul 1 Teor Hmpunan Dr. Subanar K PENDHULUN arena banyak karakterstk dar masalah probabltas dapat dnyatakan secara formal dan dmodelkan secara rngkas dengan menggunakan notas hmpunan elementer, maka pertama-tama

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2 Masalah Transportas Jong Jek Sang (20) menelaskan bahwa masalah transportas merupakan masalah yang serng dhadap dalam pendstrbusan barang Msalkan ada m buah gudang (sumber) yang

Lebih terperinci

Matematika Keuangan Dan Ekonomi. Indra Maipita

Matematika Keuangan Dan Ekonomi. Indra Maipita Matematka Keuangan Dan Ekonom Indra Mapta NUITS BIS Pendahuluan Sebaga penabung seta nda keluar sebaga pemenang hadah undan, dan dapat memlh salah satu hadah berkut: Menerma uang sejumlah Rp 50.000.000

Lebih terperinci

SEMI RING POLINOM ATAS ALJABAR MAX-PLUS

SEMI RING POLINOM ATAS ALJABAR MAX-PLUS JMP : Volume 4 Nomor 2, Desember 2012, hal. 289-297 SEMI RING POLINOM ATAS ALJABAR MAX-PLUS Suroto Prod Matematka, Jurusan MIPA, Fakultas Sans dan Teknk Unverstas Jenderal Soedrman e-mal : suroto_80@yahoo.com

Lebih terperinci

Nama : Crishadi Juliantoro NPM :

Nama : Crishadi Juliantoro NPM : ANALISIS INVESTASI PADA PERUSAHAAN YANG MASUK DALAM PERHITUNGAN INDEX LQ-45 MENGGUNAKAN PORTOFOLIO DENGAN METODE SINGLE INDEX MODEL. Nama : Crshad Julantoro NPM : 110630 Latar Belakang Pemlhan saham yang

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 ENDAHULUAN 1.1 Latar Belakang Manusa dlahrkan ke duna dengan ms menjalankan kehdupannya sesua dengan kodrat Illah yakn tumbuh dan berkembang. Untuk tumbuh dan berkembang, berart setap nsan harus

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang dan Permasalahan

BAB I PENDAHULUAN Latar Belakang dan Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan Matematka dbag menjad beberapa kelompok bdang lmu, antara lan analss, aljabar, dan statstka. Ruang barsan merupakan salah satu bagan yang ada d bdang

Lebih terperinci

MENCERMATI BERBAGAI JENIS PERMASALAHAN DALAM PROGRAM LINIER KABUR. Mohammad Asikin Jurusan Matematika FMIPA UNNES. Abstrak

MENCERMATI BERBAGAI JENIS PERMASALAHAN DALAM PROGRAM LINIER KABUR. Mohammad Asikin Jurusan Matematika FMIPA UNNES. Abstrak JURAL MATEMATIKA DA KOMUTER Vol. 6. o., 86-96, Agustus 3, ISS : 4-858 MECERMATI BERBAGAI JEIS ERMASALAHA DALAM ROGRAM LIIER KABUR Mohammad Askn Jurusan Matematka FMIA UES Abstrak Konsep baru tentang hmpunan

Lebih terperinci

Preferensi untuk alternatif A i diberikan

Preferensi untuk alternatif A i diberikan Bahan Kulah : Topk Khusus Metode Weghted Product (WP) menggunakan perkalan untuk menghubungkan ratng atrbut, dmana ratng setap atrbut harus dpangkatkan dulu dengan bobot atrbut yang bersangkutan. Proses

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Hpotess Peneltan Berkatan dengan manusa masalah d atas maka penuls menyusun hpotess sebaga acuan dalam penulsan hpotess penuls yatu Terdapat hubungan postf antara penddkan

Lebih terperinci

Pertemuan ke-4 Analisa Terapan: Metode Numerik. 4 Oktober 2012

Pertemuan ke-4 Analisa Terapan: Metode Numerik. 4 Oktober 2012 Pertemuan ke-4 Analsa Terapan: Metode Numerk 4 Oktober Persamaan Non Non--Lner: Metode NewtonNewton-Raphson Dr.Eng. Agus S. Muntohar Metode Newton Newton--Raphson f( f( f( + [, f(] + = α + + f( f ( Gambar

Lebih terperinci

Kecocokan Distribusi Normal Menggunakan Plot Persentil-Persentil yang Distandarisasi

Kecocokan Distribusi Normal Menggunakan Plot Persentil-Persentil yang Distandarisasi Statstka, Vol. 9 No., 4 47 Me 009 Kecocokan Dstrbus Normal Menggunakan Plot Persentl-Persentl yang Dstandarsas Lsnur Wachdah Program Stud Statstka Fakultas MIPA Unsba e-mal : Lsnur_w@yahoo.co.d ABSTRAK

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN Data terdr dar dua data utama, yatu data denyut jantung pada saat kalbras dan denyut jantung pada saat bekerja. Semuanya akan dbahas pada sub bab-sub bab berkut. A. Denyut Jantung

Lebih terperinci

PENDAHULUAN Latar Belakang

PENDAHULUAN Latar Belakang PENDAHULUAN Latar Belakang Menurut teor molekuler benda, satu unt volume makroskopk gas (msalkan cm ) merupakan suatu sstem yang terdr atas sejumlah besar molekul (kra-kra sebanyak 0 0 buah molekul) yang

Lebih terperinci

III PEMODELAN MATEMATIS SISTEM FISIK

III PEMODELAN MATEMATIS SISTEM FISIK 34 III PEMODELN MTEMTIS SISTEM FISIK Deskrps : Bab n memberkan gambaran tentang pemodelan matemats, fungs alh, dagram blok, grafk alran snyal yang berguna dalam pemodelan sstem kendal. Objektf : Memaham

Lebih terperinci

BAB II DASAR TEORI (2.1) Keterangan: i = jumlah derajat kebebasan q i. = koordinat bebas yang digeneralisasi Fq i = gaya yang digeneralisasi

BAB II DASAR TEORI (2.1) Keterangan: i = jumlah derajat kebebasan q i. = koordinat bebas yang digeneralisasi Fq i = gaya yang digeneralisasi BAB II DASAR TEORI. Metode Elemen Hngga Sstem Rotor Dnamk [7] Pemodelan elemen hngga sstem rotor dnamk dkembangkan berdasarkan konsep energ. Persamaan energ knetk, energ regangan, dan kerja maya yang terdapat

Lebih terperinci

APLIKASI FUZZY LINEAR PROGRAMMING UNTUK MENGOPTIMALKAN PRODUKSI LAMPU (Studi Kasus di PT. Sinar Terang Abadi )

APLIKASI FUZZY LINEAR PROGRAMMING UNTUK MENGOPTIMALKAN PRODUKSI LAMPU (Studi Kasus di PT. Sinar Terang Abadi ) APLIKASI FUZZY LINEAR PROGRAMMING UNTUK MENGOPTIMALKAN PRODUKSI LAMPU (Stud Kasus d PT. Snar Terang Abad ) Bagus Suryo Ad Utomo 1203 109 001 Dosen Pembmbng: Drs. I Gst Ngr Ra Usadha, M.S Jurusan Matematka

Lebih terperinci

ANALISIS REGRESI. Catatan Freddy

ANALISIS REGRESI. Catatan Freddy ANALISIS REGRESI Regres Lner Sederhana : Contoh Perhtungan Regres Lner Sederhana Menghtung harga a dan b Menyusun Persamaan Regres Korelas Pearson (Product Moment) Koefsen Determnas (KD) Regres Ganda :

Lebih terperinci

Review Thermodinamika

Review Thermodinamika Revew hermodnamka Hubungan hermodnamka dan Mekanka tatstk hermodnamka: deskrps fenomenologs tentang sfatsfat fss sstem makroskopk dalam kesetmbangan. Phenomenologs : mendasarkan pada pengamatan emprs terhadap

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMP Negeri 13 Bandar Lampung. Populasi dalam

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMP Negeri 13 Bandar Lampung. Populasi dalam III. METODE PENELITIAN A. Populas dan Sampel Peneltan n dlaksanakan d SMP Neger 3 Bandar Lampung. Populas dalam peneltan n yatu seluruh sswa kelas VIII SMP Neger 3 Bandar Lampung Tahun Pelajaran 0/03 yang

Lebih terperinci

Analisis Regresi 1. Diagnosa Model Melalui Pemeriksaan Sisaan dan Identifikasi Pengamatan Berpengaruh. Pokok Bahasan :

Analisis Regresi 1. Diagnosa Model Melalui Pemeriksaan Sisaan dan Identifikasi Pengamatan Berpengaruh. Pokok Bahasan : Analss Regres Pokok Bahasan : Dagnosa Model Melalu Pemerksaan Ssaan dan Identfkas Pengamatan Berpengaruh Itasa & Y Angran Dep. Statstka FMIPA-IPB Ssaan Ssaan adalah menympangnya nla amatan y terhadap dugaan

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 ENDAHULUAN 1.1 Latar Belakang Secara umum dapat dkatakan bahwa mengambl atau membuat keputusan berart memlh satu dantara sekan banyak alternatf. erumusan berbaga alternatf sesua dengan yang sedang

Lebih terperinci

DIKTAT KULIAH ANALISIS NUMERIK ( CIV

DIKTAT KULIAH ANALISIS NUMERIK ( CIV DIKTAT KULIAH ANALISIS NUMERIK ( CIV 8 Oleh : Agus Setawan S.T. M.T. PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNOLOGI & DESAIN UNIVERSITAS PEMBANGUNAN JAYA TANGERANG SELATAN 6 DAFTAR ISI KATA PENGANTAR DAFTAR

Lebih terperinci

Sistem Kriptografi Stream Cipher Berbasis Fungsi Chaos Circle Map Dengan Pertukaran Kunci Diffie-Hellman

Sistem Kriptografi Stream Cipher Berbasis Fungsi Chaos Circle Map Dengan Pertukaran Kunci Diffie-Hellman SEMINAR MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2017 Sstem Krptograf Stream Cpher Berbass Fungs Chaos Crcle Map Dengan Pertukaran Kunc Dffe-Hellman A-6 Muh. Fajryanto 1,a), Aula Kahf 2,b), Vga Aprlana

Lebih terperinci