Sudaryatno Sudirham. Permutasi dan Kombinasi

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Sudaryatno Sudirham. Permutasi dan Kombinasi"

Transkripsi

1 Sudaryato Sudrham Permutas da Kombas

2 Permutas

3 Permutas adalah bayakya peelompoka sejumlah tertetu kompoe ya dambl dar sejumlah kompoe ya terseda; dalam setap kelompok uruta kompoe dperhatka Msalka terseda huruf yatu A da B da kta dmta utuk membuat kelompok ya setap kelompokya terdr dar huruf Kelompok ya ya bsa kta betuk adalah A B B da A dperoleh kelompok Ada dua kemuka huruf ya bsa meempat poss pertama yatu A atau B Jka A sudah meempat poss pertama, maka haya satu kemuka ya bsa meempat poss kedua yatu B Jka B sudah meempat poss pertama, maka haya satu kemuka ya bsa meempat poss kedua yatu A

4 Msalka terseda huruf yatu A, B, da C Kelompok ya setap kelompokya terdr dar huruf adalah: A B C B A A C A C B B C dperoleh 6 kelompok C C B B A A Jka salah satu kompoe sudah meempat poss pertama tal kemuka kompoe ya dapat meempat poss kedua Jka salah satu kompoe sudah meempat poss pertama da salah satu dar ya terssa sudah meempat poss kedua 6 maka haya tal kemuka kompoe ya dapat meempat poss terakhr yatu poss keta Jad jumlah kelompok ya bsa dperoleh adalah Jumlah kemuka kompoe ya meempat poss pertama Jumlah kemuka kompoe ya meempat poss kedua Jumlah kemuka kompoe ya meempat poss keta

5 Dar 4 huruf yatu A, B, C da D kta dapat membuat kelompok ya setap kelompokya terdr dar 4 huruf Kemuka peempata poss pertama : 4 Kemuka peempata poss kedua : Kemuka peempata poss keta : Kemuka peempata poss keempat : jumlah kelompok ya muk dbetuk 44 kelompok yatu: ABCD BACD CDAB DABC ABDC BADC CDBA DACB ACBD BCAD CABD DBCA ACDB BCDA CADB DBAC ADCB BDAC CBAD DCAB ADBC BDCA CBDA DCBA ada 4 kelompok

6 Secara umum jumlah kelompok ya dapat kta bau dar kompoe ya setap kelompok terdr dar kompoe adalah ) )... Kta kataka bahwa permutas dar kompoe adalah da kta tulska P Kta baca : fakultet amu dar kompoe tdak haya dapat dkelompokka dea setap kelompok terdr dar kompoe, tetap jua dapat dkelompokka dalam kelompok ya masmas kelompok terdr dar k kompoe dmaa k < Kta sebut permutas k dar kompoe da kta tulska P k

7 Cotoh: Permutas dua-dua dar empat kompoe adalah 4 P 4 D s kta haya mealka kemuka peempata pada poss pertama da keta saja yatu 4 da. Tdak ada kompoe ya meempat poss berkutya. Pehtua 4 P dalam cotoh d atas dapat kta tulska 4 4 P

8 Secara Umum: k P k Cotoh: P Cotoh: P

9 Kombas

10 Kombas merupaka peelompoka sejumlah kompoe ya muk dlakuka tapa mempedulka urutaya Jka dar ta huruf A, B, da C, dapat 6 hasl permutas yatu ABC, ACB, BCA, BAC, CAB, da CBA amu haya ada satu kombas dar ta huruf tersebut yatu ABC karea dalam kombas uruta poss keta huruf tu tdak dperhatka ABC ACB BCA BAC CAB CBA

11 Oleh karea tu kombas k dar sejumlah kompoe haruslah sama dea jumlah permutas P k dba dea permutas k Kombas k dar sejumlah kompoe dtulska sebaa C k C k Pk k k k Jad

12 Cotoh: Berapakah kombas dua-dua dar empat huruf A, B, C, da D Jawab: 4 P C 6 yatu: AB AC AD BC BD CD

13 CotohAplkas Dstrbus Maxwell-Boltzma Dstrbus Ferm-Drac

14 Dstrbus Maxwell-Boltzma Eer elektro dalam padata terdstrbus pada tkat-tkat eer ya dskrt; kta sebut E E E dst. Setap tkat eer dapat dtempat oleh elektro maa saja da setap elektro memlk probabltas ya sama utuk meempat suatu tkat eer

15 Jka adalah jumlah keseluruha elektro ya harus terdstrbus dalam tkat-tkat eer ya ada da kta msalka bahwa dstrbus ya terbetuk adalah d E d E d E dst. terdapat terdapat terdapat elektro elektro elektro maka jumlah cara peempata elektro d E merupaka permutas dar yatu P P

16 Jumlah cara peempata elektro d E merupaka permutas dar ) karea sejumlah sudah meempat E P P ) Jumlah cara peempata elektro d E merupaka permutas dar ) karea sejumlah + ) sudah meempat E da E P P ) dst.

17 Setelah meempat E maka uruta peempata elektro d E sudah tdak berart la karea kta tdak dapat membedaka atara satu elektro dea elektro ya la Jad jumlah cara peempata elektro d E adalah kombas dar yatu P C Demka pula peempata elektro d E, E, dst. ) - P C ) P C dst.

18 amu setap tkat eer jua memlk probabltas utuk dtempat, ya dsebut trksc probablty Msalka trksc probablty tkat E adalah, E adalah, dst. maka probabltas tkat-tkat eer E E E dst. dtempat dtempat dtempat elektro elektro elektro adalah F F F dst. C C C Dea demka maka probabltas utuk terjadya dstrbus elektro sepert d atas adalah: F F F F C C C Ilah probabltas dstrbus dalam statstk Maxwell-Boltzma

19 Upaya selajutya adalah mecar betuk dstrbus ya pal muk terjad amu hal tdak kta bahas d s, karea cotoh haya meujukka aplkas dar peerta permutas da kombas Pembaca dapat melhat proses perhtua lajuta d buku-e Meeal Sfat Materal

20 Sebaa formas, probabltas F meatarka kta pada formulas dstrbus Maxwell-Boltzma Jumlah elektro pada tkat eer E Z e E / k T B temperatur kostata Boltzma tkat eer ke- probabltas trksk tkat eer ke- fus parts Z β E e

21 Dstrbus Ferm-Drac Eer elektro dalam terdstrbus pada tkat-tkat eer ya dskrt, msalya kta sebut E E E dst. Setap tkat eer meadu sejumlah tertetu status kuatum da tdak lebh dar dua elektro berada pada status ya sama. Oleh karea tu jumlah status d tap tkat eer mejad probabltas trksk tkat eer ya bersakuta Ya berart meujukka jumlah elektro ya muk berada d suatu tkat eer

22 Jka adalah jumlah keseluruha elektro ya harus terdstrbus dalam tkat-tkat eer ya ada, yatu d E d E d E dst. terdapat terdapat terdapat elektro elektro elektro

23 Seha probabltas utuk terjadya dstrbus elektro adalah: Ilah probabltas dstrbus dalam statstk Ferm-Drac amu kta tdak membcaraka lebh lajut karea proses selajutya tdak meyakut permutas da kombas Maka bayakya cara peempata elektro d tkat E, E, E dst. merupaka kombas C, C, C dst C C C dst. Dea probabltas trksk,, maka jumlah cara utuk meempatka elektro d tkat E, E, E dst. mejad F F F dst. F F F F F...

24 Upaya selajutya adalah mecar betuk dstrbus ya pal muk terjad amu hal tdak kta bahas d s, karea cotoh haya meujukka aplkas dar peerta permutas da kombas Pembaca dapat melhat proses perhtua lajuta d buku-e Meeal Sfat Materal, Bab-9 ya dapat duduh d stus jua

25 Sebaa formas, probabltas F meatarka kta pada formulas dstrbus Ferm Drac e E E F ) / k T B + Jka kta perhatka persamaa utuk T 0 lm T 0 e E E F ) / k T B 0 utuk E utuk E E E F F ) < 0 ) > 0 Jad jka T 0 maka ya berart semua tkat eer sampa E F ters peuh da tdak terdapat elektro d atas E F E F lah ya dsebut tkat eer Ferm.

26 Baha Kulah Terbuka Permutas da Kombas Sudaryato Sudrham

Combinatorics. Aturan Jumlah. Teknik Menghitung (Kombinatorik) Contoh

Combinatorics. Aturan Jumlah. Teknik Menghitung (Kombinatorik) Contoh Combinatorics Teknik Menghitung (Kombinatorik) Penjumlahan Perkalian Kombinasi Adalah cabang dari matematika diskrit tentang cara mengetahui ukuran himpunan terbatas tanpa harus melakukan perhitungan setiap

Lebih terperinci

7. LAMPIRAN Analisa Data SPSS Lampiran 1 : Uji Pendahuluan Es Krim tepung Maizena : Uji Kruskal Wallis. Uji Mann Whitney Sampel 1 dan 2

7. LAMPIRAN Analisa Data SPSS Lampiran 1 : Uji Pendahuluan Es Krim tepung Maizena : Uji Kruskal Wallis. Uji Mann Whitney Sampel 1 dan 2 7. LAMPIRAN Analisa Data SPSS Lampiran 1 : Uji Pendahuluan Es Krim tepung Maizena : Uji Kruskal Wallis Uji Mann Whitney Sampel 1 dan 2 Uji Mann Whitney Sampel 1 dan 3 Uji Mann Whitney Sampel 2 dan 3 48

Lebih terperinci

Kapita Selekta Matematika

Kapita Selekta Matematika Sudaryato Sudirham Kapita Selekta Matematika Bilaga Kompleks Permutasi da Kombiasi Aritmatika Iterval BILANGAN KOMPLEKS Defiisi Dalam buku Erwi Kreyszig kita baca defiisi bilaga bilaga kompleks sebagai

Lebih terperinci

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI BB 6 PRINSIP INKLUSI DN EKSKLUSI Pada baga aka ddskuska topk berkutya yatu eumeras yag damaka Prsp Iklus da Eksklus. Kosep dalam bab merupaka perluasa de dalam Dagram Ve beserta oepras rsa da gabuga, amu

Lebih terperinci

Pencarian. Kecerdasan Buatan Pertemuan 3 Yudianto Sujana

Pencarian. Kecerdasan Buatan Pertemuan 3 Yudianto Sujana Pencarian Kecerdasan Buatan Pertemuan 3 Yudianto Sujana Metode Pencarian dan Pelacakan Hal penting dalam menentukan keberhasilan sistem cerdas adalah kesuksesan dalam pencarian. Pencarian = suatu proses

Lebih terperinci

LAMPIRAN 1. Proses Pembuatan Kopi Tanpa Ampas. Green Bean Kopi Tempur. Jadi. Digiling. Diseduh. Jadi. Hasil Seduhan Kopi Tempur. Disaring.

LAMPIRAN 1. Proses Pembuatan Kopi Tanpa Ampas. Green Bean Kopi Tempur. Jadi. Digiling. Diseduh. Jadi. Hasil Seduhan Kopi Tempur. Disaring. LAMPIRAN 1. Proses Pembuatan Kopi Tanpa Ampas Dis ang rai Green Bean Kopi Tempur Jadi Mesin Penyangrai Digiling Hasil Sangrai Biji Kopi Tempur Jadi Mesin Penggiling Diseduh Bubuk Kopi Tempur Jadi Kompor

Lebih terperinci

Contoh. Teknik Menghitungdan Kombinatorial. Contoh. Combinatorics

Contoh. Teknik Menghitungdan Kombinatorial. Contoh. Combinatorics Contoh Teknik Menghitungdan Kombinatorial Berapa banyak pelat nomor bisa dibuat dengan mengunakan 3 huruf dan 3 angka? Berapa banyak pelat nomor bisa dibuat dengan menggunakan 3 huruf dan 3 angka tapi

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu. BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska

Lebih terperinci

7. LAMPIRAN. Lampiran 1. Hasil Analisa Data Karakteristik fisik nugget ikan nila

7. LAMPIRAN. Lampiran 1. Hasil Analisa Data Karakteristik fisik nugget ikan nila 7. LAMPIRAN Lampiran 1. Hasil Analisa Data Karakteristik fisik nugget ikan nila 43 44 Karakteristik kimia nugget ikan nila 45 46 47 Karakteristik sensori nugget ikan nila 48 49 Lampiran 2. Worksheet Uji

Lebih terperinci

KECERDASAN BUATAN METODE HEURISTIK / HEURISTIC SEARCH ERWIEN TJIPTA WIJAYA, ST., M.KOM

KECERDASAN BUATAN METODE HEURISTIK / HEURISTIC SEARCH ERWIEN TJIPTA WIJAYA, ST., M.KOM KECERDASAN BUATAN METODE HEURISTIK / HEURISTIC SEARCH ERWIEN TJIPTA WIJAYA, ST., M.KOM KERANGKA MASALAH Generate And Test Hill Climbing Best First Search PENCARIAN HEURISTIK Kelemahan blind search : 1.

Lebih terperinci

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real.

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real. BAB 5 BARIAN DAN DERET KOMPLEK ecara eses, pembahasa tetag barsa da deret komlpeks sama dega barsa da deret real. 5. Barsa Barsa merupaka sebuah fugs dega doma berupa hmpua blaga asl N. ebuah barsa kompleks

Lebih terperinci

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat.

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat. KALKULUS LANJUT Pertemua ke-4 Rey Ra Marlaa, S.S.,M.Stat. Plot Mater Notas Jumlah & Sgma Itegral Tetu Jumlah Rema Pedahulua Luas Notas Jumlah & Sgma Purcell, et all. (page 226,2003): Sebuah fugs yag daerah

Lebih terperinci

Sudaryatno Sudirham ing Utari. Mengenal. 9-2 Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1)

Sudaryatno Sudirham ing Utari. Mengenal. 9-2 Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1) Sudaryato Sudrham g Utar Megeal Sfat-Sfat Materal () 9- Sudaryato S & Ng Utar, Megeal Sfat-Sfat Materal () BAB 9 Sfat Lstrk Metal Berbeda dega jes materal yag la, metal memlk koduktvtas lstrk da koduktvvats

Lebih terperinci

BAB III PERSAMAAN PANAS DIMENSI SATU

BAB III PERSAMAAN PANAS DIMENSI SATU BAB III PERSAMAAN PANAS DIMENSI SAU Pada baga sebelumya, kta telah membahas peerapa metoda Ruge-Kutta orde 4 utuk meyelesaka masalah la awal dar persamaa dferesal basa orde. Pada bab, kta aka melakuka

Lebih terperinci

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl

Lebih terperinci

SOLUSI TUGAS I HIMPUNAN

SOLUSI TUGAS I HIMPUNAN Program Stud S1 Tekk Iformatka Fakultas Iformatka, Telkom Uversty SOLUSI TUGAS I HIMPUNAN Matematka Dskrt (MUG2A3) Halama 1 dar 6 Soal 1 Tetukalah eleme-eleme dar hmpua berkut! 2 x x adalah blaga real

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres

Lebih terperinci

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI MINGGU KE-0 HUBUNGAN ANTAR KONVERGENSI Hubuga atar koverges Hrark atar koverges dyataka dalam teorema berkut. Teorema Msalka X da X, X, X 3,... adalah varabel radom yag ddefska pada ruag probabltas yag

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel BAB I PENDAHULUAN 1.1 Statstka Deskrptf da Statstka Iferesal Dewasa d berbaga bdag lmu da kehdupa utuk memaham/megetahu sesuatu dperluka dat Sebaga cotoh utuk megetahu berapa bayak rakyat Idoesa yag memerluka

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

7. LAMPIRAN Formula Adonan Arem-Arem 1 kilogram beras 3 liter santan Kara yang diencerkan 1 sachet royco rasa daging ayam Daun pandan

7. LAMPIRAN Formula Adonan Arem-Arem 1 kilogram beras 3 liter santan Kara yang diencerkan 1 sachet royco rasa daging ayam Daun pandan 7. LAMPIRAN 7.1. Formula Arem-Arem, untuk 5 arem-arem (Lampiran 1) 7.1.1. Formula Isian Daging Ayam 25 gram bawang merah 5 gram bawang putih 5 gram cabai merah 5 gram daging ayam 1 gram gula pasir 1 sendok

Lebih terperinci

Lampiran 1. Worksheet Uji Ranking Hedonik Konsentrasi Rumput Laut. Worksheet Uji Ranking Hedonik ABCD 11 BCDA 12 CDAB 13 DABC 14 ACBD 15

Lampiran 1. Worksheet Uji Ranking Hedonik Konsentrasi Rumput Laut. Worksheet Uji Ranking Hedonik ABCD 11 BCDA 12 CDAB 13 DABC 14 ACBD 15 7. LAMPIRAN Lampiran 1. Worksheet Uji Ranking Hedonik Konsentrasi Rumput Laut Tanggal uji : Jenis sampel : Nugget Lele Rumput Laut Worksheet Uji Ranking Hedonik Identifikasi sampel Nugget Lele Rumput Laut

Lebih terperinci

BAB 5. ANALISIS REGRESI DAN KORELASI

BAB 5. ANALISIS REGRESI DAN KORELASI BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh

Lebih terperinci

BAB IV TEKNIK PELACAKAN

BAB IV TEKNIK PELACAKAN BAB IV TEKNIK PELACAKAN A. Teknik Pelacakan Pelacakan adalah teknik untuk pencarian :sesuatu. Didalam pencarian ada dua kemungkinan hasil yang didapat yaitu menemukan dan tidak menemukan. Sehingga pencarian

Lebih terperinci

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah BAB III INEGRAL RIEMANN-SIELJES. Pedahulua Pada Bab, telah dsggug bahwa ukura meghtug merupaka salah satu pedekata utuk membetuk proses ttk. Berkata dega masalah perhtuga, ada hal meark yag perlu amat,

Lebih terperinci

NORM VEKTOR DAN NORM MATRIKS

NORM VEKTOR DAN NORM MATRIKS NORM VEKTOR DN NORM MTRIK umaag Muhtar Gozal UNIVERIT PENDIDIKN INDONEI. Pedahulua Jka kta membcaraka topk ruag vektor maka cotoh sederhaa yag dapat kta ambl adalah ruag Eucld R. D ruag kta medefska pajag

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,

Lebih terperinci

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP Msal dguaka kode ler C[, k, d] dega matrks pembagu G da matrks cek partas H. Sebuah blok formas x = x 1 x 2 x k, x = 0 atau 1, yag aka dkrm terlebh

Lebih terperinci

UKURAN GEJALA PUSAT DAN UKURAN LETAK

UKURAN GEJALA PUSAT DAN UKURAN LETAK UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu

Lebih terperinci

7. LAMPIRAN 7.1. Lampiran 1 (Formula Bakcang Ayam) Bahan gr beras ketan 2. ½ sendok teh garam gr daging ayam cincang 4.

7. LAMPIRAN 7.1. Lampiran 1 (Formula Bakcang Ayam) Bahan gr beras ketan 2. ½ sendok teh garam gr daging ayam cincang 4. 7. LAMPIRAN 7.1. Lampiran 1 (Formula Bakcang Ayam) 7.1.1. Bahan 1. 500 gr beras ketan 2. ½ sendok teh garam 3. 350 gr daging ayam cincang 4. 800 cc santan Kara yang diencerkan 7.1.2. Isian 1. 5 siung bawang

Lebih terperinci

Aplikasi Teori Peluang dalam Permainan Poker

Aplikasi Teori Peluang dalam Permainan Poker Aplikasi Teori Peluang dalam Permainan Poker Rien Nisa and 13510098 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

Lebih terperinci

7. LAMPIRAN 7.1. Diagram Alir Pembuatan Tahu 37,5% Koro Pedang

7. LAMPIRAN 7.1. Diagram Alir Pembuatan Tahu 37,5% Koro Pedang 7. LAMPIRAN 7.1. Diagram Alir Pembuatan Tahu 37,5% Koro Pedang 250 g Kedelai 150 g Koro Pedang Pencucian Abu dapur 3 sdm Pencucian 2 L air Perebusan 10 menit Pengupasan kulit ari Perendaman 48 jam Pencucian

Lebih terperinci

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 11-19, Aprl 004, ISSN : 1410-8518 TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM Sudaro Jurusa Matematka FMIPA UNDIP Abstrak Sstem yag dbetuk

Lebih terperinci

PRINSIP INKLUSI- EKSKLUSI INCLUSION- EXCLUSION PRINCIPLE

PRINSIP INKLUSI- EKSKLUSI INCLUSION- EXCLUSION PRINCIPLE RISI IKLUSI- EKSKLUSI ICLUSIO- EXCLUSIO RICILE rsp Iklus-Eksklus Ada berapa aggota dalam gabuga dua hmpua hgga? A A = A A - A A Cotoh Ada berapa blaga bulat postf lebh kecl atau sama dega 00 yag habs dbag

Lebih terperinci

Syarat Mutu Roti Tawar

Syarat Mutu Roti Tawar 56 Syarat Mutu Roti Tawar No Kriteria uji Satuan Persyaratan 1 1.1 Keadaan Kenampakan - 1.2 1.3 2. 3. 4. 5. 6. 7. 8. 9. 9.1. 9.2. 9.3. 9.4. 10. 10.1 10.2 10.3 10.4 11...1..2..3. Bau Rasa Air Abu (tidak

Lebih terperinci

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka

Lebih terperinci

Penarikan Contoh Acak Sederhana (Simple Random Sampling)

Penarikan Contoh Acak Sederhana (Simple Random Sampling) Pearka Cotoh Acak Sederhaa (Smple Radom Samplg) Defs Jka sebuah cotoh berukura dambl dar suatu populas sedemka rupa sehgga setap cotoh berukura ag mugk memlk peluag sama utuk terambl, maka prosedur tu

Lebih terperinci

SIFAT-SIFAT LANJUT FUNGSI TERBATAS

SIFAT-SIFAT LANJUT FUNGSI TERBATAS Bulet Ilmah Mat. Stat. da Terapaya (Bmaster) Volume 03, No. 2(204), hal 35 42. SIFAT-SIFAT LANJUT FUNGSI TERBATAS Suhard, Helm, Yudar INTISARI Fugs terbatas merupaka fugs yag memlk batas atas da batas

Lebih terperinci

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Ruag Baach Sumaag Muhtar Gozal UNIVERSITAS PENDIDIKAN INDONESIA Satu kose etg d kulah Aalss ugsoal adalah teor ruag Baach. Pada baga aka drevu defs, cotoh-cotoh, serta sfat-sfat etg ruag Baach. Kta aka

Lebih terperinci

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER TUGAS ATA KULIAH TEORI RING LANJUT ODUL NOETHER Da Aresta Yuwagsh (/364/PPA/03489) Sebelumya, telah dketahu bahwa sebaga rg dega eleme satua memeuh sfat rata ak utuk deal-deal d. Apabla dpadag sebaga modul,

Lebih terperinci

PENERAPAN SOCIALLY OPTIMAL CHOICE FUNCTION DALAM STRATEGI DOMINAN LINA YASMINA MAHBUBAH

PENERAPAN SOCIALLY OPTIMAL CHOICE FUNCTION DALAM STRATEGI DOMINAN LINA YASMINA MAHBUBAH PENERAPAN SOCIALLY OPTIMAL CHOICE FUNCTION DALAM STRATEGI DOMINAN LINA YASMINA MAHBUBAH DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2013 PERNYATAAN

Lebih terperinci

Pendakian Bukit (Hill Climbing)

Pendakian Bukit (Hill Climbing) Pendakian Bukit (Hill Climbing) Metde ini hampir sama dengan metde pembangkitan & pengujian, hanya saja prses pengujian dilakukan dengan menggunakan fungsi heuristik. Pembangkitan keadaan berikutnya sangat

Lebih terperinci

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton,

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton, BAB LANDASAN TEORI Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut varabel tak bebas (depedet

Lebih terperinci

UJI KECOCOKAN ( MATCHING TEST

UJI KECOCOKAN ( MATCHING TEST 7. LAMPIRAN Lampiran 1.Worksheet, Scoresheet dan Hasil Seleksi Panelis Terlatih WORKSHEET UJI KECOCOKAN (MATCHING TEST) Jenis Uji Sensori : kecocokan Tanggal Pengujian : Jenis Sampel : larutan rasa dasar

Lebih terperinci

BAB III UKURAN PEMUSATAN DATA

BAB III UKURAN PEMUSATAN DATA BAB III UKURAN PEMUSATAN DATA A. Ukura Gejala Pusat Ukura pemusata adalah suatu ukura yag meujukka d maa suatu data memusat atau suatu kumpula pegamata memusat (megelompok). Ukura pemusata data adalah

Lebih terperinci

Metode Pencarian & Pelacakan dengan Heuristik

Metode Pencarian & Pelacakan dengan Heuristik Metode Pencarian & Pelacakan dengan Heuristik Pencarian Buta (Blind Search) Breadth-First Search Depth-First Search Pencarian Terbimbing (Heuristics Search) Generate & Test Hill Climbing Best-First Search

Lebih terperinci

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES * PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka

Lebih terperinci

BAB III ISI. x 2. 2πσ

BAB III ISI. x 2. 2πσ BAB III ISI 4. Keadata Normal Multvarat da Sfat-sfatya Keadata ormal multvarat meruaka geeralsas dar keadata ormal uvarat utuk dmes. f ( x) [( x )/ ] / = e x π x = ( x )( ) ( x ). < < (-) (-) Betuk (-)

Lebih terperinci

7. LAMPIRAN Perhitungan. Perhitungan jumlah fortifikan yang ditambahkan : AKG zat besi wanita = 18 mg/hari

7. LAMPIRAN Perhitungan. Perhitungan jumlah fortifikan yang ditambahkan : AKG zat besi wanita = 18 mg/hari 7. LAMPIRAN 7.1. Perhitungan Perhitungan jumlah fortifikan yang ditambahkan : AKG zat besi wanita = 18 mg/hari 20 % AKG = 20% x 18 mg/hari = 3,6 mg/hari Jumlah kandungan zat besi dalam fortifikan kedelai

Lebih terperinci

MATEMATIKA INTEGRAL RIEMANN

MATEMATIKA INTEGRAL RIEMANN MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN Ses NGAN INTEGRAL RIEMANN A. NOTASI SIGMA a. Defs Notas Sgma Sgma (Σ) adalah otas matematka megguaka smbol yag mewakl pejumlaha da beberapa suku yag memlk

Lebih terperinci

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran Kurkulum 013/006 matematka K e l a s XI STATISTIKA: UKURAN PEMUSATAN Tujua Pembelajara Setelah mempelajar mater, kamu dharapka memlk kemampua berkut. 1. Dapat meetuka rata-rata data tuggal da data berkelompok..

Lebih terperinci

Kombinatorik: Prinsip Dasar dan Teknik

Kombinatorik: Prinsip Dasar dan Teknik Kombiatorik: Prisip Dasar da Tekik Drs. Sahid, MSc. Jurusa Pedidika Matematika FMIPA Uiversitas Negeri Yogyakarta sahidyk@gmail.com March 27, 2009 1 Atura Pejumlaha (Atura Disjugtif) Jika utuk melakuka

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Tgg tekaa [m] UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 11 Desember 017 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 50%] Sebuah PDAM melakuka pegukura

Lebih terperinci

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari teori gangguan bebas waktu yang mencakup:

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari teori gangguan bebas waktu yang mencakup: PENDAULUAN D dalam modul Ada aka mempelajar teor gaggua bebas waktu yag mecakup: teor gaggua tak degeeras bebas waktu, teor gaggua degeeras bebas waktu, da efek Stark. Oleh karea tu, sebelum mempelajar

Lebih terperinci

Notasi Sigma. Fadjar Shadiq, M.App.Sc &

Notasi Sigma. Fadjar Shadiq, M.App.Sc & Notas Sgma Fadjar Shadq, M.App.Sc (fadjar_pg@yahoo.com & www.fadjarpg.wordpress.com Notas sgma memag jarag djumpa dalam kehdupa sehar-har, tetap otas tersebut aka bayak djumpa pada baga matematka yag la,

Lebih terperinci

BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI

BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI 9.1. Dstrbus Kotu Dstrbus memlk sfat kotu dmaa data yag damat berjala secara kesambuga da tdak terputus. Maksudya adalah bahwa data yag damat tersebut tergatug

Lebih terperinci

BAB III METODE PELACAKAN/PENCARIAN

BAB III METODE PELACAKAN/PENCARIAN BAB III METODE PELACAKAN/PENCARIAN Hal penting dalam menentukan keberhasilan sistem cerdas adalah kesuksesan dalam pencarian. Pencarian = suatu proses mencari solusi dari suatu permasalahan melalui sekumpulan,

Lebih terperinci

PENUGASAN OPERATOR MESIN PRODUKSI DENGAN MENGGUNAKAN METODE HUNGARIAN DAN ALGORITMA GENERATE AND TEST

PENUGASAN OPERATOR MESIN PRODUKSI DENGAN MENGGUNAKAN METODE HUNGARIAN DAN ALGORITMA GENERATE AND TEST PENUGASAN OPERATOR MESIN PRODUKSI DENGAN MENGGUNAKAN METODE HUNGARIAN DAN ALGORITMA GENERATE AND TEST Wahyu Oktri Widyarto 1, Dessy Triana 2 Program Studi Teknik Industri Fakultas Teknik Universitas Serang

Lebih terperinci

Penggunaan Teori Kombinatorial dalam CAPTCHA

Penggunaan Teori Kombinatorial dalam CAPTCHA Penggunaan Teori Kombinatorial dalam CAPTCHA Gilbran Imami, 13509072 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 5 BAB 2 TINJAUAN PUSTAKA Pada bab ini akan dibahas landasan teori, penelitian terdahulu, kerangka berpikir, dan hipotesis yang mendasari penyelesaian Traveling Salesman Problem dalam menentukan lintasan

Lebih terperinci

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas:

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas: ANALISIS REGRESI Pedahulua Aalss regres berkata dega stud megea ketergatuga satu peubah (peubah terkat) terhadap satu atau lebh peubah laya (peubah pejelas). Jka Y dumpamaka sebaga peubah terkat da X1,X,...,X

Lebih terperinci

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi.

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi. Mea utuk Data Tuggal Des. Jka suatu sampel berukura dega aggota x1, x, x3,, x, maka mea sampel ddesska : 1... N 1 Mea utuk Data Kelompok Des Mea dar data yag dkelompoka adalah : x x 1 1 1 dega : x = ttk

Lebih terperinci

Regresi Linier Sederhana Definisi Pengaruh

Regresi Linier Sederhana Definisi Pengaruh Regres Ler Sederhaa Dah Idra Baga Bostatstka da Kepeduduka Fakultas Kesehata Masyarakat Uverstas Arlagga Defs Pegaruh Jka terdapat varabel, msalka da yag data-dataya dplot sepert gambar dbawah 3 Defs Pegaruh

Lebih terperinci

2.2.3 Ukuran Dispersi

2.2.3 Ukuran Dispersi 3 Ukura Dspers Yag aka dbahas ds adalah smpaga baku da varas karea dua ukura dspers yag palg serg dguaka Hubuga atara smpaga baku dega varas adalah Varas = Kuadrat dar Smpaga baku otas yag umum dguaka

Lebih terperinci

BAB III PEMBENTUKAN SKEMA PEMBAGIAN RAHASIA

BAB III PEMBENTUKAN SKEMA PEMBAGIAN RAHASIA BAB III PEMBENTUKAN SKEMA PEMBAGIAN RAHASIA 3. Pegkodea Matrks Ketetaggaa Matrks ketetaggaa A adaah matrks smetr, sehgga, dega memh semua eeme pada dagoa utama da eeme-eeme dbawah dagoa utama, maka aka

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA. Peahulua Dalam bab aka membahas megea teor-teor tetag statstka oparametrk, korelas parsal tau Keall a korelas parsal meurut Ebuh GU a Oeka ICA.. Statstka Noparametrk Istlah oparametrk

Lebih terperinci

ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF

ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF KELOMPOK A I GUSTI BAGUS HADI WIDHINUGRAHA (0860500) NI PUTU SINTYA DEWI (0860507) LUH GEDE PUTRI SUARDANI (0860508) I PUTU INDRA MAHENDRA PRIYADI (0860500)

Lebih terperinci

4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data

4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data //203 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas Ukura

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,

Lebih terperinci

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS C. Pembelajara 3 1. Slabus N o STANDA R KOMPE TENSI KOMPE TENSI DASAR INDIKATOR MATERI TUGAS BUKTI BELAJAR KON TEN INDIKA TOR WAK TU SUM BER BELA JAR Meerap ka atura kosep statstka dalam pemecah a masalah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Pedahulua Sebelum membahas megea prosedur peguja hpotess, terlebh dahulu aka djelaska beberapa teor da metode yag meujag utuk mempermudah pembahasa. Adapu teor da metode tersebut

Lebih terperinci

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN // REGRESI LINEAR SEDERHANA DAN KORELASI. Model Regres Lear. Peaksr Kuadrat Terkecl 3. Predks Nla Respos 4. Iferes Utuk Parameter-parameter Regres 5. Kecocoka Model Regres 6. Korelas Utrwe Mukhayar MA

Lebih terperinci

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar

Lebih terperinci

Penelitian Operasional II Teori Permainan TEORI PERMAINAN

Penelitian Operasional II Teori Permainan TEORI PERMAINAN Peelta Operasoal II Teor Permaa 7 2 TEORI PERMAINAN 2 Pegatar 2 Krtera Tekk Permaa : () Terdapat persaga kepetga datara pelaku (2) Setap pema memlk stateg, bak terbatas maupu tak terbatas (3) Far Game

Lebih terperinci

ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET

ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET Prosdg Semar Nasoal Peelta, Peddka da Peerapa MIPA Fakultas MIPA, Uverstas Neger Yogyakarta, 6 Me 9 ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET Sty Rachyay Pusat Pemafaata Sas Atarksa,

Lebih terperinci

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua

Lebih terperinci

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas TEKNIK SAMPLING Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uverstas Adalas Defs Suatu cotoh gerombol adalah suatu cotoh acak sederhaa dmaa setap ut pearka cotoh adalah kelompok atau gerombol dar

Lebih terperinci

Teknik Pencarian Heuristik

Teknik Pencarian Heuristik Teknik Pencarian Heuristik Generate and Test Hill Climbing Best First Search Problem Reduction Constraint Satisfaction Means End Analysis Referensi Sri Kusumadewi - bab 2 Rich & Knight bab 3 Teknik Pencarian

Lebih terperinci

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan Aalsa Numerk Baha Matrkulas PENDAHULUAN Metode umerk merupaka suatu tekk atau cara utuk megaalsa da meyelesaka masalah masalah d dalam bdag rekayasa tekk da sa dega megguaka operas perhtuga matematk Masalah-masalah

Lebih terperinci

X a, TINJAUAN PUSTAKA

X a, TINJAUAN PUSTAKA PENELITIAN SEBELUMNYA Statstka Deskrptf TINJAUAN PUSTAKA TINJAUAN STATISTIKA Uj Idepedes Uj depedes dguak utuk megetahu adaya hubuga atara dua varabel (Agrest, 1990). H 0 : tdak ada hubuga atara varabel

Lebih terperinci

KUISIONER. 2. Apakah anda pernah mengkonsumsi Jelly (dalam kemasan cup dan siap dikonsumsi) a) Ya, alasannya

KUISIONER. 2. Apakah anda pernah mengkonsumsi Jelly (dalam kemasan cup dan siap dikonsumsi) a) Ya, alasannya 7. LAMPIRAN Lampiran 1. Lembar Kuisioner Pendahuluan KUISIONER Nama : Umur : Jenis kelamin : Waktu pelaksanaan: 1. Apa yang anda ketahui tentang Jelly? 2. Apakah anda pernah mengkonsumsi Jelly (dalam kemasan

Lebih terperinci

HEURISTIC SEARCH. Irvanizam Zamanhuri, M.Sc Dr. Taufiq A. Gani, M.EngSc

HEURISTIC SEARCH. Irvanizam Zamanhuri, M.Sc Dr. Taufiq A. Gani, M.EngSc HEURISTIC SEARCH Irvanizam Zamanhuri, M.Sc Dr. Taufiq A. Gani, M.EngSc Jurusan Informatika Universitas Syiah Kuala http://informatika.unsyiah.ac.id/irvanizam Travelling Salesmen Problem Seorang salesman

Lebih terperinci

Ukuran Pemusatan Data. Arum Handini P., M.Sc Ayundyah K., M.Si.

Ukuran Pemusatan Data. Arum Handini P., M.Sc Ayundyah K., M.Si. Ukura Pemusata Data Arum Had P., M.Sc Ayudyah K., M.S. Notas utuk Populas da Sampel Notas: Mea (rata-rata) Sample x Populas μ Varas s 2 σ 2 Smpaga baku s σ Ukura Pemusata Data 1. Mea (rata-rata) 2. Meda

Lebih terperinci

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi STATISTIKA A. Des Umum. Pegerta statstk Statstk adalah kumpula akta yag berbetuk agka da dsusu dalam datar atau tabel yag meggambarka suatu persoala. Cotoh: statstk kurs dolar Amerka, statstk pertumbuha

Lebih terperinci

I adalah himpunan kotak terbatas dan tertutup yang berisi lebih dari satu

I adalah himpunan kotak terbatas dan tertutup yang berisi lebih dari satu METODE FUNGS QUAS-FED SATU ARAMETER UNTUK MENYEESAKAN MASAAH ROGRAM NTEGER TAK NEAR Ra Hardyat (M4) ABSTRAK Dalam kehdupa sehar-har serg djumpa masalah optmas yag membutuhka hasl teger Masalah tersebut

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 19 Desember 016 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 40%] Hasl pegukura sampel d beberapa sekolah da

Lebih terperinci

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis STATISTIK Ukura Gejala Pusat Ukura Letak Ukura Smpaga, Dspers da Varas Mome, Kemrga, da Kurtoss Notas Varabel dyataka dega huruf besar Nla dar varabel dyataka dega huruf kecl basaya dtuls Tmes New Roma

Lebih terperinci

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2 INTERVAL KEPERCAAAN UNTUK PERBEDAAN KOEFIIEN VARIAI DARI DITRIBUI LOGNORMAL I. Pebrya * Bustam. ugarto Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu Pegetahua Alam Uverstas

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling BAB LANDASAN TEORI Kosep Dasar Aalss Regres Aalss regres adalah suatu proses memperkraka secara sstemats tetag apa yag palg mugk terjad dmasa yag aka datag berdasarka formas yag sekarag dmlk agar memperkecl

Lebih terperinci

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut 3/9/202 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas

Lebih terperinci

BAB X RUANG HASIL KALI DALAM

BAB X RUANG HASIL KALI DALAM BAB X RUANG HASIL KALI DALAM 0. Hasl Kal Dalam Defns. Hasl kal dalam adalah fungs yang mengatkan setap pasangan vektor d ruang vektor V (msalkan pasangan u dan v, dnotaskan dengan u, v ) dengan blangan

Lebih terperinci

STEGANOGRAFI PADA MULTIPLE IMAGES 24 BITS

STEGANOGRAFI PADA MULTIPLE IMAGES 24 BITS STEGANOGRAFI PADA MULTIPLE IMAGES 24 BITS Nova Hadi Lestriandoko 1), Dian Andriana 2), Sandra Yuwana 3), Nuryani 4) Pusat Penelitian Informatika, Lembaga Ilmu Pengetahuan Indonesia ryan@informatika.lipi.go.id

Lebih terperinci

= 8 = 7. x 4 = 24 = 8 = 5 = 13. pada persamaan ketiga dan x 3 = 5

= 8 = 7. x 4 = 24 = 8 = 5 = 13. pada persamaan ketiga dan x 3 = 5 III. REDUKSI GANJIL-GENAP/REDUKSI SIKLIS.. Alortma Sequesal Coto 9. Selesaka sstem persamaa erkut : Jawa 6 x + x = 8 x + x 5 x = 7 x + x 6 x = 5 x + 8 x = Vektor x = [ x x x x ] T dperole melalu prosedur

Lebih terperinci

REPRESENTASI BILANGAN FIBONACCI DALAM BENTUK KOMBINATORIAL

REPRESENTASI BILANGAN FIBONACCI DALAM BENTUK KOMBINATORIAL REPRESENTASI BILANGAN FIBONACCI DALAM BENTUK KOMBINATORIAL Rzky Maulaa Nugraha Tekk Iformatka Isttut Tekolog Badug Blok Sumurwed I RT/RW 4/, Haurgeuls, Idramayu, 4564 e-mal: laa_cfre@yahoo.com ABSTRAK

Lebih terperinci

METODOLOGI PENELITIAN

METODOLOGI PENELITIAN MEOOLOGI PENELIIAN empat da Waktu Peelta Peelta dlaksaaka d P Bukt Raya Mudsa, Kabupate Sawah Luto/Sjujug, Props Sumatera Barat. Peelta dlakuka dua tahap selama 3 bula yatu bula Maret sampa dega bula Me

Lebih terperinci

Pengukuran adalah penempatan angka (atau bilangan) pada objek atau peristiwa menurut aturan. SKALA merupakan bagian dari aturan penempatan angka itu

Pengukuran adalah penempatan angka (atau bilangan) pada objek atau peristiwa menurut aturan. SKALA merupakan bagian dari aturan penempatan angka itu BAB IV SKALA A. DASAR PENGERTIAN. a. Pengukuran adalah penempatan angka (atau bilangan) pada objek atau peristiwa menurut aturan. SKALA merupakan bagian dari aturan penempatan angka itu b. c. Rencana konsisten

Lebih terperinci

FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani

FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani FMDAM (2) Chartas Fbra Techque for Order Preferece by Smlarty to Ideal Soluto () ddasarka pada kosep dmaa alteratf terplh yag terbak tdak haya memlk jarak terpedek dar solus deal postf, amu juga memlk

Lebih terperinci

Dasar Ekonomi Teknik: Matematika Uang. Ekonomi Teknik TIP FTP UB

Dasar Ekonomi Teknik: Matematika Uang. Ekonomi Teknik TIP FTP UB Dasar Ekoom Tekk: Matematka Uag Ekoom Tekk TIP TP UB Bahasa lra Kas (Cash low Tme Value of Moey Buga Ekvales Cash low Tata alra uag masuk da keluar per perode waktu pada suatu perusahaa lra kas aka terjad

Lebih terperinci

2.1 Sistem Makroskopik dan Sistem Mikroskopik Fisika statistik berangkat dari pengamatan sebuah sistem mikroskopik, yakni sistem yang sangat kecil

2.1 Sistem Makroskopik dan Sistem Mikroskopik Fisika statistik berangkat dari pengamatan sebuah sistem mikroskopik, yakni sistem yang sangat kecil .1 Sstem Makroskopk dan Sstem Mkroskopk Fska statstk berangkat dar pengamatan sebuah sstem mkroskopk, yakn sstem yang sangat kecl (ukurannya sangat kecl ukuran Angstrom, tdak dapat dukur secara langsung)

Lebih terperinci