BAB III ISI. x 2. 2πσ

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB III ISI. x 2. 2πσ"

Transkripsi

1 BAB III ISI 4. Keadata Normal Multvarat da Sfat-sfatya Keadata ormal multvarat meruaka geeralsas dar keadata ormal uvarat utuk dmes. f ( x) [( x )/ ] / = e x π x = ( x )( ) ( x ). < < (-) (-) Betuk (-) d atas ada fugs keadata ormal uvarat meujuka besara jarak yag dkuadratka dar x ke ada satua stadar devas. Betuk daat dgeeralsas utuk vektor x ( ) dar suatu observas ada beberaa varabel sebaga ( x )' ( x ) (-) Vektor dega meujukka la haraa (eksektas) dar vektor acak, da matrk dega meruaka vara-covara matrk. Ds dasumska terbatas ostf, sehgga (-) meruaka geeralsas jarak yag dkuadratka dar x ke. Keadata ormal multvarat ddaat dega meggat jarak ada uvarat (-) jarak multvarat hasl geeralsas (-) ada fugs keadata / (-). Saat ergata terjad, kostata ormal uvarat ( ) ( ) / π juga harus dgat dega kostata umum yag membuat suatu volume dbawah ermukaa fugs keadata multvarat utuk seta. Hal derluka karea ada multvarat, robabltas dgambarka oleh volume dbawah ermukaa ada daerah yag ddefska oleh terval dar la x. Kostata yag meggatkaya adalah ( ) / / π vektor acak = [,,..., ]' memlk betuk, keadata ormal ada dmes utuk

2 dmaa x f ( ) ( π ) ( x ) ( x ) ' / x = e (-4) / / < <, betuk aka dotaska dega N (, ). Pada ersamaa (-4) jelaslah bahwa alur atau gars edar dar la x yag meruaka kostata ketgga utuk keadata adalah sebuah elsod. Sehgga keadata ormal multfarat adalah sebuah kostata dmaa: c } Peta keadata kemugka kosta = {all x ( x )' ( x ) = = ermukaa dar elsoda dega ttk usat. Ttk-ttk ada elsod dar suatu keadata ormal adalah suatu vektor ege berarah dar dar c. da ajagya adalah akar la ege dar dkal dega akar Akbat. Jka terbatas ostf sehgga terdaat, e = λe meyebabka e = e λ jad( λ,e) adalah asaga la da vektor ege dar yag berhubuga dega asaga ( / λ,e) utuk. Dmaa juga terbatas ostf. Proof. Utuk terbatas ostf da e 0 adalah vektor ege, kta uya 0 < e' e = e'( e ) = e'( λe ) = λe ' e = λ. Sela tu e = e = λe = λ e da jka dbag dega λ > 0 memberka utuk e = (/ λ) e. Sekarag λ ( ) x ' x = x ' ' e e x = λ = ( x' e ) 0 = λ x' e 0 sehgga x ' e = 0 utuk seta jka da haya jka x = 0. Jad x 0, meyebabka ( / λ )( ' ) x e > 0 da = terbatas ostf.

3 Dbawah meruaka rgkasa kose datas Kotur dar keadata kosta utuk dstrbus ormal ada dmes adalah sebuah elsod dega x varabelya sehgga ( x )' ( x ) c (-5) = Ellsod berusat ada da memlk ttk kooardat ± c λ e dmaa e = λe, =,,...,. Cotoh soal saat Kta harus medaatka ttk koordat dar cotour robabltas desty = dar (-5) ttk yag kta car dberka oleh la ege da vektor ege. Ds λi = 0 mejad λ 0 = = ( ) λ λ ( λ )( λ ) = + Kosekuesya, la egeya λ = + da λ =. Vektor egeya ddaat dar e e ( ) e = + e atau ( ) e + e = + e ( ) e + e = + e Persamaa megakbatka e = e da setelah ormalsas asaga la ege da vektor ege adalah λ = +, e =

4 Dega cara yag sama λ = meghaslka e', =. Saat kovara (korelas ρ ) berla ostf, λ = + adalah la ege tebesar da dhubugaka dega e', = terletak bersama dalam 45 0 melewat ttk ' = [, ] dar kovara.. Hal aka bear utuk seta la ostf c + c x Gambar. Kotur utuk dstrbus ormal bvarat dega = da > 0 Utuk meragkumya, ttk ada els dar suatu keadata kosta utuk dstrbus ormal bvarat dega = daat dtetuka oleh ± c + da ± c Akbat. Jka berdstrbus N (, ), maka seta kombas ler dar varabel a = a + a a aka berdstrbus

5 N ( a ', a' a ). Demka juga jka a berdstrbus N ( aa ', ' ) seta a, maka berdstrbus N (, ). Proof. Ds haya aka dbuktka utuk E ( a ) ( ) ( ) E a = ae = a. Cotoh [ ] a ' =,0,...,0 a ' = [,0,...,0] = M a ' = [,0,...,0] = M ( a' ) = ( ) E E a a a = E( a ) + E( a ) = a E( ) + a E( ) = a + a = [ a, a,..., a ] = a ' L 0 ' [,0,...,0] L a Σ a = = M M O M M L 0 Melalu akbat kta daatka bahwa derumum jka utuk M = a' berdstrbus N (, ) maka dstrbusya aka (, ) Akbat. Jka berdstrbus N (, ) N. a utuk. Hal daat, q kombas ler dar

6 a a a a A = M aq aq q aka berdstrbus N (, ') A A A. Begtu juga utuk + d, dmaa d adalah ( ) ( ) vektor kostata, aka berdstrbus N ( +, ) d. Cotoh: Dberka berdstrbus N ( ) 0 0, = = A, car dstrbus utuk Dar akbat, dstrbus dar A adalah ormal multvarat dega rata-rata A 0 = 0 = da kovaraya 0 0 A A' = = + + Alteratf laya kta daat mecar vektor rata-rata da covara kta daat megubah terlebh dahulu dalam betuk Y = da Y =. Akbat 4., rata-rata da covaraya aka berbetuk Semua subset dar berdstrbus ormal. Jka kts arts

7 maka ( q ) ( q ) ( q q) ( q ( q)) = = = (( q) ) (( q) ) (( q) q) (( q) ( q)) ( ) ( ) berdstrbus (, ) N. Dar akbat d atas kta uya bahwa semua subset dar vektor acak yag berdstrbus ormal adalah berdstrbus ormal ula. Cotoh Jka berdstrbus N ( ) 5,, car dstrbus dar. Kta hmu 4 sebelumya =, = 4, da 4 = dar N ( ) 5, kta uya,, da yag kemuda aka kta susu kembal da kta arts mejad 4 =, 5 4 = = atau ( ) = ( ) ( ) = ( ) = ( ) ( ) ( ) ( ) dega megguaka akbat 4 utuk =, 4 kta aka memlk dstrbus dega betuk N ( ). 4, = N,

8 Dar cotoh ds jelas bahwa utuk seta baga (subset) dar dstrbus ormal daat deksreska dega emlha yag teat rata da kovara dar da awal. Akbat 5. (a) Jka da ( q ) (, ) Cov = deede, maka aka selalu bear bahwa ( q ) 0, q q (b) Jka berdstrbus meghaslka matrk ol. deede jka da haya jka = 0. N, maka da q + q, (c) Jka da deede da berdstrbus N (, ) da q Nq (, ), maka meruaka multvarat ormal. 0 N q + q, 0' Cotoh da Dberka ( ) berdstrbus N (, ) deedet? Bagamaa dega (, ) 4 0 dega = 0. Aakah 0 0 da? Karea da memlk =, da tdak deedet. Teta, = 4 0 ( ) ( ) = 0 = 0 0 ( ) ( )

9 0 Kta lhat bahwa = da memlk matrk kovara = 0. Hal meyebabka (, ) da deedet meurut akbat 5. Hal juga megmlkaska bahwa deedet terhada da. Akbat 6. Msal = = = x, berdstrbus ormal dega berdstrbus N (, ) dega, =, da > 0. Maka dstrbus bersyarat dar, memberka Rata-rata = + ( x ), da Kovaa = Catat bahwa kovara tdak tergatug ada la x dar varabel bersyarat. Proof. Aka dbuktka dega embukta tak lagsug, ambl A ( ) I ( q q) q ( q) = 0 I ( q) ( q) ( q) sehgga ( ) A( ) = A = da I I 0 0 A A ' = = 0 I I 0 Karea ( ) da memlk kovara ol, sehgga keduaya deedet. Lebh lag ( ) N q (, ) 0. Dberka x kostata. Karea ( ) bersyarat dar ( x ) memlk dstrbus =, ( x ) + adalah suatu da deedet, dstrbus adalah sama dega dstrbus tak

10 bersyarat dar ( ). D awal kta sudah tahu bahwa ( ) berdstrbus N q (, ) acak ( x ) 0, sehgga vektor ada saat memlk la khusus x. Hal equvale juga utuk, sehgga atya dstrbusya aka berbetuk Nq ( ( ) + x, ) Akbat 7. Jka berdstrbus N (, ) berdstrbu χ dmaa (a) ( x )' ( x ) ch-kuadrat dega derajad kebebasa. (b) Dstrbus N (, ) dega > 0. Maka: χ dotaska berdstrbus memberka kemugka α utuk elsod adat x x x χ ( α ), dmaa χ ( ) { : ( ) ' ( ) } ke( 00α ) dar dstrbus χ. α meotaska ersetl Proof. Kta tahu bahwa χ ddefska sebaga dstrbus dar jumlah Z + Z + K + Z, dmaa Z, Z,, Z K deedet N ( 0,) varabel radom. Selajutya, melalu sectral decomosoto [lhat ersamaa (-6) da (-) dega A =, da melhat ke akbat 4.] dmaa = λ e e sehgga e = ( λ ) = ee ', = λ e. Akbatya, ( ) ( )' ( ) = ( λ )( )' e e '( ) = ( λ ) e '( ) = = ( λ ) e ( ) ' Z, utuk sgkatya. = = = =

11 Z Z Z = A -, dmaa Z =, ( ) Z Sekarag ( ) da berdstrbus N (, ) Z = A ( -) berdstrbus N (, ') ( ) ( ) ( ) A M ( ) e ' λ e ' = λ M e λ 0. Kareaya, dega megguaka akbat, 0 A A, dmaa e ' λ e ' A A ' = λ λee e ' e ' K e ' = λ λ λ M e ' λ λ e ' λ e ' = e ' e ' K e ' M λ λ λ = λ e ' Oleh akbat 5 Z, Z, K, Z varabel deedet ormal stadar da kta smulka bahwa ( )' ( ) etg: memlk dstrbus χ. Sama s kta bsa meymulka dar akbat-akbat d atas hal. Meyagkut dega kemugka s sebuah elsod suatu kostata keadata.. Berkeaa dega betuk la dar kombas ler. '

12 Dstrbus ch-kuadrat daat meetuka varabltas dar vara samel s = s utuk samel yag berasal dar oulas ormal uvarat. Dasar juga aka memaka hal etg ada dstrbus multvarat. Akbat 8. Dberka,,..., salg bebas dega berdstrbus N ( j, ). (Perhatka bahwa seta j memlk kovara matrk yag sama.) Maka V = c + c c Berdstrbus N c j j, c j. V da V = b + b b juga j= j= meruaka ormal multvarat dega kovara matrk. c j ( b' c) j= ( b ' c) Kosekuesya, V da V deedet jka j= b j b ' c = c b = 0. j= j j

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Ruag Baach Sumaag Muhtar Gozal UNIVERSITAS PENDIDIKAN INDONESIA Satu kose etg d kulah Aalss ugsoal adalah teor ruag Baach. Pada baga aka drevu defs, cotoh-cotoh, serta sfat-sfat etg ruag Baach. Kta aka

Lebih terperinci

( ) ( ) ( ) ( ) ( ) III MODEL. , θ Ω. 1 Pendugaan parameter dengan metode maximum lkelihood estimation dapat diperoleh dari:

( ) ( ) ( ) ( ) ( ) III MODEL. , θ Ω. 1 Pendugaan parameter dengan metode maximum lkelihood estimation dapat diperoleh dari: 5 Mamum Lkelhood Estmato Defs Fugs Lkelhood Msalka X, X,, X adalah eubah acak d dega fugs massa eluag ( ; θ, dega θ dasumska skalar da tdak dketahu, maka rosedur fugs lkelhood daat dtulska sebaga berkut

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres

Lebih terperinci

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI MINGGU KE-0 HUBUNGAN ANTAR KONVERGENSI Hubuga atar koverges Hrark atar koverges dyataka dalam teorema berkut. Teorema Msalka X da X, X, X 3,... adalah varabel radom yag ddefska pada ruag probabltas yag

Lebih terperinci

BAB III PERSAMAAN PANAS DIMENSI SATU

BAB III PERSAMAAN PANAS DIMENSI SATU BAB III PERSAMAAN PANAS DIMENSI SAU Pada baga sebelumya, kta telah membahas peerapa metoda Ruge-Kutta orde 4 utuk meyelesaka masalah la awal dar persamaa dferesal basa orde. Pada bab, kta aka melakuka

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu. BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska

Lebih terperinci

NORM VEKTOR DAN NORM MATRIKS

NORM VEKTOR DAN NORM MATRIKS NORM VEKTOR DN NORM MTRIK umaag Muhtar Gozal UNIVERIT PENDIDIKN INDONEI. Pedahulua Jka kta membcaraka topk ruag vektor maka cotoh sederhaa yag dapat kta ambl adalah ruag Eucld R. D ruag kta medefska pajag

Lebih terperinci

PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD

PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Mayag Novhta Sar *, Bustam, Sgt Sugarto Mahasswa Program Stud S Matematka FMIPA Uverstas Rau Dose Fakultas

Lebih terperinci

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton,

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton, BAB LANDASAN TEORI Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut varabel tak bebas (depedet

Lebih terperinci

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teoremateorema

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teoremateorema II. LANDAAN TEORI Pada bab II aka dbahas pegerta-pegerta (defs) da teoremateorema ag medukug utuk pembahasa pada bab IV. Pegerta (defs) da teorema tersebut dtulska sebaga berkut.. Teorema Proeks Teorema

Lebih terperinci

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka

Lebih terperinci

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat.

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat. KALKULUS LANJUT Pertemua ke-4 Rey Ra Marlaa, S.S.,M.Stat. Plot Mater Notas Jumlah & Sgma Itegral Tetu Jumlah Rema Pedahulua Luas Notas Jumlah & Sgma Purcell, et all. (page 226,2003): Sebuah fugs yag daerah

Lebih terperinci

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah BAB III INEGRAL RIEMANN-SIELJES. Pedahulua Pada Bab, telah dsggug bahwa ukura meghtug merupaka salah satu pedekata utuk membetuk proses ttk. Berkata dega masalah perhtuga, ada hal meark yag perlu amat,

Lebih terperinci

BAB III ESTIMASI MODEL PROBIT TERURUT

BAB III ESTIMASI MODEL PROBIT TERURUT BAB III ESTIMASI MODEL PROBIT TERURUT 3. Pedahulua Model eurua kods embata destmas dega model robt terurut. Estmas terhada arameter model robt terurut yatu koefse model da threshold dlakuka dega metode

Lebih terperinci

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 11-19, Aprl 004, ISSN : 1410-8518 TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM Sudaro Jurusa Matematka FMIPA UNDIP Abstrak Sstem yag dbetuk

Lebih terperinci

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua

Lebih terperinci

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN // REGRESI LINEAR SEDERHANA DAN KORELASI. Model Regres Lear. Peaksr Kuadrat Terkecl 3. Predks Nla Respos 4. Iferes Utuk Parameter-parameter Regres 5. Kecocoka Model Regres 6. Korelas Utrwe Mukhayar MA

Lebih terperinci

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL 3. Pegerta Masalah regres vers dega betuk lear dapat djumpa dalam berbaga bdag kehdupa, dataraya dalam bdag ekoom, kesehata, fska, kma

Lebih terperinci

Penarikan Contoh Acak Berlapis (Stratified Random Sampling) Pertemuan IV

Penarikan Contoh Acak Berlapis (Stratified Random Sampling) Pertemuan IV Pearka Cotoh Acak Berlas (Stratfed Radom Samlg Pertemua IV Defs Cotoh acak berlas ddaatka dega cara membag oulas mejad beberaa kelomok ag tdak salg tumag tdh, da kemuda megambl secara acak dar seta kelomokkelomok

Lebih terperinci

DISTRIBUSI NORMAL MULTIVARIAT

DISTRIBUSI NORMAL MULTIVARIAT DISTRIBUSI NORMAL MULTIVARIAT 4.6 Meaksr Asums-asums Keormala Paa embahasa tekk-tekk statstk multvarat, aka bayak asumska bahwa seta vektor observas X berstrbus ormal multvarat. Dketahu ula aa saat ukura

Lebih terperinci

SEMIKONDUKTOR. Gambar 6.1 Ikatan kovalen silikon dalam dua dimensi

SEMIKONDUKTOR. Gambar 6.1 Ikatan kovalen silikon dalam dua dimensi 6 BAHAN SEMIKONDUKTOR 6.1 Semkoduktor Itrsk (mur) Slko da germaum meruaka dua jes semkoduktor yag sagat etg dalam elektroka. Keduaya terletak ada kolom emat dalam tabel erodk da memuya elektro vales emat.

Lebih terperinci

Proses inferensi pada model logit Agus Rusgiyono. Abstracts

Proses inferensi pada model logit Agus Rusgiyono. Abstracts Proses eres ada model logt Agus Rusgoo Let dstrbuto wth Abstracts 3 rereset the resose o a omal radom varable o Beroull P P where s a arameter wth ukow value. Problems o estmatg used smallest square methods

Lebih terperinci

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES * PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka

Lebih terperinci

UKURAN GEJALA PUSAT DAN UKURAN LETAK

UKURAN GEJALA PUSAT DAN UKURAN LETAK UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu

Lebih terperinci

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP Msal dguaka kode ler C[, k, d] dega matrks pembagu G da matrks cek partas H. Sebuah blok formas x = x 1 x 2 x k, x = 0 atau 1, yag aka dkrm terlebh

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab aka mejelaska megea ladasa teor yag dpaka oleh peuls dalam peelta. Bab dbag mejad beberapa baga, yag masg masg aka mejelaska Prcpal Compoet Aalyss (PCA), Egeface, Klusterg K-Meas,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai dasar-dasar teori yang akan

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai dasar-dasar teori yang akan BAB II LANDASAN TEORI Pada bab aka dbahas megea dasar-dasar teor ag aka dguaka dalam eulsa skrs, atu megea data hrark, model regres -level, model logstk, estmas arameter model logstk, uj sgfkas arameter

Lebih terperinci

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl

Lebih terperinci

SIFAT-SIFAT LANJUT FUNGSI TERBATAS

SIFAT-SIFAT LANJUT FUNGSI TERBATAS Bulet Ilmah Mat. Stat. da Terapaya (Bmaster) Volume 03, No. 2(204), hal 35 42. SIFAT-SIFAT LANJUT FUNGSI TERBATAS Suhard, Helm, Yudar INTISARI Fugs terbatas merupaka fugs yag memlk batas atas da batas

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 19 Desember 016 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 40%] Hasl pegukura sampel d beberapa sekolah da

Lebih terperinci

REPRESENTASI BILANGAN FIBONACCI DALAM BENTUK KOMBINATORIAL

REPRESENTASI BILANGAN FIBONACCI DALAM BENTUK KOMBINATORIAL REPRESENTASI BILANGAN FIBONACCI DALAM BENTUK KOMBINATORIAL Rzky Maulaa Nugraha Tekk Iformatka Isttut Tekolog Badug Blok Sumurwed I RT/RW 4/, Haurgeuls, Idramayu, 4564 e-mal: laa_cfre@yahoo.com ABSTRAK

Lebih terperinci

ANALISIS MULTIVARIAT. Pengantar Analisis Multivariat Lanjutan. Irlandia Ginanjar M.Si

ANALISIS MULTIVARIAT. Pengantar Analisis Multivariat Lanjutan. Irlandia Ginanjar M.Si ANALISIS MULTIVARIAT Pegatar Aal Multvarat Lauta Irlada Gaar M.S Jurua Stattka FMIPA Uad Nota utuk varabel varabel berkala l terval atau rao k bl k Vektor varabel acak: Nla haraa vektor Nla haraa vektor

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Tgg tekaa [m] UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 11 Desember 017 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 50%] Sebuah PDAM melakuka pegukura

Lebih terperinci

Uji Statistika yangb digunakan dikaitan dengan jenis data

Uji Statistika yangb digunakan dikaitan dengan jenis data Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas

Lebih terperinci

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi.

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi. Mea utuk Data Tuggal Des. Jka suatu sampel berukura dega aggota x1, x, x3,, x, maka mea sampel ddesska : 1... N 1 Mea utuk Data Kelompok Des Mea dar data yag dkelompoka adalah : x x 1 1 1 dega : x = ttk

Lebih terperinci

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI BB 6 PRINSIP INKLUSI DN EKSKLUSI Pada baga aka ddskuska topk berkutya yatu eumeras yag damaka Prsp Iklus da Eksklus. Kosep dalam bab merupaka perluasa de dalam Dagram Ve beserta oepras rsa da gabuga, amu

Lebih terperinci

BAB 5. ANALISIS REGRESI DAN KORELASI

BAB 5. ANALISIS REGRESI DAN KORELASI BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh

Lebih terperinci

BAB III PEMBENTUKAN SKEMA PEMBAGIAN RAHASIA

BAB III PEMBENTUKAN SKEMA PEMBAGIAN RAHASIA BAB III PEMBENTUKAN SKEMA PEMBAGIAN RAHASIA 3. Pegkodea Matrks Ketetaggaa Matrks ketetaggaa A adaah matrks smetr, sehgga, dega memh semua eeme pada dagoa utama da eeme-eeme dbawah dagoa utama, maka aka

Lebih terperinci

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran Kurkulum 013/006 matematka K e l a s XI STATISTIKA: UKURAN PEMUSATAN Tujua Pembelajara Setelah mempelajar mater, kamu dharapka memlk kemampua berkut. 1. Dapat meetuka rata-rata data tuggal da data berkelompok..

Lebih terperinci

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS = 1 + + + + k k + u PowerPot Sldes baa Rohmaa Educato Uverst of Idoesa 007 Laboratorum Ekoom & Koperas Publshg Jl. Dr. Setabud

Lebih terperinci

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real.

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real. BAB 5 BARIAN DAN DERET KOMPLEK ecara eses, pembahasa tetag barsa da deret komlpeks sama dega barsa da deret real. 5. Barsa Barsa merupaka sebuah fugs dega doma berupa hmpua blaga asl N. ebuah barsa kompleks

Lebih terperinci

INFERENSI VEKTOR RATA RATA. Disusun untuk memenuhi salah satu tugas mata kuliah multivariat

INFERENSI VEKTOR RATA RATA. Disusun untuk memenuhi salah satu tugas mata kuliah multivariat INFERENSI VEKTOR RATA RATA Dsusu utuk memeuh salah satu tugas mata kulah multvarat Dsusu oleh: Ast Aula Rahma (6796) Khaerusa Mahmudah (69) Lucky Heryat Jufr (673) Rsa Nur Vauzyah (6933) Syfa Isa (66)

Lebih terperinci

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari teori gangguan bebas waktu yang mencakup:

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari teori gangguan bebas waktu yang mencakup: PENDAULUAN D dalam modul Ada aka mempelajar teor gaggua bebas waktu yag mecakup: teor gaggua tak degeeras bebas waktu, teor gaggua degeeras bebas waktu, da efek Stark. Oleh karea tu, sebelum mempelajar

Lebih terperinci

POLIGON TERBUKA TERIKAT SEMPURNA

POLIGON TERBUKA TERIKAT SEMPURNA MODUL KULIAH ILMU UKUR TANAH POLIGON TERBUKA TERIKAT SEMPURNA Pegerta : peetua azmuth awal da akhr, peetuat kesalaha peutup sudut,koreks sudut, kesalaha lear da koreks lear kearah sumbu X da Y, Peetua

Lebih terperinci

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER TUGAS ATA KULIAH TEORI RING LANJUT ODUL NOETHER Da Aresta Yuwagsh (/364/PPA/03489) Sebelumya, telah dketahu bahwa sebaga rg dega eleme satua memeuh sfat rata ak utuk deal-deal d. Apabla dpadag sebaga modul,

Lebih terperinci

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( )

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( ) Regres & Korelas Ler Sederhaa 1. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk yag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis STATISTIK Ukura Gejala Pusat Ukura Letak Ukura Smpaga, Dspers da Varas Mome, Kemrga, da Kurtoss Notas Varabel dyataka dega huruf besar Nla dar varabel dyataka dega huruf kecl basaya dtuls Tmes New Roma

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling BAB LANDASAN TEORI Kosep Dasar Aalss Regres Aalss regres adalah suatu proses memperkraka secara sstemats tetag apa yag palg mugk terjad dmasa yag aka datag berdasarka formas yag sekarag dmlk agar memperkecl

Lebih terperinci

BAB II KAJIAN LITERATUR

BAB II KAJIAN LITERATUR BAB II Kaja Lteratur 4 BAB II KAJIAN LITERATUR. Jarak Mahalaobs Megut artkel tetag jarak Mahalaobs dar htt://e.wkeda.org ada 8 Maret 008, jarak Mahalaobs adalah ukura jarak yag derkealka oleh Prasata Chadra

Lebih terperinci

Pertemuan VII IV. Titik Berat dan Momen Inersia

Pertemuan VII IV. Titik Berat dan Momen Inersia Baa jar Mekaka Baa Mulat, ST., MT Pertemua V V. Ttk Berat da Mome ersa. Ttk Berat Peampag Mome pertama suatu luasa eleme teradap suatu sumbu d dalam bdag luasa dberka dega produk luasa eleme da jarak tegak

Lebih terperinci

BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI

BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI 9.1. Dstrbus Kotu Dstrbus memlk sfat kotu dmaa data yag damat berjala secara kesambuga da tdak terputus. Maksudya adalah bahwa data yag damat tersebut tergatug

Lebih terperinci

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas:

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas: ANALISIS REGRESI Pedahulua Aalss regres berkata dega stud megea ketergatuga satu peubah (peubah terkat) terhadap satu atau lebh peubah laya (peubah pejelas). Jka Y dumpamaka sebaga peubah terkat da X1,X,...,X

Lebih terperinci

2.2.3 Ukuran Dispersi

2.2.3 Ukuran Dispersi 3 Ukura Dspers Yag aka dbahas ds adalah smpaga baku da varas karea dua ukura dspers yag palg serg dguaka Hubuga atara smpaga baku dega varas adalah Varas = Kuadrat dar Smpaga baku otas yag umum dguaka

Lebih terperinci

Bab II Teori Pendukung

Bab II Teori Pendukung Bab II Teor Pedukug.. asar Statstka Utuk keperlua peaksra outstadg clams lablty, pegetahua dalam statstka mead hal yag petg. asar statstka yag dguaka dalam tess atara la :. strbus ormal Sebuah peubah acak

Lebih terperinci

Regresi & Korelasi Linier Sederhana

Regresi & Korelasi Linier Sederhana Regres & Korelas Ler Sederhaa. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar la peubah

Lebih terperinci

: sebagai standar pembanding bagi sifat-sifat gas nyata Larutan ideal : sebagai standar pembanding bagi sifat-sifat larutan nyata Pers. (3.

: sebagai standar pembanding bagi sifat-sifat gas nyata Larutan ideal : sebagai standar pembanding bagi sifat-sifat larutan nyata Pers. (3. as deal : sebaga stadar pembadg bag sfat-sfat gas yata Laruta deal : sebaga stadar pembadg bag sfat-sfat laruta yata ers. (3.47): g g ly Laruta deal ddefska sebaga laruta dega: (3.47) d l (4.) Utuk besara

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel BAB I PENDAHULUAN 1.1 Statstka Deskrptf da Statstka Iferesal Dewasa d berbaga bdag lmu da kehdupa utuk memaham/megetahu sesuatu dperluka dat Sebaga cotoh utuk megetahu berapa bayak rakyat Idoesa yag memerluka

Lebih terperinci

Regresi Linier Sederhana Definisi Pengaruh

Regresi Linier Sederhana Definisi Pengaruh Regres Ler Sederhaa Dah Idra Baga Bostatstka da Kepeduduka Fakultas Kesehata Masyarakat Uverstas Arlagga Defs Pegaruh Jka terdapat varabel, msalka da yag data-dataya dplot sepert gambar dbawah 3 Defs Pegaruh

Lebih terperinci

Mengubah bahan baku menjadi produk yang lebih bernilai melalui sintesis kimia banyak dilakukan di industri

Mengubah bahan baku menjadi produk yang lebih bernilai melalui sintesis kimia banyak dilakukan di industri Megubah baha baku mead produk yag lebh berla melalu stess kma bayak dlakuka d dustr Asam sulfat, ammoa, etlea, proplea, asam fosfat, klor, asam trat, urea, bezea, metaol, etaol, da etle glkol Serat/beag,

Lebih terperinci

UKURAN PEMUSATAN & PENYEBARAN

UKURAN PEMUSATAN & PENYEBARAN UKURAN PEMUSATAN & PENYEBARAN RATA - RATA UKURAN PEMUSATAN MEDIAN MODUS Rata rata htug (mea) Merupaka hasl bag dar sejumlah skr dega bayakya respde Utuk Data Tdak Berkelmpk x Dmaa : = la samapa x = la

Lebih terperinci

RELATIF EFISIENSI PENAKSIR MOMEN TERHADAP PENAKSIR MAKSIMUM LIKELIHOOD UNTUK PARAMATER BERDISTRIBUSI SEGITIGA. Haposan Sirait 1, Usman Malik 2 ABSTRAK

RELATIF EFISIENSI PENAKSIR MOMEN TERHADAP PENAKSIR MAKSIMUM LIKELIHOOD UNTUK PARAMATER BERDISTRIBUSI SEGITIGA. Haposan Sirait 1, Usman Malik 2 ABSTRAK Relatf Efses Peaksr Mome Terhada Peaksr Maksmum Lkelhood RELATIF EFISIENSI PENAKSIR MOMEN TERHADAP PENAKSIR MAKSIMUM LIKELIHOOD UNTUK PARAMATER BERDISTRIBUSI SEGITIGA Haosa Srat, Usma Malk ABSTRAK Makalah

Lebih terperinci

; θ ) dengan parameter θ,

; θ ) dengan parameter θ, Vol. 4. No. 3, 5-59, Desember 00, ISSN : 40-858 APLIKASI METODE BESARAN PIVOTAL DALAM PENENTUAN SELANG KEYAKINAN TAKSIRAN PARAMETER POPULASI. Agus Rusgyoo Jurusa Matematka FMIPA UNDIP Abstraks Dberka populas

Lebih terperinci

Sudaryatno Sudirham. Permutasi dan Kombinasi

Sudaryatno Sudirham. Permutasi dan Kombinasi Sudaryato Sudrham Permutas da Kombas Permutas Permutas adalah bayakya peelompoka sejumlah tertetu kompoe ya dambl dar sejumlah kompoe ya terseda; dalam setap kelompok uruta kompoe dperhatka Msalka terseda

Lebih terperinci

REGRESI & KORELASI LINIER SEDERHANA

REGRESI & KORELASI LINIER SEDERHANA . Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar

Lebih terperinci

Penaksiran Parameter Model Regresi Polinomial Berkson Menggunakan Metode Minimum Distance

Penaksiran Parameter Model Regresi Polinomial Berkson Menggunakan Metode Minimum Distance Peaksra Parameter Model Regres Polomal Berkso Megguaka Metode Mmum Dstace Da Kurawat Dearteme Matematka, FMIPA UI, Kamus UI Deok 16 da61@gmal.com Abstrak Berkso Measuremet Error Model meruaka model regres

Lebih terperinci

MATEMATIKA INTEGRAL RIEMANN

MATEMATIKA INTEGRAL RIEMANN MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN Ses NGAN INTEGRAL RIEMANN A. NOTASI SIGMA a. Defs Notas Sgma Sgma (Σ) adalah otas matematka megguaka smbol yag mewakl pejumlaha da beberapa suku yag memlk

Lebih terperinci

BAB XVI. ALJABAR MATRIKS DAN VEKTOR RANDOM

BAB XVI. ALJABAR MATRIKS DAN VEKTOR RANDOM BAB VI. ALJABAR MATRIKS DAN VEKTOR RANDOM Vektor. atau,,..., Defiisi ier roduct (hasil kali dalam) dari dua vektor y y, y,..., y y y y y,,..., da Pasaga vektor da y dega dimesi yag sama dikataka deede

Lebih terperinci

Pendahuluan. Relasi Antar Variabel. Relasi Antar Variabel. Relasi Antar Variabel 4/6/2015. Oleh : Fauzan Amin

Pendahuluan. Relasi Antar Variabel. Relasi Antar Variabel. Relasi Antar Variabel 4/6/2015. Oleh : Fauzan Amin 4/6/015 Oleh : Fauza Am Se, 06 Aprl 015 GDL 11 (07.30-10.50) Pedahulua Aalsa regres dguaka utuk mempelajar da megukur hubuga statstk ag terjad atara dua atau lebh varbel. Dalam regres sederhaa dkaj dua

Lebih terperinci

KODE SIKLIK (CYCLIC CODES)

KODE SIKLIK (CYCLIC CODES) Pegatar Teor Pegkodea (Codg Theory) KODE SIKLIK (CYCLIC CODES) Dose Pegampu : Al Sutjaa DISUSUN OLEH: Nama : M Zak Ryato Nm : /5679/PA/8944 Program Stud : Matematka JURUSAN MATEMATIKA FAKULTAS MATEMATIKA

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. regresi berkenaan dengan studi ketergantungan antara dua atau lebih variabel yaitu

BAB 2 TINJAUAN TEORITIS. regresi berkenaan dengan studi ketergantungan antara dua atau lebih variabel yaitu BAB TINJAUAN TEORITIS. Pegerta Aalsa Regres Istlah regres pertama kal dperkealka oleh Fracs Galto. Meurutya, aalss regres berkeaa dega stud ketergatuga atara dua atau lebh varabel yatu varabel yag meeragka

Lebih terperinci

CAL ( ) ( ) E r. Var rp i M im

CAL ( ) ( ) E r. Var rp i M im LAIRAN 3 Lampra Bukt ersamaa ( Gambar: Kurva Froter da CAL E ( r CAL E ( r ( E r r roter r ( E r r Kemrga gars CAL adalah, merupaka market prce o rsk (rsko harga pasar da dsebut raso mbal hasl terhadap

Lebih terperinci

III PEMBAHASAN. Karena vektor-vektor kolom X adalah bebas linear, maka L(ε) mempunyai n vektor eigen yang bebas linear. (Terbukti)

III PEMBAHASAN. Karena vektor-vektor kolom X adalah bebas linear, maka L(ε) mempunyai n vektor eigen yang bebas linear. (Terbukti) Karea vektor-vektor kolom X adalah bebas lear maka mempuya vektor ege yag bebas lear. erbukt eorema 9 Jka... adalah la ege dar maka... adalah la ege dar. BUK : salka... adalah la ege dar yag bersesuaa

Lebih terperinci

I adalah himpunan kotak terbatas dan tertutup yang berisi lebih dari satu

I adalah himpunan kotak terbatas dan tertutup yang berisi lebih dari satu METODE FUNGS QUAS-FED SATU ARAMETER UNTUK MENYEESAKAN MASAAH ROGRAM NTEGER TAK NEAR Ra Hardyat (M4) ABSTRAK Dalam kehdupa sehar-har serg djumpa masalah optmas yag membutuhka hasl teger Masalah tersebut

Lebih terperinci

Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2

Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2 M 81 STTISTIK DSR SEMESTER II 11/1 KK STTISTIK, FMIP IT SOLUSI UJIN TENGH SEMESTER (UTS) Sabtu, 1 Me 1, Pukul 9. 1.4 WI (1 met) Kelas 1. Pegajar: Udjaa S. Pasarbu/Rr. Kura Novta Sar, Kelas. Pegajar: Utrwe

Lebih terperinci

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri III. METODE PEELITIA A. Metodolog Peelta Metodolog peelta adalah cara yag dlakuka secara sstemats megkut atura-atura, recaaka oleh para peeltutuk memecahka permasalaha yag hdup da bergua bag masyarakat,

Lebih terperinci

BAB II LANDASAN TEORI. digunakan dengan mengabaikan asumsi-asumsi yang melandasi penggunaan metode

BAB II LANDASAN TEORI. digunakan dengan mengabaikan asumsi-asumsi yang melandasi penggunaan metode BAB II ANDASAN TEORI. Regres Noparametrk Metode statstka oparametrk merupaka metode statstka ag dapat dguaka dega megabaka asums-asums ag meladas pegguaa metode statstk parametrk. Terutama ag berkata dega

Lebih terperinci

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS C. Pembelajara 3 1. Slabus N o STANDA R KOMPE TENSI KOMPE TENSI DASAR INDIKATOR MATERI TUGAS BUKTI BELAJAR KON TEN INDIKA TOR WAK TU SUM BER BELA JAR Meerap ka atura kosep statstka dalam pemecah a masalah

Lebih terperinci

Notasi Sigma. Fadjar Shadiq, M.App.Sc &

Notasi Sigma. Fadjar Shadiq, M.App.Sc & Notas Sgma Fadjar Shadq, M.App.Sc (fadjar_pg@yahoo.com & www.fadjarpg.wordpress.com Notas sgma memag jarag djumpa dalam kehdupa sehar-har, tetap otas tersebut aka bayak djumpa pada baga matematka yag la,

Lebih terperinci

PRAKTIKUM 5 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel

PRAKTIKUM 5 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel Praktkum 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa

Lebih terperinci

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan Aalsa Numerk Baha Matrkulas PENDAHULUAN Metode umerk merupaka suatu tekk atau cara utuk megaalsa da meyelesaka masalah masalah d dalam bdag rekayasa tekk da sa dega megguaka operas perhtuga matematk Masalah-masalah

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4. Deskrps Peelta Berdasarka hasl peelta, d peroleh data megea kemempua sswa melakuka smash sebelum da sesudah latha power otot lega adalah sebaga berkut : Tabel.

Lebih terperinci

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2 INTERVAL KEPERCAAAN UNTUK PERBEDAAN KOEFIIEN VARIAI DARI DITRIBUI LOGNORMAL I. Pebrya * Bustam. ugarto Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu Pegetahua Alam Uverstas

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,

Lebih terperinci

Volume 1, Nomor 2, Desember 2007

Volume 1, Nomor 2, Desember 2007 Volume, Nomor, Desember 007 Barekeg, Desember 007. hal.-7 Vol.. No. ESTIMASI PARAMETER DISTRIBUSI EKPONENSIAL PADA LOKASI TERBATAS (Estmatg Parameter Dstrbuto Expoetal At Fte Locato MOZART W TALAKUA, JEFRI

Lebih terperinci

BAB III TEOREMA GLEASON DAN t-desain

BAB III TEOREMA GLEASON DAN t-desain BAB III TEOREMA GLEASON DAN t-desain Dalam ubbab 3., kta aka mempelaar alah atu fat petg dar kode wa-dual geap. Sfat terebut dberka oleh Teorema 3.(Teorema Gleao), Teorema ecara megeaka telah meetuka betuk

Lebih terperinci

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal)

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal) LANGKAH-LANGKAH UJI HIPOTESIS DENGAN (Utuk Data Nomal). Merumuska hpotess (termasuk rumusa hpotess statstk). Data hasl peelta duat dalam etuk tael slag (tael frekues oservas) 3. Meetuka krtera uj atau

Lebih terperinci

XI. ANALISIS REGRESI KORELASI

XI. ANALISIS REGRESI KORELASI I ANALISIS REGRESI KORELASI Aalss regres mempelajar betuk hubuga atara satu atau lebh peubah bebas dega satu peubah tak bebas dalam peelta peubah bebas basaya peubah yag dtetuka oelh peelt secara bebas

Lebih terperinci

PRINSIP INKLUSI- EKSKLUSI INCLUSION- EXCLUSION PRINCIPLE

PRINSIP INKLUSI- EKSKLUSI INCLUSION- EXCLUSION PRINCIPLE RISI IKLUSI- EKSKLUSI ICLUSIO- EXCLUSIO RICILE rsp Iklus-Eksklus Ada berapa aggota dalam gabuga dua hmpua hgga? A A = A A - A A Cotoh Ada berapa blaga bulat postf lebh kecl atau sama dega 00 yag habs dbag

Lebih terperinci

MASALAH NORM MINIMUM PADA RUANG HILBERT DAN APLIKASINYA

MASALAH NORM MINIMUM PADA RUANG HILBERT DAN APLIKASINYA Masalah Norm Mmum (Karat) MASALAH NORM MINIMUM PADA RUANG HILBERT DAN APLIKASINYA Karat da Dhorva Urwatul Wutsqa Jurusa Peddka Matematka FMIPA Uverstas Neger Yogakarta Abstract I ths paper, wll be dscussed

Lebih terperinci

BAB II LANDASAN TEORI. teori dan definisi mengenai variabel random, regresi linier, metode kuadrat

BAB II LANDASAN TEORI. teori dan definisi mengenai variabel random, regresi linier, metode kuadrat BAB II LANDASAN TEORI Sebaga pedukug dalam pembahasa selajutya, dperluka beberapa teor da defs megea varabel radom, regres ler, metode kuadrat terkecl, peguja asums aalss regres, outler, da regres robust.

Lebih terperinci

KODE SIKLIK (CYCLIC CODES)

KODE SIKLIK (CYCLIC CODES) Codg Theory KODE SIKLIK (CYCLIC CODES) Muhamad Zak Ryato NIM: 2/56792/PA/8944 E-mal: zak@malugmacd http://zakmathwebd Dose Pembmbg: Drs Al Sutjaa, MSc Pedahulua Salah satu bahasa yag palg petg pada lear

Lebih terperinci

BAB 5 HASIL DAN PEMBAHASAN

BAB 5 HASIL DAN PEMBAHASAN 3 BAB 5 HASIL DAN PEMBAHASAN Dalam baga hasl da embahasa aka dtamlka roses aalss da egolaha data, dalam betuk deskrtf, tabel-tabel yag dguaka, gambar-gambar beserta hasl da embahasaya. Dega memerhatka

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam proses penelitian untuk menganalisis aproksimasi fungsi dengan metode

II. TINJAUAN PUSTAKA. Dalam proses penelitian untuk menganalisis aproksimasi fungsi dengan metode II. TINJAUAN PUSTAKA Dalam proses peelta utuk megaalss aproksmas fugs dega metode mmum orm pada ruag hlbert C[ab] (Stud kasus: fugs rasoal) peuls megguaka defs teorema da kosep dasar sebaga berkut:.. Aproksmas

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN 11 Latar Belakag Peelta yag dlakuka oleh Va der Pol pada sebuah tabug trode tertutup, yatu sebuah alat yag dguaka utuk megedalka arus lstrk dalam suatu srkut pada trasmtter da recever meghaslka

Lebih terperinci

S2 MP Oleh ; N. Setyaningsih

S2 MP Oleh ; N. Setyaningsih S2 MP Oleh ; N. Setyagsh MATERI PERTEMUAN 1-3 (1)Pedahulua pera statstka dalam peelta ; (2)Peyaja data : dalam betuk (a) tabel da (b) dagram; (3) ukura tedes setaral da ukura peympaga (4)dstrbus ormal

Lebih terperinci

PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel

PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel Praktkum 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa

Lebih terperinci