SIFAT-SIFAT LANJUT FUNGSI TERBATAS

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "SIFAT-SIFAT LANJUT FUNGSI TERBATAS"

Transkripsi

1 Bulet Ilmah Mat. Stat. da Terapaya (Bmaster) Volume 03, No. 2(204), hal SIFAT-SIFAT LANJUT FUNGSI TERBATAS Suhard, Helm, Yudar INTISARI Fugs terbatas merupaka fugs yag memlk batas atas da batas bawah. Terdapat kaja lajut tetag fugs terbatas yatu fugs bervaras terbatas. Peelta megkaj defs fugs bervaras terbatas da hubuga fugs bervaras terbatas dega fugs terbatas, fugs mooto serta sfat-sfat fugs bervaras terbatas. Suatu fugs f dkataka bervaras terbatas jka jumlaha selsh la fugs dar koleks parts pada suatu terval [a,b] lebh kecl atau sama dega sebarag blaga real postf M. Fugs bervaras terbatas berhubuga dega fugs terbatas da fugs mooto. Sela tu sfatsfat fugs bervaras terbatas yatu hmpua fugs bervaras terbatas pada [a,b] bersfat lear terhadap perkala dega suatu kostata, pejumlaha, peguraga, pembaga da perkala. Jka fugs f bervaras terbatas pada [a,b] maka f bervaras terbatas juga pada subset [a,b]. Jka fugs f bervaras terbatas pada [a,c] da [c,b] maka fugs f bervaras terbatas pada [a,b]. Kata kuc : Iterval, fugs terbatas, fugs bervaras terbatas PENDAHULUAN Salah satu teor dasar yag mejad pembahasa dalam aalss matematka yatu fugs. Suatu fugs dar hmpua ke hmpua, dega A da B merupaka dua hmpua tak kosog adalah pemetaa yag memeuh syarat setap aggota hmpua mempuya tepat satu kawa ke hmpua. Fugs dar hmpua ke hmpua B tersebut dotaska dega []. Kaja tetag fugs terus berkembag serg dega bayakya peelta-peelta yag dlakuka oleh para matematkawa. Salah satu fugs yag dkembagka oleh para matematkawa adalah tetag fugs terbatas. Msal dberka suatu fugs [ ], fugs dkataka terbatas jka fugs tersebut memlk batas atas da batas bawah dega kata la suatu fugs dkataka terbatas jka terdapat sedemka sehgga f x M utuk setap [ ] []. Matematkawa yag megembagka kaja tetag fugs terbatas yatu Camlle Jorda (88). Camlle Jorda megealka kaja tetag sfat-sfat lajut dar fugs terbatas d yatu fugs bervaras terbatas (Bouded Varato Fucto) da fugs terbatas merupaka dasar dar kaja tetag fugs bervaras terbatas. Fugs bervaras terbatas merupaka jumlaha dar selsh-selsh la fugs pada setap parts d suatu terval. Oleh karea tu dalam peelta dkaj defs fugs bervaras terbatas da hubuga fugs bervaras terbatas dega fugs terbatas, fugs mooto serta sfat-sfat fugs bervaras terbatas. FUNGSI BERVARIASI TERBATAS Dketahu bahwa terval tertutup merupaka hmpua baga dar real yag bersfat jka dega dega, maka [ ]. Pada blaga real dapat dbetuk bayak terval sedemka sehgga terval-terval tersebut ada yag tumpag tdh. Msal dberka terval da dega, terval-terval tersebut dkataka tdak tumpag tdh jka terdapat sebayak bayakya satu ttk []. Iterval [ ] dapat dparts mejad sub terval. Parts dar suatu terval ddefska dega Defs [] Parts dar terval [ ] adalah koleks { } tdak salg tumpag tdh yag gabugaya adalah terval [ ]. Parts [ ] ke- dar koleks dapat juga dotaska dega [ ], dega a x x2 x3 x x b. 35

2 36 SUHARDI, HELMI, YUNDARI Fugs bervaras terbatas merupaka jumlaha fugs-fugs dar setap koleks parts pada suatu terval tertutup yag terbatas atau dega kata la jumlaha dar fugs-fugs tersebut lebh kecl atau sama dega sebarag blaga real postf M. Hal sebagamaa yag ddefska pada defs 2 berkut. Defs 2 [2] Dberka suatu fugs [ ] f dkataka bervaras terbatas jka terdapat sehgga utuk setap koleks {[ ] } d dalam [ ] dega, utuk setap yag tdak tumpag tdh berlaku f b f a M. Koleks semua fugs yag bervaras terbatas pada [ ] dotaska dega [ ]. Cotoh Dberka [ ] yag ddefska dega ( ) utuk setap [ ], tujuka fugs bervaras terbatas pada [ ]. Aka dtujuka fugs bervaras terbatas pada [ ]. Msal dambl koleks {[ ] } pada terval [ ] dega parts, utuk setap berlaku utuk ( )... f b f a f b f a f b f a f b f a 2 2, maka f a f b f a 2 f b2 f a3... f b f a f b f a f b f b f a f b f a f b f a f 0 0 f Karea utuk koleks {[ ] } d dalam [ ] dega parts, da dega megambl dperoleh dsmpulka bahwa fugs bervaras terbatas pada [ ]. SIFAT-SIFAT DARI FUNGSI BERVARIASI TERBATAS f b f a M, sehgga dapat Dberka suatu fugs bervaras terbatas pada suatu terval [ ] maka fugs tersebut merupaka fugs terbatas. Sebagamaa yag djelaska pada Teorema 3 berkut. Teorema 3 [3] Dberka suatu fugs [ ] bervaras terbatas pada [ ], maka terbatas pada [ ]. Bukt Dketahu merupaka fugs bervaras terbatas pada [ ], berdasarka Defs 2, da aka dtujukka fugs f terbatas yatu terdapat yag memeuh sfat ( ), utuk setap [ ]. Akbatya utuk setap x a, b, da berdasarka ketaksamaa segtga maka

3 Sfat-Sfat Lajut Fugs Terbatas 37 sehgga f b f a f b f a f x f x M f x f a f b f x M f x f a f x f a f b f x M f x f a M dega megguaka ketaksamaa segtga berlaku Msal dplh f x f a M f x f a f x f a M f x f a M M f a M, sehgga ( ), dega demka dapat dsmpulka bahwa utuk setap fugs yag bervaras terbatas pada [ ] past terbatas pada [ ]. Kovers dar Teorema 3 tdak berlaku yatu jka suatu fugs terbatas pada [ ] maka belum tetu fugs tersebut bervaras terbatas pada [ ]. Msal dberka fugs mooto pada terval [ ], Sedemka sehgga fugs tersebut bervaras terbatas pada [ ]. Sebagamaa yag djelaska pada Teorema 4 berkut. Teorema 4 [4] Dberka fugs mooto pada terval [ ], maka bervaras terbatas pada [ ]. Bukt Dketahu fugs mooto terbag mejad dua yatu fugs mooto ak da fugs mooto turu. Suatu fugs mooto ak pada [ ], jka utuk setap [ ] dega, berlaku ( ) ( ) da berdasarka Defs 2, maka... f b f a f b f a f b f a f b f a f a f b f a f b f a f b f a f b Karea koleks {[ ] } d dalam [ ] dega, utuk setap da dega megambl M f b f a f b f a M sedemka sehgga dperoleh sehgga dapat dsmpulka bahwa jka suatu fugs mooto ak pada [ ] maka fugs bervaras terbatas pada [ ]. Jka fugs mooto turu pada [ ], jka utuk setap [ ] dega, berlaku ( ) ( ) da berdasarka defs 2, maka f b f a f a f b f b f a f b f a f b f a f b f a f b f a f b f a f b f a

4 38 SUHARDI, HELMI, YUNDARI Karea utuk koleks {[ ] } d dalam [ ] dega, utuk setap da dega megambl M f a f b f b f a M sedemka sehgga dperoleh sehgga dapat dsmpulka bahwa jka suatu fugs mooto turu pada [ ] maka fugs bervaras terbatas pada [ ]. Karea fugs mooto ak da mooto turu pada terval [ ] bervaras terbatas, sehgga dapat dsmpulka bahwa fugs mooto pada [ ] bervaras terbatas pada [ ]. Suatu fugs yag bervaras terbatas pada [ ] maka jka dkalka dega suatu kostata, djumlahka dua fugs BV, peguraga dua fugs BV, pembaga da perkala dua fugs BV. Maka fugs tersebut tetap bervaras terbatas pada [ ]. Hal sebagamaa yag djelaska pada teorema 5 berkut. Teorema 5 [3] Dberka dua fugs f da g bervaras terbatas pada terval [ suatu kostata. Maka. adalah bervaras terbatas pada [ ]. f g da f g adalah bervaras terbatas pada [ ]. fg adalah bervaras terbatas pada [ ] ] da dberka v. Jka g terbatas pada [ ], maka f g adalah bervaras terbatas pada [ ]. Bukt Dketahu fugs bervaras terbatas pada [ ] berdasarka Defs 2 berlaku f b f a M () Fugs bervaras terbatas pada [ ] berdasara Defs 2 berlaku 2 g b g a M (2) Pada peelt aka dbuktka Teorema 5 baga da, karea utuk pembukta da v dapat megguakak cara yag sama dega baga da.. Aka dbuktka f g da f g bervaras terbatas pada [ ], aka dbuktka f g bervaras terbatas [ ], aka dcar sedemka sehgga f g b f g a M, maka f g b f g a f b g b f a g a f b f a g b g a f b f a g b g a Berdasarka () da (2) maka f g b f g a M M 2.

5 Sfat-Sfat Lajut Fugs Terbatas 39 Karea utuk koleks {[ ] } d dalam [ ] dega, utuk setap da dega megambl M M M2 sehgga dperoleh f g b f g a M M 2 M maka dapat dsmpulka bahwa f g bervaras terbatas pada [ ]. Kemuda utuk membuktka f g bervaras terbatas pada [ ] megguaka cara yag sama dega cara membuktka f g bervaras terbatas pada [ ].. Aka dbuktka fg bervaras terbatas pada [ ], aka dcar sedemka sehgga fg b fg a M, maka f b g b f a g a fg b fg a f b g b f a g a f b g b f b g b f b g b f a g a f b g b f b g b f b g b f a g a f b g b f a g a Karea utuk koleks {[ ] } d dalam [ ] dega, utuk setap da dega megambl M f b m, m f a 2 a a, b fg b fg a terbatas pada [ ]. M g b m g a max, b a, b max da m sedemka sehgga b a, b a a, b 3 4 M M m m M maka dapat dsmpulka bahwa fg bervaras Msal dberka dua terval [ ] da [ ] [ ]. Jka fugs bervaras terbatas pada terval [ ] maka fugs tersebut bervaras terbatas pada terval [ ]. Hal sepert yag djelaska pada Teorema 6 berkut. Teorema 6 [2] Dberka suatu fugs [ ] yag bervaras terbatas pada [ ], maka fugs bervaras terbatas pada [ ] utuk sebarag [ ] [ ]. Bukt Dketahu fugs merupaka fugs bervaras terbatas, berdasarka Defs 2 da dketahu [ ] [ ]. Aka dtujuka fugs bervaras terbatas pada [ ]. Msal dambl koleks {[ ] } d dalam [ ] dega, utuk setap, maka... f d f c f d f c f d f c f d f c 2 2

6 40 SUHARDI, HELMI, YUNDARI f c f d f c f d f c f d f c f c f d f c f d f c f d f c f d f d karea utuk koleks {[ ] } d dalam [ ] dega da dega megambl M f d f c dperoleh dsmpulka bahwa fugs bervaras terbatas pada [ ]. f d f c M sehgga dapat Dketahu suatu fugs bervaras terbatas pada terval [ ], [ ] da [ ] dega [ ], sedemka sehgga fugs bervaras terbatas pada [ ] da [ ] maka fugs juga bervaras terbatas pada [ ]. Sebagamaa yag djelaska pada Teorema 7 berkut. Teorema 7 [5] Jka fugs bervaras terbatas pada [ ] da fugs bervaras terbatas pada [ ] maka bervaras terbatas pada [ ]. Bukt Dketahu fugs bervaras terbatas pada [ ] da [ ], berdasarka defs 2 berlaku f c f a M da f b f c M maka f b f a f c f a f b f c... f c f a f c f a f c f a 2 2 f b f c f b2 f c2... f b f c f c f a f b f c karea utuk koleks {[ ] } d dalam [ ] dega, utuk setap da dega megambl M f c f a kemuda utuk koleks {[ ] } d dalam [ ] dega parts, utuk setap da dega megambl M f b f c dperoleh 2 f b f a f c f a f b f c M M 2 dega megambl M M M2 bervaras terbatas [ ]. maka f b f a M sehgga dapat dsmpulka fugs Meurut Defs 2 suatu fugs yag bervaras terbatas pada [ ] maka f b f a f a dega f b f b f a M sedemka sehgga dar suatu fugs bervaras, terbatas tersebut dperoleh dua fugs mooto yag berbeda yatu f b da f a. Sebagamaa

7 Sfat-Sfat Lajut Fugs Terbatas 4 yag djelaska pada Teorema 8 berkut. Teorema 8 [2] Dberka fugs [ ] adalah bervaras terbatas jka da haya jka terdapat fugs mooto ak da sedemka sehgga. Sebelum membuktka teorema perlu dbahas tetag lemma yag berkata dega fugs mooto ak yag bervaras terbatas. Lemma 9 Fugs bervaras terbatas pada [ ] da [ ] sedemka sehgga f x f x f a Bukt Ambl sebarag x, x a, b, adalah fugs mooto ak. 2 dega x x2 f x fugs bervaras terbatas pada [ ], berdasarka Defs 2 da Teorema 7 maka. Aka d tujuka bahwa f x 2 2 f x f a f x f a f x f x f x f a f x f a f x f x 2 2 f x f x f x f x karea Berdasarka Teorema 6 f x2 f x M atau dega kata la bervaras terbatas pada x, x 2 da berdasarka Teorema 4 maka f x f x fugs mooto ak. Bukt Teorema 8. Sehgga dapat dsmpulka 2 f x merupaka Meurut defs fugs mooto ak pada [ ], jka utuk setap [ ] dega, maka berlaku ( ) ( ). Ddefska f f x f a utuk ( ] da ( ). Meurut lemma, merupaka fugs mooto ak. Kemuda ddefska juga ( ) ( ) ( ) Msalka. Berdasarka Defs 2 dapat dtulska kemuda f y f x f y f x f x f y f y f x karea f y f x ak. 2 2 f y f x f y f x f y f x f y f y f x f x 2 2 maka dapat dsmpulka bahwa fugs tersebut merupaka fugs mooto

8 42 SUHARDI, HELMI, YUNDARI PENUTUP Suatu fugs [ ] dkataka bervaras terbatas jka jumlaha dar selsh la fugs dar setap koleks parts pada [ ] terbatas atau terdapat sehgga utuk setap koleks {[ ] } d dalam [ ] dega, utuk setap yag tdak tumpag tdh berlaku f b f a M. Sfat-sfat fugs bervaras terbatas sebaga berkut: a. Jka suatu fugs yag bervaras terbatas pada suatu terval [ ], maka fugs tersebut merupaka fugs terbatas pada [ ]. b. Jka suatu fugs mooto pada terval [ ], maka fugs tersebut bervaras terbatas pada [ ] c. Suatu fugs yag bervaras terbatas pada [ ] tertutup terhadap perkala dega suatu kostata, pejumlaha, peguraga, pembaga da perkala. d. Jka fugs bervaras terbatas pada [ ], maka fugs tersebut bervaras terbatas pada subset [ ]. e. Jka fugs bervaras terbatas pada [ ] da [ ] maka fugs bervaras terbatas pada [ ]. f. Jka suatu fugs bervaras terbatas pada [ ] maka meurut defs f b f a f a f b, sedemka sehgga dar suatu fugs bervaras terbatas tersebut dperoleh f a. dua fugs mooto yatu f b da DAFTAR PUSTAKA []. Bartle, Robert G. da Sherbert, Doald R Itroducto to Real Aalyss. Thrd Edto. Joh Wley ad Sos, Ic. Uted States of Amerca [2]. Gordo, Russell A The tegrals of Lebesgue, Dejoy, Perro, ad Hestock. Amerca Mathematcal Socety. Uted States of Amerca [3]. Joes, Frak Lebesgue Itegrato o Eucldea Space. Joes ad Bartlett Publshers, Ic. Uted States of Amerca [4]. Dshalalow J.H Real aalyss a troducto to the theory of real fuctos ad tegrato. CRC Press LLC. Florda [5]. Protter, Murray H Basc elemets of real aalyss. Sprger-Verlag New York, Ic. Uted States of Amerca SUHARDI HELMI YUNDARI : Jurusa Matematka FMIPA UNTAN, Potaak, : Jurusa Matematka FMIPA UNTAN, Potaak, : Jurusa Matematka FMIPA UNTAN, Potaak,

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER TUGAS ATA KULIAH TEORI RING LANJUT ODUL NOETHER Da Aresta Yuwagsh (/364/PPA/03489) Sebelumya, telah dketahu bahwa sebaga rg dega eleme satua memeuh sfat rata ak utuk deal-deal d. Apabla dpadag sebaga modul,

Lebih terperinci

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real.

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real. BAB 5 BARIAN DAN DERET KOMPLEK ecara eses, pembahasa tetag barsa da deret komlpeks sama dega barsa da deret real. 5. Barsa Barsa merupaka sebuah fugs dega doma berupa hmpua blaga asl N. ebuah barsa kompleks

Lebih terperinci

SOLUSI TUGAS I HIMPUNAN

SOLUSI TUGAS I HIMPUNAN Program Stud S1 Tekk Iformatka Fakultas Iformatka, Telkom Uversty SOLUSI TUGAS I HIMPUNAN Matematka Dskrt (MUG2A3) Halama 1 dar 6 Soal 1 Tetukalah eleme-eleme dar hmpua berkut! 2 x x adalah blaga real

Lebih terperinci

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah BAB III INEGRAL RIEMANN-SIELJES. Pedahulua Pada Bab, telah dsggug bahwa ukura meghtug merupaka salah satu pedekata utuk membetuk proses ttk. Berkata dega masalah perhtuga, ada hal meark yag perlu amat,

Lebih terperinci

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl

Lebih terperinci

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Ruag Baach Sumaag Muhtar Gozal UNIVERSITAS PENDIDIKAN INDONESIA Satu kose etg d kulah Aalss ugsoal adalah teor ruag Baach. Pada baga aka drevu defs, cotoh-cotoh, serta sfat-sfat etg ruag Baach. Kta aka

Lebih terperinci

MASALAH NORM MINIMUM PADA RUANG HILBERT DAN APLIKASINYA

MASALAH NORM MINIMUM PADA RUANG HILBERT DAN APLIKASINYA Masalah Norm Mmum (Karat) MASALAH NORM MINIMUM PADA RUANG HILBERT DAN APLIKASINYA Karat da Dhorva Urwatul Wutsqa Jurusa Peddka Matematka FMIPA Uverstas Neger Yogakarta Abstract I ths paper, wll be dscussed

Lebih terperinci

PELABELAN HARMONIS GANJIL PADA GRAF

PELABELAN HARMONIS GANJIL PADA GRAF Jural EduTech ol. No. Maret 08 ISSN: -60 e-issn: -06 PELABELAN HARMONIS GANJIL PADA GRAF Zulf Amr, Arda Aula, Army Syella, Harsma Pratamal, Saftr Ramadha, Charusa Uverstas Muhammadyah Sumatera Utara zulfamr@umsu.ac.d;

Lebih terperinci

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP Msal dguaka kode ler C[, k, d] dega matrks pembagu G da matrks cek partas H. Sebuah blok formas x = x 1 x 2 x k, x = 0 atau 1, yag aka dkrm terlebh

Lebih terperinci

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat.

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat. KALKULUS LANJUT Pertemua ke-4 Rey Ra Marlaa, S.S.,M.Stat. Plot Mater Notas Jumlah & Sgma Itegral Tetu Jumlah Rema Pedahulua Luas Notas Jumlah & Sgma Purcell, et all. (page 226,2003): Sebuah fugs yag daerah

Lebih terperinci

PELABELAN GRACEFUL PADA DIGRAF LINTASAN DAN DIGRAF BIPARTIT LENGKAP

PELABELAN GRACEFUL PADA DIGRAF LINTASAN DAN DIGRAF BIPARTIT LENGKAP PELABELAN GRACEFUL PADA DIGRAF LINTASAN DAN DIGRAF BIPARTIT LENGKAP Lusa Tr Lstyowat Krstaa Waya M Fatekurohma Jurusa Matematka FMIPA Uerstas Jember e-mal: krstaa_waya@yahoocom da m_fatkur@yahoocom Abstract:

Lebih terperinci

I adalah himpunan kotak terbatas dan tertutup yang berisi lebih dari satu

I adalah himpunan kotak terbatas dan tertutup yang berisi lebih dari satu METODE FUNGS QUAS-FED SATU ARAMETER UNTUK MENYEESAKAN MASAAH ROGRAM NTEGER TAK NEAR Ra Hardyat (M4) ABSTRAK Dalam kehdupa sehar-har serg djumpa masalah optmas yag membutuhka hasl teger Masalah tersebut

Lebih terperinci

NORM VEKTOR DAN NORM MATRIKS

NORM VEKTOR DAN NORM MATRIKS NORM VEKTOR DN NORM MTRIK umaag Muhtar Gozal UNIVERIT PENDIDIKN INDONEI. Pedahulua Jka kta membcaraka topk ruag vektor maka cotoh sederhaa yag dapat kta ambl adalah ruag Eucld R. D ruag kta medefska pajag

Lebih terperinci

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2 INTERVAL KEPERCAAAN UNTUK PERBEDAAN KOEFIIEN VARIAI DARI DITRIBUI LOGNORMAL I. Pebrya * Bustam. ugarto Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu Pegetahua Alam Uverstas

Lebih terperinci

On A Generalized Köthe-Toeplitz Duals

On A Generalized Köthe-Toeplitz Duals JMP : Volume 4 Nomor, Ju 202, hal. 3-39 O A Geeralzed Köthe-Toepltz Duals Sumardoo, Supama 2, da Soepara Darmawaa 3 PPPPTK Matematka, smrd2007@gmal.com 2 Mathematcs Departmet, Gadah Mada Uverst, supama@ugm.ac.d

Lebih terperinci

Extra 4 Pengantar Teori Modul

Extra 4 Pengantar Teori Modul Extra 4 Pegatar Teor odul Apabla selama dkealka suatu kosep aljabar megea ruag vektor, maka modul merupaka perumuma dar ruag vektor. Pada modul, syarat skalar dperumum mejad eleme pada suatu rg da buka

Lebih terperinci

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teoremateorema

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teoremateorema II. LANDAAN TEORI Pada bab II aka dbahas pegerta-pegerta (defs) da teoremateorema ag medukug utuk pembahasa pada bab IV. Pegerta (defs) da teorema tersebut dtulska sebaga berkut.. Teorema Proeks Teorema

Lebih terperinci

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 11-19, Aprl 004, ISSN : 1410-8518 TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM Sudaro Jurusa Matematka FMIPA UNDIP Abstrak Sstem yag dbetuk

Lebih terperinci

INTEGRAL LEBESGUE PADA FUNGSI TERBATAS SKRIPSI

INTEGRAL LEBESGUE PADA FUNGSI TERBATAS SKRIPSI INTGRAL LBSGU PADA FUNGSI TRBATAS SKRIPSI Dajuka Kepada Fakultas Matematka da Ilmu Pegetahua Alam Uverstas Neger Yogyakarta utuk memeuh sebaga persyarata gua memperoleh gelar Sarjaa Sas Dsusu Oleh : Fauzah

Lebih terperinci

Jika f terintegral Henstock-Dunford pada

Jika f terintegral Henstock-Dunford pada PRLUS HRCK D SIFT CUCHY ITRL HSTOCK-DUFORD PD RU UCLID Solkh Jurusa Matematka FMIP UDIP Jl. Pro. H. Soedarto, S. H, Tembalag, Semarag e-mal : sol_er@yahoo.com bstract. I ths aer we study Hestock-Duord

Lebih terperinci

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI BB 6 PRINSIP INKLUSI DN EKSKLUSI Pada baga aka ddskuska topk berkutya yatu eumeras yag damaka Prsp Iklus da Eksklus. Kosep dalam bab merupaka perluasa de dalam Dagram Ve beserta oepras rsa da gabuga, amu

Lebih terperinci

TEOREMA URYSOHN SMIRNOV. ROSMAN SIREGAR Fakultas Matematika Dan Ilmu Pengetahuan Jurusan Matematika Universitas Sumatera Utara

TEOREMA URYSOHN SMIRNOV. ROSMAN SIREGAR Fakultas Matematika Dan Ilmu Pengetahuan Jurusan Matematika Universitas Sumatera Utara TEOREMA URYSOHN SMIRNOV ROSMAN SIREGAR Fakultas Matematka Da Ilmu Pegetahua Jurusa Matematka Uverstas Sumatera Utara PENDAHULUAN -. Latar Belakag Setelah peuls membaca dar beberapa buku, maka pembcaraa

Lebih terperinci

BAB III PERSAMAAN PANAS DIMENSI SATU

BAB III PERSAMAAN PANAS DIMENSI SATU BAB III PERSAMAAN PANAS DIMENSI SAU Pada baga sebelumya, kta telah membahas peerapa metoda Ruge-Kutta orde 4 utuk meyelesaka masalah la awal dar persamaa dferesal basa orde. Pada bab, kta aka melakuka

Lebih terperinci

Notasi Sigma. Fadjar Shadiq, M.App.Sc &

Notasi Sigma. Fadjar Shadiq, M.App.Sc & Notas Sgma Fadjar Shadq, M.App.Sc (fadjar_pg@yahoo.com & www.fadjarpg.wordpress.com Notas sgma memag jarag djumpa dalam kehdupa sehar-har, tetap otas tersebut aka bayak djumpa pada baga matematka yag la,

Lebih terperinci

KODE SIKLIK (CYCLIC CODES)

KODE SIKLIK (CYCLIC CODES) Pegatar Teor Pegkodea (Codg Theory) KODE SIKLIK (CYCLIC CODES) Dose Pegampu : Al Sutjaa DISUSUN OLEH: Nama : M Zak Ryato Nm : /5679/PA/8944 Program Stud : Matematka JURUSAN MATEMATIKA FAKULTAS MATEMATIKA

Lebih terperinci

MATEMATIKA INTEGRAL RIEMANN

MATEMATIKA INTEGRAL RIEMANN MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN Ses NGAN INTEGRAL RIEMANN A. NOTASI SIGMA a. Defs Notas Sgma Sgma (Σ) adalah otas matematka megguaka smbol yag mewakl pejumlaha da beberapa suku yag memlk

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel BAB I PENDAHULUAN 1.1 Statstka Deskrptf da Statstka Iferesal Dewasa d berbaga bdag lmu da kehdupa utuk memaham/megetahu sesuatu dperluka dat Sebaga cotoh utuk megetahu berapa bayak rakyat Idoesa yag memerluka

Lebih terperinci

( ) ( ) ( ) ( ) ( ) III MODEL. , θ Ω. 1 Pendugaan parameter dengan metode maximum lkelihood estimation dapat diperoleh dari:

( ) ( ) ( ) ( ) ( ) III MODEL. , θ Ω. 1 Pendugaan parameter dengan metode maximum lkelihood estimation dapat diperoleh dari: 5 Mamum Lkelhood Estmato Defs Fugs Lkelhood Msalka X, X,, X adalah eubah acak d dega fugs massa eluag ( ; θ, dega θ dasumska skalar da tdak dketahu, maka rosedur fugs lkelhood daat dtulska sebaga berkut

Lebih terperinci

KODE SIKLIK (CYCLIC CODES)

KODE SIKLIK (CYCLIC CODES) Codg Theory KODE SIKLIK (CYCLIC CODES) Muhamad Zak Ryato NIM: 2/56792/PA/8944 E-mal: zak@malugmacd http://zakmathwebd Dose Pembmbg: Drs Al Sutjaa, MSc Pedahulua Salah satu bahasa yag palg petg pada lear

Lebih terperinci

ALGORITMA MENENTUKAN HIMPUNAN TERBESAR DARI SUATU MATRIKS INTERVAL DALAM ALJABAR MAX-PLUS

ALGORITMA MENENTUKAN HIMPUNAN TERBESAR DARI SUATU MATRIKS INTERVAL DALAM ALJABAR MAX-PLUS LGORITM MENENTUKN HIMPUNN TERBESR DRI SUTU MTRIKS INTERVL DLM LJBR MX-PLUS Rata Novtasar Program Stud Matematka FMIP UNDIP JlProfSoedarto SH Semarag 575 bstract Ths research dscussed about how to obtaed

Lebih terperinci

PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD

PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Mayag Novhta Sar *, Bustam, Sgt Sugarto Mahasswa Program Stud S Matematka FMIPA Uverstas Rau Dose Fakultas

Lebih terperinci

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI MINGGU KE-0 HUBUNGAN ANTAR KONVERGENSI Hubuga atar koverges Hrark atar koverges dyataka dalam teorema berkut. Teorema Msalka X da X, X, X 3,... adalah varabel radom yag ddefska pada ruag probabltas yag

Lebih terperinci

Orbit Fraktal Himpunan Julia

Orbit Fraktal Himpunan Julia Vol. 3, No., 6-7, Jauar 7 Orbt Fraktal Hmpua Jula Ad Kresa Jaya, Nswar Alasa Abstrak Makalah membahas kumpula ttk-ttk yag berada dalam daerah hmpua Jula d ruag kompleks da memperlhatka sebuah algortma

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam proses penelitian untuk menganalisis aproksimasi fungsi dengan metode

II. TINJAUAN PUSTAKA. Dalam proses penelitian untuk menganalisis aproksimasi fungsi dengan metode II. TINJAUAN PUSTAKA Dalam proses peelta utuk megaalss aproksmas fugs dega metode mmum orm pada ruag hlbert C[ab] (Stud kasus: fugs rasoal) peuls megguaka defs teorema da kosep dasar sebaga berkut:.. Aproksmas

Lebih terperinci

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL 3. Pegerta Masalah regres vers dega betuk lear dapat djumpa dalam berbaga bdag kehdupa, dataraya dalam bdag ekoom, kesehata, fska, kma

Lebih terperinci

BAB II LANDASAN TEORI. merepresentasikan dan menjelaskan permasalahan pada dunia nyata ke dalam. pernyataan matematis (Widowati & Sutimin, 2007 : 1).

BAB II LANDASAN TEORI. merepresentasikan dan menjelaskan permasalahan pada dunia nyata ke dalam. pernyataan matematis (Widowati & Sutimin, 2007 : 1). BAB II LANDASAN EORI.. Model Matematka Model Matematka merupaka represetas matematka yag dhaslka dar pemodela Matematka. Pemodela Matematka merupaka suatu proses merepresetaska da mejelaska permasalaha

Lebih terperinci

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua

Lebih terperinci

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas:

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas: ANALISIS REGRESI Pedahulua Aalss regres berkata dega stud megea ketergatuga satu peubah (peubah terkat) terhadap satu atau lebh peubah laya (peubah pejelas). Jka Y dumpamaka sebaga peubah terkat da X1,X,...,X

Lebih terperinci

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka

Lebih terperinci

ALJABAR LINTASAN LEAVITT SEMIPRIMA

ALJABAR LINTASAN LEAVITT SEMIPRIMA ALJABAR LINTASAN LAVITT SMIPRIMA Ngrum Astrawat Program Stud Tekka, Akadem Martm Yogyakarta astramath@gmal.com ABSTRA. Suatu graf dapat drepresetaska sebaga aljabar ltasa da jka graf tersebut dperluas

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,

Lebih terperinci

PELABELAN GRACEFUL SATU MODULO w PADA BEBERAPA GRAF EULER

PELABELAN GRACEFUL SATU MODULO w PADA BEBERAPA GRAF EULER PELABELAN GRACEFUL SATU MODULO PADA BEBERAPA GRAF EULER Isa 1, Luca Ratasar, R. Heru Tjahjaa 3 1,,3 Jurusa Matematka, Fakultas Sas da Matematka, Uverstas Dpoegoro Jl. Prof. H. Soedarto, S.H. Tembalag,

Lebih terperinci

BAB III PEMBENTUKAN SKEMA PEMBAGIAN RAHASIA

BAB III PEMBENTUKAN SKEMA PEMBAGIAN RAHASIA BAB III PEMBENTUKAN SKEMA PEMBAGIAN RAHASIA 3. Pegkodea Matrks Ketetaggaa Matrks ketetaggaa A adaah matrks smetr, sehgga, dega memh semua eeme pada dagoa utama da eeme-eeme dbawah dagoa utama, maka aka

Lebih terperinci

H dinotasikan dengan B H

H dinotasikan dengan B H Delta-P: Jural Matemata da Pedda Matemata ISSN 089-855X Vol., No., Aprl 03 OPERATOR KOMPAK Mustafa A. H. Ruhama Program Stud Pedda Matemata, Uverstas Kharu ABSTRAK Detahu H da H dua ruag Hlbert, B H )

Lebih terperinci

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN Idah Vltr, Harso, Haposa Srat Mahassa Program S Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu

Lebih terperinci

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teorema-teorema

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teorema-teorema II. LANDASAN TEORI Pada bab II aka dbahas pegerta-pegerta (defs) da teorea-teorea ag edukug utuk pebahasa pada bab IV. Pegerta (defs) da teorea tersebut dtulska sebaga berkut... Teorea Proeks Teorea proeks

Lebih terperinci

BAB III UKURAN PEMUSATAN DATA

BAB III UKURAN PEMUSATAN DATA BAB III UKURAN PEMUSATAN DATA A. Ukura Gejala Pusat Ukura pemusata adalah suatu ukura yag meujukka d maa suatu data memusat atau suatu kumpula pegamata memusat (megelompok). Ukura pemusata data adalah

Lebih terperinci

EKUIVALENSI INTEGRAL RIEMANN DAN INTEGRAL LEBESGUE SKRIPSI OLEH ANING ROYATUL KHURIYAH NIM

EKUIVALENSI INTEGRAL RIEMANN DAN INTEGRAL LEBESGUE SKRIPSI OLEH ANING ROYATUL KHURIYAH NIM EKUIVALENSI INTEGRAL RIEMANN DAN INTEGRAL LEBESGUE SKRIPSI OLEH ANING ROYATUL KHURIYAH NIM. 0960036 JURUSAN MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG

Lebih terperinci

Edge Anti-Magic Total Labeling dari

Edge Anti-Magic Total Labeling dari Edge At-Magc Total Labelg dar Charul Imro da Suhud Wahyud Jurusa Matematka Isttut Tekolog Sepuluh Nopember Surabaya mro-ts@matematka.ts.ac.d, suhud@matematka.ts.ac.d C Abstract We wll fd edge at-magc total

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN MATRIKS TERREDUKSI REGULER DALAM ALJABAR MAX-PLUS INTERVAL

NILAI EIGEN DAN VEKTOR EIGEN MATRIKS TERREDUKSI REGULER DALAM ALJABAR MAX-PLUS INTERVAL NILAI EIGEN DAN VEKTOR EIGEN MATRIKS TERREDUKSI REGULER DALAM ALJABAR MAX-PLUS INTERVAL A-12 Sswato 1, Ar Suparwato 2, M Ady Rudhto 3 1 Mahasswa S3 Matematka FMIPA UGM da Staff Pegajar FMIPA UNS Surakarta,

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Eka Mer Krst ), Arsma Ada ), Sgt Sugarto ) ekamer_tross@ymal.com ) Mahasswa Program S Matematka FMIPA-UR

Lebih terperinci

IDEAL DALAM ALJABAR LINTASAN LEAVITT

IDEAL DALAM ALJABAR LINTASAN LEAVITT Delta-P: Jural Matematka da Peddka Matematka ISSN 289-855X Vol., No. 2, Oktober 22 IDAL DALAM ALJABAR LINTASAN LAVITT Ida Kura Walyat Program Stud Peddka Matematka Jurusa Peddka MIPA FKIP Uverstas Kharu

Lebih terperinci

BAB 5. ANALISIS REGRESI DAN KORELASI

BAB 5. ANALISIS REGRESI DAN KORELASI BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh

Lebih terperinci

PENAKSIR DUAL RATIO-CUM-PRODUCT UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA

PENAKSIR DUAL RATIO-CUM-PRODUCT UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA ENAKSI DUAL ATIO-UM-ODUT UNTUK ATA-ATA OULASI ADA SAMLING AAK SEDEHANA hrsta ajata, Frdaus, Haposa Srat Mahasswa rogram Stud S Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu egetahua Alam Uverstas

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN 11 Latar Belakag Peelta yag dlakuka oleh Va der Pol pada sebuah tabug trode tertutup, yatu sebuah alat yag dguaka utuk megedalka arus lstrk dalam suatu srkut pada trasmtter da recever meghaslka

Lebih terperinci

BAB II KAJIAN PUSTAKA. Aljabar Max-Plus adalah himpunan { } himpunan semua bilangan real yang dilengkapi dengan operasi

BAB II KAJIAN PUSTAKA. Aljabar Max-Plus adalah himpunan { } himpunan semua bilangan real yang dilengkapi dengan operasi BAB II KAJIAN PUSTAKA A. Aljabar Max-Plus 1. Pegerta Aljabar Max-Plus Aljabar Max-Plus adalah hmpua { } dega hmpua semua blaga real yag dlegkap dega operas maksmum, dotaska dega da operas pejumlaha yag

Lebih terperinci

IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB

IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB Semar Nasoal Tekolog 007 (SNT 007) ISSN : 978 9777 IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB Krsawat STMIK AMIKOM Yogyakarta e-mal : krsa@amkom.ac.d

Lebih terperinci

PRINSIP INKLUSI- EKSKLUSI INCLUSION- EXCLUSION PRINCIPLE

PRINSIP INKLUSI- EKSKLUSI INCLUSION- EXCLUSION PRINCIPLE RISI IKLUSI- EKSKLUSI ICLUSIO- EXCLUSIO RICILE rsp Iklus-Eksklus Ada berapa aggota dalam gabuga dua hmpua hgga? A A = A A - A A Cotoh Ada berapa blaga bulat postf lebh kecl atau sama dega 00 yag habs dbag

Lebih terperinci

TEOREMA TITIK TETAP BANACH. Skripsi. Diajukan untuk Memenuhi Salah satu Syarat. Memperoleh Gelar Sarjana Matematika. Program Studi Matematika

TEOREMA TITIK TETAP BANACH. Skripsi. Diajukan untuk Memenuhi Salah satu Syarat. Memperoleh Gelar Sarjana Matematika. Program Studi Matematika TEOREMA TITIK TETAP BANACH Skrps Dajuka utuk Memeuh Salah satu Syarat Memperoleh Gelar Sarjaa Matematka Program Stud Matematka Oleh: Wdaryata Ctra Nursata NIM : 348 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA

Lebih terperinci

b) Untuk data berfrekuensi fixi Data (Xi)

b) Untuk data berfrekuensi fixi Data (Xi) B. Meghtug ukura pemusata, ukura letak da ukura peyebara data serta peafsraya A. Ukura Pemusata Data Msalka kumpula data berkut meujukka hasl pegukura tgg bada dar orag sswa. 0 cm 30 cm 5 cm 5 cm 35 cm

Lebih terperinci

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran Kurkulum 013/006 matematka K e l a s XI STATISTIKA: UKURAN PEMUSATAN Tujua Pembelajara Setelah mempelajar mater, kamu dharapka memlk kemampua berkut. 1. Dapat meetuka rata-rata data tuggal da data berkelompok..

Lebih terperinci

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL Hesty ala, Arsma Ada, Bustam hestyfala@ymalcom Mahasswa Program S Matematka MIPA-UR Dose Matematka MIPA-UR

Lebih terperinci

; θ ) dengan parameter θ,

; θ ) dengan parameter θ, Vol. 4. No. 3, 5-59, Desember 00, ISSN : 40-858 APLIKASI METODE BESARAN PIVOTAL DALAM PENENTUAN SELANG KEYAKINAN TAKSIRAN PARAMETER POPULASI. Agus Rusgyoo Jurusa Matematka FMIPA UNDIP Abstraks Dberka populas

Lebih terperinci

PELABELAN HARMONIS GANJIL PADA GRAF KINCIR ANGIN BELANDA DAN GABUNGAN GRAF KINCIR ANGIN BELANDA

PELABELAN HARMONIS GANJIL PADA GRAF KINCIR ANGIN BELANDA DAN GABUNGAN GRAF KINCIR ANGIN BELANDA PELABELAN HARMONIS GANJIL PADA GRAF KINIR ANGIN BELANDA DAN GABUNGAN GRAF KINIR ANGIN BELANDA Fery Frmasah ), Kk Aryat Sugeg ) Abstrak : Gra G V G, EG dega V G adalah hmpua smpul da G hmpua busur dsebut

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Tgg tekaa [m] UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 11 Desember 017 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 50%] Sebuah PDAM melakuka pegukura

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: 38-50

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: 38-50 Jural Matematka Mur da Terapa Vol. 4 No.2 esember 200: 38-50 KETERKENALIAN SISTEM LINIER IFERENSIAL BIASA TIME-VARYING AN SISTEM LINIER IFERENSIAL PARSIAL ENGAN PENEKATAN MOUL ATAS OPERATOR IFERENSIAL

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab aka mejelaska megea ladasa teor yag dpaka oleh peuls dalam peelta. Bab dbag mejad beberapa baga, yag masg masg aka mejelaska Prcpal Compoet Aalyss (PCA), Egeface, Klusterg K-Meas,

Lebih terperinci

UKURAN GEJALA PUSAT DAN UKURAN LETAK

UKURAN GEJALA PUSAT DAN UKURAN LETAK UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu

Lebih terperinci

Uji Statistika yangb digunakan dikaitan dengan jenis data

Uji Statistika yangb digunakan dikaitan dengan jenis data Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas

Lebih terperinci

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi.

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi. Mea utuk Data Tuggal Des. Jka suatu sampel berukura dega aggota x1, x, x3,, x, maka mea sampel ddesska : 1... N 1 Mea utuk Data Kelompok Des Mea dar data yag dkelompoka adalah : x x 1 1 1 dega : x = ttk

Lebih terperinci

S2 MP Oleh ; N. Setyaningsih

S2 MP Oleh ; N. Setyaningsih S2 MP Oleh ; N. Setyagsh MATERI PERTEMUAN 1-3 (1)Pedahulua pera statstka dalam peelta ; (2)Peyaja data : dalam betuk (a) tabel da (b) dagram; (3) ukura tedes setaral da ukura peympaga (4)dstrbus ormal

Lebih terperinci

KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH. Ariyanto* ABSTRACT

KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH. Ariyanto* ABSTRACT Aryato, Kaja Sfat Keompaa pada Ruag Baah KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH Aryato* ABSTRACT The propertes of ompatess Baah spaes ths paper s a geeralzato of a ompat uderstadg the system o the real

Lebih terperinci

Penarikan Contoh Acak Sederhana (Simple Random Sampling)

Penarikan Contoh Acak Sederhana (Simple Random Sampling) Pearka Cotoh Acak Sederhaa (Smple Radom Samplg) Defs Jka sebuah cotoh berukura dambl dar suatu populas sedemka rupa sehgga setap cotoh berukura ag mugk memlk peluag sama utuk terambl, maka prosedur tu

Lebih terperinci

BAB 1 ERROR PERHITUNGAN NUMERIK

BAB 1 ERROR PERHITUNGAN NUMERIK BAB ERROR PERHITUNGAN NUMERIK A. Tujua a. Memaham galat da hampra b. Mampu meghtug galat da hampra c. Mampu membuat program utuk meelesaka perhtuga galat da hampra dega Matlab B. Peragkat da Mater a. Software

Lebih terperinci

REPRESENTASI BILANGAN FIBONACCI DALAM BENTUK KOMBINATORIAL

REPRESENTASI BILANGAN FIBONACCI DALAM BENTUK KOMBINATORIAL REPRESENTASI BILANGAN FIBONACCI DALAM BENTUK KOMBINATORIAL Rzky Maulaa Nugraha Tekk Iformatka Isttut Tekolog Badug Blok Sumurwed I RT/RW 4/, Haurgeuls, Idramayu, 4564 e-mal: laa_cfre@yahoo.com ABSTRAK

Lebih terperinci

BAB II LANDASAN TEORI. penulisan skripsi yaitu mengenai data panel, beberapa bentuk dan sifat

BAB II LANDASAN TEORI. penulisan skripsi yaitu mengenai data panel, beberapa bentuk dan sifat BAB II LANDASAN TEORI Pada Bab II aka dbahas dasar-dasar teor yag dguaka dalam peulsa skrps yatu megea data pael, beberapa betuk da sfat matrks, matrks parts, betuk ler da betuk kuadratk beserta ekspektasya,

Lebih terperinci

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton,

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton, BAB LANDASAN TEORI Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut varabel tak bebas (depedet

Lebih terperinci

STATISTIKA. A. Tabel Langkah untuk mengelompokkan data ke dalam tabel distribusi frekuensi data berkelompok/berinterval: a. Rentang/Jangkauan (J)

STATISTIKA. A. Tabel Langkah untuk mengelompokkan data ke dalam tabel distribusi frekuensi data berkelompok/berinterval: a. Rentang/Jangkauan (J) STATISTIKA A. Tabel Lagkah utuk megelompokka data ke dalam tabel dstrbus frekues data berkelompok/berterval: a. Retag/Jagkaua (J) J X maks X m b. Bayak kelas (k) Megguaka atura Sturgess, yatu k,. log c.

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 19 Desember 016 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 40%] Hasl pegukura sampel d beberapa sekolah da

Lebih terperinci

Functionally Small Riemann Sums Fungsi Terintegral Henstock-Dunford pada [a,b]

Functionally Small Riemann Sums Fungsi Terintegral Henstock-Dunford pada [a,b] Jural Sas da Matemata Vol (3): 58-63 () Fuctoally Small Rema Sums Fugs Tertegral Hestoc-uford ada [a,b] Solh, Sumato, St Khabbah 3,,3 Program Stud Matemata, FSM UNIP Jl Prof Soedarto, SH Semarag, 575 E-mal:

Lebih terperinci

Volume 1, Nomor 2, Desember 2007

Volume 1, Nomor 2, Desember 2007 Volume, Nomor, Desember 007 Barekeg, Desember 007. hal.-7 Vol.. No. ESTIMASI PARAMETER DISTRIBUSI EKPONENSIAL PADA LOKASI TERBATAS (Estmatg Parameter Dstrbuto Expoetal At Fte Locato MOZART W TALAKUA, JEFRI

Lebih terperinci

PENAKSIR RASIO REGRESI LINEAR YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN

PENAKSIR RASIO REGRESI LINEAR YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN PENAKIR RAIO REGREI LINEAR ANG EFIIEN UNTUK RATA-RATA POPULAI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN Ed Jamlu 1* Harso Haposa rat 1 Mahasswa Program tud 1 Matematka Dose Jurusa Matematka Fakultas Matematka

Lebih terperinci

BAB III ISI. x 2. 2πσ

BAB III ISI. x 2. 2πσ BAB III ISI 4. Keadata Normal Multvarat da Sfat-sfatya Keadata ormal multvarat meruaka geeralsas dar keadata ormal uvarat utuk dmes. f ( x) [( x )/ ] / = e x π x = ( x )( ) ( x ). < < (-) (-) Betuk (-)

Lebih terperinci

Nilai Total Ketakteraturan Titik dari m-copy Graf Lingkaran

Nilai Total Ketakteraturan Titik dari m-copy Graf Lingkaran Jural Sas Matematka da Statstka, Vol. 4, No. 1, Jauar 2018 Nla Total Ketakteratura Ttk dar m-copy Graf Lgkara Corry Corazo Marzuk 1, Mlla Lestar 2 1,2 Jurusa Matematka, Fakultas Sas da Tekolog, UIN Sulta

Lebih terperinci

ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF

ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF KELOMPOK A I GUSTI BAGUS HADI WIDHINUGRAHA (0860500) NI PUTU SINTYA DEWI (0860507) LUH GEDE PUTRI SUARDANI (0860508) I PUTU INDRA MAHENDRA PRIYADI (0860500)

Lebih terperinci

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas TEKNIK SAMPLING Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uverstas Adalas Defs Suatu cotoh gerombol adalah suatu cotoh acak sederhaa dmaa setap ut pearka cotoh adalah kelompok atau gerombol dar

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab bers defs-defs da sfat-sfat yag petg yag berhubuga dega modul. Hal-hal tersebut dperlua dalam pembahasa megea modul jetf pada Bab III. 2.1. Modul Mata ulah Aljabar Ler membahas

Lebih terperinci

KOMBINASI PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KOEFISIEN KURTOSIS DAN KOEFISIEN VARIASI

KOMBINASI PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KOEFISIEN KURTOSIS DAN KOEFISIEN VARIASI KOMBINASI PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KOEFISIEN KURTOSIS DAN KOEFISIEN VARIASI Defl Ardh 1, Frdaus, Haposa Srat defl_math@ahoo.com

Lebih terperinci

Penelitian Operasional II Teori Permainan TEORI PERMAINAN

Penelitian Operasional II Teori Permainan TEORI PERMAINAN Peelta Operasoal II Teor Permaa 7 2 TEORI PERMAINAN 2 Pegatar 2 Krtera Tekk Permaa : () Terdapat persaga kepetga datara pelaku (2) Setap pema memlk stateg, bak terbatas maupu tak terbatas (3) Far Game

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu. BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska

Lebih terperinci

Bab II Teori Dasar. Data spasial adalah data yang memuat informasi lokasi. Misalkan z( ), i = 1,

Bab II Teori Dasar. Data spasial adalah data yang memuat informasi lokasi. Misalkan z( ), i = 1, Bab II Teor Dasar II. Estmas Spasal Data spasal adalah data yag memuat formas lokas. Msalka z, =, s,,, s D, adalah data observas peubah acak d lokas atau koordat yag dyataka dega vektor s. Vektor koordat

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar

Lebih terperinci

NPV DAN IRR IR. ASEP TOTO KARTAMAN, MENG

NPV DAN IRR IR. ASEP TOTO KARTAMAN, MENG DAN IRR IR. ASEP TOTO KARTAMAN, MENG SEMESTER PENDEK SEMESTER TAHUN AKADEMIK 03-04 Prod Tekk Idustr Fakultas Tekk Uverstas Pasuda Badug 04 PERHITUNGAN KELAYAKAN INVESTASI. Net Preset Value () merupaka

Lebih terperinci

PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN VARIASI DAN MEDIAN

PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN VARIASI DAN MEDIAN PENAKI AIO UNTUK ATA-ATA POPULAI PADA AMPLING ACAK EDEHANA MENGGUNAKAN KOEFIIEN VAIAI DAN MEDIAN sk ahmada *, Arsma Ada, Haposa rat Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da

Lebih terperinci

Ukuran Pemusatan Data. Arum Handini P., M.Sc Ayundyah K., M.Si.

Ukuran Pemusatan Data. Arum Handini P., M.Sc Ayundyah K., M.Si. Ukura Pemusata Data Arum Had P., M.Sc Ayudyah K., M.S. Notas utuk Populas da Sampel Notas: Mea (rata-rata) Sample x Populas μ Varas s 2 σ 2 Smpaga baku s σ Ukura Pemusata Data 1. Mea (rata-rata) 2. Meda

Lebih terperinci

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB Pearka Cotoh Gerombol (Cluster Samplg) Departeme Statstka FMIPA IPB Radom samplg (Revew) Smple radom samplg Stratfed radom samplg Rato, regresso, ad dfferece estmato Systematc radom samplg Cluster radom

Lebih terperinci

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES * PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka

Lebih terperinci

LOCALLY DAN GLOBALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA [a,b]

LOCALLY DAN GLOBALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA [a,b] PROSIING ISBN : 978 979 6353 9 4 LOCALLY AN GLOBALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-UNFOR PAA [a,b] A-8 Solh, Y Suato, St Khabbah 3,,3 Jurusa Mateata, Faultas Sas da Mateata, Uverstas poegoro

Lebih terperinci