II. TINJAUAN PUSTAKA. Dalam proses penelitian untuk menganalisis aproksimasi fungsi dengan metode

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "II. TINJAUAN PUSTAKA. Dalam proses penelitian untuk menganalisis aproksimasi fungsi dengan metode"

Transkripsi

1 II. TINJAUAN PUSTAKA Dalam proses peelta utuk megaalss aproksmas fugs dega metode mmum orm pada ruag hlbert C[ab] (Stud kasus: fugs rasoal) peuls megguaka defs teorema da kosep dasar sebaga berkut:.. Aproksmas Fugs Suatu fugs tdak memerluka peelesaa tetap fugs tersebut haa dapat devaluas apabla la varabela dberka. Msala suatu fugs varabel dataka oleh (t) = t dega t 8. Suatu fugs juga dapat drepresetaska dalam deret pagkat tak hgga. Suatu fugs ag dekspas dalam deret pagkat tak hgga ~ = c z tdak dapat dselesaka dega perhtuga basa utuk medapatka la eksaka. Oleh karea tu utuk mecar laa dapat dlakuka dega pegguaa suatu pedekata. Perhtuga dega suatu aproksmas meghaslka la pedekata ( Mur 6 ).

2 6 Ada dua jes pegguaa aproksmas pada suatu fugs atu:. Meggatka fugs-fugs ag rumt dega fugs ag lebh sederhaa sehgga baak operas umum sepert fugs rasoal da fugs tegral atau bahka megevaluas fugs tersebut dapat dlakuka dega mudah.. Utuk memperoleh kembal suatu fugs dar formas sebaga megea fugs tu msala dar suatu tabel la ( Satoso 3 )... Kesalaha Aproksmas Fugs Dalam perhtuga dega aproksmas mugk aka terjad suatu kesalaha terhadap la eksaka. Meurut Tratmodjo () terdapat tga jes kesalaha ag mugk terjad dalam perhtuga dega aproksmas atu kesalaha bawaa kesalaha pembulata (roud-off error) da kesalaha pemotoga (trucato error). Defs... Kesalaha Bawaa Kesalaha bawaa adalah kesalaha dar la data ag terjad karea kekelrua dalam meal data salah membaca skala atau kesalaha karea kuraga pegerta megea hukum-hukum fsk dar data ag dukur (Tratmodjo ). Mur (6) meebut kesalaha bawaa dega stlah kesalaha ekspermetal atu kesalaha ag tmbul dar data ag dberka msala karea kesalaha pegukura ketdaktelta alat ukur da sebagaa.

3 7 Defs... Kesalaha Pembulata (roud-off error). Kesalaha pembulata adalah kesalaha ag terjad karea tdak dperhtugkaa beberapa agka terakhr dar suatu blaga (Tratmodjo ). Kesalaha pembulata msala dapat dbulatka mejad 34. Defs..3. Kesalaha Pemotoga (trucato error). Kesalaha pemotoga adalah kesalaha ag terjad karea haa dperhtugkaa beberapa suku pertama dar suatu deret tak hgga (Tratmodjo ). Sela defs d atas kesalaha pemotoga (trucato error) juga ddefska sebaga kesalaha ag tmbul dar pegguaa suatu aproksmas peggat prosedur matematka ag eksak (Chapra ). Kesalaha pemotoga terjad msala pada pegguaa aproksmas dega deret Talor. Kesalaha (error) ag mucul dalam pegguaa aproksmas dharapka berla sagat kecl sehgga la ag dperoleh medekat atau hampr sama dega la eksaka. Oleh karea tu dalam meghampr suatu fugs deret pagkat tak hgga la kesalahaa aka berla semak kecl jka suku-suku deret ag dguaka utuk meghampr fugs tersebut semak baak..3. Teorema Proeks Teorema proeks merupaka prsp dasar dalam peelesaa masalah optmsas. Sebelum ke Teorema proeks terlebh dahulu aka dperkealka kosep ortogoaltas.

4 8 Defs.3. (Lueberger 969) Dalam suatu ruag pre-hlbert X vektor X dkataka ortogoal jka < >= dotaska dega. Suatu vektor dkataka ortogoal dega hmpua S dotaska S jka s utuk setap s S. Lemma berkut meujukka bahwa Teorema Phtagorea dalam geometr bdag merupaka akbat dar kosep ortogoaltas. Lemma.3. Msalka X suatu ruag Hlbert da X. Jka maka Bukt : = =. Selajuta aka dbahas suatu masalah optmsas ag berhubuga dega Teorema proeks. Msalka X suatu ruag Pre-Hlbert dberka suatu vektor X da M ruag baga dar X maka aka dtetuka vektor m M ag terdekat ke atu vektor ag memmalka m. Jka berada d M maka peelesaaa trval atu vektor sedr. Secara umum ada empat perataa petg dalam peelesaa masalah tersebut atu :. Adakah vektor m M ag memmalka m?. Apakah peelesaaa tuggal? 3. Kods apa ag harus dpeuh agar ada peelesaa optmal?

5 9 4. Bagamaa meetuka peelesaa optmal? Perataa omor da 3 aka djawab dega Teorema proeks. Ada dua vers Teorema proeks satu vers pada ruag Pre-Hlbert da satu vers ag la pada ruag Hlbert dega hpotess da kesmpula ag lebh kuat. Teorema.3. (Teorema Proeks d Ruag pre-hlbert) Msalka X suatu ruag Pre-Hlbert M suatu ruag baga dar X da sebarag vektor d X. Jka ada vektor m M sedemka sehgga mo m m M maka m tuggal. Sarat perlu da cukup m M suatu vektor mmal tuggal d M adalah vektor selsh m ortogoal terhadap M. Bukt : Aka d tujukka jka m adalah vektor mmal maka m ortogoal terhadap M. Adaka kods sebalka terdapat m M ag tdak ortogoal terhadap m. Tapa megurag keumuma bukt dmsalka m da < m m> =. Ddefska vektor m M sebaga m = m + m maka m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m

6 I berart m dega m = m + m sehgga m m berart m buka vektor mmal. Jad m vektor mmal maka m ortogoal terhadap M atau ( m ) m m M terhadap M maka m buka vektor mmal.. Dega demka jka m tdak ortogoal Selajuta aka dtujukka jka vektor m ortogoal terhadap M dambl sebarag mm berdasarka Teorema Phtagorea : m m m m m m m sehgga m m utuk m m. Dalam dmes tga teorema proeks dapat dataka sebaga berkut : Ruag baga M adalah bdag ag melalu ttk asal da d ruag dmes tga X. Jka ada vektor mmal m M maka m tuggal da vektor selsh m tegak lurus terhadap bdag M sepert dgambarka dalam gambar d bawah : ( m ) M Gambar. Teorema d atas belum mejam keberadaa vektor mmal tetap jka ada vektor mmal m maka m tuggal da vektor selsh m ortogoal terhadap ruag baga M. Dega hpotess ag lebh kuat ddapatka kesmpula ag

7 lebh kuat atu terjama keberadaa vektor mmal. Hal dataka dalam teorema berkut. Teorema.3.3 Teorema Proeks Klask Msalka H ruag Hlbert da M ruag baga tertutup dar H maka utuk sebarag vektor H terdapat tuggal vektor m M sedemka hgga mo m m M. Sarat perlu da cukup m M suatu vektor mmal tuggal adalah vektor selsh m ortogoal terhadap ruag baga M. Bukt : Ketuggala da ortogoaltasa telah dbuktka pada Teorema.3. sehgga tggal membuktka keberadaa vektor mmal. Jka M da m = maka bukt selesa. Msalka M da ddefska f m aka dtetuka m M dega mm m. Msalka {m } suatu barsa vektor dalam M da m. Meurut hukum jajara gejag (parallelogram) ( mj ) ( m ) ( mj ) ( m ) mj m dega meusu kembal persamaa d atas ddapatka : j m m = mj m - 4 m m j utuk setap j. Da vektor m m j berada d M. Karea M ruag baga ler sehgga dar defs da ddapatka : m m j

8 m j m m m 4 j karea m Maka m j m j. Dega demka {m } adalah barsa Cauch da karea M ruag baga tertutup dar ruag legkap maka barsa {m } mempua lmt m d dalam M. Dega kekotua orm maka m. Jad dalam peulsa Teorema proeks klask mejam keberadaa da ketuggala peelesaa optmal serta kods ag harus dpeuh agar keberadaa vektor mmal ada peelesaa optmala peelesaa optmala sedr belum dapat dtetuka. Selajuta teorema proeks d atas aka dtetapka utuk membagu sfat struktural tambaha dar suatu ruag Hlbert atara la adalah dalam sebarag ruag baga tertutup dar ruag Hlbert sebarag vektor dapat dtuls sebaga jumlaha dua vektor satu vektor d ruag baga tertutup da vektor ag la ortogoal terhadapa. Defs.3. (Lueberger 969) Msalka... bass dar M. Dberka sebarag vektor H da aka dcar vektor m d M ag terdekat ke. Jka vektor m dataka dalam sukusuku dalam vektor sebaga :

9 3 m o = Maka masalah tersebut ekuvale dega meemuka skalar =... ag memmalka.... Meurut Teorema proeks vektor mmal tuggal m adalah proeks ortogoal pada M atau vektor selsh m ortogoal terhadap setap vektor. Dega demka :... utuk =.... Atau < > - < > - < > < > = < > - < > - < > < > = < > - < > - < > < > = Atau < > + < > < > = < > < > + < > < > = < > < > + < > < > = < > Persamaa dalam koefse sebaak kal dkeal sebaga persamaa ormal utuk masalah mmalsas. Matrks ag berhubuga dega vektor... atu : G = G(... ) =

10 4 dsebut matrks Gram dar Matrks adalah trapose dar matrks koefse ormal. Teorema.3.4 Determa Gram g = g(. ) jka da haa jka. bebas lear. Bukt : Perataa tersebut ekuvale dega perataa vektor vektor. bergatug lear jka da haa jka g = g(. ) =. Msalka bergatug ler berart terdapat ag tdak sama dega ol sedemka sehgga. Karea barsa-barsa pada determa Gram bergatug pada maka determaa ol. Msalka g = g(. ) =. Maka ada kebergatuga ler d atara barsa-barsaa sehgga terdapat kostata I ag tdak semuaa ol sedemka hgga j utuk semua j. Dega demka atau. Sehgga da vektor j. bergatug ler. Walaupu persamaa ormal tdak memlk peelesaa tuggal jka bergatug ler tetap selalu ada palg sedkt satu peelesaa. Jka g =

11 5 maka selalu dhaslka peelesaa ag tdak tuggal buka peelesaa ag tdak kosste. Teorema berkut meataka jarak mmum suatu vektor ke ruag baga dapat dcar dega determa matrks Gram. Teorema.3.5 Msalka.. bebas lear da jarak mmum vektor ke ruag baga M ag dbagu oleh atu : m... maka g(... ) g(... ) Bukt : Meurut defs Meurut teorema proeks - ortogoal terhadap M sehgga secara khusus karea M maka : < - > = sehgga... atau... persamaa bersama persamaa ormal memberka + persamaa ler dalam + varabel.... Dega atura Cramer ddapatka

12 6 )... ( )... ( g g.4. Deret Maclaur Kasus khusus pada deret Talor adalah bla fugs dperluas sektar t = maka dereta damaka deret Maclaur ag juga merupaka deret Talor baku sebaga berkut: t = + ()! t + "()! t + () 3! t 3 + = ()! t = (Purcell 4) Cotoh.4. Fugs ( t = t + dt 8 t 8 ) Meetuka deret Maclaur dar fugs t = t + dt 8 da pedekata ke la. t = t + () = t = t+ =

13 7 Sehgga dperoleh deret Maclaur dar fugs t = t + = + = + t! t + 8 t + dt.5. Fugs Irasoal Fugs Irasoal adalah akar dar fugs polom. Betuk umuma : (Albar ) m = + c + c + + c tdak bulat m ε R m

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teoremateorema

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teoremateorema II. LANDAAN TEORI Pada bab II aka dbahas pegerta-pegerta (defs) da teoremateorema ag medukug utuk pembahasa pada bab IV. Pegerta (defs) da teorema tersebut dtulska sebaga berkut.. Teorema Proeks Teorema

Lebih terperinci

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teorema-teorema

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teorema-teorema II. LANDASAN TEORI Pada bab II aka dbahas pegerta-pegerta (defs) da teorea-teorea ag edukug utuk pebahasa pada bab IV. Pegerta (defs) da teorea tersebut dtulska sebaga berkut... Teorea Proeks Teorea proeks

Lebih terperinci

MASALAH NORM MINIMUM PADA RUANG HILBERT DAN APLIKASINYA

MASALAH NORM MINIMUM PADA RUANG HILBERT DAN APLIKASINYA Masalah Norm Mmum (Karat) MASALAH NORM MINIMUM PADA RUANG HILBERT DAN APLIKASINYA Karat da Dhorva Urwatul Wutsqa Jurusa Peddka Matematka FMIPA Uverstas Neger Yogakarta Abstract I ths paper, wll be dscussed

Lebih terperinci

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real.

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real. BAB 5 BARIAN DAN DERET KOMPLEK ecara eses, pembahasa tetag barsa da deret komlpeks sama dega barsa da deret real. 5. Barsa Barsa merupaka sebuah fugs dega doma berupa hmpua blaga asl N. ebuah barsa kompleks

Lebih terperinci

NORM VEKTOR DAN NORM MATRIKS

NORM VEKTOR DAN NORM MATRIKS NORM VEKTOR DN NORM MTRIK umaag Muhtar Gozal UNIVERIT PENDIDIKN INDONEI. Pedahulua Jka kta membcaraka topk ruag vektor maka cotoh sederhaa yag dapat kta ambl adalah ruag Eucld R. D ruag kta medefska pajag

Lebih terperinci

BAB 1 ERROR PERHITUNGAN NUMERIK

BAB 1 ERROR PERHITUNGAN NUMERIK BAB ERROR PERHITUNGAN NUMERIK A. Tujua a. Memaham galat da hampra b. Mampu meghtug galat da hampra c. Mampu membuat program utuk meelesaka perhtuga galat da hampra dega Matlab B. Peragkat da Mater a. Software

Lebih terperinci

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Ruag Baach Sumaag Muhtar Gozal UNIVERSITAS PENDIDIKAN INDONESIA Satu kose etg d kulah Aalss ugsoal adalah teor ruag Baach. Pada baga aka drevu defs, cotoh-cotoh, serta sfat-sfat etg ruag Baach. Kta aka

Lebih terperinci

I adalah himpunan kotak terbatas dan tertutup yang berisi lebih dari satu

I adalah himpunan kotak terbatas dan tertutup yang berisi lebih dari satu METODE FUNGS QUAS-FED SATU ARAMETER UNTUK MENYEESAKAN MASAAH ROGRAM NTEGER TAK NEAR Ra Hardyat (M4) ABSTRAK Dalam kehdupa sehar-har serg djumpa masalah optmas yag membutuhka hasl teger Masalah tersebut

Lebih terperinci

On A Generalized Köthe-Toeplitz Duals

On A Generalized Köthe-Toeplitz Duals JMP : Volume 4 Nomor, Ju 202, hal. 3-39 O A Geeralzed Köthe-Toepltz Duals Sumardoo, Supama 2, da Soepara Darmawaa 3 PPPPTK Matematka, smrd2007@gmal.com 2 Mathematcs Departmet, Gadah Mada Uverst, supama@ugm.ac.d

Lebih terperinci

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER TUGAS ATA KULIAH TEORI RING LANJUT ODUL NOETHER Da Aresta Yuwagsh (/364/PPA/03489) Sebelumya, telah dketahu bahwa sebaga rg dega eleme satua memeuh sfat rata ak utuk deal-deal d. Apabla dpadag sebaga modul,

Lebih terperinci

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka

Lebih terperinci

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan Aalsa Numerk Baha Matrkulas PENDAHULUAN Metode umerk merupaka suatu tekk atau cara utuk megaalsa da meyelesaka masalah masalah d dalam bdag rekayasa tekk da sa dega megguaka operas perhtuga matematk Masalah-masalah

Lebih terperinci

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP Msal dguaka kode ler C[, k, d] dega matrks pembagu G da matrks cek partas H. Sebuah blok formas x = x 1 x 2 x k, x = 0 atau 1, yag aka dkrm terlebh

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,

Lebih terperinci

SIFAT-SIFAT LANJUT FUNGSI TERBATAS

SIFAT-SIFAT LANJUT FUNGSI TERBATAS Bulet Ilmah Mat. Stat. da Terapaya (Bmaster) Volume 03, No. 2(204), hal 35 42. SIFAT-SIFAT LANJUT FUNGSI TERBATAS Suhard, Helm, Yudar INTISARI Fugs terbatas merupaka fugs yag memlk batas atas da batas

Lebih terperinci

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton,

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton, BAB LANDASAN TEORI Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut varabel tak bebas (depedet

Lebih terperinci

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat.

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat. KALKULUS LANJUT Pertemua ke-4 Rey Ra Marlaa, S.S.,M.Stat. Plot Mater Notas Jumlah & Sgma Itegral Tetu Jumlah Rema Pedahulua Luas Notas Jumlah & Sgma Purcell, et all. (page 226,2003): Sebuah fugs yag daerah

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab aka mejelaska megea ladasa teor yag dpaka oleh peuls dalam peelta. Bab dbag mejad beberapa baga, yag masg masg aka mejelaska Prcpal Compoet Aalyss (PCA), Egeface, Klusterg K-Meas,

Lebih terperinci

Penarikan Contoh Acak Sederhana (Simple Random Sampling)

Penarikan Contoh Acak Sederhana (Simple Random Sampling) Pearka Cotoh Acak Sederhaa (Smple Radom Samplg) Defs Jka sebuah cotoh berukura dambl dar suatu populas sedemka rupa sehgga setap cotoh berukura ag mugk memlk peluag sama utuk terambl, maka prosedur tu

Lebih terperinci

Extra 4 Pengantar Teori Modul

Extra 4 Pengantar Teori Modul Extra 4 Pegatar Teor odul Apabla selama dkealka suatu kosep aljabar megea ruag vektor, maka modul merupaka perumuma dar ruag vektor. Pada modul, syarat skalar dperumum mejad eleme pada suatu rg da buka

Lebih terperinci

BAB I PENGINTEGRALAN KOMPLEKS

BAB I PENGINTEGRALAN KOMPLEKS BAB I PENGINTEGRALAN OMPLES . Itegral Gars Sebelum membcaraka tegral gars terlebh dahulu aka dbahas kurva kurva mulus ltasa da retas suatu ltasa. Ltasa urva legkuga d bdag datar dapat dataka dalam betuk

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling BAB LANDASAN TEORI Kosep Dasar Aalss Regres Aalss regres adalah suatu proses memperkraka secara sstemats tetag apa yag palg mugk terjad dmasa yag aka datag berdasarka formas yag sekarag dmlk agar memperkecl

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres

Lebih terperinci

BAB III PERSAMAAN PANAS DIMENSI SATU

BAB III PERSAMAAN PANAS DIMENSI SATU BAB III PERSAMAAN PANAS DIMENSI SAU Pada baga sebelumya, kta telah membahas peerapa metoda Ruge-Kutta orde 4 utuk meyelesaka masalah la awal dar persamaa dferesal basa orde. Pada bab, kta aka melakuka

Lebih terperinci

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI MINGGU KE-0 HUBUNGAN ANTAR KONVERGENSI Hubuga atar koverges Hrark atar koverges dyataka dalam teorema berkut. Teorema Msalka X da X, X, X 3,... adalah varabel radom yag ddefska pada ruag probabltas yag

Lebih terperinci

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl

Lebih terperinci

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah BAB III INEGRAL RIEMANN-SIELJES. Pedahulua Pada Bab, telah dsggug bahwa ukura meghtug merupaka salah satu pedekata utuk membetuk proses ttk. Berkata dega masalah perhtuga, ada hal meark yag perlu amat,

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu. BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 19 Desember 016 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 40%] Hasl pegukura sampel d beberapa sekolah da

Lebih terperinci

Penelitian Operasional II Teori Permainan TEORI PERMAINAN

Penelitian Operasional II Teori Permainan TEORI PERMAINAN Peelta Operasoal II Teor Permaa 7 2 TEORI PERMAINAN 2 Pegatar 2 Krtera Tekk Permaa : () Terdapat persaga kepetga datara pelaku (2) Setap pema memlk stateg, bak terbatas maupu tak terbatas (3) Far Game

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI BB 6 PRINSIP INKLUSI DN EKSKLUSI Pada baga aka ddskuska topk berkutya yatu eumeras yag damaka Prsp Iklus da Eksklus. Kosep dalam bab merupaka perluasa de dalam Dagram Ve beserta oepras rsa da gabuga, amu

Lebih terperinci

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL 3. Pegerta Masalah regres vers dega betuk lear dapat djumpa dalam berbaga bdag kehdupa, dataraya dalam bdag ekoom, kesehata, fska, kma

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,

Lebih terperinci

Selesaikan persamaan kuadrat ini dengan bentuk kuadrat lengkap, diperoleh

Selesaikan persamaan kuadrat ini dengan bentuk kuadrat lengkap, diperoleh Blaga Kompleks Feomea blaga kompleks arlah dua buah blaga ag jumlaha da haslkala juga Msalka blaga ag dcar adalah da w, dega kods + w = da w = Dar kods + w = dperoleh w = Gatka ke w =, dperoleh ( ) =,

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Tgg tekaa [m] UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 11 Desember 017 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 50%] Sebuah PDAM melakuka pegukura

Lebih terperinci

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran Kurkulum 013/006 matematka K e l a s XI STATISTIKA: UKURAN PEMUSATAN Tujua Pembelajara Setelah mempelajar mater, kamu dharapka memlk kemampua berkut. 1. Dapat meetuka rata-rata data tuggal da data berkelompok..

Lebih terperinci

PELABELAN HARMONIS GANJIL PADA GRAF

PELABELAN HARMONIS GANJIL PADA GRAF Jural EduTech ol. No. Maret 08 ISSN: -60 e-issn: -06 PELABELAN HARMONIS GANJIL PADA GRAF Zulf Amr, Arda Aula, Army Syella, Harsma Pratamal, Saftr Ramadha, Charusa Uverstas Muhammadyah Sumatera Utara zulfamr@umsu.ac.d;

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN 11 Latar Belakag Peelta yag dlakuka oleh Va der Pol pada sebuah tabug trode tertutup, yatu sebuah alat yag dguaka utuk megedalka arus lstrk dalam suatu srkut pada trasmtter da recever meghaslka

Lebih terperinci

TEOREMA TITIK TETAP BANACH. Skripsi. Diajukan untuk Memenuhi Salah satu Syarat. Memperoleh Gelar Sarjana Matematika. Program Studi Matematika

TEOREMA TITIK TETAP BANACH. Skripsi. Diajukan untuk Memenuhi Salah satu Syarat. Memperoleh Gelar Sarjana Matematika. Program Studi Matematika TEOREMA TITIK TETAP BANACH Skrps Dajuka utuk Memeuh Salah satu Syarat Memperoleh Gelar Sarjaa Matematka Program Stud Matematka Oleh: Wdaryata Ctra Nursata NIM : 348 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA

Lebih terperinci

ALGORITMA MENENTUKAN HIMPUNAN TERBESAR DARI SUATU MATRIKS INTERVAL DALAM ALJABAR MAX-PLUS

ALGORITMA MENENTUKAN HIMPUNAN TERBESAR DARI SUATU MATRIKS INTERVAL DALAM ALJABAR MAX-PLUS LGORITM MENENTUKN HIMPUNN TERBESR DRI SUTU MTRIKS INTERVL DLM LJBR MX-PLUS Rata Novtasar Program Stud Matematka FMIP UNDIP JlProfSoedarto SH Semarag 575 bstract Ths research dscussed about how to obtaed

Lebih terperinci

PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel

PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel Praktkum 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa

Lebih terperinci

PRAKTIKUM 5 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel

PRAKTIKUM 5 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel Praktkum 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa

Lebih terperinci

POLIGON TERBUKA TERIKAT SEMPURNA

POLIGON TERBUKA TERIKAT SEMPURNA MODUL KULIAH ILMU UKUR TANAH POLIGON TERBUKA TERIKAT SEMPURNA Pegerta : peetua azmuth awal da akhr, peetuat kesalaha peutup sudut,koreks sudut, kesalaha lear da koreks lear kearah sumbu X da Y, Peetua

Lebih terperinci

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN Idah Vltr, Harso, Haposa Srat Mahassa Program S Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu

Lebih terperinci

BAB II KAJIAN PUSTAKA. Aljabar Max-Plus adalah himpunan { } himpunan semua bilangan real yang dilengkapi dengan operasi

BAB II KAJIAN PUSTAKA. Aljabar Max-Plus adalah himpunan { } himpunan semua bilangan real yang dilengkapi dengan operasi BAB II KAJIAN PUSTAKA A. Aljabar Max-Plus 1. Pegerta Aljabar Max-Plus Aljabar Max-Plus adalah hmpua { } dega hmpua semua blaga real yag dlegkap dega operas maksmum, dotaska dega da operas pejumlaha yag

Lebih terperinci

Pendahuluan. Relasi Antar Variabel. Relasi Antar Variabel. Relasi Antar Variabel 4/6/2015. Oleh : Fauzan Amin

Pendahuluan. Relasi Antar Variabel. Relasi Antar Variabel. Relasi Antar Variabel 4/6/2015. Oleh : Fauzan Amin 4/6/015 Oleh : Fauza Am Se, 06 Aprl 015 GDL 11 (07.30-10.50) Pedahulua Aalsa regres dguaka utuk mempelajar da megukur hubuga statstk ag terjad atara dua atau lebh varbel. Dalam regres sederhaa dkaj dua

Lebih terperinci

Notasi Sigma. Fadjar Shadiq, M.App.Sc &

Notasi Sigma. Fadjar Shadiq, M.App.Sc & Notas Sgma Fadjar Shadq, M.App.Sc (fadjar_pg@yahoo.com & www.fadjarpg.wordpress.com Notas sgma memag jarag djumpa dalam kehdupa sehar-har, tetap otas tersebut aka bayak djumpa pada baga matematka yag la,

Lebih terperinci

S2 MP Oleh ; N. Setyaningsih

S2 MP Oleh ; N. Setyaningsih S2 MP Oleh ; N. Setyagsh MATERI PERTEMUAN 1-3 (1)Pedahulua pera statstka dalam peelta ; (2)Peyaja data : dalam betuk (a) tabel da (b) dagram; (3) ukura tedes setaral da ukura peympaga (4)dstrbus ormal

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Pedahulua Sebelum membahas megea prosedur peguja hpotess, terlebh dahulu aka djelaska beberapa teor da metode yag meujag utuk mempermudah pembahasa. Adapu teor da metode tersebut

Lebih terperinci

BAB III ISI. x 2. 2πσ

BAB III ISI. x 2. 2πσ BAB III ISI 4. Keadata Normal Multvarat da Sfat-sfatya Keadata ormal multvarat meruaka geeralsas dar keadata ormal uvarat utuk dmes. f ( x) [( x )/ ] / = e x π x = ( x )( ) ( x ). < < (-) (-) Betuk (-)

Lebih terperinci

TEOREMA URYSOHN SMIRNOV. ROSMAN SIREGAR Fakultas Matematika Dan Ilmu Pengetahuan Jurusan Matematika Universitas Sumatera Utara

TEOREMA URYSOHN SMIRNOV. ROSMAN SIREGAR Fakultas Matematika Dan Ilmu Pengetahuan Jurusan Matematika Universitas Sumatera Utara TEOREMA URYSOHN SMIRNOV ROSMAN SIREGAR Fakultas Matematka Da Ilmu Pegetahua Jurusa Matematka Uverstas Sumatera Utara PENDAHULUAN -. Latar Belakag Setelah peuls membaca dar beberapa buku, maka pembcaraa

Lebih terperinci

IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB

IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB Semar Nasoal Tekolog 007 (SNT 007) ISSN : 978 9777 IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB Krsawat STMIK AMIKOM Yogyakarta e-mal : krsa@amkom.ac.d

Lebih terperinci

BAB II LANDASAN TEORI. merepresentasikan dan menjelaskan permasalahan pada dunia nyata ke dalam. pernyataan matematis (Widowati & Sutimin, 2007 : 1).

BAB II LANDASAN TEORI. merepresentasikan dan menjelaskan permasalahan pada dunia nyata ke dalam. pernyataan matematis (Widowati & Sutimin, 2007 : 1). BAB II LANDASAN EORI.. Model Matematka Model Matematka merupaka represetas matematka yag dhaslka dar pemodela Matematka. Pemodela Matematka merupaka suatu proses merepresetaska da mejelaska permasalaha

Lebih terperinci

Deret Taylor dan Analisis Galat

Deret Taylor dan Analisis Galat Deret Taylor da Aalss Galat Des : Adakata da semua turuaya,,,, meerus d dalam selag [a,b]. Msalka : o є[a,b], maka la-la d sektar o da є[a,b], dapat dperluas dekspas ke dalam deret Taylor :...!...! 1!

Lebih terperinci

Pertemuan VII IV. Titik Berat dan Momen Inersia

Pertemuan VII IV. Titik Berat dan Momen Inersia Baa jar Mekaka Baa Mulat, ST., MT Pertemua V V. Ttk Berat da Mome ersa. Ttk Berat Peampag Mome pertama suatu luasa eleme teradap suatu sumbu d dalam bdag luasa dberka dega produk luasa eleme da jarak tegak

Lebih terperinci

Regresi & Korelasi Linier Sederhana

Regresi & Korelasi Linier Sederhana Regres & Korelas Ler Sederhaa. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar la peubah

Lebih terperinci

( ) ( ) ( ) ( ) ( ) III MODEL. , θ Ω. 1 Pendugaan parameter dengan metode maximum lkelihood estimation dapat diperoleh dari:

( ) ( ) ( ) ( ) ( ) III MODEL. , θ Ω. 1 Pendugaan parameter dengan metode maximum lkelihood estimation dapat diperoleh dari: 5 Mamum Lkelhood Estmato Defs Fugs Lkelhood Msalka X, X,, X adalah eubah acak d dega fugs massa eluag ( ; θ, dega θ dasumska skalar da tdak dketahu, maka rosedur fugs lkelhood daat dtulska sebaga berkut

Lebih terperinci

II. TINJAUAN PUSTAKA. variabel. Dalam regresi sederhana dikaji dua variabel, sedangkan dalam regresi

II. TINJAUAN PUSTAKA. variabel. Dalam regresi sederhana dikaji dua variabel, sedangkan dalam regresi 3 II. TINJAUAN PUSTAKA. Aalss Regres Aalss regres merupaka salah satu metode statstka ag dguaka utuk mempelajar da megukur huuga statstk ag terjad atara dua atau leh varael. Dalam regres sederhaa dkaj

Lebih terperinci

ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF

ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF KELOMPOK A I GUSTI BAGUS HADI WIDHINUGRAHA (0860500) NI PUTU SINTYA DEWI (0860507) LUH GEDE PUTRI SUARDANI (0860508) I PUTU INDRA MAHENDRA PRIYADI (0860500)

Lebih terperinci

KOMBINASI PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KOEFISIEN KURTOSIS DAN KOEFISIEN VARIASI

KOMBINASI PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KOEFISIEN KURTOSIS DAN KOEFISIEN VARIASI KOMBINASI PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KOEFISIEN KURTOSIS DAN KOEFISIEN VARIASI Defl Ardh 1, Frdaus, Haposa Srat defl_math@ahoo.com

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakag Masalah Regres merupaka suatu metode statstka yag dguaka utuk meyeldk pola hubuga atara dua atau lebh varabel.betuk atau pola hubuga varabelvarabel tersebut dapat ddetfkas

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: ANALISIS REGRESI LINEAR BERGANDA DENGAN SATU VARIABEL BONEKA (DUMMY VARIABLE)

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: ANALISIS REGRESI LINEAR BERGANDA DENGAN SATU VARIABEL BONEKA (DUMMY VARIABLE) Jural Matematka Mur da Terapa Vol. 4 No. esember : 4 - ANALISIS REGRESI LINEAR BERGANA ENGAN SATU VARIABEL BONEKA (UMMY VARIABLE Tat Krsawardha Nur Salam da ew Aggra Program Stud Matematka Uverstas Lambug

Lebih terperinci

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS = 1 + + + + k k + u PowerPot Sldes baa Rohmaa Educato Uverst of Idoesa 007 Laboratorum Ekoom & Koperas Publshg Jl. Dr. Setabud

Lebih terperinci

UKURAN GEJALA PUSAT DAN UKURAN LETAK

UKURAN GEJALA PUSAT DAN UKURAN LETAK UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu

Lebih terperinci

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua

Lebih terperinci

INTEGRAL LEBESGUE PADA FUNGSI TERBATAS SKRIPSI

INTEGRAL LEBESGUE PADA FUNGSI TERBATAS SKRIPSI INTGRAL LBSGU PADA FUNGSI TRBATAS SKRIPSI Dajuka Kepada Fakultas Matematka da Ilmu Pegetahua Alam Uverstas Neger Yogyakarta utuk memeuh sebaga persyarata gua memperoleh gelar Sarjaa Sas Dsusu Oleh : Fauzah

Lebih terperinci

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal)

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal) LANGKAH-LANGKAH UJI HIPOTESIS DENGAN (Utuk Data Nomal). Merumuska hpotess (termasuk rumusa hpotess statstk). Data hasl peelta duat dalam etuk tael slag (tael frekues oservas) 3. Meetuka krtera uj atau

Lebih terperinci

KODE SIKLIK (CYCLIC CODES)

KODE SIKLIK (CYCLIC CODES) Pegatar Teor Pegkodea (Codg Theory) KODE SIKLIK (CYCLIC CODES) Dose Pegampu : Al Sutjaa DISUSUN OLEH: Nama : M Zak Ryato Nm : /5679/PA/8944 Program Stud : Matematka JURUSAN MATEMATIKA FAKULTAS MATEMATIKA

Lebih terperinci

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES * PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka

Lebih terperinci

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 11-19, Aprl 004, ISSN : 1410-8518 TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM Sudaro Jurusa Matematka FMIPA UNDIP Abstrak Sstem yag dbetuk

Lebih terperinci

BAB 5. ANALISIS REGRESI DAN KORELASI

BAB 5. ANALISIS REGRESI DAN KORELASI BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh

Lebih terperinci

PENAKSIR RASIO REGRESI LINEAR YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN

PENAKSIR RASIO REGRESI LINEAR YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN PENAKIR RAIO REGREI LINEAR ANG EFIIEN UNTUK RATA-RATA POPULAI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN Ed Jamlu 1* Harso Haposa rat 1 Mahasswa Program tud 1 Matematka Dose Jurusa Matematka Fakultas Matematka

Lebih terperinci

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas:

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas: ANALISIS REGRESI Pedahulua Aalss regres berkata dega stud megea ketergatuga satu peubah (peubah terkat) terhadap satu atau lebh peubah laya (peubah pejelas). Jka Y dumpamaka sebaga peubah terkat da X1,X,...,X

Lebih terperinci

H dinotasikan dengan B H

H dinotasikan dengan B H Delta-P: Jural Matemata da Pedda Matemata ISSN 089-855X Vol., No., Aprl 03 OPERATOR KOMPAK Mustafa A. H. Ruhama Program Stud Pedda Matemata, Uverstas Kharu ABSTRAK Detahu H da H dua ruag Hlbert, B H )

Lebih terperinci

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis STATISTIK Ukura Gejala Pusat Ukura Letak Ukura Smpaga, Dspers da Varas Mome, Kemrga, da Kurtoss Notas Varabel dyataka dega huruf besar Nla dar varabel dyataka dega huruf kecl basaya dtuls Tmes New Roma

Lebih terperinci

PENAKSIR REGRESI CUM RASIO UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN KOEFISIEN KURTOSIS DAN KOEFISIEN SKEWNESS

PENAKSIR REGRESI CUM RASIO UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN KOEFISIEN KURTOSIS DAN KOEFISIEN SKEWNESS PENAKIR REGREI CUM RAIO UNTUK RATA-RATA POPULAI DENGAN MENGGUNAKAN KOEFIIEN KURTOI DAN KOEFIIEN KEWNE usta Wula ar *, Arsma Ada, Haposa rat Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Dalam pemodela program ler, semua parameter yag dguaka dalam model dasumska dapat dketahu secara past. Parameter-parameter terdr dar koefse batasa ( ) a, la kuattas batasa

Lebih terperinci

PRAKTIKUM 20 Interpolasi Polinomial dan Lagrange

PRAKTIKUM 20 Interpolasi Polinomial dan Lagrange Praktkum 0 Iterpolas Polomal da Lagrage PRAKTIKUM 0 Iterpolas Polomal da Lagrage Tuua : Mempelaar berbaga metode Iterpolas ag ada utuk meetuka ttkttk atara dar buah ttk dega megguaka suatu fugs pedekata

Lebih terperinci

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2 INTERVAL KEPERCAAAN UNTUK PERBEDAAN KOEFIIEN VARIAI DARI DITRIBUI LOGNORMAL I. Pebrya * Bustam. ugarto Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu Pegetahua Alam Uverstas

Lebih terperinci

PRINSIP INKLUSI- EKSKLUSI INCLUSION- EXCLUSION PRINCIPLE

PRINSIP INKLUSI- EKSKLUSI INCLUSION- EXCLUSION PRINCIPLE RISI IKLUSI- EKSKLUSI ICLUSIO- EXCLUSIO RICILE rsp Iklus-Eksklus Ada berapa aggota dalam gabuga dua hmpua hgga? A A = A A - A A Cotoh Ada berapa blaga bulat postf lebh kecl atau sama dega 00 yag habs dbag

Lebih terperinci

IDEAL DALAM ALJABAR LINTASAN LEAVITT

IDEAL DALAM ALJABAR LINTASAN LEAVITT Delta-P: Jural Matematka da Peddka Matematka ISSN 289-855X Vol., No. 2, Oktober 22 IDAL DALAM ALJABAR LINTASAN LAVITT Ida Kura Walyat Program Stud Peddka Matematka Jurusa Peddka MIPA FKIP Uverstas Kharu

Lebih terperinci

XI. ANALISIS REGRESI KORELASI

XI. ANALISIS REGRESI KORELASI I ANALISIS REGRESI KORELASI Aalss regres mempelajar betuk hubuga atara satu atau lebh peubah bebas dega satu peubah tak bebas dalam peelta peubah bebas basaya peubah yag dtetuka oelh peelt secara bebas

Lebih terperinci

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS C. Pembelajara 3 1. Slabus N o STANDA R KOMPE TENSI KOMPE TENSI DASAR INDIKATOR MATERI TUGAS BUKTI BELAJAR KON TEN INDIKA TOR WAK TU SUM BER BELA JAR Meerap ka atura kosep statstka dalam pemecah a masalah

Lebih terperinci

KODE SIKLIK (CYCLIC CODES)

KODE SIKLIK (CYCLIC CODES) Codg Theory KODE SIKLIK (CYCLIC CODES) Muhamad Zak Ryato NIM: 2/56792/PA/8944 E-mal: zak@malugmacd http://zakmathwebd Dose Pembmbg: Drs Al Sutjaa, MSc Pedahulua Salah satu bahasa yag palg petg pada lear

Lebih terperinci

REGRESI & KORELASI LINIER SEDERHANA

REGRESI & KORELASI LINIER SEDERHANA . Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

BAB 2 LANDASAN TEORI. yang akan terjadi pada masa yang akan datang dengan waktu yang relative lama.

BAB 2 LANDASAN TEORI. yang akan terjadi pada masa yang akan datang dengan waktu yang relative lama. BAB 2 LANDASAN TEORI 2.1 Pegerta Peramala Peramala ( forecastg ) adalah kegata memperkraka atau mempredkska apa yag aka terjad pada masa yag aka datag dega waktu yag relatve lama. Sedagka ramala adalah

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel BAB I PENDAHULUAN 1.1 Statstka Deskrptf da Statstka Iferesal Dewasa d berbaga bdag lmu da kehdupa utuk memaham/megetahu sesuatu dperluka dat Sebaga cotoh utuk megetahu berapa bayak rakyat Idoesa yag memerluka

Lebih terperinci

Orbit Fraktal Himpunan Julia

Orbit Fraktal Himpunan Julia Vol. 3, No., 6-7, Jauar 7 Orbt Fraktal Hmpua Jula Ad Kresa Jaya, Nswar Alasa Abstrak Makalah membahas kumpula ttk-ttk yag berada dalam daerah hmpua Jula d ruag kompleks da memperlhatka sebuah algortma

Lebih terperinci

REGRESI LINIER SEDERHANA

REGRESI LINIER SEDERHANA MODUL REGRESI LINIER SEDERHANA Dsusu oleh : I MADE YULIARA Jurusa Fska Fakultas Matematka Da Ilmu Pegetahua Alam Uverstas Udayaa Tahu 016 Kata Pegatar Puj syukur saya ucapka ke hadapa Tuha Yag Maha Kuasa

Lebih terperinci

BAB III TEOREMA GLEASON DAN t-desain

BAB III TEOREMA GLEASON DAN t-desain BAB III TEOREMA GLEASON DAN t-desain Dalam ubbab 3., kta aka mempelaar alah atu fat petg dar kode wa-dual geap. Sfat terebut dberka oleh Teorema 3.(Teorema Gleao), Teorema ecara megeaka telah meetuka betuk

Lebih terperinci

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB Pearka Cotoh Gerombol (Cluster Samplg) Departeme Statstka FMIPA IPB Radom samplg (Revew) Smple radom samplg Stratfed radom samplg Rato, regresso, ad dfferece estmato Systematc radom samplg Cluster radom

Lebih terperinci

Edge Anti-Magic Total Labeling dari

Edge Anti-Magic Total Labeling dari Edge At-Magc Total Labelg dar Charul Imro da Suhud Wahyud Jurusa Matematka Isttut Tekolog Sepuluh Nopember Surabaya mro-ts@matematka.ts.ac.d, suhud@matematka.ts.ac.d C Abstract We wll fd edge at-magc total

Lebih terperinci

UKURAN GEJALA PUSAT (UGP)

UKURAN GEJALA PUSAT (UGP) UKURAN GEJALA PUSAT (UGP) Pegerta: Rata-rata (average) alah suatu la yag mewakl suatu kelompok data. Nla dsebut juga ukura gejala pusat karea pada umumya mempuya kecederuga terletak d tegah-tegah da memusat

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN MATRIKS TERREDUKSI REGULER DALAM ALJABAR MAX-PLUS INTERVAL

NILAI EIGEN DAN VEKTOR EIGEN MATRIKS TERREDUKSI REGULER DALAM ALJABAR MAX-PLUS INTERVAL NILAI EIGEN DAN VEKTOR EIGEN MATRIKS TERREDUKSI REGULER DALAM ALJABAR MAX-PLUS INTERVAL A-12 Sswato 1, Ar Suparwato 2, M Ady Rudhto 3 1 Mahasswa S3 Matematka FMIPA UGM da Staff Pegajar FMIPA UNS Surakarta,

Lebih terperinci

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi.

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi. Mea utuk Data Tuggal Des. Jka suatu sampel berukura dega aggota x1, x, x3,, x, maka mea sampel ddesska : 1... N 1 Mea utuk Data Kelompok Des Mea dar data yag dkelompoka adalah : x x 1 1 1 dega : x = ttk

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Defes Aalss Korelas da Regres a Aalss Korelas adalah metode statstka yag dguaka utuk meetuka kuatya atau derajat huuga lear atara dua varael atau leh. Semak yata huuga ler gars lurus,

Lebih terperinci

PENAKSIR RATIO-CUM-PRODUCT YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS

PENAKSIR RATIO-CUM-PRODUCT YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS PEASIR RATIO-UM-PRODUT AG EFISIE UTU RATA-RATA POPULASI PADA SAMPLIG AA SEDERHAA MEGGUAA OEFISIE VARIASI DA OEFISIE URTOSIS Lza armata *, Arsma Ada, Frdaus Mahasswa Program S Matematka Dose Jurusa Matematka

Lebih terperinci

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari teori gangguan bebas waktu yang mencakup:

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari teori gangguan bebas waktu yang mencakup: PENDAULUAN D dalam modul Ada aka mempelajar teor gaggua bebas waktu yag mecakup: teor gaggua tak degeeras bebas waktu, teor gaggua degeeras bebas waktu, da efek Stark. Oleh karea tu, sebelum mempelajar

Lebih terperinci