9. TEKNIK PENGINTEGRALAN

Ukuran: px
Mulai penontonan dengan halaman:

Download "9. TEKNIK PENGINTEGRALAN"

Transkripsi

1 9. TEKNIK PENGINTEGRALAN MUGB - KALULUS B

2 9. Integral Parsal Formula Integral Parsal : Cara : plh u yang turunannya lebh sederhana Contoh : Htung u dv uv v du e d msal u =, maka du=d dv e d v e d e sehngga e d e e d e e C MUGB - KALULUS B

3 Integral parsal dapat dlakukan lebh dar satu kal Contoh Htung sn d cos cosd Jawab () Msal u du = d Integral parsal dv = snd V=-cos cos ( sn sn d) () Msal u = dv = cos d du = d v = sn cos sn cos C MUGB - KALULUS B

4 Ada kemungknan ntegran (f()) muncul lag druas kanan Contoh Htung Jawab : () Msal () Msal u e dv=cosd u e dv = snd e cosd e cosd du du e v=sn e d d v=-cos e sn e Integral parsal sn d e sn ( e cos e cosd) e sn e cos e cosd) C Integral yang dcar,bawa keruas kanan C e cosd e sn e cos C e cosd ( e sn e cos) C MUGB - KALULUS B

5 Soal lathan Htung e ln ln d d ln( ) d sn d d 6. d MUGB - KALULUS B 5

6 9. Integral Fungs Trgonometr Bentuk : n n cos d & sn d * Untuk n ganjl, Tulskan : sn n sn sn n dan cos coscos n n dan gunakan denttas sn cos * Untuk n genap, Tulskan : sn sn dan gunakan denttas sn dan cos cos cos n n n n cos cos sn MUGB - KALULUS B 6

7 Contoh Htung.. Jawab sn sn d d. sn d sn sn d cos d cos cos cos C. sn d sn sn d cos cos ( )( ) d ( cos cos ) d cos ( d cos d d) sn sn C sn sn C 8 8 MUGB - KALULUS B 7

8 Bentuk m sn n cos d a). Untuk n atau m ganjl, keluarkan sn atau cos dan gunakan denttas sn cos b). Untuk m dan n genap, tulskan menjad jumlah suku-suku dalam cosnus, gunakan denttas Contoh : cos cos sn sn cos d sn cos sn d cos cos d cos sn cos 5 cos C 5 m dan cos cos cos d cos MUGB - KALULUS B 8 n

9 cos cos sn cos d d ( cos 8 ) d d cos d 8 sn C 8 cos ( d) MUGB - KALULUS B 9

10 Bentuk sec d dan cot csc m n m n d. Gunakan denttas sec,cot csc serta turunan gen dan kogen Contoh d( ) sec d, d(cot ) csc d a. d d (sec ) d sec d ( ) (sec d d ) d MUGB - KALULUS B 0 C

11 b. sec d sec sec d ( ) d( ) d 5 5 C MUGB - KALULUS B

12 Soal Lathan Htung. sn cos 5 d. / 0 t sec t dt. sec d. cot wcsc wdw 5. csc d MUGB - KALULUS B

13 9. Substtus Trgonometr a a. Integran memuat bentuk,msal asn t Msal 5 t 5 Contoh Htung 5 5sn t d d = 5 cost dt 5 d 5 5sn t 5sn 5cost t 5( sn t) cos costdt dt cot 5sn t sn t (csc t ) dt 5 sn ( dt cott t ) 5 C t MUGB - KALULUS B c t dt

14 b. Integran memuat bentuk,msal Contoh Htung d 5 a a t 5 d 5 5sec t t 5 dt 5 t 5 Msal t 5 5 t d 5sec t dt t 5 5 5sn sec t dt t sect t C 5 MUGB - KALULUS B cost sn t dt 5 C 5 5 d(sn( t)) sn t

15 c. Integran memuat bentuk,msal Contoh Htung d 5 d 5 5sec a 5sect t t 5sec dt t 5 asect Msal 5 sect d 5sect sect t 5 dt 5 sect t dt sec t t sn t C 5 5 sect sec t dt 5 5 C 5 cost dt t 5 5 MUGB - KALULUS B 5

16 Soal Lathan Htung d d 9 d d d 9 d d / 9 d 5 5 d d MUGB - KALULUS B 6

17 Substtus Bentuk Akar Integran memuat n a b,msal u n a b Contoh Htung Jawab : Msal u d u Dengan turunan mplst du u d d d=udu udu u u du u u du u ( ln C u ln( u ) C ) du u MUGB - KALULUS B 7

18 Soal Lathan Htung d t t dt d d t t dt ( ) / d MUGB - KALULUS B 8

19 9. Integral Fungs Rasonal Integran berbentuk fungs rasonal :, der (P)< der(q) Ada kasus dar pemfaktoran penyebut ( Q() ) yatu :. Faktor lnear tdak berulang.. Faktor lnear berulang.. Faktor kuadratk tdak berulang.. Faktor kuadratk berulang. f P Q Kasus ( lner tdak berulang ) Msal Q a b a b... an bn maka, dengan P Q A a b A, A,..., A n A a b konsta yang dcar. An... an bn MUGB - KALULUS B 9

20 Contoh Htung Jawab d 9 9 ( )( Faktorkan penyebut : ) 9 A B A( ) B( ) ( )( ) A B A B A B Samakan koefsen ruas kr dan ruas kanan Sehngga A +B = -A+B= d 9 d A +B= -A+B= 6B= + B=/,A=/ d ln ln C MUGB - KALULUS B 0

21 Kasus Lnear berulang Msal Maka Q a b p A Ap A A p... p a b p P Q a b a b a b dengan konsta A, A,..., A p, A p akan dcar Contoh Htung d Jawab A B C MUGB - KALULUS B

22 A( )( ) B( ) C( ) A( )( ) B( ) C( ( A C) ( A B C) (C ) A B) Penyebut ruas kr = penyebut ruas kanan A+C=0 A+B+C=0 -A-B+C= A+B+C=0 -A-B+C= + -A+8C= A+C=0 B=-/ -A+8C= + A=-/9 9C= C=/9 d d d 9 d ln ln 9 ( ) 9 MUGB - KALULUS B 9 C

23 Kasus Kuadratk tak berulang Msal Maka... n n n Q a b c a b c a b c P Q A B a b c A B a b c... An Bn a n bn cn Dengan A,, A,..., An, dan B, B,... B n konsta yang akan dcar MUGB - KALULUS B

24 Contoh Htung Jawab A d BC ( B c A ) A+B=0 C=0 A= d d A B=- d ( B c) ln ln( ) C ( A B) d c A d( ) d( ) MUGB - KALULUS B

25 Kasus Kuadratk berulang Msal Q a b c p Maka P Q p a b c p A B A B... a b c a A p B b c p a A p B p b c Dmana A, B, A,..., Ap, ApdanB, B,..., Bp p konsta yang akan dcar MUGB - KALULUS B 5

26 6 5 d 5 6 E D C B A ) )( ( ) ( E D C B A ) )( ( ) ( 5 6 E D C B A MUGB - KALULUS B 6 Contoh Htung Jawab : ) ( ) ( ) ( 5 6 D C B A C B B A ) 6 ( ) 6 ( E C A E D C B

27 Dengan menyamakan koefsen ruas kr dan kanan dperoleh A+B=0 B+C=0 A+B+C+D= 6B+C+D+E=-5 A+6C+E= Sehngga 6 5 d d d 5 d Dengan elmnas : A=,B=-, C= D=-5, E=0 d d d 5 ( ) d 5 ln ln( ) ( ) C. MUGB - KALULUS B 7

28 der( P( )) der( Q( )) Cata jka dahulu P() dengan Q(), sehngga, bag terlebh Contoh Htung P( ) Q( ) S( ) H( ), der( S( )) der( Q( )) Q( ) d Bag terlebh dahulu P() dengan Q() Der(P())=>der(Q())= MUGB - KALULUS B 8 5

29 5 5 ( )( ) A ( ) B ( ) A( ) B( ) ( )( ) 5 A( ) B( )..(*) Persamaan (*) berlaku untuk sembarang, sehngga berlaku juga untuk Untuk = dan =- Untuk = 5.+=A(+) A=7/ Untuk = - 5.(-)+=B(--) B=/ Dengan menggunakan hasl datas : 7 d ( ) d d d 7 ln ln C MUGB - KALULUS B 9

30 Soal Lathan Htung.... d 7 8 d ( 5) ( ) 5 d d ( ) d 5 6 d 5. 5 d MUGB - KALULUS B 0

TEKNIK PENGINTEGRALAN

TEKNIK PENGINTEGRALAN TEKNIK PENGINTEGRALAN KALKULUS FEHB S Teknk Telekomunkas - Fakultas Teknk Elektro Outlne Integral Parsal Integral Fungs Trgonometr Substtus Trgonometr Integral Fungs Rasonal MA4 KALKULUS I 9. Integral

Lebih terperinci

9. TEKNIK PENGINTEGRALAN

9. TEKNIK PENGINTEGRALAN 9. TEKNIK PENGINTEGRALAN 9. Inegral Parsal Formula Inegral Parsal : Cara : plh u yang urunannya lebh sederhana Conoh : Hung u dv uv v du e d msal u =, maka du=d dv e d v e d e sehngga e d e e d e e C INF8

Lebih terperinci

TEKNIK PENGINTEGRALAN

TEKNIK PENGINTEGRALAN TEKNIK PENGINTEGRALAN KALKULUS S- Teknik Industri Outline Integral Parsial Integral Fungsi Trigonometri Substitusi Trigonometri Integral Fungsi Rasional . Integral Parsial Formula Integral Parsial : u

Lebih terperinci

BAB V INTEGRAL KOMPLEKS

BAB V INTEGRAL KOMPLEKS 6 BAB V INTEGRAL KOMPLEKS 5.. INTEGRAL LINTASAN Msal suatu lntasan yang dnyatakan dengan : (t) = x(t) + y(t) dengan t rl dan a t b. Lntasan dsebut lntasan tutup bla (a) = (b). Lntasan tutup dsebut lntasan

Lebih terperinci

TEKNIK-TEKNIK PENGINTEGRALAN

TEKNIK-TEKNIK PENGINTEGRALAN TEKNIK-TEKNIK PENGINTEGRALAN 1. Teknik Subtitusi Teorema : Misal g fungsi yang terdiferensialkan dan F suatu anti turunan dari f, jika u = g() maka f(g())g () d = f(u) du = F(u) + c = F(g()) + c sin. 1.

Lebih terperinci

BAB X RUANG HASIL KALI DALAM

BAB X RUANG HASIL KALI DALAM BAB X RUANG HASIL KALI DALAM 0. Hasl Kal Dalam Defns. Hasl kal dalam adalah fungs yang mengatkan setap pasangan vektor d ruang vektor V (msalkan pasangan u dan v, dnotaskan dengan u, v ) dengan blangan

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

Aturan dasar pengintegralan Integral fungsi rasional Integral parsial Integral trigonometri Substitusi yang merasionalkan Strategi pengintegralan

Aturan dasar pengintegralan Integral fungsi rasional Integral parsial Integral trigonometri Substitusi yang merasionalkan Strategi pengintegralan Aturan dasar pengintegralan Integral fungsi rasional Integral parsial Integral trigonometri Substitusi yang merasionalkan Strategi pengintegralan Kemampuan yang diinginkan: kejelian melihat bentuk soal

Lebih terperinci

PRAKTIKUM 6 Penyelesaian Persamaan Non Linier Metode Newton Raphson Dengan Modifikasi Tabel

PRAKTIKUM 6 Penyelesaian Persamaan Non Linier Metode Newton Raphson Dengan Modifikasi Tabel PRAKTIKUM 6 Penyelesaan Persamaan Non Lner Metode Newton Raphson Dengan Modfkas Tabel Tujuan : Mempelajar metode Newton Raphson dengan modfkas tabel untuk penyelesaan persamaan non lner Dasar Teor : Permasalahan

Lebih terperinci

TEKNIK PENGINTEGRALAN

TEKNIK PENGINTEGRALAN TEKNIK PENGINTEGRALAN Departemen Matematika FMIPA IPB Bogor, 202 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 202 / 2 Topik Bahasan Pendahuluan 2 Manipulasi Integran 3 Integral Parsial 4 Dekomposisi

Lebih terperinci

digunakan untuk menyelesaikan integral seperti 3

digunakan untuk menyelesaikan integral seperti 3 Bab Teknik Pengintegralan BAB TEKNIK PENGINTEGRALAN Rumus-rumus dasar integral tak tertentu yang diberikan pada bab hanya dapat digunakan untuk mengevaluasi integral dari fungsi sederhana dan tidak dapat

Lebih terperinci

PENENTUAN DENSITAS PERMUKAAN

PENENTUAN DENSITAS PERMUKAAN PENENTUAN DENSITAS PERMUKAAN Pada koreks topograf ada satu nla yang belum dketahu nlanya yatu denstas batuan permukaan (rapat massa batuan dekat permukaan). Rapat massa batuan dekat permukaan dapat dtentukan

Lebih terperinci

Contoh 5.1 Tentukan besar arus i pada rangkaian berikut menggunakan teorema superposisi.

Contoh 5.1 Tentukan besar arus i pada rangkaian berikut menggunakan teorema superposisi. BAB V TEOEMA-TEOEMA AGKAIA 5. Teorema Superposs Teorema superposs bagus dgunakan untuk menyelesakan permasalahan-permasalahan rangkaan yang mempunya lebh dar satu sumber tegangan atau sumber arus. Konsepnya

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN. Latar Belakang Matematka sebaga bahasa smbol yang bersfat unversal memegang peranan pentng dalam perkembangan suatu teknolog. Matematka sangat erat hubungannya dengan kehdupan nyata.

Lebih terperinci

BAB III PERBANDINGAN ANALISIS REGRESI MODEL LOG - LOG DAN MODEL LOG - LIN. Pada prinsipnya model ini merupakan hasil transformasi dari suatu model

BAB III PERBANDINGAN ANALISIS REGRESI MODEL LOG - LOG DAN MODEL LOG - LIN. Pada prinsipnya model ini merupakan hasil transformasi dari suatu model BAB III PERBANDINGAN ANALISIS REGRESI MODEL LOG - LOG DAN MODEL LOG - LIN A. Regres Model Log-Log Pada prnspnya model n merupakan hasl transformas dar suatu model tdak lner dengan membuat model dalam bentuk

Lebih terperinci

BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER

BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER 5.1 Pembelajaran Dengan Fuzzy Program Lner. Salah satu model program lnear klask, adalah : Maksmumkan : T f ( x) = c x Dengan batasan : Ax b x 0 n m mxn Dengan

Lebih terperinci

BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE

BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE 6B.1 Pelathan ADALINE Model ADALINE (Adaptve Lnear Neuron) dtemukan oleh Wdrow & Hoff (1960) Arstekturnya mrp dengan perseptron Perbedaan

Lebih terperinci

Catatan Kuliah 12 Memahami dan Menganalisa Optimisasi dengan Kendala Ketidaksamaan

Catatan Kuliah 12 Memahami dan Menganalisa Optimisasi dengan Kendala Ketidaksamaan Catatan Kulah Memaham dan Menganalsa Optmsas dengan Kendala Ketdaksamaan. Non Lnear Programmng Msalkan dhadapkan pada lustras berkut n : () Ma U = U ( ) :,,..., n st p B.: ; =,,..., n () Mn : C = pk K

Lebih terperinci

Teknik Pengintegralan

Teknik Pengintegralan Jurusan Matematika 13 Nopember 2012 Review Rumus-rumus Integral yang Dikenal Pada beberapa subbab sebelumnya telah dijelaskan beberapa integral dari fungsi-fungsi tertentu. Berikut ini diberikan sebuah

Lebih terperinci

HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL

HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL Dra.Sri Rejeki Dwi Putranti, M.Kes. Fakultas Teknik - Universitaas Yos Soedarso Surabaya Email : riccayusticia@gmail.com Abstrak Hubungan antara Differensial dan

Lebih terperinci

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018 Kalkulus 2 Teknik Pengintegralan ke - 1 Tim Pengajar Kalkulus ITK Institut Teknologi Kalimantan Januari 2018 Tim Pengajar Kalkulus ITK (Institut Teknologi Kalimantan) Kalkulus 2 Januari 2018 1 / 36 Daftar

Lebih terperinci

BAB: TEKNIK PENGINTEGRALAN Topik: Metode Substitusi

BAB: TEKNIK PENGINTEGRALAN Topik: Metode Substitusi BAB: TEKNIK PENGINTEGRALAN Topik: Metode Substitusi Kompetensi yang diukur adalah kemampuan mahasiswa menghitung integral fungsi dengan metode substitusi.. UAS Kalkulus Semester Pendek no. b (kriteria:

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4.0. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

INTEGRAL TAK TENTU (subtitusi parsial) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

INTEGRAL TAK TENTU (subtitusi parsial) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ INTEGRAL TAK TENTU subtitusi parsial Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ agustina.mipa@unej.ac.id DEFINISI Untuk ungsi yang terdeinisi pada selang terbuka I, dpt ditentukan ungsi

Lebih terperinci

Bab 2 AKAR-AKAR PERSAMAAN

Bab 2 AKAR-AKAR PERSAMAAN Analsa Numerk Bahan Matrkulas Bab AKAR-AKAR PERSAMAAN Pada kulah n akan dpelajar beberapa metode untuk mencar akar-akar dar suatu persamaan yang kontnu. Untuk persamaan polnomal derajat, persamaannya dapat

Lebih terperinci

ESTIMASI PARAMETER PADA REGRESI SEMIPARAMETRIK UNTUK DATA LONGITUDINAL

ESTIMASI PARAMETER PADA REGRESI SEMIPARAMETRIK UNTUK DATA LONGITUDINAL Abstrak ESIMASI PARAMEER PADA REGRESI SEMIPARAMERIK UNUK DAA LONGIUDINAL Msal y merupakan varabel respon, Lls Laome Jurusan Matematka FMIPA Unverstas Haluoleo Kendar 933 e-mal : lhs@yahoo.com X adalah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertan Regres Regres pertama kal dpergunakan sebaga konsep statstka oleh Sr Francs Galton (1822 1911). Belau memperkenalkan model peramalan, penaksran, atau pendugaan, yang

Lebih terperinci

BAB 3 RESPONS SINUSOIDAL PADA RANGKAIAN SERI RL DAN RC

BAB 3 RESPONS SINUSOIDAL PADA RANGKAIAN SERI RL DAN RC BAB 3 ESPONS SINUSOIDAL PADA ANGKAIAN SEI L DAN 3. esons Snusodal Pada angkaan L Ser Perhatkan rangkaan bawah n : Gambar 3. angkaan L dengan sumber tegangan v = sn (ωt + ) angkaan atas memlk sumber tegangan

Lebih terperinci

ANALISIS REGRESI REGRESI NONLINEAR REGRESI LINEAR REGRESI KUADRATIK REGRESI LINEAR SEDERHANA REGRESI LINEAR BERGANDA REGRESI KUBIK

ANALISIS REGRESI REGRESI NONLINEAR REGRESI LINEAR REGRESI KUADRATIK REGRESI LINEAR SEDERHANA REGRESI LINEAR BERGANDA REGRESI KUBIK REGRESI NON LINIER ANALISIS REGRESI REGRESI LINEAR REGRESI NONLINEAR REGRESI LINEAR SEDERHANA REGRESI LINEAR BERGANDA REGRESI KUADRATIK REGRESI KUBIK Membentuk gars lurus Membentuk Gars Lengkung Regres

Lebih terperinci

BAB VB PERSEPTRON & CONTOH

BAB VB PERSEPTRON & CONTOH BAB VB PERSEPTRON & CONTOH Model JST perseptron dtemukan oleh Rosenblatt (1962) dan Mnsky Papert (1969). Model n merupakan model yang memlk aplkas dan pelathan yang lebh bak pada era tersebut. 5B.1 Arstektur

Lebih terperinci

MEKANIKA TANAH 2 KESTABILAN LERENG ROTASI. UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bintaro Sektor 7, Bintaro Jaya Tangerang Selatan 15224

MEKANIKA TANAH 2 KESTABILAN LERENG ROTASI. UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bintaro Sektor 7, Bintaro Jaya Tangerang Selatan 15224 MEKANIKA TANAH 2 KESTABILAN LERENG ROTASI UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bntaro Sektor 7, Bntaro Jaya Tangerang Selatan 15224 MODEL KERUNTUHAN ROTASI ANALISIS CARA KESEIMBANGAN BATAS Cara n

Lebih terperinci

RUMUS INTEGRAL RUMUS INTEGRAL

RUMUS INTEGRAL RUMUS INTEGRAL TEKNIK PENGINTEGRALAN TEKNIK PENGINTEGRALAN Berdasarkan Teorema Dasar Kalkulus, maka kita akan mendapatkan integral tak tentu dari fungsi-fungsi yang sudah kita ketahui Beberapa yang telah kita ketahui

Lebih terperinci

KALKULUS INTEGRAL 2013

KALKULUS INTEGRAL 2013 KALKULUS INTEGRAL 0 PENDAHULUAN A. DESKRIPSI MATA KULIAH Isi pokok mata kuliah ini memuat pemahaman tentang: () Anti turunan: pengertian anti turunan, teorema-teorema, dan teknik anti turunan, () Integral

Lebih terperinci

CONTOH SOAL #: PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA. dx dengan nilai awal: y = 1 pada x = 0. Penyelesaian: KASUS: INITIAL VALUE PROBLEM (IVP)

CONTOH SOAL #: PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA. dx dengan nilai awal: y = 1 pada x = 0. Penyelesaian: KASUS: INITIAL VALUE PROBLEM (IVP) PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA KASUS: INITIAL VALUE PROBLEM (IVP) by: st dyar kholsoh Mater Kulah: Pengantar; Metode Euler; Perbakan Metode Euler; Metode Runge-Kutta; Penyelesaan Sstem Persamaan

Lebih terperinci

BAB 2 LANDASAN TEORI. estimasi, uji keberartian regresi, analisa korelasi dan uji koefisien regresi.

BAB 2 LANDASAN TEORI. estimasi, uji keberartian regresi, analisa korelasi dan uji koefisien regresi. BAB LANDASAN TEORI Pada bab n akan durakan beberapa metode yang dgunakan dalam penyelesaan tugas akhr n. Selan tu penuls juga mengurakan tentang pengertan regres, analss regres berganda, membentuk persamaan

Lebih terperinci

BAB 2 LANDASAN TEORI. Teori Galton berkembang menjadi analisis regresi yang dapat digunakan sebagai alat

BAB 2 LANDASAN TEORI. Teori Galton berkembang menjadi analisis regresi yang dapat digunakan sebagai alat BAB LANDASAN TEORI. 1 Analsa Regres Regres pertama kal dpergunakan sebaga konsep statstk pada tahun 1877 oleh Sr Francs Galton. Galton melakukan stud tentang kecenderungan tngg badan anak. Teor Galton

Lebih terperinci

REGRESI DAN KORELASI. Penduga Kuadrat Terkecil. Penduga b0 dan b1 yang memenuhi kriterium kuadrat terkecil dapat ditemukan dalam dua cara berikut :

REGRESI DAN KORELASI. Penduga Kuadrat Terkecil. Penduga b0 dan b1 yang memenuhi kriterium kuadrat terkecil dapat ditemukan dalam dua cara berikut : BAHAN AJAR EKONOMETRIKA AGUS TRI BASUKI UNIVERSITAS MUHAMMADIYAH YOGYAKARTA REGRESI DAN KORELASI Tujuan metode kuadrat terkecl adalah menemukan nla dugaan b0 dan b yang menghaslkan jumlah kesalahan kuadrat

Lebih terperinci

BAB IX. STATISTIKA. CONTOH : HASIL ULANGAN MATEMATIKA 5 SISWA SBB: PENGERTIAN STATISTIKA DAN STATISTIK:

BAB IX. STATISTIKA. CONTOH : HASIL ULANGAN MATEMATIKA 5 SISWA SBB: PENGERTIAN STATISTIKA DAN STATISTIK: BAB IX. STATISTIKA. CONTOH : HASIL ULANGAN MATEMATIKA 5 SISWA SBB: PENGERTIAN STATISTIKA DAN STATISTIK: BAB IX. STATISTIKA Contoh : hasl ulangan Matematka 5 sswa sbb: 6 8 7 6 9 Pengertan Statstka dan

Lebih terperinci

SOLUSI TUGAS MATA KULIAH STATISTIKA II

SOLUSI TUGAS MATA KULIAH STATISTIKA II SOLUSI TUGAS MATA KULIAH STATISTIKA II SOAL : Suatu Peneltan dlakukan untuk menelaah empat metode pengajaran, yatu Metode A (ceramah d kelas), Metode B (mengajak dskus langsung dengan sswa), Metode C (ceramah

Lebih terperinci

UKURAN LOKASI, VARIASI & BENTUK KURVA

UKURAN LOKASI, VARIASI & BENTUK KURVA UKURAN LOKASI, VARIASI & BENTUK KURVA MARULAM MT SIMARMATA, MS STATISTIK TERAPAN FAK HUKUM USI @4 ARTI UKURAN LOKASI DAN VARIASI Suatu Kelompok DATA berupa kumpulan nla VARIABEL [ vaabel ] Ms banyaknya

Lebih terperinci

ANALISIS REGRESI. Catatan Freddy

ANALISIS REGRESI. Catatan Freddy ANALISIS REGRESI Regres Lner Sederhana : Contoh Perhtungan Regres Lner Sederhana Menghtung harga a dan b Menyusun Persamaan Regres Korelas Pearson (Product Moment) Koefsen Determnas (KD) Regres Ganda :

Lebih terperinci

MINGGU KE- V: UKURAN PENYEBARAN

MINGGU KE- V: UKURAN PENYEBARAN MINGGU KE- V: UKURAN PENYEBARAN Tujuan Instruksonal Umum :. Mahasswa mampu memaham apa yang dmaksud dengan ukuran penyebaran. Mahasswa mampu memaham berbaga pengukuran untuk mencar nla ukuran penyebaran

Lebih terperinci

BAB III SKEMA NUMERIK

BAB III SKEMA NUMERIK BAB III SKEMA NUMERIK Pada bab n, akan dbahas penusunan skema numerk dengan menggunakan metoda beda hngga Forward-Tme dan Centre-Space. Pertama kta elaskan operator beda hngga dan memberkan beberapa sfatna,

Lebih terperinci

BAB V TEOREMA RANGKAIAN

BAB V TEOREMA RANGKAIAN 9 angkaan strk TEOEM NGKIN Pada bab n akan dbahas penyelesaan persoalan yang muncul pada angkaan strk dengan menggunakan suatu teorema tertentu. Dengan pengertan bahwa suatu persoalan angkaan strk bukan

Lebih terperinci

Pembayaran harapan yang berkaitan dengan strategi murni pemain P 2. Pembayaran Harapan bagi Pemain P1

Pembayaran harapan yang berkaitan dengan strategi murni pemain P 2. Pembayaran Harapan bagi Pemain P1 Lecture : Mxed Strategy: Graphcal Method A. Metode Campuran dengan Metode Grafk Metode grafk dapat dgunakan untuk menyelesakan kasus permanan dengan matrks pembayaran berukuran n atau n. B. Matrks berukuran

Lebih terperinci

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use INTISARI KALKULUS Penyusun: Drs. Warsoma Djohan M.Si. Program Studi Matematika - FMIPA Institut Teknologi Bandung Januari 010 Pengantar Kalkulus 1 & merupakan matakuliah wajib tingkat pertama bagi semua

Lebih terperinci

Regresi. Bahan Kuliah IF4058 Topik Khusus Informatika I. Oleh; Rinaldi Munir(IF-STEI ITB)

Regresi. Bahan Kuliah IF4058 Topik Khusus Informatika I. Oleh; Rinaldi Munir(IF-STEI ITB) Regres Bahan Kulah IF4058 Topk Khusus Informatka I Oleh; Rnald Munr(IF-STEI ITB) 1 Pendahuluan Regresadalahteknkpencocokankurvauntukdata ang berketeltanrendah. Contohdata ang berketeltanrendahdata haslpengamatan,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Fuzzy Set Pada tahun 1965, Zadeh memodfkas teor hmpunan dmana setap anggotanya memlk derajat keanggotaan yang bernla kontnu antara 0 sampa 1. Hmpunan n dsebut dengan hmpunaan

Lebih terperinci

BAB III FUNGSI MAYOR DAN MINOR. Pada bab ini akan dibahas konsep-konsep dasar dari fungsi mayor dan fungsi

BAB III FUNGSI MAYOR DAN MINOR. Pada bab ini akan dibahas konsep-konsep dasar dari fungsi mayor dan fungsi BAB III FUNGSI MAYOR DAN MINOR Pada bab n akan dbahas konsep-konsep dasar dar fungs mayor dan fungs mnor dar suatu fungs yang terdefns pada suatu nterval tertutup. Pendefnsan fungs mayor dan mnor tersebut

Lebih terperinci

Kecocokan Distribusi Normal Menggunakan Plot Persentil-Persentil yang Distandarisasi

Kecocokan Distribusi Normal Menggunakan Plot Persentil-Persentil yang Distandarisasi Statstka, Vol. 9 No., 4 47 Me 009 Kecocokan Dstrbus Normal Menggunakan Plot Persentl-Persentl yang Dstandarsas Lsnur Wachdah Program Stud Statstka Fakultas MIPA Unsba e-mal : Lsnur_w@yahoo.co.d ABSTRAK

Lebih terperinci

BAB 2 ANALISIS ARUS FASA PADA KONEKSI BEBAN BINTANG DAN POLIGON UNTUK SISTEM MULTIFASA

BAB 2 ANALISIS ARUS FASA PADA KONEKSI BEBAN BINTANG DAN POLIGON UNTUK SISTEM MULTIFASA BAB ANALISIS ARUS FASA PADA KONEKSI BEBAN BINTANG DAN POLIGON UNTUK SISTEM MULTIFASA.1 Pendahuluan Pada sstem tga fasa, rak arus keluaran nverter pada beban dengan koneks delta dan wye memlk hubungan yang

Lebih terperinci

METODE PENELITIAN. digunakan untuk mengetahui bagaimana pengaruh variabel X (celebrity

METODE PENELITIAN. digunakan untuk mengetahui bagaimana pengaruh variabel X (celebrity 37 III. METODE PENELITIAN 3.1 Jens dan Sumber Data Jens peneltan yang dgunakan adalah peneltan deskrptf, yang mana dgunakan untuk mengetahu bagamana pengaruh varabel X (celebrty endorser) terhadap varabel

Lebih terperinci

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara BAB 2 LANDASAN TEORI 2.1 Pengertan Analsa Regres Dalam kehdupan sehar-har, serng kta jumpa hubungan antara satu varabel terhadap satu atau lebh varabel yang lan. Sebaga contoh, besarnya pendapatan seseorang

Lebih terperinci

Kalkulus 2. Teknik Pengintegralan ke - 2. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018

Kalkulus 2. Teknik Pengintegralan ke - 2. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018 Kalkulus 2 Teknik Pengintegralan ke - 2 Tim Pengajar Kalkulus ITK Institut Teknologi Kalimantan Januari 2018 Tim Pengajar Kalkulus ITK (Institut Teknologi Kalimantan) Kalkulus 2 Januari 2018 1 / 24 Daftar

Lebih terperinci

Pertemuan ke-4 Analisa Terapan: Metode Numerik. 4 Oktober 2012

Pertemuan ke-4 Analisa Terapan: Metode Numerik. 4 Oktober 2012 Pertemuan ke-4 Analsa Terapan: Metode Numerk 4 Oktober Persamaan Non Non--Lner: Metode NewtonNewton-Raphson Dr.Eng. Agus S. Muntohar Metode Newton Newton--Raphson f( f( f( + [, f(] + = α + + f( f ( Gambar

Lebih terperinci

PEMODELAN KARAKTERISTIK TINGKAT PENDIDIKAN ANAK DI PROVINSI JAWA BARAT MENGGUNAKAN LOG LINEAR

PEMODELAN KARAKTERISTIK TINGKAT PENDIDIKAN ANAK DI PROVINSI JAWA BARAT MENGGUNAKAN LOG LINEAR PEMODELAN KARAKTERISTIK TINGKAT PENDIDIKAN ANAK DI PROVINSI JAWA BARAT MENGGUNAKAN LOG LINEAR Resa Septan Pontoh 1), Neneng Sunengsh 2) 1),2) Departemen Statstka Unverstas Padjadjaran 1) resa.septan@unpad.ac.d,

Lebih terperinci

81 Bab 6 Ruang Hasilkali Dalam

81 Bab 6 Ruang Hasilkali Dalam 8 Bab Rang Haslkal Dalam Bab RUANG HASIL KALI DALAM Rang hasl kal dalam merpakan rang ektor yang dlengkap dengan operas hasl kal dalam. Sepert halnya rang ektor rang haslkal dalam bermanfaat dalam beberapa

Lebih terperinci

METODE NUMERIK. INTERPOLASI Interpolasi Beda Terbagi Newton Interpolasi Lagrange Interpolasi Spline.

METODE NUMERIK. INTERPOLASI Interpolasi Beda Terbagi Newton Interpolasi Lagrange Interpolasi Spline. METODE NUMERIK INTERPOLASI Interpolas Beda Terbag Newton Interpolas Lagrange Interpolas Splne http://maulana.lecture.ub.ac.d Interpolas n-derajat polnom Tujuan Interpolas berguna untuk menaksr hargaharga

Lebih terperinci

PROPOSAL SKRIPSI JUDUL:

PROPOSAL SKRIPSI JUDUL: PROPOSAL SKRIPSI JUDUL: 1.1. Latar Belakang Masalah SDM kn makn berperan besar bag kesuksesan suatu organsas. Banyak organsas menyadar bahwa unsur manusa dalam suatu organsas dapat memberkan keunggulan

Lebih terperinci

MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM

MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM Tut Susant, Mashad, Sukamto Mahasswa Program S Matematka Dosen Jurusan Matematka Fakultas Matematka dan Ilmu Pengetahuan Alam

Lebih terperinci

Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui.

Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui. 1 Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui. Jika persamaan diferensial memiliki satu peubah tak bebas maka disebut Persamaan Diferensial

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB LANDASAN TEORI.1 Analsa Regres Analsa regres dnterpretaskan sebaga suatu analsa yang berkatan dengan stud ketergantungan (hubungan kausal) dar suatu varabel tak bebas (dependent varable) atu dsebut

Lebih terperinci

BAB 2 LANDASAN TEORI. persamaan penduga dibentuk untuk menerangkan pola hubungan variabel-variabel

BAB 2 LANDASAN TEORI. persamaan penduga dibentuk untuk menerangkan pola hubungan variabel-variabel BAB LANDASAN TEORI. Analss Regres Regres merupakan suatu alat ukur yang dgunakan untuk mengukur ada atau tdaknya hubungan antar varabel. Dalam analss regres, suatu persamaan regres atau persamaan penduga

Lebih terperinci

PENYELESAIAN SISTEM LINIER

PENYELESAIAN SISTEM LINIER PENYELESAIAN SISTEM LINIER I. PENDAHULUAN.. Topk-topk Yang Dbahas :. Substtus mundur (back substtuton). Reduks ganjl-genap (odd-even reducton) atau reduks skls (cyclc reducton).. Metoda Pembahasan. Algortma

Lebih terperinci

ε adalah error random yang diasumsikan independen, m X ) adalah fungsi

ε adalah error random yang diasumsikan independen, m X ) adalah fungsi BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Analss regres merupakan suatu metode yang dgunakan untuk menganalss hubungan antara dua atau lebh varabel. Pada analss regres terdapat dua jens varabel yatu

Lebih terperinci

dy = f(x,y) = p(x) q(y), dx dy = p(x) dx,

dy = f(x,y) = p(x) q(y), dx dy = p(x) dx, 5. Persamaan Diferensian Dengan Variabel Terpisah Persamaan diferensial berbentuk y = f(), dengan f suatu fungsi kontinu pada suatu interval real, dapat dicari penyelesaiannya dengan cara mengintegralkan

Lebih terperinci

Bab 3. Penyusunan Algoritma

Bab 3. Penyusunan Algoritma Bab 3. Penusunan Algortma on anuwjaa/ 500030 Algortma merupakan penulsan permasalahan ang sedang dsorot dalam bahasa matematk. Algortma dbutuhkan karena komputer hana dapat membaca suatu masalah secara

Lebih terperinci

1. Himpunan penyelesaian adalah {(x, y, z)}. Nilai dari y + z adalah... D. -4 E. -5

1. Himpunan penyelesaian adalah {(x, y, z)}. Nilai dari y + z adalah... D. -4 E. -5 1. Himpunan penyelesaian adalah {(x, y, z)}. Nilai dari y + z adalah... A. 5 3 2 Kunci : C 3x + y = 5 y - 2z = -7-3x + 2z = 12 2x + 2z = 10 - x = 2-4 -5 x + z = 5 2 + z = 5 z = 3 3x + y = 5 3. 2 + y =

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Hpotess Peneltan Berkatan dengan manusa masalah d atas maka penuls menyusun hpotess sebaga acuan dalam penulsan hpotess penuls yatu Terdapat hubungan postf antara penddkan

Lebih terperinci

LAMPIRAN A PENURUNAN PERSAMAAN NAVIER-STOKES

LAMPIRAN A PENURUNAN PERSAMAAN NAVIER-STOKES LAMPIRAN A PENURUNAN PERSAMAAN NAVIER-STOKES Hubungan n akan dawal dar gaya yang beraks pada massa fluda. Gaya-gaya n dapat dbag ke dalam gaya bod, gaya permukaan, dan gaya nersa. a. Gaya Bod Gaya bod

Lebih terperinci

Nughthoh Arfawi Kurdhi, M.Sc Department of Mathematics FMIPA UNS

Nughthoh Arfawi Kurdhi, M.Sc Department of Mathematics FMIPA UNS Lecture 5. Integral A. Masalah Luas (The Area Problem) Sebelumnya kita pernah mempelajari rumus-rumus luas dari beberapa bentuk geometri. Misalnya, luas daerah persegi panjang adalah panjang kali lebar,

Lebih terperinci

DEPARTMEN FISIKA ITB BENDA TEGAR. FI Dr. Linus Pasasa MS Bab 6-1

DEPARTMEN FISIKA ITB BENDA TEGAR. FI Dr. Linus Pasasa MS Bab 6-1 BENDA TEGAR FI-0 004 Dr. Lnus Pasasa MS Bab 6- Bahan Cakupan Gerak Rotas Vektor Momentum Sudut Sstem Partkel Momen Inersa Dall Sumbu Sejajar Dnamka Benda Tegar Menggelndng Hukum Kekekalan Momentum Sudut

Lebih terperinci

SOLUSI SISTEM PERSAMAAN DIFERENSIAL PARSIAL DENGAN MENGGUNAKAN METODE PERTURBASI HOMOTOPI DAN METODE DEKOMPOSISI ADOMIAN

SOLUSI SISTEM PERSAMAAN DIFERENSIAL PARSIAL DENGAN MENGGUNAKAN METODE PERTURBASI HOMOTOPI DAN METODE DEKOMPOSISI ADOMIAN SOLUSI SISTEM PERSAMAAN DIFERENSIAL PARSIAL DENGAN MENGGUNAKAN METODE PERTURBASI HOMOTOPI DAN METODE DEKOMPOSISI ADOMIAN Ita Rahmadayan 1, Syamsudhuha 2, Asmara Karma 2 1 Mahasswa Program Stud S1 Matematka

Lebih terperinci

4.1 Konsep Turunan. lim Turunan di satu titik. Pendahuluan ( dua masalah dalam satu tema ) a. Garis Singgung Kemiringan tali busur PQ adalah :

4.1 Konsep Turunan. lim Turunan di satu titik. Pendahuluan ( dua masalah dalam satu tema ) a. Garis Singgung Kemiringan tali busur PQ adalah : 4. TURUNAN 4. Konsep Turunan 4.. Turunan di satu titik Pendahuluan dua masalah dalam satu tema a. Garis Singgung Kemiringan tali busur PQ adalah : m PQ c c Q -c Jika c, maka tali busur PQ akan berubah

Lebih terperinci

Integrasi. Metode Integra. al Reimann

Integrasi. Metode Integra. al Reimann Integras Metode Integra al Remann Metode Integral Trapezoda Metode Integra al Smpson Permasalaan Integras Pertungan ntegral adala pertungan dasar yang dgunakan dalam kalkulus, dalam banyak keperluan. Integral

Lebih terperinci

Diferensial dan Integral

Diferensial dan Integral Open Course Diferensial dan Integral Oleh: Sudaratno Sudirham Pengantar Setelah kita mempelajari fungsi dan grafik, ang merupakan bagian pertama dari kalkulus, berikut ini kita akan membahas bagian kedua

Lebih terperinci

BAB 8 PERSAMAAN DIFERENSIAL BIASA

BAB 8 PERSAMAAN DIFERENSIAL BIASA Maa kulah KOMPUTASI ELEKTRO BAB 8 PERSAMAAN DIFERENSIAL BIASA Persamaan dferensal dapa dbedakan menjad dua macam erganung pada jumlah varabel bebas. Apabla persamaan ersebu mengandung hana sau varabel

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Revew Peneltan Sebelumnya 2.1. Pengembangan model matematk horson waktu dskret optmal untuk penjadwalan job banyak operas tunggal pada mesn alternatf [Sukendar, 2007] Notas a. Hmpunan

Lebih terperinci

SOLUTION INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA

SOLUTION INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA ISTITUT TEKOLOGI BADUG FAKULTAS MATEMATIKA DA ILMU PEGETAHUA ALAM PROGRAM STUDI FISIKA FI-500 Mekanka Statstk SEMESTER/ Sem. - 06/07 PR#4 : Dstrbus bose Ensten dan nteraks kuat Kumpulkan d Selasa 9 Aprl

Lebih terperinci

TEORI KESALAHAN (GALAT)

TEORI KESALAHAN (GALAT) TEORI KESALAHAN GALAT Penyelesaan numerk dar suatu persamaan matematk hanya memberkan nla perkraan yang mendekat nla eksak yang benar dar penyelesaan analts. Berart dalam penyelesaan numerk tersebut terdapat

Lebih terperinci

ANALISIS PEUBAH RESPON BINER

ANALISIS PEUBAH RESPON BINER Analss Peubah Respon Bner... (Ksmantn) ANALISIS PEUBAH RESPON BINER Ksmantn Jurusan Penddkan Matematka FMIPA Unverstas Neger Yogyakarta Abstrak Pada regres lner klask, peubah respon dasumskan merupakan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Pengertan Regres Regres pertama kal dgunakan sebaga konsep statstka oleh Sr Francs Galton (18 1911).Belau memperkenalkan model peramalan, penaksran, atau pendugaan, yang selanjutnya

Lebih terperinci

ALJABAR LINIER LANJUT

ALJABAR LINIER LANJUT ALABAR LINIER LANUT Ruang Bars dan Ruang Kolom suatu Matrks Msalkan A adalah matrks mnatas lapangan F. Bars pada matrks A merentang subruang F n dsebut ruang bars A, dnotaskan dengan rs(a) dan kolom pada

Lebih terperinci

Catatan Kuliah 13 Memahami dan Menganalisa Optimasi dengan Kendala Ketidaksamaan

Catatan Kuliah 13 Memahami dan Menganalisa Optimasi dengan Kendala Ketidaksamaan Catatan Kulah 3 Memaham dan Menganalsa Optmas dengan Kendala Ketdaksamaan. Interpretas Konds Kuhn Tucker Asumskan masalah yang dhadap adalah masalah produks. Secara umum, persoalan maksmsas keuntungan

Lebih terperinci

IV. UKURAN SIMPANGAN, DISPERSI & VARIASI

IV. UKURAN SIMPANGAN, DISPERSI & VARIASI IV. UKURAN SIMPANGAN, DISPERSI & VARIASI Pendahuluan o Ukuran dspers atau ukuran varas, yang menggambarkan derajat bagamana berpencarnya data kuanttatf, dntaranya: rentang, rentang antar kuartl, smpangan

Lebih terperinci

BAB III METODE PENELITIAN. Pada penelitian ini, penulis memilih lokasi di SMA Negeri 1 Boliyohuto khususnya

BAB III METODE PENELITIAN. Pada penelitian ini, penulis memilih lokasi di SMA Negeri 1 Boliyohuto khususnya BAB III METODE PENELITIAN 3.1 Tempat dan Waktu Peneltan 3.1.1 Tempat Peneltan Pada peneltan n, penuls memlh lokas d SMA Neger 1 Bolyohuto khususnya pada sswa kelas X, karena penuls menganggap bahwa lokas

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. Deskrps Data Hasl Peneltan Satelah melakukan peneltan, penelt melakukan stud lapangan untuk memperoleh data nla post test dar hasl tes setelah dkena perlakuan.

Lebih terperinci

INTEGRASI Matematika Industri I

INTEGRASI Matematika Industri I INTEGRASI TIP FTP UB Pokok Bahasan Pendahuluan Fungsi dari suatu fungsi linear Integral berbentuk Integrasi hasilkali Integrasi per bagian Integrasi dengan pecahan parsial Integrasi fungsi-fungsi trigonometris

Lebih terperinci

III PEMODELAN MATEMATIS SISTEM FISIK

III PEMODELAN MATEMATIS SISTEM FISIK 34 III PEMODELN MTEMTIS SISTEM FISIK Deskrps : Bab n memberkan gambaran tentang pemodelan matemats, fungs alh, dagram blok, grafk alran snyal yang berguna dalam pemodelan sstem kendal. Objektf : Memaham

Lebih terperinci

Oleh : Deri Akhmad (9738) Johan Arifin (9834) Muhammad Alawido (10830) esi Hapsari (10832) Windu Pramana Putra (10835) Tya Hermoza (10849) Gempur

Oleh : Deri Akhmad (9738) Johan Arifin (9834) Muhammad Alawido (10830) esi Hapsari (10832) Windu Pramana Putra (10835) Tya Hermoza (10849) Gempur Oleh : Der Akhmad (9738) Johan Arfn (9834) Muhammad Alawdo (83) es Hapsar (83) Wndu Pramana Putra (835) Tya Hermoza (849) Gempur Safar (877) Febra Aryan (97) Asr Wdyasar (978) Nur Inayah (4) Adharsa Rakhman

Lebih terperinci

= definit postif untuk konstanta p yang = 0 mempunyai dua akar postif,

= definit postif untuk konstanta p yang = 0 mempunyai dua akar postif, 000 SOAL UNTUK MATEMATIKA CEPAT TEPAT MATEMATIKA. Fungsi kuadrat y ( p ) ( p ) = + + + definit postif untuk konstanta p yang memenuhi adalah. Jika persamaan kuadrat p ( p p) + 4 = 0 mempunyai dua akar

Lebih terperinci

III. METODE PENELITIAN. Metode dalam penelitian ini adalah metode eksperimen. Penggunaan metode eksperimen ini

III. METODE PENELITIAN. Metode dalam penelitian ini adalah metode eksperimen. Penggunaan metode eksperimen ini III. METODE PENELITIAN A. Metode Peneltan Metode dalam peneltan n adalah metode ekspermen. Penggunaan metode ekspermen n bertujuan untuk mengetahu apakah suatu metode, prosedur, sstem, proses, alat, bahan

Lebih terperinci

b. Tentukan eigenket-eigenket dari sistem tersebut sebagai kombinasi linier dari 1 dan 2

b. Tentukan eigenket-eigenket dari sistem tersebut sebagai kombinasi linier dari 1 dan 2 Solus UTS Mekanka Kuantum Program Stud S Fska Tanggal ujan: 6 Oktoer 7 Dosen: Muhammad Azz Majd, Ph.D. Assten: Ahmad Syahron, S.S. Soal Hamltonan seuah sstem -keadaan two states system dnyatakan dengan

Lebih terperinci

FUNGSI LOGARITMA ASLI

FUNGSI LOGARITMA ASLI D.. = D.. = D.. = = 0 D.. = D.. = D.. = 3 FUNGSI LOGARITMA ASLI Definisi Fungsi logaritma asli, dinyatakan oleh ln, didefinisikan sebagai ln = (Daerah asalnya adalah R). t dt, > 0 Turunan Logaritma Asli

Lebih terperinci

KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I

KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I 7 INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Memahami konsep dasar integral, teorema-teorema, sifat-sifat, notasi jumlah, fungsi transenden dan teknik-teknik pengintegralan. Materi

Lebih terperinci

Komang Suardika; ;Undiksha; 2010

Komang Suardika; ;Undiksha; 2010 Komang Suardka;09004;Undksha; 00 PERCOBAAN PESAWAT ATWOOD. Tujuan Percobaan Tujuan dar dlakukannya percobaan n adalah untuk memperlhatkan berlakunya hukum Newton dan menghtung momen nersa katrol.. Landasan

Lebih terperinci

BAB IV PEMBAHASAN MODEL

BAB IV PEMBAHASAN MODEL BAB IV PEMBAHASAN MODEL Pada bab IV n akan dlakukan pembuatan model dengan melakukan analss perhtungan untuk permasalahan proses pengadaan model persedaan mult tem dengan baya produks cekung dan jont setup

Lebih terperinci

KAJIAN DAN ALGORITMA PELABELAN PSEUDO EDGE-MAGIC. memiliki derajat maksimum dan tidak ada titik yang terisolasi. Jika n i adalah

KAJIAN DAN ALGORITMA PELABELAN PSEUDO EDGE-MAGIC. memiliki derajat maksimum dan tidak ada titik yang terisolasi. Jika n i adalah BAB III KAJIAN DAN ALGORITMA PELABELAN PSEUDO EDGE-MAGIC III. Batas Bawah Magc Number pada Pelabelan Total Pseudo Edge-Magc Teorema 3.. Anggap G = (,E) adalah sebuah graf dengan n-ttk dan m-ss dan memlk

Lebih terperinci

BAB V MODEL SEDERHANA DISTRIBUSI TEMPERATUR DAN SIMULASINYA

BAB V MODEL SEDERHANA DISTRIBUSI TEMPERATUR DAN SIMULASINYA BAB V MOEL SEERHANA ISTRIBUSI TEMPERATUR AN SIMULASINYA Model matemata yang terdapat pada bab sebelumnya merupaan model umum untu njes uap pada reservor dengan bottom water. Model tersebut merupaan model

Lebih terperinci

Apabila dua variabel X dan Y mempunyai hubungan, maka nilai variabel X yang sudah diketahui dapat dipergunakan untuk mempekirakan / menaksir Y.

Apabila dua variabel X dan Y mempunyai hubungan, maka nilai variabel X yang sudah diketahui dapat dipergunakan untuk mempekirakan / menaksir Y. ANALISIS KORELASI (ANALISIS HUBUNGAN) Korelas Hubungan antar kejadan (varabel) yang satu dengan kejadan (varabel) lannya (dua varabel atau lebh), yang dtemukan oleh Karl Pearson pada awal 1900 Apabla dua

Lebih terperinci