ALJABAR LINIER LANJUT

Ukuran: px
Mulai penontonan dengan halaman:

Download "ALJABAR LINIER LANJUT"

Transkripsi

1 ALABAR LINIER LANUT Ruang Bars dan Ruang Kolom suatu Matrks Msalkan A adalah matrks mnatas lapangan F. Bars pada matrks A merentang subruang F n dsebut ruang bars A, dnotaskan dengan rs(a) dan kolom pada matrks A merentang subruang F m dsebut ruang kolom A, dnotaskan dengan cs(a). Dmens ruang tersebut berturut-turut dsebut row rank, dnotaskan dengan rrk(a) dan column rank, dnotaskan dengan crk(a). Fakta bahwa row rank dan column rank pada matrks selalu sama merupakan sesuatu yang menark dan berguna, terlepas dar kenyataan ka m n, ruang bars dan ruang kolom tdak terletak pada ruang vektor yang sama! Pembuktan fakta tersebut berdasarkan observas tentang matrks berkut: Lemma 1.15 Msalkan A adalah matrks m n. Operas kolom elementer tdak mempengaruh row rank matrks A. Begtu uga dengan operas bars elementer tdak mempengaruh column rank matrks A. Bukt: Akan dbuktkan operas kolom elementer tdak mempengaruh row rank matrks A. Ruang bars matrks A adalah rs, A (1) ( A) e1a, e2a, e m dengan e adalah vektor bass standar d m F. Operas kolom elementer terhadap matrks A ekuvalen dengan mengalkan matrks A dengan matrks elementer E d sebelah kanan. Matrks elementer n ddapatkan dar matrks denttas I n yang dlakukan operas kolom elementer yang sama dengan operas pada matrks A. Msal matrks B adalah matrks hasl operas kolom elementer dar matrks A, maka B AE. Ruang bars untuk matrks AE adalah rs AE) e E,, e AE (2) ( 1AE, e2a m Pandang persamaan (1) dan (2), msal x rs( A), maka x aeaa e A (3) 1 1 m m dengan a F. ka kta kalkan persamaan (3) dengan E d sebelah kanan ddapat xe a eaea e AE (4) 1 1 m m Alabar Lner Lanut 1

2 sehngga xe rs( AE). Selanutnya msal k adalah row rank matrks A, maka terdapat k vektor yang merupakan bass untuk ruang bars A, sebut saa v1, v2,, vk. Berdasarkan (4), vektor v1e, v2e,, vk E ada d ruang bars AE. Akan dtunukkan vektor-vektor tersebut bebas lner, yatu solus satu-satunya untuk persamaan dengan x x (5) 1v1 E x2v2e xkvke 0 F adalah solus trval x1 x2 x k 0. Berdasarkan sfat dstrbutf perkalan matrks, persamaan (5) menad ( x v x v x v ) E 0 (6) k k Karena E dapat dbalk, maka terdapat 1 E sehngga EE I 1, mengmplkaskan x 1v1 x2v2 xv k k 0 (7) Dketahu v1, v2,, vk bebas lner, sehngga ddapatkan x1 x2 x k 0. Vektor-vektor v1e, v2e,, vk E bebas lner d rs(ae), sehngga rrk( AE) k. Dar hasl n dapat dsmpulkan rrk( AE) rrk( A) (8) Selanutnya dlakukan operas kolom elementer yang berkebalkan dengan operas pada matrks A yakn E -1 1, akan ddapatkan AEE AI A. Pembuktan dlakukan sepert pembuktan d atas dengan menukar poss A dengan AE, akan dperoleh Dar (8) dan (9) dapat dsmpulkan rrk( A) rrk( AE). rrk( A) rrk( AE) (9) ad berdasarkan hasl d atas operas kolom elementer tdak mempengaruh row rank matrks A. Untuk pembuktan operas bars elementer tdak mempengaruh column rank matrks A dapat dlakukan dengan cara yang sama hanya saa dlakukan terhadap A T. Operas kolom elementer tdak mempengaruh row rank matrks A, begtu pula operas bars elementer tdak mempengaruh column rank matrks A. Alabar Lner Lanut 2

3 Teorema 1.16 ka A mn, maka rrk(a) = crk(a). Blangan n dsebut rank dar matrks A dan dnotaskan dengan rk(a). Bukt: Berdasarkan Lemma 1.15, matrks A dapat dreduks menad eselon kolom tereduks tanpa mempengaruh row rank. Reduks n uga tdak mempengaruh column rank. Selanutnya mereduks matrks A menad eselon bars tereduks tanpa mempengaruh row rank dan column rank. Hasl kedua reduks sebut saa sebaga matrks M. Matrks M mempunya row rank dan column rank yang sama dengan matrks A. Akan tetap matrks M adalah matrks dengan 1 dkut 0 pada dagonal utama (M 1,1, M 2,2,...) dan 0 d tempat lan. Matrks M dapat dtuls sebaga M I atau M r (10) Oleh karena tu rrk( A) rrk( M) crk( M) crk( A). Terbukt rrk(a) = rrk(ae). Alabar Lner Lanut 3

4 Kompleksfkas Ruang Vektor Rl ka W adalah ruang vektor kompleks (yatu ruang vektor atas lapangan kompleks), maka kta dapat berpkr W sebaga ruang vektor rl dengan cara membatas semua skalar berasal dar lapangan rl. Ruang vektor rl n dnotaskan dengan W dan dsebut vers rl dar W. Sebalknya kta uga dapat menghubungkan ruang vektor rl V dengan ruang vektor kompleks V. Proses kompleksfkas n akan mempunya peran yang berguna pada saat membahas tentang struktur operator lner pada ruang vektor rl. (dalam pembahasan selanutnya V menotaskan ruang vektor rl). Defns ka V adalah ruang vektor rl, maka hmpunan pasangan terurut V V V, dengan operas penumlahan komponen yang bersesuaan ( u, v) ( x y) ( u x, v y) dan perkalan skalar atas yang ddefnskan oleh ( a b)( u, v) ( au bv, av bu) untuk ab, adalah ruang vektor kompleks, dsebut kompleksfkas dar V. Berkut dperkenalkan notas untuk vektor d V yang mrp dengan notas untuk blangan kompleks. Kta notaskan ( uv, ) V dengan u v, sehngga V { u v uv, V} Penumlahan pada V sekarang sepert penumlahan blangan kompleks basa, ( u v) ( x y) ( u x) ( v y) dan perkalan skalar sepert perkalan blangan kompleks basa, ( a b)( u v) ( au bv) ( av bu) Sebaga contoh, untuk ab, ddapat a( u v) au av b( u v) bv bu ( a b) u au bu ( a b) v bv av Bagan rl untuk z u v adalah u V dan bagan maner dar z adalah v V. Fakta bahwa z u v V benar-benar pasangan terurut adalah z bernla 0 ka dan hanya ka bagan rl dan manernya uga 0. Berkutnya ddefnskan pemetaan kompleksfkas cpx :V V oleh Alabar Lner Lanut 4

5 cpx( v) v 0 Selanutnya bentuk u 0 dsebut sebaga kompleksfkas atau vers kompleks dar v V. Sebaga catatan pemetaan n merupakan homomorfsma grup, yatu dan pemetaan tersebut bersfat nektf cpx(0) 0 0 dan cpx( u v) cpx( u) cpx( v) cpx( u) cpx( v) u v Selan tu pemetaan tersebut mempertahankan perkalan oleh skalar rl untuk a. cpx( au) au 0 a( u 0 ) acpx( u) Pemetaan kompleksfkas tdak surektf, karena hanya memberkan vektor rl saa. Pemetaan kompleksfkas adalah transformas lner nektf dar ruang vektor rl ke vers rl ( V ) dar kompleksfkas V. Dengan cara n V mengandung embedded copy dar V. Dmens V Dmens ruang vektor V dan V sama. Hal n tdak terlalu mengeutkan karena walaupun V terlhat lebh besar dar V akan tetap lapangan skalarnya uga lebh besar. Teorema 1.17 ka { v I} merupakan bass untuk V atas, maka kompleksfkas yatu cpx( ) { v 0 v } adalah bass ruang vektor V atas. Sehngga, dm( V ) dm( V) Bukt: Akan dtunukkan cpx( ) merentang V dan bebas lner. Untuk melhat cpx( ) merentang V atas, msal ambl sembarang vektor x y V, ddapat xy, V dan terdapat blangan rl a dan b (beberapa mungkn 0) sehngga x y V dapat kta tuls menad Alabar Lner Lanut 5

6 x y a v bv ( a v ( a b v ) b )( v 0 ) ad kta dapat menulskan setap vektor dalam V sebaga kombnas lner cpx( ). Sehngga cpx( ) terbukt merentang V. Untuk menunukkan cpx( ) bebas lner, ka 1 ( a maka berdasarkan perhtungan sebelumnya, ddapat b )( v 0 ) 0 0 sehngga a v b v a v 0 dan b v Karena bebas lner, mengakbatkan a 0 dan b 0 untuk semua. ad cpx( ) uga bebas lner. Karena cpx( ) merentang V dan bebas lner maka cpx( ) merupakan bass untuk ruang vektor V. Dapat kta lhat banyaknya anggota cpx( ) dan sama sehngga dapat dtuls dm( V ) dm( V) ka vv dan { v I} adalah bass untuk V, maka dapat kta tuls n v av 1 untuk a. Karena koefsennya rl, maka ddapat Alabar Lner Lanut 6

7 n v 0 a( v 0) 1 sehngga matrks koordnat v terhadap bass dan v 0 terhadap bass cpx( ) adalah sama v 0 v cpx( ) Alabar Lner Lanut 7

Bab 1 Ruang Vektor. R. Leni Murzaini/0906577381

Bab 1 Ruang Vektor. R. Leni Murzaini/0906577381 Bab 1 Ruang Vektor Defns Msalkan F adalah feld, yang elemen-elemennya dnyatakansebaga skalar. Ruang vektor atas F adalah hmpunan tak kosong V, yang elemen-elemennya merupakan vektor, bersama dengan dua

Lebih terperinci

BAB X RUANG HASIL KALI DALAM

BAB X RUANG HASIL KALI DALAM BAB X RUANG HASIL KALI DALAM 0. Hasl Kal Dalam Defns. Hasl kal dalam adalah fungs yang mengatkan setap pasangan vektor d ruang vektor V (msalkan pasangan u dan v, dnotaskan dengan u, v ) dengan blangan

Lebih terperinci

BAB III PEMBAHASAN. Pada bab ini akan dibahas mengenai ring embedding dan faktorisasi. tunggal pada ring komutatif tanpa elemen kesatuan.

BAB III PEMBAHASAN. Pada bab ini akan dibahas mengenai ring embedding dan faktorisasi. tunggal pada ring komutatif tanpa elemen kesatuan. BAB III PEMBAHASAN Pada bab n akan dbahas mengena rng embeddng dan faktorsas tunggal pada rng komutatf tanpa elemen kesatuan. A. Rng Embeddng Defns 3.1 (Malk et al. 1997: 318 Suatu rng R dkatakan embedded

Lebih terperinci

BAB III HASILKALI TENSOR PADA RUANG VEKTOR. Misalkan V ruang vektor atas lapangan F. Suatu transformasi linear f L ( V, F )

BAB III HASILKALI TENSOR PADA RUANG VEKTOR. Misalkan V ruang vektor atas lapangan F. Suatu transformasi linear f L ( V, F ) 28 BAB III HASILKALI TENSOR PADA RUANG VEKTOR III.1 Ruang Dual Defns III.1.2: Ruang Dual [10] Msalkan V ruang vektor atas lapangan F. Suatu transformas lnear f L ( V, F ) dkatakan fungsonal lnear (atau

Lebih terperinci

JMP : Volume 5 Nomor 1, Juni 2013, hal SPEKTRUM PADA GRAF REGULER KUAT

JMP : Volume 5 Nomor 1, Juni 2013, hal SPEKTRUM PADA GRAF REGULER KUAT JMP : Volume 5 Nomor, Jun 03, hal. 3 - SPEKTRUM PD GRF REGULER KUT Rzk Mulyan, Tryan dan Nken Larasat Program Stud Matematka, Fakultas Sans dan Teknk Unerstas Jenderal Soedrman Emal : rzky90@gmal.com BSTRCT.

Lebih terperinci

MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM

MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM Tut Susant, Mashad, Sukamto Mahasswa Program S Matematka Dosen Jurusan Matematka Fakultas Matematka dan Ilmu Pengetahuan Alam

Lebih terperinci

Teori Himpunan. Modul 1 PENDAHULUAN. impunan sebagai koleksi (pengelompokan) dari objek-objek yang

Teori Himpunan. Modul 1 PENDAHULUAN. impunan sebagai koleksi (pengelompokan) dari objek-objek yang Modul 1 Teor Hmpunan PENDAHULUAN Prof SM Nababan, PhD Drs Warsto, MPd mpunan sebaga koleks (pengelompokan) dar objek-objek yang H dnyatakan dengan jelas, banyak dgunakan dan djumpa dberbaga bdang bukan

Lebih terperinci

BAB 3 PEMBAHASAN. 3.1 Prosedur Penyelesaian Masalah Program Linier Parametrik Prosedur Penyelesaian untuk perubahan kontinu parameter c

BAB 3 PEMBAHASAN. 3.1 Prosedur Penyelesaian Masalah Program Linier Parametrik Prosedur Penyelesaian untuk perubahan kontinu parameter c 6 A PEMAHASA Pada bab sebelumnya telah dbahas teor-teor yang akan dgunakan untuk menyelesakan masalah program lner parametrk. Pada bab n akan dperlhatkan suatu prosedur yang lengkap untuk menyelesakan

Lebih terperinci

Dekomposisi Nilai Singular dan Aplikasinya

Dekomposisi Nilai Singular dan Aplikasinya A : Dekomposs Nla Sngular dan Aplkasnya Gregora Aryant Dekomposs Nla Sngular dan Aplkasnya Oleh : Gregora Aryant Program Stud Penddkan Matematka nverstas Wdya Mandala Madun aryant_gregora@yahoocom Abstrak

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang dan Permasalahan

BAB I PENDAHULUAN Latar Belakang dan Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan Matematka dbag menjad beberapa kelompok bdang lmu, antara lan analss, aljabar, dan statstka. Ruang barsan merupakan salah satu bagan yang ada d bdang

Lebih terperinci

DIMENSI PARTISI GRAF GIR

DIMENSI PARTISI GRAF GIR Jurnal Matematka UNAND Vol. 1 No. 2 Hal. 21 27 ISSN : 2303 2910 c Jurusan Matematka FMIPA UNAND DIMENSI PARTISI GRAF GIR REFINA RIZA Program Stud Matematka, Fakultas Matematka dan Ilmu Pengetahuan Alam,

Lebih terperinci

BEBERAPA SIFAT TERKAIT SUBMODUL SEMIPRIMA

BEBERAPA SIFAT TERKAIT SUBMODUL SEMIPRIMA BEBERAPA SIFAT TERKAIT SUBMODUL SEMIPRIMA A-3 Dan Aresta Yuwanngsh 1 1 Mahasswa S Matematka UGM dan.aresta17@yahoo.com Abstrak Dberkan R merupakan rng dengan elemen satuan, M R-modul kanan, dan R S End

Lebih terperinci

Sifat-sifat Operasi Perkalian Modular pada Graf Fuzzy

Sifat-sifat Operasi Perkalian Modular pada Graf Fuzzy SEMINAR MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 07 Sfat-sfat Operas Perkalan Modular pada raf Fuzzy T - 3 Tryan, ahyo Baskoro, Nken Larasat 3, Ar Wardayan 4,, 3, 4 Unerstas Jenderal Soedrman transr@yahoo.com.au

Lebih terperinci

BILANGAN RAMSEY SISI DARI r ( P, )

BILANGAN RAMSEY SISI DARI r ( P, ) Charul Imron dan dy Tr Baskoro, Blangan Ramsey Ss BILANGAN RAMSY SISI DARI r ( P, ) (Ramsey Number from the Sde r ( P, ) ) Charul Imron dan dy Tr Baskoro Jurusan Matemátca, FMIPA ITS Surabaya mron-ts@matematka.ts.ac.d

Lebih terperinci

BAB III FUNGSI MAYOR DAN MINOR. Pada bab ini akan dibahas konsep-konsep dasar dari fungsi mayor dan fungsi

BAB III FUNGSI MAYOR DAN MINOR. Pada bab ini akan dibahas konsep-konsep dasar dari fungsi mayor dan fungsi BAB III FUNGSI MAYOR DAN MINOR Pada bab n akan dbahas konsep-konsep dasar dar fungs mayor dan fungs mnor dar suatu fungs yang terdefns pada suatu nterval tertutup. Pendefnsan fungs mayor dan mnor tersebut

Lebih terperinci

Pembayaran harapan yang berkaitan dengan strategi murni pemain P 2. Pembayaran Harapan bagi Pemain P1

Pembayaran harapan yang berkaitan dengan strategi murni pemain P 2. Pembayaran Harapan bagi Pemain P1 Lecture : Mxed Strategy: Graphcal Method A. Metode Campuran dengan Metode Grafk Metode grafk dapat dgunakan untuk menyelesakan kasus permanan dengan matrks pembayaran berukuran n atau n. B. Matrks berukuran

Lebih terperinci

SEMI RING POLINOM ATAS ALJABAR MAX-PLUS

SEMI RING POLINOM ATAS ALJABAR MAX-PLUS JMP : Volume 4 Nomor 2, Desember 2012, hal. 289-297 SEMI RING POLINOM ATAS ALJABAR MAX-PLUS Suroto Prod Matematka, Jurusan MIPA, Fakultas Sans dan Teknk Unverstas Jenderal Soedrman e-mal : suroto_80@yahoo.com

Lebih terperinci

PELABELAN TOTAL SISI AJAIB SUPER PADA GRAF CORONA-LIKE UNICYCLIC

PELABELAN TOTAL SISI AJAIB SUPER PADA GRAF CORONA-LIKE UNICYCLIC PELABELAN TOTAL SISI AJAIB SUPER PADA GRAF CORONA-LIKE UNICYCLIC Kurnawan *, Rolan Pane, Asl Srat Mahasswa Program Stud S Matematka Dosen Jurusan Matematka Fakultas Matematka dan Ilmu Pengetahuan Alam

Lebih terperinci

PELABELAN TOTAL SISI TAK BERATURAN PADA GRAF GABUNGAN BIPARTIT LENGKAP

PELABELAN TOTAL SISI TAK BERATURAN PADA GRAF GABUNGAN BIPARTIT LENGKAP JMP : Volume 1 Nomor 2, Oktober 2009 PELABELAN TOTAL SISI TAK BERATURAN PADA GRAF GABUNGAN BIPARTIT LENGKAP Tryan dan Nken Larasat Fakultas Sans dan Teknk, Unverstas Jenderal Soedrman Purwokerto, Indonesa

Lebih terperinci

BAB 4 PERHITUNGAN NUMERIK

BAB 4 PERHITUNGAN NUMERIK Mata kulah KOMPUTASI ELEKTRO BAB PERHITUNGAN NUMERIK. Kesalahan error Pada Penelesaan Numerk Penelesaan secara numers dar suatu persamaan matemats kadang-kadang hana memberkan nla perkraan ang mendekat

Lebih terperinci

PADA GRAF PRISMA BERCABANG

PADA GRAF PRISMA BERCABANG PELABELAN TOTAL SUPER (a, d)-busur ANTI AJAIB PADA GRAF PRISMA BERCABANG Achmad Fahruroz,, Dew Putre Lestar,, Iffatul Mardhyah, Unverstas Gunadarma Depok Program Magster Fakultas MIPA Unverstas Indonesa

Lebih terperinci

UJI PRIMALITAS. Sangadji *

UJI PRIMALITAS. Sangadji * UJI PRIMALITAS Sangadj * ABSTRAK UJI PRIMALITAS. Makalah n membahas dan membuktkan tga teorema untuk testng prmaltas, yatu teorema Lucas, teorema Lucas yang dsempurnakan dan teorema Pocklngton. D sampng

Lebih terperinci

Bab III Reduksi Orde Model Sistem LPV

Bab III Reduksi Orde Model Sistem LPV Bab III Reduks Ode Model Sstem PV Metode eduks ode model melalu MI telah dgunakan untuk meeduks ode model sstem I bak untuk kasus kontnu maupun dskt. Melalu metode n telah dhaslkan pula bentuk da model

Lebih terperinci

(1.1) maka matriks pembayaran tersebut dikatakan mempunyai titik pelana pada (r,s) dan elemen a

(1.1) maka matriks pembayaran tersebut dikatakan mempunyai titik pelana pada (r,s) dan elemen a Lecture 2: Pure Strategy A. Strategy Optmum Hal pokok yang sesungguhnya menad nt dar teor permanan adalah menentukan solus optmum bag kedua phak yang salng bersang tersebut yang bersesuaan dengan strateg

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN Latar elakang Sekolah merupakan salah satu bagan pentng dalam penddkan Oleh karena tu sekolah harus memperhatkan bagan-bagan yang ada d dalamnya Salah satu bagan pentng yang tdak dapat dpsahkan

Lebih terperinci

BAB III SKEMA NUMERIK

BAB III SKEMA NUMERIK BAB III SKEMA NUMERIK Pada bab n, akan dbahas penusunan skema numerk dengan menggunakan metoda beda hngga Forward-Tme dan Centre-Space. Pertama kta elaskan operator beda hngga dan memberkan beberapa sfatna,

Lebih terperinci

Bab 3 Analisis Ralat. x2 x2 x. y=x 1 + x 2 (3.1) 3.1. Menaksir Ralat

Bab 3 Analisis Ralat. x2 x2 x. y=x 1 + x 2 (3.1) 3.1. Menaksir Ralat Mater Kulah Ekspermen Fska Oleh : Drs. Ishaft, M.S. Program Stud Penddkan Fska Unverstas Ahmad Dahlan, 07 Bab 3 Analss Ralat 3.. Menaksr Ralat Msalna suatu besaran dhtung dar besaran terukur,,..., n. Jka

Lebih terperinci

APLIKASI METODE SINGULAR VALUE DECOMPOSITION(SVD) PADA SISTEM PERSAMAAN LINIER KOMPLEKS

APLIKASI METODE SINGULAR VALUE DECOMPOSITION(SVD) PADA SISTEM PERSAMAAN LINIER KOMPLEKS Vol No Jurnal Sans Teknolog Industr APLIKASI METODE SINGULAR VALUE DECOMPOSITION(SVD) PADA SISTEM PERSAMAAN LINIER KOMPLEKS Ftr Aryan Dew Yulant Jurusan Matematka Fakultas Sans Teknolog UIN SUSKA Rau Emal:

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LINEAR KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI QR TUGAS AKHIR

PENYELESAIAN SISTEM PERSAMAAN LINEAR KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI QR TUGAS AKHIR PENYELESAIAN SISTEM PERSAMAAN LINEAR KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI QR TUGAS AKHIR Dajukan sebaga Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sans pada Jurusan Matematka Oleh : IIS ERIANTI

Lebih terperinci

BAB V INTEGRAL KOMPLEKS

BAB V INTEGRAL KOMPLEKS 6 BAB V INTEGRAL KOMPLEKS 5.. INTEGRAL LINTASAN Msal suatu lntasan yang dnyatakan dengan : (t) = x(t) + y(t) dengan t rl dan a t b. Lntasan dsebut lntasan tutup bla (a) = (b). Lntasan tutup dsebut lntasan

Lebih terperinci

Bab III Analisis Rantai Markov

Bab III Analisis Rantai Markov Bab III Analss Ranta Markov Sstem Markov (atau proses Markov atau ranta Markov) merupakan suatu sstem dengan satu atau beberapa state atau keadaan, dan dapat berpndah dar satu state ke state yang lan pada

Lebih terperinci

.. Kekakuan Rangka batang Bdang (Plane Truss) BAB ANAISIS STRUKTUR RANGKA BATANG BIANG Struktur plane truss merupakan suatu sstem struktur ang merupakan gabungan dar seumlah elemen (batang) d mana pada

Lebih terperinci

BAB II DIMENSI PARTISI

BAB II DIMENSI PARTISI BAB II DIMENSI PARTISI. Defns dasar dan eteratannya dengan metrc dmenson Dalam pembahasan dmens parts, graf yang dbahas adalah graf terhubung sederhana dan tda meml arah. Sebelum mendefnsan graf yang dgunaan

Lebih terperinci

BAB III. Monte Carlo dan metode least-square, maka pada bab ini diantaranya akan

BAB III. Monte Carlo dan metode least-square, maka pada bab ini diantaranya akan BAB III METODE LEAST-SQUARE MONTE CARLO Pada bab sebelumnya telah delaskan antara lan mengena smulas Monte Carlo dan metode least-square, maka pada bab n dantaranya akan dbahas penggunaan kedua metode

Lebih terperinci

SISTEM LINEAR MAX-PLUS KABUR WAKTU INVARIANT AUTONOMOUS

SISTEM LINEAR MAX-PLUS KABUR WAKTU INVARIANT AUTONOMOUS SISTEM LINEAR MAX-PLUS KABUR WAKTU INVARIANT AUTONOMOUS A8 M. Andy Rudhto 1 1 Program Stud Penddkan Matematka FKIP Unverstas Sanata Dharma Kampus III USD Pangan Maguwoharjo Yogyakarta 1 e-mal: arudhto@yahoo.co.d

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar belakang

BAB 1 PENDAHULUAN. 1.1 Latar belakang BAB 1 PENDAHULUAN 1.1 Latar belakang Dalam memlh sesuatu, mula yang memlh yang sederhana sampa ke hal yang sangat rumt yang dbutuhkan bukanlah berpkr yang rumt, tetap bagaman berpkr secara sederhana. AHP

Lebih terperinci

Penyelesaian Sistem Persamaan Linear pada Aljabar Max-Plus

Penyelesaian Sistem Persamaan Linear pada Aljabar Max-Plus Penyelesaan Sstem Persamaan Lnear pada Alabar Max-Plus Cnd Medsa #1, Yusmet Rzal* 2, Helma* 3 1# Student of Mathematcs Department State Unversty of Padang, Indonesa 2,3 *Lecturers of Mathematcs Department

Lebih terperinci

ANALISIS DATA KATEGORIK (STK351)

ANALISIS DATA KATEGORIK (STK351) Suplemen Respons Pertemuan ANALISIS DATA KATEGORIK (STK351) 7 Departemen Statstka FMIPA IPB Pokok Bahasan Sub Pokok Bahasan Referens Waktu Korelas Perngkat (Rank Correlaton) Bag. 1 Koefsen Korelas Perngkat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Fuzzy Set Pada tahun 1965, Zadeh memodfkas teor hmpunan dmana setap anggotanya memlk derajat keanggotaan yang bernla kontnu antara 0 sampa 1. Hmpunan n dsebut dengan hmpunaan

Lebih terperinci

LAMPIRAN A PENURUNAN PERSAMAAN NAVIER-STOKES

LAMPIRAN A PENURUNAN PERSAMAAN NAVIER-STOKES LAMPIRAN A PENURUNAN PERSAMAAN NAVIER-STOKES Hubungan n akan dawal dar gaya yang beraks pada massa fluda. Gaya-gaya n dapat dbag ke dalam gaya bod, gaya permukaan, dan gaya nersa. a. Gaya Bod Gaya bod

Lebih terperinci

TRANSITIF KLOSUR DARI GABUNGAN DUA RELASI EKUIVALENSI PADA SUATU HIMPUNAN DENGAN STRUKTUR DATA DINAMIS

TRANSITIF KLOSUR DARI GABUNGAN DUA RELASI EKUIVALENSI PADA SUATU HIMPUNAN DENGAN STRUKTUR DATA DINAMIS TRANSITIF KLOSUR DARI PADA SUATU HIMPUNAN Sukmawat Nur Endah Program Stud Ilmu Komputer Jurusan Matematka FMIPA UNDIP Jl. Prof. H. Soedarto, S.H, Semarang 5275 Abstract. A relaton R on set A s an equvalence

Lebih terperinci

Teori Himpunan. Modul 1 PENDAHULUAN

Teori Himpunan. Modul 1 PENDAHULUAN Modul 1 Teor Hmpunan Dr. Subanar K PENDHULUN arena banyak karakterstk dar masalah probabltas dapat dnyatakan secara formal dan dmodelkan secara rngkas dengan menggunakan notas hmpunan elementer, maka pertama-tama

Lebih terperinci

Bab 3. Teori Comonotonic. 3.1 Pengurutan Variabel Acak

Bab 3. Teori Comonotonic. 3.1 Pengurutan Variabel Acak Bab 3 Teor Comonotonc Pada bab n konsep teor comonotonc akan dpaparkan dar awal dan berakhr pada konsep teor n untuk jumlah dar peubah - peubah acak 1. Setelah tu untuk membantu pemahaman akan dberkan

Lebih terperinci

Catatan Kuliah 12 Memahami dan Menganalisa Optimisasi dengan Kendala Ketidaksamaan

Catatan Kuliah 12 Memahami dan Menganalisa Optimisasi dengan Kendala Ketidaksamaan Catatan Kulah Memaham dan Menganalsa Optmsas dengan Kendala Ketdaksamaan. Non Lnear Programmng Msalkan dhadapkan pada lustras berkut n : () Ma U = U ( ) :,,..., n st p B.: ; =,,..., n () Mn : C = pk K

Lebih terperinci

BAB II DASAR TEORI (2.1) Keterangan: i = jumlah derajat kebebasan q i. = koordinat bebas yang digeneralisasi Fq i = gaya yang digeneralisasi

BAB II DASAR TEORI (2.1) Keterangan: i = jumlah derajat kebebasan q i. = koordinat bebas yang digeneralisasi Fq i = gaya yang digeneralisasi BAB II DASAR TEORI. Metode Elemen Hngga Sstem Rotor Dnamk [7] Pemodelan elemen hngga sstem rotor dnamk dkembangkan berdasarkan konsep energ. Persamaan energ knetk, energ regangan, dan kerja maya yang terdapat

Lebih terperinci

Jurnal Pendidikan Matematika & Matematika

Jurnal Pendidikan Matematika & Matematika Jurnal Penddkan Mateatka & Mateatka Syasah. (2011). Pengaruh Puasa Terhadap Konsentras Belajar Sswa. Jakarta: UIN Syarf Hdayatullah Jakarta. Thabrany, Hasbullah. (1995). Rahasa Sukses Belajar. Jakarta:

Lebih terperinci

MENCERMATI BERBAGAI JENIS PERMASALAHAN DALAM PROGRAM LINIER KABUR. Mohammad Asikin Jurusan Matematika FMIPA UNNES. Abstrak

MENCERMATI BERBAGAI JENIS PERMASALAHAN DALAM PROGRAM LINIER KABUR. Mohammad Asikin Jurusan Matematika FMIPA UNNES. Abstrak JURAL MATEMATIKA DA KOMUTER Vol. 6. o., 86-96, Agustus 3, ISS : 4-858 MECERMATI BERBAGAI JEIS ERMASALAHA DALAM ROGRAM LIIER KABUR Mohammad Askn Jurusan Matematka FMIA UES Abstrak Konsep baru tentang hmpunan

Lebih terperinci

SEARAH (DC) Rangkaian Arus Searah (DC) 7

SEARAH (DC) Rangkaian Arus Searah (DC) 7 ANGKAAN AUS SEAAH (DC). Arus Searah (DC) Pada rangkaan DC hanya melbatkan arus dan tegangan searah, yatu arus dan tegangan yang tdak berubah terhadap waktu. Elemen pada rangkaan DC melput: ) batera ) hambatan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Penjadwalan Baker (1974) mendefnskan penjadwalan sebaga proses pengalokasan sumber-sumber dalam jangka waktu tertentu untuk melakukan sejumlah pekerjaan. Menurut Morton dan

Lebih terperinci

berasal dari pembawa muatan hasil generasi termal, sehingga secara kuat

berasal dari pembawa muatan hasil generasi termal, sehingga secara kuat 10 KARAKTRISTIK TRANSISTOR 10.1 Dasar Pengoperasan JT Pada bab sebelumnya telah dbahas dasar pengoperasan JT, utamannya untuk kasus saat sambungan kolektor-bass berpanjar mundur dan sambungan emtor-bass

Lebih terperinci

Catatan Kuliah 13 Memahami dan Menganalisa Optimasi dengan Kendala Ketidaksamaan

Catatan Kuliah 13 Memahami dan Menganalisa Optimasi dengan Kendala Ketidaksamaan Catatan Kulah 3 Memaham dan Menganalsa Optmas dengan Kendala Ketdaksamaan. Interpretas Konds Kuhn Tucker Asumskan masalah yang dhadap adalah masalah produks. Secara umum, persoalan maksmsas keuntungan

Lebih terperinci

Oleh : Harifa Hanan Yoga Aji Nugraha Gempur Safar Rika Saputri Arya Andika Dumanauw

Oleh : Harifa Hanan Yoga Aji Nugraha Gempur Safar Rika Saputri Arya Andika Dumanauw Oleh : Harfa Hanan Yoga A Nugraha Gemur Safar ka Sautr Arya Andka Dumanau Dosen : Dr.rer.nat. Ded osad, S.S., M.Sc. Program Stud Statstka Fakultas Matematka dan Ilmu Pengetahuan Alam Unverstas Gadah Mada

Lebih terperinci

Contoh 5.1 Tentukan besar arus i pada rangkaian berikut menggunakan teorema superposisi.

Contoh 5.1 Tentukan besar arus i pada rangkaian berikut menggunakan teorema superposisi. BAB V TEOEMA-TEOEMA AGKAIA 5. Teorema Superposs Teorema superposs bagus dgunakan untuk menyelesakan permasalahan-permasalahan rangkaan yang mempunya lebh dar satu sumber tegangan atau sumber arus. Konsepnya

Lebih terperinci

IV. UKURAN SIMPANGAN, DISPERSI & VARIASI

IV. UKURAN SIMPANGAN, DISPERSI & VARIASI IV. UKURAN SIMPANGAN, DISPERSI & VARIASI Pendahuluan o Ukuran dspers atau ukuran varas, yang menggambarkan derajat bagamana berpencarnya data kuanttatf, dntaranya: rentang, rentang antar kuartl, smpangan

Lebih terperinci

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara BAB 2 LANDASAN TEORI 2.1 Pengertan Analsa Regres Dalam kehdupan sehar-har, serng kta jumpa hubungan antara satu varabel terhadap satu atau lebh varabel yang lan. Sebaga contoh, besarnya pendapatan seseorang

Lebih terperinci

Pendahuluan. 0 Dengan kata lain jika fungsi tersebut diplotkan, grafik yang dihasilkan akan mendekati pasanganpasangan

Pendahuluan. 0 Dengan kata lain jika fungsi tersebut diplotkan, grafik yang dihasilkan akan mendekati pasanganpasangan Pendahuluan 0 Data-data ang bersfat dskrt dapat dbuat contnuum melalu proses curve-fttng. 0 Curve-fttng merupakan proses data-smoothng, akn proses pendekatan terhadap kecenderungan data-data dalam bentuk

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 ENDAHULUAN 1.1 Latar Belakang Manusa dlahrkan ke duna dengan ms menjalankan kehdupannya sesua dengan kodrat Illah yakn tumbuh dan berkembang. Untuk tumbuh dan berkembang, berart setap nsan harus

Lebih terperinci

ANALISIS BENTUK HUBUNGAN

ANALISIS BENTUK HUBUNGAN ANALISIS BENTUK HUBUNGAN Analss Regres dan Korelas Analss regres dgunakan untuk mempelajar dan mengukur hubungan statstk yang terjad antara dua varbel atau lebh varabel. Varabel tersebut adalah varabel

Lebih terperinci

Bab IV Pemodelan dan Perhitungan Sumberdaya Batubara

Bab IV Pemodelan dan Perhitungan Sumberdaya Batubara Bab IV Pemodelan dan Perhtungan Sumberdaa Batubara IV1 Pemodelan Endapan Batubara Pemodelan endapan batubara merupakan tahapan kegatan dalam evaluas sumberdaa batubara ang bertuuan menggambarkan atau menatakan

Lebih terperinci

APLIKASI PERKONGRUENAN DALAM MENYELESAIKAN SISTEM PERSAMAAN LINEAR DUA PEUBAH. Yuni Yulida dan Muhammad Ahsar K

APLIKASI PERKONGRUENAN DALAM MENYELESAIKAN SISTEM PERSAMAAN LINEAR DUA PEUBAH. Yuni Yulida dan Muhammad Ahsar K Jurnal Matematka Murn dan Terapan Vol. 3 No. Desember 009: 4-6 APLIKASI PERKONGRUENAN DALAM MENYELESAIKAN SISTEM PERSAMAAN LINEAR DUA PEUBAH Yun Yulda dan Muhammad Ahsar K Program Stud Matematka Unverstas

Lebih terperinci

BAB III PERBANDINGAN ANALISIS REGRESI MODEL LOG - LOG DAN MODEL LOG - LIN. Pada prinsipnya model ini merupakan hasil transformasi dari suatu model

BAB III PERBANDINGAN ANALISIS REGRESI MODEL LOG - LOG DAN MODEL LOG - LIN. Pada prinsipnya model ini merupakan hasil transformasi dari suatu model BAB III PERBANDINGAN ANALISIS REGRESI MODEL LOG - LOG DAN MODEL LOG - LIN A. Regres Model Log-Log Pada prnspnya model n merupakan hasl transformas dar suatu model tdak lner dengan membuat model dalam bentuk

Lebih terperinci

Gambar 3.1 Diagram alir penelitian

Gambar 3.1 Diagram alir penelitian BAB 3 METODE PENELITIAN 3.1 Dagram Alr Peneltan Materal Amorph Magnetk (Fe 73 Al 5 Ga 2 P 8 C 5 B 4 S 3 ) Ekspermen DfraksNeutron (I vs 2theta) Smulas Insalsas atom secara random Fungs struktur, F(Q) Perhtungan

Lebih terperinci

KAJIAN DAN ALGORITMA PELABELAN PSEUDO EDGE-MAGIC. memiliki derajat maksimum dan tidak ada titik yang terisolasi. Jika n i adalah

KAJIAN DAN ALGORITMA PELABELAN PSEUDO EDGE-MAGIC. memiliki derajat maksimum dan tidak ada titik yang terisolasi. Jika n i adalah BAB III KAJIAN DAN ALGORITMA PELABELAN PSEUDO EDGE-MAGIC III. Batas Bawah Magc Number pada Pelabelan Total Pseudo Edge-Magc Teorema 3.. Anggap G = (,E) adalah sebuah graf dengan n-ttk dan m-ss dan memlk

Lebih terperinci

V = adalah himpunan hingga, dan misalkan

V = adalah himpunan hingga, dan misalkan BAB III ALJABAR HIPERGRAF 3. Hpergraf Defns Msalkan { v, v2,..., vn} V = adalah hpunan hngga, dan salkan ε = {, I} adalah koleks dar hpunan bagan dar V. Koleks ε enjad E suatu hpergraf pada V jka hpergraf.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB LANDASAN TEORI.1 Analsa Regres Analsa regres dnterpretaskan sebaga suatu analsa yang berkatan dengan stud ketergantungan (hubungan kausal) dar suatu varabel tak bebas (dependent varable) atu dsebut

Lebih terperinci

3 METODE HEURISTIK UNTUK VRPTW

3 METODE HEURISTIK UNTUK VRPTW 12 3 METODE HEURISTIK UNTUK VRPTW 3.1 Metode Heurstk Metode heurstk merupakan salah satu metode penentuan solus optmal dar permasalahan optmas kombnatoral. Berbeda dengan solus eksak yang menentukan nla

Lebih terperinci

Didownload dari ririez.blog.uns.ac.id BAB I PENDAHULUAN

Didownload dari ririez.blog.uns.ac.id BAB I PENDAHULUAN BAB I PENDAHULUAN Sebuah jarngan terdr dar sekelompok node yang dhubungkan oleh busur atau cabang. Suatu jens arus tertentu berkatan dengan setap busur. Notas standart untuk menggambarkan sebuah jarngan

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 23-32, April 2001, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 23-32, April 2001, ISSN : JRNAL MATEMATIKA DAN KOMPTER Vol 4 No 1, 3-3, Aprl 1, ISSN : 141-51 KAJIAN DISKRETISASI DENGAN METODE GALERKIN SEMI DISKRET TERHADAP EFISIENSI SOLSI MODEL RAMBATAN PANAS TANPA SK KONVEKSI Suhartono dan

Lebih terperinci

Preferensi untuk alternatif A i diberikan

Preferensi untuk alternatif A i diberikan Bahan Kulah : Topk Khusus Metode Weghted Product (WP) menggunakan perkalan untuk menghubungkan ratng atrbut, dmana ratng setap atrbut harus dpangkatkan dulu dengan bobot atrbut yang bersangkutan. Proses

Lebih terperinci

BAB 2 LANDASAN TEORI. estimasi, uji keberartian regresi, analisa korelasi dan uji koefisien regresi.

BAB 2 LANDASAN TEORI. estimasi, uji keberartian regresi, analisa korelasi dan uji koefisien regresi. BAB LANDASAN TEORI Pada bab n akan durakan beberapa metode yang dgunakan dalam penyelesaan tugas akhr n. Selan tu penuls juga mengurakan tentang pengertan regres, analss regres berganda, membentuk persamaan

Lebih terperinci

BAB III METODELOGI PENELITIAN. metode penelitian yang digunakan dalam penelitian ini adalah metode deskriptif

BAB III METODELOGI PENELITIAN. metode penelitian yang digunakan dalam penelitian ini adalah metode deskriptif BAB III METODELOGI PENELITIAN 3.1 Desan Peneltan Metode peneltan mengungkapkan dengan jelas bagamana cara memperoleh data yang dperlukan, oleh karena tu metode peneltan lebh menekankan pada strateg, proses

Lebih terperinci

PENERAPAN PROGRAM LINIER KABUR DALAM ANALISIS SENSITIVITAS PROGRAM LINIER

PENERAPAN PROGRAM LINIER KABUR DALAM ANALISIS SENSITIVITAS PROGRAM LINIER Penerapan Program Lner Kabur dalam Analss.. Elfranto PENERAPAN PROGRAM LINIER KABUR DALAM ANALISIS SENSITIVITAS PROGRAM LINIER Elfranto Dosen Unverstas Muhammadyah Sumatera Utara Abstrak: Salah satu kaan

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 33-40, April 2001, ISSN : KLASIFIKASI INTERAKSI GELOMBANG PERMUKAAN BERTIPE DUA SOLITON

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 33-40, April 2001, ISSN : KLASIFIKASI INTERAKSI GELOMBANG PERMUKAAN BERTIPE DUA SOLITON JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No., 33-40, Aprl 00, ISSN : 40-858 KLASIFIKASI INTERAKSI GELOMBANG PERMUKAAN BERTIPE DUA SOLITON Sutmn dan Agus Rusgyono Jurusan Matematka FMIPA UNDIP Abstrak Pada

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 59-70, Agustus 2003, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 59-70, Agustus 2003, ISSN : JURNA MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 59-70, Agustus 2003, ISSN : 1410-8518 MASAAH RUTE TERPENDEK PADA JARINGAN JAAN MENGGUNAKAN AMPU AU-INTAS Stud Kasus: Rute Peralanan Ngesrep Smpang ma Eko Bud

Lebih terperinci

BAB II TINJAUAN PUSTAKA. George Boole dalam An Investigation of the Laws of Thought pada tahun

BAB II TINJAUAN PUSTAKA. George Boole dalam An Investigation of the Laws of Thought pada tahun BAB II TINJAUAN PUSTAKA 2.1 Aljabar Boolean Barnett (2011) menyatakan bahwa Aljabar Boolean dpublkaskan oleh George Boole dalam An Investgaton of the Laws of Thought pada tahun 1954. Dalam karya n, Boole

Lebih terperinci

BAB 3 PRINSIP INKLUSI EKSKLUSI

BAB 3 PRINSIP INKLUSI EKSKLUSI BAB 3 PRINSIP INKLUSI EKSKLUSI. Tentukan banyak blangan bulat dar sampa dengan 0.000 yang tdak habs dbag 4, 6, 7 atau 0. Jawab: Msal: S = {, 2, 3, 4, 5,..., 0.000} a = {sfat habs dbag 4} a 2 = {sfat habs

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 3, , Desember 2002, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 3, , Desember 2002, ISSN : JURNAL MATEMATIKA AN KOMPUTER Vol. 5. No. 3, 161-167, esember 00, ISSN : 1410-8518 PENGARUH SUATU ATA OBSERVASI ALAM MENGESTIMASI PARAMETER MOEL REGRESI Hern Utam, Rur I, dan Abdurakhman Jurusan Matematka

Lebih terperinci

BAB VB PERSEPTRON & CONTOH

BAB VB PERSEPTRON & CONTOH BAB VB PERSEPTRON & CONTOH Model JST perseptron dtemukan oleh Rosenblatt (1962) dan Mnsky Papert (1969). Model n merupakan model yang memlk aplkas dan pelathan yang lebh bak pada era tersebut. 5B.1 Arstektur

Lebih terperinci

PENDAHULUAN Latar Belakang

PENDAHULUAN Latar Belakang PENDAHULUAN Latar Belakang Menurut teor molekuler benda, satu unt volume makroskopk gas (msalkan cm ) merupakan suatu sstem yang terdr atas sejumlah besar molekul (kra-kra sebanyak 0 0 buah molekul) yang

Lebih terperinci

PERANCANGAN JARINGAN AKSES KABEL (DTG3E3)

PERANCANGAN JARINGAN AKSES KABEL (DTG3E3) PERCG JRIG KSES KBEL (DTG3E3) Dsusun Oleh : Hafdudn,ST.,MT. (HFD) Rohmat Tulloh, ST.,MT (RMT) Prod D3 Teknk Telekomunkas Fakultas Ilmu Terapan Unverstas Telkom 015 Peramalan Trafk Peramalan Trafk Peramalan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Hpotess Peneltan Berkatan dengan manusa masalah d atas maka penuls menyusun hpotess sebaga acuan dalam penulsan hpotess penuls yatu Terdapat hubungan postf antara penddkan

Lebih terperinci

BAB IV APLIKASI. Pada bagian ini akan dibahas bagaimana contoh mengestimasi. parameter model yang diasumsikan memiliki karateristik spasial lag

BAB IV APLIKASI. Pada bagian ini akan dibahas bagaimana contoh mengestimasi. parameter model yang diasumsikan memiliki karateristik spasial lag BAB IV APLIKASI Pada bagan n akan dbahas bagamana contoh mengestmas parameter model yang dasumskan memlk karaterstk spasal lag sekalgus spasal error. Estmas dlakukan dengan menggunakan software Evews 3

Lebih terperinci

UJI NORMALITAS X 2. Z p i O i E i (p i x N) Interval SD

UJI NORMALITAS X 2. Z p i O i E i (p i x N) Interval SD UJI F DAN UJI T Uj F dkenal dengan Uj serentak atau uj Model/Uj Anova, yatu uj untuk melhat bagamanakah pengaruh semua varabel bebasnya secara bersama-sama terhadap varabel terkatnya. Atau untuk menguj

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Di dalam matematika mulai dari SD, SMP, SMA, dan Perguruan Tinggi

BAB I PENDAHULUAN. 1.1 Latar Belakang. Di dalam matematika mulai dari SD, SMP, SMA, dan Perguruan Tinggi Daftar Is Daftar Is... Kata pengantar... BAB I...1 PENDAHULUAN...1 1.1 Latar Belakang...1 1.2 Rumusan Masalah...2 1.3 Tujuan...2 BAB II...3 TINJAUAN TEORITIS...3 2.1 Landasan Teor...4 BAB III...5 PEMBAHASAN...5

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertan Regres Regres pertama kal dpergunakan sebaga konsep statstka oleh Sr Francs Galton (1822 1911). Belau memperkenalkan model peramalan, penaksran, atau pendugaan, yang

Lebih terperinci

BAB VI MODEL-MODEL DETERMINISTIK

BAB VI MODEL-MODEL DETERMINISTIK BAB VI MODEL-MODEL DETERMINISTIK 6. Masalah Penyaluran Daya Lstrk Andakan seorang perencana sstem kelstrkan merencakan penyaluran daya lstrk dar beberapa pembangkt yang ternterkoneks dan terhubung dengan

Lebih terperinci

PENDAHULUAN LANDASAN TEORI

PENDAHULUAN LANDASAN TEORI PENDAHULUAN Latar elakang Masalah pengrman barang hasl produks bag suatu perusahaan kepada para pelanggannya merupakan masalah yang sangat pentng, karena hal tu berkatan dengan kepuasan pelanggan akan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 2 LNDSN TEORI 2. Teor engamblan Keputusan Menurut Supranto 99 keputusan adalah hasl pemecahan masalah yang dhadapnya dengan tegas. Suatu keputusan merupakan jawaban yang past terhadap suatu pertanyaan.

Lebih terperinci

81 Bab 6 Ruang Hasilkali Dalam

81 Bab 6 Ruang Hasilkali Dalam 8 Bab Rang Haslkal Dalam Bab RUANG HASIL KALI DALAM Rang hasl kal dalam merpakan rang ektor yang dlengkap dengan operas hasl kal dalam. Sepert halnya rang ektor rang haslkal dalam bermanfaat dalam beberapa

Lebih terperinci

PENYELESAIAN SISTEM LINIER

PENYELESAIAN SISTEM LINIER PENYELESAIAN SISTEM LINIER I. PENDAHULUAN.. Topk-topk Yang Dbahas :. Substtus mundur (back substtuton). Reduks ganjl-genap (odd-even reducton) atau reduks skls (cyclc reducton).. Metoda Pembahasan. Algortma

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi Game Theory

BAB II DASAR TEORI. 2.1 Definisi Game Theory BAB II DASAR TEORI Perkembangan zaman telah membuat hubungan manusa semakn kompleks. Interaks antar kelompok-kelompok yang mempunya kepentngan berbeda kemudan melahrkan konflk untuk mempertahankan kepentngan

Lebih terperinci

BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE

BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE 6B.1 Pelathan ADALINE Model ADALINE (Adaptve Lnear Neuron) dtemukan oleh Wdrow & Hoff (1960) Arstekturnya mrp dengan perseptron Perbedaan

Lebih terperinci

PENERAPAN METODE LINIEAR DISCRIMINANT ANALYSIS PADA PENGENALAN WAJAH BERBASIS KAMERA

PENERAPAN METODE LINIEAR DISCRIMINANT ANALYSIS PADA PENGENALAN WAJAH BERBASIS KAMERA PENERAPAN MEODE LINIEAR DISCRIMINAN ANALYSIS PADA PENGENALAN AJAH ERASIS KAMERA Asep Sholahuddn 1, Rustam E. Sregar 2,Ipng Suprana 3,Setawan Had 4 1 Mahasswa S3 FMIPA Unverstas Padjadjaran e-mal: asep_sholahuddn@yahoo.com

Lebih terperinci

BAB III MODEL LINEAR TERGENERALISASI. Perkembangan pemodelan stokastik, terutama model linier, dapat dikatakan

BAB III MODEL LINEAR TERGENERALISASI. Perkembangan pemodelan stokastik, terutama model linier, dapat dikatakan BAB III MODEL LINEAR TERGENERALISASI 3.1 Moel Lnear Perkembangan pemoelan stokastk, terutama moel lner, apat katakan mula paa aba ke 19 yang asar oleh teor matematka yang elaskan antaranya oleh Gauss,

Lebih terperinci

SELANG KEPERCAYAAN UNTUK KOEFISIEN GARIS REGRESI LINEAR DENGAN METODE LEAST MEDIAN SQUARES 1 ABSTRAK

SELANG KEPERCAYAAN UNTUK KOEFISIEN GARIS REGRESI LINEAR DENGAN METODE LEAST MEDIAN SQUARES 1 ABSTRAK SELANG KEPERCAYAAN UNTUK KOEFISIEN GARIS REGRESI LINEAR DENGAN METODE LEAST MEDIAN SQUARES Harm Sugart Jurusan Statstka FMIPA Unverstas Terbuka emal: harm@ut.ac.d ABSTRAK Adanya penympangan terhadap asums

Lebih terperinci

PELABELAN HARMONIS GANJIL PADA GABUNGAN GRAF ULAR DAN GRAF ULAR BERLIPAT

PELABELAN HARMONIS GANJIL PADA GABUNGAN GRAF ULAR DAN GRAF ULAR BERLIPAT PROSIDING ISSN: 50-656 PELABELAN HARMONIS GANJIL PADA GABUNGAN GRAF ULAR DAN GRAF ULAR BERLIPAT Fery Frmansah Prod Penddkan Matematka FKIP Unverstas Wdya Dharma Klaten, 5738 Emal :eryrmansah@unwdhaacd

Lebih terperinci

II. TEORI DASAR. Definisi 1. Transformasi Laplace didefinisikan sebagai

II. TEORI DASAR. Definisi 1. Transformasi Laplace didefinisikan sebagai II. TEORI DASAR.1 Transormas Laplace Ogata (1984) mengemukakan bahwa transormas Laplace adalah suatu metode operasonal ang dapat dgunakan untuk menelesakan persamaan derensal lnear. Dengan menggunakan

Lebih terperinci

BAB IV PEMBAHASAN MODEL

BAB IV PEMBAHASAN MODEL BAB IV PEMBAHASAN MODEL Pada bab IV n akan dlakukan pembuatan model dengan melakukan analss perhtungan untuk permasalahan proses pengadaan model persedaan mult tem dengan baya produks cekung dan jont setup

Lebih terperinci

STATISTICAL STUDENT OF IST AKPRIND

STATISTICAL STUDENT OF IST AKPRIND E-mal : statstkasta@yahoo.com Blog : Analss Regres SederhanaMenggunakan MS Excel 2007 Lsens Dokumen: Copyrght 2010 sssta.wordpress.com Seluruh dokumen d sssta.wordpress.com dapat dgunakan dan dsebarkan

Lebih terperinci

PENDAHULUAN Latar Belakang

PENDAHULUAN Latar Belakang PENDAHULUAN Latar Belakang Mutu sekolah merupakan hasl yang dcapa oleh knera sekolah. Dalam bdang akademk, mutu sekolah dkatkan dengan mutu lulusan sekolah. Indkator mutu lulusan sekolah umumnya menggunakan

Lebih terperinci