KALKULUS INTEGRAL 2013

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "KALKULUS INTEGRAL 2013"

Transkripsi

1 KALKULUS INTEGRAL 0 PENDAHULUAN A. DESKRIPSI MATA KULIAH Isi pokok mata kuliah ini memuat pemahaman tentang: () Anti turunan: pengertian anti turunan, teorema-teorema, dan teknik anti turunan, () Integral tertentu: jumlah Riemann, teorema-teorema integral tertentu, dan teorema dasar kalkulus, () Aplikasi Integral tertentu: luas bidang, volum benda putar, panjang busur kurva, luas permukaan benda putar, usaha, dan pusat massa, (4) Fungsi logaritma, fungsi eksponen, dan fungsi hiperbolik, dan (5) Teknik pengintegralan. B. PERENCANAAN PEMBELAJARAN. Nama Mata Kuliah : Kalkulus II. Kode / sks : MAT 8/ sks. Semester : II (genap) 4. Tujuan Pembelajaran Setelah menyelesaikan mata kuliah ini diharapkan mahasiswa dapat menjelaskan dan mengaplikasikan konsep anti turunan, integral tak tentu, integral tertentu, aplikasi integral tertentu, fungsi logaritma, fungsi eksponen, dan fungsi hiperbolik serta integral fungsi trigonometri dan integral fungsi rasional. 5. Outcome Pembelajaran a. Mahasiswa memahami anti turunan dan integral tak tentu. b. Mahasiswa memahami penggunaan teorema dan rumus teknis integral. c. Mahasiswa memahami notasi sigma, induksi matematika, dan jumlah Riemann d. Mahasiswa dapat menghitung integral terntentu dengan limit jumlah Riemann. e. Mahasiswa dapat membuktikan beberapa teorema integral tertentu. f. Mahasiswa dapat menjelaskan teorema dasar Kalkulus integral. g. Mahasiswa dapat menghitung integral tertentu berdasarkan teorema-teorema dasar kalkulus. h. Mahasiswa dapat menghitung luas daerah dan volum benda putar. i. Mahasiswa dapat menghitung panjang busur suatu kurva dan luas permukaan benda putar. j. Mahasiswa dapat menentukan integral parsial dan fungsi trigonometri k. Mahasiswa dapat menentukan integral bentuk pecahan dalam sinus dan cosinus. l. Mahasiswa dapat menentukan integral fungsi rasional.

2 KALKULUS INTEGRAL 0 6. Jumlah Jam dan Pembagiannya No Jenis Kegiatan Cacah Kegiatan Jumlah Jam Pengantar Kuliah Kalkulus II: Menjelaskan pengertian kali jam anti turunan dan menjelaskan penghitungan integral tak tentu yang sederhana. ( minggu ke ) Menjelaskan bentuk-bentuk Integral (Integral Trigonometri dan Integral Substitusi) ( minggu ke ) Menjelaskan Integral pecah rasional. ( minggu ke dan 4 ) 4 Menjelaskan pengertian tertentu sebagai limit jumlah Riemann Menjelaskan dan membuktian teorema-teorema integral tertentu Menjelaskan teorema dasar Kalkulus dan (minggu ke 5) 5 Menjelaskan luas daerah bidang datar dan volum benda putar ( minggu ke 6 ) 7. Bahan, Sumber Informasi dan Referensi kali jam kali 4 jam kali jam kali jam 6 Menjelaskan panjang busur kurva dan luas permukaan kali jam bidang benda putar. (minggu ke-7) 7 Ujian Tengah Semester (minggu ke 8) kali jam 8 Menjelaskan teorema fundamental Integral dan pembuktiannya. (minggu ke 9 dan 0) 9 Menjelaskan integral parsial yang melibatkan fungsi transenden. (minggu ke ) 0 Menjelaskan integral yang memuat bentuk a dan a Menjelaskan integral yang memuat bentuk n a, p ( ), kali jam kali jam kali jam dengan p() suku banyak. Menjelaskan integral bentuk pecahan dalam sinus dan cosinus. (minggu ke- dan ) Menjelaskan integral fungsi rasional kali jam Memberikan contoh dan latihan soal. (minggu ke-4 dan 5) Ujian Akhir Semester (minggu ke 6) kali jam a. Purcell, E.J. & Varberg, D Kalkulus dan Geometri Analitis. (Diterjemahkan oleh I Nyoman, Bana Kartasasmita, dan Rawuh). Jilid. Jakarta: Penerbit erlangga. b. Jasman, Pardede.00. Kalkulus I. Jakarta : Erlangga

3 KALKULUS INTEGRAL 0 c. Frank Ayres, Differential and Integral Calculus /ed, McGraw-Hill Book Company, NewYork, 978 d. Leithold, L., 98, The Calculus with Analitic Geometry, th. Harper International Edition, Harper and Row, Publishers, New York, Hagerstown, San Francisco, London. C. PENILAIAN Prosentase penilaian masing-masing adalah sebagai berikut : No. Komponen penilaian Prosentase. Quiz ( 4 kali) 0 %. Ujian Mid Semester 0 %. Ujian Akhir Semester 0 % 4. Tugas ( kali ) 0 % 5 Presensi 5 % 6 Keaktifan 5 % PERTEMUAN I

4 KALKULUS INTEGRAL 0 INTEGRAL A. DEFINISI ANTI TURUNAN (INTEGRAL TAK TENTU) Anti turunan merupakan kebalikan (invers) dari suatu turunan. Seperti didefinisikan pada definisi berikut Kita sebut F suatu anti turunan dari pada selang I jika pada I, yakni jika ( ) ( ) untuk semua dalam I. Jika suatu titik ujung dari I, ( ) hanya perlu berupa turunan satu sisi. Sebagai contoh : Misalkan suatu fungsi maka apabila diturunkan menjadi. Hasil dari turunan tersebut, apabila dikembalikan ke fungsi semula sering disebut anti derivatif (turunan). Teorema. Aturan Pangkat r d r r C Dimana Contoh :. Penyelesaian :. Carilah anti turunan dari Penyelesaian : 4

5 KALKULUS INTEGRAL 0 Teorema. Anti-turunan Sinus-Kosinus Teorema. Kelinieran dari integral Misalkan f dan g mempunyai anti turunan (integral tak tentu) dan andaikan k suatu konstanta. Maka ( ) ( ), ( ) ( )- ( ) ( ) ( ), ( ) ( )- ( ) ( ) RUMUS-RUMUS INTEGRAL Misal : Dimana C merupakan konstanta integrasi. SOLVED PROBLEMS. Find the following antiderivatives a. ( ) b. 5

6 KALKULUS INTEGRAL 0 c. ( ) d. ( ) e.. Find an equation of the curve passing through the point (, ) and having slope at each point (, y). The slope is given by the derivative. B. TEKNIK PENGINTEGRALAN TAK TENTU. PENGINTEGRALAN FUNGSI TRIGONOMETRI Sebelum membahas mengenai teknik pengintegralan khususnya yang berkaitan dengan fungsi trigonometri, anda harus mengingat terlebih dahulu aturan-aturan dalam trigonometri dan sifat-sifat fungsi trigonometri a. b. ( ) c. ( ) d. e. ta e f. g. h. cotg cosec Aturan integral tak tentu fungsi trigonometri a. sin d = -cos + C b. cos d = sin + C c. tan d = ln sec C = -ln cos C d. cot d = - ln csc C = ln sin C e. sec d = ln sec tan C f. csc d = ln csc cot C 6

7 KALKULUS INTEGRAL 0 g. ta e e h. t i. j. Contoh : Tentukan integral tak tentu (( ) ) Penyelesaian : ( ) ) =( ) = Contoh : Tentukan integral tak tentu ( ) Penyelesaian : Perhatikan : ( ) Sehingga : ( ) ( ) ( ) Berdasarkan bentuk di atas selanjutnya diberikan beberapa kasus bentuk integral fungsi trigonometri yang dibahas pada bagian ini, diantaranya adalah: 7

8 KALKULUS INTEGRAL 0 m a. sin d, m dan cos d dengan m bilangan ganjil atau genap positip Jika m bulat positip dan ganjil, maka m diubah menjadi (m-) +, atau m digenapkan terdekat. Selanjutnya substitusi dengan menggunakan kesamaan identitas sin cos atau sin = - cos atau cos = - sin. Akhirnya dengan substitusi tersebut didapat kesamaan antara integran dengan tanda integrasinya, sehingga dengan mudah dapat diselesaikan. Contoh : Penyelesaian : ( ) ( ) ( ) ( )( ) ( ) ( )) ( ) Ingat : atau 8

9 KALKULUS INTEGRAL 0 m m b. Bentuk cos d, sin d, jika m bilangan bulat positip genap, Contoh:.sin d Karena pangkatnya genap, digunakan kesamaan setengah sudut, maka cos sin d = d ( 4. cos d Jawab = d cos d sin = C 4 4 cos d = (cos ) Sifat : ( ) cos d cos = d ( ) d cos = ( cos ) d 4 4 = d = cos ) cos d cos d 4 4 sin ( cos 4) d 4 d. /. / sin sin 4 = C sin sin 4 = C 8 4. sin 4 d 9

10 KALKULUS INTEGRAL 0 Misal u =, du = d atau d = du sin 4 d = sin 4 u cos = du u du, sehingga = ( cos u cos u) du 4 du cos udu = cos udu 8 4 = du cos udu cos 4u du 8 du cos 4udu = cos udu du = u sin u u sin 4u C Karena u =, maka sin 4 d = () sin () () sin 4() C TUGAS. Selesaikan integral tak tentu di bawah ini a..( ) / b. c. d. ( ) e. ( ( ) ). Buktikan ta e. Selesaikan integral tak tentu berikut : 0

11 KALKULUS INTEGRAL 0 Hint : * ( ) ( )+ Tugas di kumpulkan dan presensi sesuai jam kuliah. INTEGRAL DENGAN MENGGUNAKAN SUBSTITUSI a. METODE SUBSTITUSI FUNGSI ALJABAR Metode substitusi sering kali dinamakan dengan metode mengganti bukan menghilangkan. Suatu bentuk integral tidak semuanya dapat diselesaikan dengan metode substitusi, dengan kata lain suatu bentuk integral dapat di selesaikan dengan cara/metode yang bersifat coba-coba. Diberikan fungsi terdefinisi pada [ a,b] dan fungsi, -, - mempunyai invers. Jika dan mempunyai derivatif dan kontinu masing-masing pada interval, - dan, - serta kontinu pada, -, maka : ( ) ( ( )) ( ) Contoh :. ( ) ( ) Penyelesaian : Langkahnya : Misal: ( ) Maka : ( ) ( ) = = = = ( )

12 KALKULUS INTEGRAL 0. Penyelesaian : Misal. ( ) Contoh lain : Buktikan (diteruskan sebagai tugas mahasiswa) ta e Penyelesaian : ta Misal Maka : ta

13 KALKULUS INTEGRAL 0 Ingat : sifat e e Tugas di rumah :. Selesaikan integral di bawah ini : ( ). Selesaikan integral fungsi trigonometri berikut: a. ( ) ( ) b. Ujian Sisipan. Selesaikan integral tak tentu berikut integral a. b.. Hitunglah integral tak tentu berikut b. INTEGRAL PECAH RASIONAL Di berikan persamaan ( ), dengan dan. Selanjutnya P() disebut Polinomial berderajat n. Di berikan polinomial-polinomial P() dan Q() dengan berderakat masing-masing adalah m dan n, maka ( ) ( ) disebut Pecah Rasional P( ) Bentuk umumnya dapat diberikan sebagai H( ), dimana P() Q( ) adalah numerator, sedangkan Q() adalah denumerator. Jika P() > Q() maka P() harus dibagi Q() terlebih dahulu. Integral dengan bentuk rasional ini terdiri dari beberapa kasus, yang masing-masing akan dibahas dibawah ini. Jika pangkat P() lebih rendah dari pangkat Q(), maka P() disebut PROPER dan

14 KALKULUS INTEGRAL 0 sebaliknya P() disebut IMPROPER. Bentuk pecahan rasional yang improper dapat dinyatakan sebagai jumlahan dari polinomial dan suatu pecahan rasional yang proper.. Kasus : Apabila faktor Q()=0 semuanya linier dan berbeda. ( ) ( )( ) ( ) dengan real dan berbeda. Maka ( ) ( ) dapat dinyatakan sebagai berikut : A An, dengan A, A,..., A R P( ) A... Q( ) n konstantakonstanta yang akan dicari. Contoh : n.... Penyelesaian : ( ) ( )( ) Jadi Q() mempunyai dua akar real yang berbeda. Sehingga di peroleh : ( ) ( ) ( ) ( ) Sehingga diperoleh : ( ) ( )...()...() Dari persamaan () dan () dengan metode eliminasi didapat dan Jadi 4

15 5 KALKULUS INTEGRAL 0 (. / ). /.... Penyelesaian : = ) )( ( = ) ( C B A = ) )( ( ) )( ( ) )( ( C B A = ) ( ) ( ) ( C B A = ) ( ) ( ) ( A C A B C B A 0 A A A C B C B A 0 C B C B C B C B C = 4 C = 6 4

16 KALKULUS INTEGRAL 0 = B 0 B = = = Jadi d ( )( ) 6 d d d = ln ln ln c 6 = 6 c ( ) ( ) = ln 4 Latihan :. Tentukan. Tentukan. Tentukan. Kasus : Jika ( ) mempunyai akar riil dan ada yang sama. Maksudnya semua faktor dari penyebut linier, tetapi ada beberapa yang sama (berulang). 6

17 KALKULUS INTEGRAL 0 ( ) ( ) ( ) ( ) dengan real. Maka dapat dinyatakan sebagai berikut : ( ) ( ) P( ) A Q( ) B B ( ) ( ) C C ( ) ( ) t A ( ) t Ap... ( ) t p Bq... ( ) C... r ( ) r q... Dengan konstanta-konstanta yang akan dicari, Contoh :. ( )( )... Penyelesaian : ( ) ( )( ) ( )( ) Jadi Q() mempunyai tiga akar real dan ada yang sama. Sehingga di peroleh : ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( ) carilah nilai? ( ) ( )( ) ( ). ( )( ) Penyelesaian : ( ) d A B C = ( ) ( ) ( - = A ( ) B( ) C D ( ) E ( ) D E ) 7

18 KALKULUS INTEGRAL = ( B E) ( A 6B D 4E) = ( 6A B C D 4E) (A 8B) 8A 7 5 A ; B ; C ; D ; E d = 8 d d ( ) 6 ( d 5 d d ) = ( 7) 5 ln ln c 8 6 8( ) 4 6. Kasus : Jika tidak semua akar riil dan yang tidak riil semuanya berbeda. Artinya penyebut dapat di faktorkan dalam bentuk kombinasi linier dengan kuadrat. Selanjutnya integran dengan bentuk seperti ini dijadikan jumlah pecahan parsial ( ) ( ) ( ) Berdasarkan jumlah tersebut dapat ditentukan A,B, dan C Contoh :. ( )( ) Penyelesaian : ( )( ) = ( ) = ( ) ( )( ) ( )( ) = ( ) ( ) ( ) ( )( ) Di peroleh : 8

19 KALKULUS INTEGRAL 0 sehingga:, ( ) ( ) atau ( )( ) = = =. Selesaikan integral ( )( ) Penyelesaian : (sebagai latihan mahasiswa) Latihan : Tentukan : a. b. ( ) 4. Kasus 4 : Jika tidak semua akar riil dan akar yang tidak riil ada yang sama. Maksudnya untuk faktor kuadratis dengan bentuk yang berulang n kali dalam penyebut pada pecahan rasional yang proper, ditulis sebagai jumlahan dari n pecahan parsiil dalam bentuk : ( ) ( ) Dimana A dan B konstanta yang harus di cari Contoh : ( ) ) Penyelesaian : 9

20 KALKULUS INTEGRAL 0 Latihan : Tentukan ( ) ( ) Penyelesaian : ( ) ( ) = ( ) ( ) (teruskan sebagai latihan mahasiswa) c. INTEGRAL DENGAN SUBSTITUSI FUNGSI TRIGONOMETRI Teknik substitusi fungsi trigonometri digunakan untuk menyelesaikan integral jika integrannya memuat bentuk-bentuk:. a, a > 0, a Real. a = a, a > 0, a Real. a, a > 0, a Real atau bentuk lain yang dapat diubah menjadi bentuk di atas, misalnya a b = a b a b = a b a b = b atau a b c a yang dapat diubah menjadi bentuk kuadrat sempurna. 0

21 KALKULUS INTEGRAL 0 Integrannya memuat a atau sejenisnya, Gunakan substitusi = a sin t atau sin t = a a = a sin t d = a cos t dt t dengan - t sehingga, a a = a ( asin t) = a ( sin t) = a cos t Catatan Gambar segitiga siku-siku di atas yang masing-masing sisinya diketahui berguna untuk menentukan nilai fungsi trigonometri yang lain, yaitu cos t, tan t, cot t, sec t, dan csc t. Hal ini dikarenakan sangat mungkin hasil dari pengintegralan adalah fungsi-fungsi tersebut. Contoh: Tentukan hasil pengintegralan berikut ini:. 4 d Jawab Substitusi = sin t sin t = 4 t d = cos t dt

22 KALKULUS INTEGRAL 0 4 = 4 4sin t cos t Sehingga 4 d = cos t.cos tdt = 4 cost cos tdt = 4 tdt cos = 4 ( cos t) dt = dt + cos t dt = t + sin t + C = t + sin t cos t = arc sin 4 + C sin t cos t Atau 4 cos tdt = 4 ( + t C ) = sint cost + t + C = 4 + arc sin + C 4 = arcsin C. d 4

23 KALKULUS INTEGRAL 0 Jawab d 4 = d 4 ( ) Substitusi (-) = sin t, d = cos t dt 4 ( ) cost, sehingga 4 t d 4 ( ) cos tdt = cos t = dt = t + C = arc sin + C Kerjakan soal berikut sebagai latihan (sebagai tugas pertemuan ke-8) d. 5 d. 9. d ( 4 ) 4. d 5. d 6

24 KALKULUS INTEGRAL 0 INTEGRAL TERTENTU I. Landasan Teori Definisi: catatan : definite integral sering disebut sebagai Integral Riemann. Untuk menentukan nilai definite integral secara langsung dengan definisi di atas maka kita harus menggunkan jumlah Riemann (jumlah Riemann akan dijelaskan dalam contoh). Hal ini kurang efisien, terkadang dalam perhitungannya menemui kesalahan. Oleh karena itu, nilai definite integral ditentukan dengan menggunakan teorema dasar integral kalkulus berikut ini : Sifat- Sifat Umum Definite Integral : Misalkan f() dan g() merupakan fungsi-fungsi kontinu dalam interval tertutup [a,b], maka definite integral memenuhi sifat-sifat umum sebagai berikut : 4

25 KALKULUS INTEGRAL 0 Menentukan Luas dengan Proses Limit Luasan Di Bawah Suatu Kurva Bila digambarkan suatu persegi panjang pada suatu koordinat cartesius,luas persegi panjang tersebut dengan mudah dapat dicari. Perhatikan gambar 5. Luas persegi panjang adalah A=f(). Gambar 5. 5

26 KALKULUS INTEGRAL 0 Bila jumlah persegi panjang kita perbanyak menjadi 4 dengan lebar yang sama namun tinggi f()-nya berbeda-beda maka keadaannya akan terlihat seperti gambar 5.. Gambar 5. Luas keseluruhan persegi panjang adalah : ( ) ( ) ( ) ( ) Jika jumlah persegi panjangnya kita perbanyak lagi menjadi 0 dengan tinggi f()-nya yang berbeda-beda dan dengan Δ nya kita perkecil. Hasilnya akan menjadi seperti ditunjukkan pada gambar 5.. Gambar 5. 6

27 KALKULUS INTEGRAL 0 Luas totalnya dirumuskan sebagai : ( ) Jika jumlah persegi panjangnya kita perbanyak lagi menjadi 00 dengan tinggi f()-nya yang berbeda-beda dan dengan Δ nya kita perkecil lagi. Hasilnya akan menjadi seperti ditunjukkan pada gambar 5.4. Gambar 5.4 Pada gambar 5. sampai gambar 5.4 secara tidak disadari kita telah membuat tinggi persegi panjang berubah memenuhi keteraturan mendekati pola persamaan : ( ) Bila jumlah persegi panjang kita tambah lagi menjadi n, dan seiring dengan itu membuat 0, maka tinggi f() untuk setiap Δ berubah secara kontinu mengikuti persamaan : ( ). Sehingga luas keseluruhan persegi panjangnya dinyatakan sebagai : ( ) ( ) Jika kita membuat Δ mendekati 0, maka penulisan o n lim berubah menjadi dan Δ berubah menjadi d. Sehingga selengkapnya ditulis menjadi : 7

28 KALKULUS INTEGRAL 0 ( ) ( ) Fungsi f() pada contoh di atas adalah fungsi satu variable bebas, yaitu : variable. Jika fungsi yang diintegralkan adalah fungsi satu variable bebas maka hasilnya adalah merupakan luasan (A) yang dibatasi oleh fungsi tersebut dengan sumbu-. Maka untuk mencari suatu luasan yang berada di bawah kurva suatu fungsi dapat dilakukan dengan cara integral.s Misalkan kurva y = f() kontinu dalam interval a < < b. Luas daerah yang dibatasi oleh kurva y = f(), sumbu, dan garis-garis = a dan = b, dapat ditentukan dengan menggunakan proses limit sebagai berikut :. Mula-mula interval [a,b] dibagi menjadi n buah sub-interval (panjang tiap sub interval tidak perlu sama) dengan cara menyisipkan (n-) buah titik. Misalkan titik-titik itu adalah,,... n Ditetapkan pula bahwa a 0 dan b n, sehingg a 0... n b Dengan demikian, panjang setiap sub-0 ninterval adalah 0,,..., i i i,......, n n n. Dalam setiap sub-interval i i i, kita tentukan titik dengan absis i dan koordinatnya f ( i ). Kemudian dibuat persegi panjang - persegi panjang dengan lebar i dan tinggi f ( i ), seperti diperlihatkan pada gambar dibawah ini. Perhatikan bahwa banyaknya persegi panjang yang dibuat dengan cara seperti itu ada n buah, dan luas masing-masing persegi panjang itu adalah: 8

29 KALKULUS INTEGRAL 0. Luas daerah L didekati dengan jumlah semua luas persegi panjang tadi, Jadi, L f ) f ( ) f ( )... f ( n ) ( n Dengan menggunakan notasi sigma bagian ruas kanan dari bentuk di atas dapat dituliskan menjadi : n L f ( i ) i i Untuk menunjukkan bahwa penjumlahan tersebut mencakup ujung-ujung interval a dan b, maka hubungan di atas dapat ditulis sebagai berikut : b L a f ( ) Bentuk penjumlahan n L f ( i ) i i disebut sebagai jumlah Reimann.. Luas daerah L yang sebenarnya diperoleh dengan mengambil nilai n yang Cukup besar ( n 6). Ini berarti baha nilai menjadi kecil sekali ( 60). Dengan demikian, luas daerah L ditentukan dengan : L n b lim f ( i ) i atau L f ( ) n i a Untuk menyederhanakan cara penulisan, bentuk-bentuk limit di atas dapat dituliskan menjadi : n b lim ( i ) i lim n 60 i lim60 f f ( ) f ( ) d a b a Jadi, luas daerah L ditentukan oleh rumus : b L f ( ) d a 9

30 KALKULUS INTEGRAL 0 Menentukan Luas Daerah Antara Dua Kurva Misalkan dua kurva masing-masing dengan persamaan y = f() dan y = g(), merupakan kurva-kurva yang kontinu dan f() > g() dalam interval a < < b. Daerah yang dibatasi oleh kurva y = f(), kurva y = g(), garis = a dan garis = b diperlihatkan pada gambar di bawah. Kita dapat menentukan luas daerah yang diarsir (ABCD) dengan cara sebagai berikut : Luas ABCD = Luas EFCD Luas EFBA b b = f ( ) d g( ) d a = f ( ) g( ) d a b a Jadi, luas daerah yang dibatasi oleh kurva y = f() dan y = g(), garis = a dan garis = b, ditentukan dengan rumus : b L f ( ) g( ) d Dengan catatan bahwa f() > g() dalam interval a < < b a 0

KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I

KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I 7 INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Memahami konsep dasar integral, teorema-teorema, sifat-sifat, notasi jumlah, fungsi transenden dan teknik-teknik pengintegralan. Materi

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

SATUAN ACARA PERKULIAHAN JURUSAN TEKNIK INFORMATIKA ITP

SATUAN ACARA PERKULIAHAN JURUSAN TEKNIK INFORMATIKA ITP SATUAN ACARA PERKULIAHAN JURUSAN TEKNIK INFORMATIKA ITP Mata kuliah : Kalkulus II Kode Mata Kuliah : TIS2213 SKS : 3 Waktu Pertemuan : 16 kali Pertemuan Deskripsi : Mata kuliah Kalkulus II mempelajari

Lebih terperinci

SATUAN ACARA PERKULIAHAN JURUSAN TEKNIK INFORMATIKA ITP

SATUAN ACARA PERKULIAHAN JURUSAN TEKNIK INFORMATIKA ITP SATUAN ACARA PERKULIAHAN JURUSAN TEKNIK INFORMATIKA ITP Mata kuliah : Kalkulus 1 Kode Mata Kuliah : TIS1213 SKS : 3 Waktu Pertemuan : 16 kali Pertemuan Deskripsi : Tujuan utama dari mata kuliah ini adalah

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4.0. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

Satuan Acara Perkuliahan SEKOLAH TINGGI ILMU STATISTIK. Jam pembelajaran per Pertemuan kelas 150 menit Pertemuan praktikum 0 menit Kegiatan lain

Satuan Acara Perkuliahan SEKOLAH TINGGI ILMU STATISTIK. Jam pembelajaran per Pertemuan kelas 150 menit Pertemuan praktikum 0 menit Kegiatan lain Satuan Acara Perkuliahan SEKOLAH TINGGI ILMU STATISTIK A. INFORMASI UMUM Mata kuliah SS1131 Kalkulus 1 Jurusan Statistika/Komputasi Statistika Tgl berlaku Oktober 2014 Satuan kredit semester 3 SKS Bidang

Lebih terperinci

Aturan dasar pengintegralan Integral fungsi rasional Integral parsial Integral trigonometri Substitusi yang merasionalkan Strategi pengintegralan

Aturan dasar pengintegralan Integral fungsi rasional Integral parsial Integral trigonometri Substitusi yang merasionalkan Strategi pengintegralan Aturan dasar pengintegralan Integral fungsi rasional Integral parsial Integral trigonometri Substitusi yang merasionalkan Strategi pengintegralan Kemampuan yang diinginkan: kejelian melihat bentuk soal

Lebih terperinci

BAB VI. INTEGRAL TAK TENTU (ANTI TURUNAN)

BAB VI. INTEGRAL TAK TENTU (ANTI TURUNAN) PENDAHULUAN BAB VI. INTEGRAL TAK TENTU (ANTI TURUNAN) (Pertemuan ke 11 & 12) Diskripsi singkat Pada bab ini dibahas tentang integral tak tentu, integrasi parsial dan beberapa metode integrasi lainnya yaitu

Lebih terperinci

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya FUNGSI dan LIMIT 1.1 Fungsi dan Grafiknya Fungsi : suatu aturan yang menghubungkan setiap elemen suatu himpunan pertama (daerah asal) tepat kepada satu elemen himpunan kedua (daerah hasil) fungsi Daerah

Lebih terperinci

Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif INTEGRASI FUNGSI. 0 a b X A. b A = f (X) dx a. Penyusun : Martubi, M.Pd., M.T.

Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif INTEGRASI FUNGSI. 0 a b X A. b A = f (X) dx a. Penyusun : Martubi, M.Pd., M.T. Kode Modul MAT. TKF 20-03 Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif INTEGRASI FUNGSI Y Y = f (X) 0 a b X A b A = f (X) dx a Penyusun : Martubi, M.Pd., M.T. Sistem Perencanaan Penyusunan Program

Lebih terperinci

FUNGSI LOGARITMA ASLI

FUNGSI LOGARITMA ASLI FUNGSI LOGARITMA ASLI............ Definisi Fungsi logaritma asli, dinyatakan oleh ln, didefinisikan sebagai ln (Daerah asalnya adalah., 0 Turunan Logaritma Asli ln, 0 Lebih umumnya, Jika 0 dan f terdifferensialkan,

Lebih terperinci

SATUAN ACARA PEMBELAJARAN (SAP)

SATUAN ACARA PEMBELAJARAN (SAP) SATUAN ACARA PEMBELAJARAN (SAP) Mata Kuliah Kode Mata Kuliah SKS Durasi Pertemuan Pertemuan ke : Kalkulus : TSP-102 : 3 (tiga) : 150 menit : 1 (Satu) A. Kompetensi: a. Umum : Mahasiswa dapat menggunakan

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS)

RENCANA PEMBELAJARAN SEMESTER (RPS) RENCANA PEMBELAJARAN SEMESTER (RPS) MUG1A4 KALKULUS 1 Disusun oleh: Jondri, M.Si. PROGRAM STUDI S1 TEKNIK INFORMATIKA FAKULTAS INFORMATIKA TELKOM UNIVERSITY LEMBAR PENGESAHAN Rencana Semester (RPS) ini

Lebih terperinci

FUNGSI LOGARITMA ASLI

FUNGSI LOGARITMA ASLI D.. = D.. = D.. = = 0 D.. = D.. = D.. = 3 FUNGSI LOGARITMA ASLI Definisi Fungsi logaritma asli, dinyatakan oleh ln, didefinisikan sebagai ln = (Daerah asalnya adalah R). t dt, > 0 Turunan Logaritma Asli

Lebih terperinci

TEKNIK PENGINTEGRALAN

TEKNIK PENGINTEGRALAN TEKNIK PENGINTEGRALAN Departemen Matematika FMIPA IPB Bogor, 202 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 202 / 2 Topik Bahasan Pendahuluan 2 Manipulasi Integran 3 Integral Parsial 4 Dekomposisi

Lebih terperinci

GARIS BESAR PROGRAM PENGAJARAN (GBPP) Pokok Bahasan Sub Pokok Bahasan Metode Media/ Alat

GARIS BESAR PROGRAM PENGAJARAN (GBPP) Pokok Bahasan Sub Pokok Bahasan Metode Media/ Alat Mata Kuliah Kode/Bobot Deskripsi Singkat : Tujuan Instruksional Umum : : Kalkulus : TSP-102/3 SKS GARIS BESAR PROGRAM PENGAJARAN (GBPP) Mata kuliah ini membahas tentang konsep dasar matematika. Pembahasan

Lebih terperinci

TEKNIK-TEKNIK PENGINTEGRALAN

TEKNIK-TEKNIK PENGINTEGRALAN TEKNIK-TEKNIK PENGINTEGRALAN 1. Teknik Subtitusi Teorema : Misal g fungsi yang terdiferensialkan dan F suatu anti turunan dari f, jika u = g() maka f(g())g () d = f(u) du = F(u) + c = F(g()) + c sin. 1.

Lebih terperinci

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS MODUL 1 Teori Bilangan Bilangan merupakan sebuah alat bantu untuk menghitung, sehingga pengetahuan tentang bilangan, mutlak diperlukan. Pada modul pertama ini akan dibahas mengenai bilangan (terutama bilangan

Lebih terperinci

Definisi & Rumus Dasar

Definisi & Rumus Dasar SATUAN ACARA PERKULIAHAN (SAP) MATA KULIAH : Matematika Dasar 2 (2 SKS, Ujian Utama) JENJANG/JURUSAN : S1-Teknik Informatika KODE MATA KULIAH : IT 04211 Minggu Pokok Bahasan TIU Sub Pokok Bahasan Sasaran

Lebih terperinci

SILABUS MATAKULIAH. Revisi : 2 Tanggal Berlaku : September Indikator Pokok Bahasan/Materi Strategi Pembelajaran

SILABUS MATAKULIAH. Revisi : 2 Tanggal Berlaku : September Indikator Pokok Bahasan/Materi Strategi Pembelajaran SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : September 2014 A. Identitas 1. Nama Matakuliah : A11. 54101 / Kalkulus I 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer 4. Bobot sks

Lebih terperinci

Kelompok Mata Kuliah : MKU Program Studi/Program : Teknik Tenaga Elektrik/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T.

Kelompok Mata Kuliah : MKU Program Studi/Program : Teknik Tenaga Elektrik/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T. DESKRIPSI MATA KULIAH TK-... Matematika Dasar: S1, 3 SKS, Semester I Mata kuliah ini merupakan kuliah dasar. Selesai mengikuti perkuliahan ini mahasiswa diharapkan mampu memahami konsep-konsep matematika

Lebih terperinci

Kelompok Mata Kuliah : MKU Program Studi/Program : Pendidikan Teknik Elektro/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T.

Kelompok Mata Kuliah : MKU Program Studi/Program : Pendidikan Teknik Elektro/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T. DESKRIPSI MATA KULIAH TK-301 Matematika: S1, 3 SKS, Semester I Mata kuliah ini merupakan kuliah dasar. Selesai mengikuti perkuliahan ini mahasiswa diharapkan mampu memahami konsep-konsep matematika dan

Lebih terperinci

Catatan Kuliah MA1123 Kalkulus Elementer I

Catatan Kuliah MA1123 Kalkulus Elementer I Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):

Lebih terperinci

RUMUS INTEGRAL TAK TENTU MELALUI POLA INTEGRAL TUGAS AKHIR

RUMUS INTEGRAL TAK TENTU MELALUI POLA INTEGRAL TUGAS AKHIR RUMUS INTEGRAL TAK TENTU MELALUI POLA INTEGRAL TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika oleh SUTIKA DEWI 0854004458 FAKULTAS SAINS DAN

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN SATUAN ACARA 1. PROGRAM STUDI : Pendidikan Matematika/Matematika 2. MATA KULIAH/KODE/SEMESTER : Kalkulus II/MT 307/2 3. PRASYARAT : Kalkulus I 4. JENJANG / SKS : S1/3 SKS 5. LOMPOK MATA KULIAH : Matakuliah

Lebih terperinci

1 Sistem Bilangan Real

1 Sistem Bilangan Real Learning Outcome Rencana Pembelajaran Setelah mengikuti proses pembelajaran ini, diharapkan mahasiswa dapat ) Menentukan solusi pertidaksamaan aljabar ) Menyelesaikan pertidaksamaan dengan nilai mutlak

Lebih terperinci

INTEGRAL TAK TENTU (subtitusi parsial) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

INTEGRAL TAK TENTU (subtitusi parsial) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ INTEGRAL TAK TENTU subtitusi parsial Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ agustina.mipa@unej.ac.id DEFINISI Untuk ungsi yang terdeinisi pada selang terbuka I, dpt ditentukan ungsi

Lebih terperinci

FUNGSI TRIGONOMETRI, FUNGSI EKSPONEN, FUNGSI LOGARITMA

FUNGSI TRIGONOMETRI, FUNGSI EKSPONEN, FUNGSI LOGARITMA FUNGSI TRIGONOMETRI, FUNGSI EKSPONEN, FUNGSI LOGARITMA Makalah Ini Disusun Guna Memenuhi Tugas Mata Kuliah Kalkulus Dosen Pengampu : Muhammad Istiqlal, M.Pd. Disusun Oleh:. Mukhammad Rif an Alwi (070600).

Lebih terperinci

Rencana Pembelajaran

Rencana Pembelajaran Learning Outcome Rencana Pembelajaran Setelah mengikuti proses pembelajaran ini, diharapkan mahasiswa dapat ) Menentukan nilai turunan suatu fungsi di suatu titik ) Menentukan nilai koefisien fungsi sehingga

Lebih terperinci

MATERI PELAJARAN MATEMATIKA SMA KELAS X BAB I: BENTUK PANGKAT, AKAR, DAN LOGARITMA. 1.1 Pangkat Bulat. A. Pangkat Bulat Positif

MATERI PELAJARAN MATEMATIKA SMA KELAS X BAB I: BENTUK PANGKAT, AKAR, DAN LOGARITMA. 1.1 Pangkat Bulat. A. Pangkat Bulat Positif MATERI PELAJARAN MATEMATIKA SMA KELAS X BAB I: BENTUK PANGKAT, AKAR, DAN LOGARITMA 1.1 Pangkat Bulat A. Pangkat Bulat Positif B. Pangkat Bulat Negatif dan Nol C. Notasi Ilmiah D. Sifat-Sifat Bilangan Berpangkat

Lebih terperinci

SATUAN ACARA PERKULIAHAN (SAP) MATA KULIAH : Kalkulus 2 (2 SKS) JENJANG/JURUSAN : S1-Teknik Elektro/Mesin/Industri

SATUAN ACARA PERKULIAHAN (SAP) MATA KULIAH : Kalkulus 2 (2 SKS) JENJANG/JURUSAN : S1-Teknik Elektro/Mesin/Industri SATUAN ACARA PERKULIAHAN (SAP) MATA KULIAH : Kalkulus ( SKS) JENJANG/JURUSAN : S1-Teknik Elektro/Mesin/Industri Referensi : [1] Yusuf Yahya, D. Suryadi H.S., Agus S., Matematika Dasar untuk Perguruan Tinggi,

Lebih terperinci

Teknik Pengintegralan

Teknik Pengintegralan Jurusan Matematika 13 Nopember 2012 Review Rumus-rumus Integral yang Dikenal Pada beberapa subbab sebelumnya telah dijelaskan beberapa integral dari fungsi-fungsi tertentu. Berikut ini diberikan sebuah

Lebih terperinci

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode / Nama Mata Kuliah : A11.54101/ Kalkulus 1 Revisi 2 Satuan Kredit Semester : 4 SKS Tgl revisi : Agustus 2014 Jml Jam kuliah dalam seminggu : 4

Lebih terperinci

integral = 2 . Setiap fungsi ini memiliki turunan ( ) = adalah ( ) = 6 2.

integral = 2 . Setiap fungsi ini memiliki turunan ( ) = adalah ( ) = 6 2. integral 13.1 PENGERTIAN INTEGRAL Untuk itu, coba tentukan turunan fungsi berikut. Perhatikan bahwa fungsi ini memiliki bentuk umum 6 2. Jadi, turunan fungsi = 2 =2 3. Setiap fungsi ini memiliki turunan

Lebih terperinci

matematika TURUNAN TRIGONOMETRI K e l a s A. Rumus Turunan Sinus dan Kosinus Kurikulum 2006/2013 Tujuan Pembelajaran

matematika TURUNAN TRIGONOMETRI K e l a s A. Rumus Turunan Sinus dan Kosinus Kurikulum 2006/2013 Tujuan Pembelajaran Kurikulum 006/03 matematika K e l a s XI TURUNAN TRIGONOMETRI Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Dapat menentukan rumus turunan trigonometri

Lebih terperinci

SATUAN ACARA PERKULIAHAN (SAP)

SATUAN ACARA PERKULIAHAN (SAP) SATUAN ACARA PERKULIAHAN (SAP) Nama Mata : Kalkulus I Kode Mata : TI 001 Bobot Kredit : 3 SKS Semester Penempatan : II Kedudukan Mata : Mata Keilmuan dan Keterampilan Mata Prasyarat : - Penanggung Jawab

Lebih terperinci

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f. Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan

Lebih terperinci

SILABUS MATA PELAJARAN MATEMATIKA KELAS XII - IA SEMESTER 1 (SATU) Oleh TIM MATEMATIKA SMA NEGERI 3 MEDAN

SILABUS MATA PELAJARAN MATEMATIKA KELAS XII - IA SEMESTER 1 (SATU) Oleh TIM MATEMATIKA SMA NEGERI 3 MEDAN SILABUS MATA PELAJARAN MATEMATIKA KELAS XII - IA SEMESTER 1 (SATU) Oleh TIM MATEMATIKA SMA NEGERI 3 MEDAN DINAS PENDIDIKAN KOTA MEDAN SEKOLAH MENENGAH ATAS NEGERI 3 MEDAN 2010 SILABUS Nama Sekolah : SMA

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN LIMIT DAN KEKONTINUAN Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 37 Topik Bahasan 1 Limit Fungsi 2 Hukum Limit 3 Kekontinuan Fungsi (Departemen

Lebih terperinci

MATEMATIKA INDUSTRI 1 RESUME INTEGRAL DAN APLIKASI

MATEMATIKA INDUSTRI 1 RESUME INTEGRAL DAN APLIKASI MATEMATIKA INDUSTRI 1 RESUME INTEGRAL DAN APLIKASI Nama : Syifa Robbani NIM : 125100301111002 Dosen Kelas : Nimas Mayang Sabrina S., STP, MP, MSc : L Nimas Nimas Mayang Sabrina S., STP, MP, MSc Mayang

Lebih terperinci

Jika t = π, maka P setengah C P(x,y) jalan mengelilingi ligkaran, t y. P(-1,0). t = 3/2π, maka P(0,-1) t>2π, perlu lebih 1 putaran t<2π, maka = t

Jika t = π, maka P setengah C P(x,y) jalan mengelilingi ligkaran, t y. P(-1,0). t = 3/2π, maka P(0,-1) t>2π, perlu lebih 1 putaran t<2π, maka = t Fungsi Trigonometri Fungsi trigonometri berdasarkan lingkaran satuan (C), dengan jari-jari 1 dan pusat dititik asal. X 2 + y 2 = 1 Panjang busur AP = t Keliling C = 2π y Jika t = π, maka P setengah C P(,y)

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN SATUAN ACARA PERKULIAHAN 1. PROGRAM STUDI : Pendidikan Matematika 2. MATA KULIAH/KODE/SEMESTER : Kalkulus I 3. PRASYARAT : -- 4. JENJANG / SKS : S1/3 SKS 5. LOMPOK MATA KULIAH : MPK / MPB / MKK/ MKB/ MBB

Lebih terperinci

Hendra Gunawan. 4 September 2013

Hendra Gunawan. 4 September 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 4 September 2013 Latihan (Kuliah yang Lalu) 1. Tentukan daerah asal dan daerah nilai fungsi 2 f(x) = 1 x. sudah dijawab 2. Gambar grafik fungsi

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP)

GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP) Mata : Kalkulus Bobot Mata : 3 Sks GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP) Deskripsi Mata : Sistem Bilangan; Fungsi; Limit Fungsi; Penerapan Turunan; Integral Fungsi; Perhitungan Integral;Terapan Integral.

Lebih terperinci

BAB: TEKNIK PENGINTEGRALAN Topik: Metode Substitusi

BAB: TEKNIK PENGINTEGRALAN Topik: Metode Substitusi BAB: TEKNIK PENGINTEGRALAN Topik: Metode Substitusi Kompetensi yang diukur adalah kemampuan mahasiswa menghitung integral fungsi dengan metode substitusi.. UAS Kalkulus Semester Pendek no. b (kriteria:

Lebih terperinci

KISI-KISI SOAL UJIAN SEKOLAH TAHUN PELAJARAN 2014/2015

KISI-KISI SOAL UJIAN SEKOLAH TAHUN PELAJARAN 2014/2015 KISI-KISI SOAL UJIAN SEKOLAH TAHUN PELAJARAN 2014/2015 Mata Pelajaran : Matematika Alokasi Waktu : 120 menit Kelas : XII IPA Penyusun Standar Kompetensi Kompetensi Dasar Indikator Materi No Soal Menggunakan

Lebih terperinci

RPS MATA KULIAH KALKULUS 1B

RPS MATA KULIAH KALKULUS 1B RPS MATA KULIAH KALKULUS 1B CAPAIAN PEMBELAJARAN MATA KULIAH: 1. Mempunyai pengetahuan dibidang matematika, statistika, komputasi (algoritma), dan pengetahuan dasar dalam menyelesaikan permasalahan dibidang

Lebih terperinci

Turunan Fungsi. h asalkan limit ini ada.

Turunan Fungsi. h asalkan limit ini ada. Turunan Fungsi q Definisi Turunan Fungsi Misalkan fungsi f terdefinisi pada selang terbuka I yang memuat a. Turunan pertama fungsi f di =a ditulis f (a) didefinisikan dengan f ( a h) f ( a) f '( a) lim

Lebih terperinci

Penggunaan Turunan, Integral, dan Penggunaan Integral.

Penggunaan Turunan, Integral, dan Penggunaan Integral. DESKRIPSI MATA KULIAH TK-301 Matematika Dasar: S1, 3 SKS, Semester I Mata kuliah ini merupakan kuliah dasar yang diberikan pada semester I. Selesai mengikuti perkuliahan ini mahasiswa diharapkan mampu

Lebih terperinci

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use INTISARI KALKULUS 2 Penyusun: Drs. Warsoma Djohan M.Si. Program Studi Matematika - FMIPA Institut Teknologi Bandung Januari 200 Pengantar Kalkulus & 2 merupakan matakuliah wajib tingkat pertama bagi semua

Lebih terperinci

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit

Lebih terperinci

Kalkulus: Fungsi Satu Variabel Oleh: Prayudi Editor: Kartono Edisi Pertama Cetakan Pertama, 2006 Hak Cipta 2005 pada penulis, Hak Cipta dilindungi undang-undang. Dilarang memperbanyak atau memindahkan

Lebih terperinci

KALKULUS 1. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI /

KALKULUS 1. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI / Oleh : SRI ESTI TRISNO SAMI, ST, MMSI 08125218506 / 082334051234 E-mail : sriestits2@gmail.com Bahan Bacaan / Refferensi : 1. Frank Ayres J. R., Calculus, Shcaum s Outline Series, Mc Graw-Hill Book Company.

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Pengantar Kalkulus. Pertemuan - 1

Respect, Professionalism, & Entrepreneurship. Pengantar Kalkulus. Pertemuan - 1 Mata Kuliah Kode SKS : Kalkulus : CIV-101 : 3 SKS Pengantar Kalkulus Pertemuan - 1 Kemampuan Akhir ang Diharapkan : Mahasiswa mampu menjelaskan sistem bilangan real Mahasiswa mampu menelesaikan pertaksamaan

Lebih terperinci

Bil Riil. Bil Irasional. Bil Bulat - Bil Bulat 0 Bil Bulat + maka bentuk umum bilangan kompleks adalah

Bil Riil. Bil Irasional. Bil Bulat - Bil Bulat 0 Bil Bulat + maka bentuk umum bilangan kompleks adalah ANALISIS KOMPLEKS Pendahuluan Bil Kompleks Bil Riil Bil Imaginer (khayal) Bil Rasional Bil Irasional Bil Pecahan Bil Bulat Sistem Bilangan Kompleks Bil Bulat - Bil Bulat 0 Bil Bulat + Untuk maka bentuk

Lebih terperinci

Bilangan Real. Modul 1 PENDAHULUAN

Bilangan Real. Modul 1 PENDAHULUAN Modul 1 Bilangan Real S PENDAHULUAN Drs. Soemoenar emesta pembicaraan Kalkulus adalah himpunan bilangan real. Jadi jika akan belajar kalkulus harus paham terlebih dahulu tentang bilangan real. Bagaimanakah

Lebih terperinci

= definit postif untuk konstanta p yang = 0 mempunyai dua akar postif,

= definit postif untuk konstanta p yang = 0 mempunyai dua akar postif, 000 SOAL UNTUK MATEMATIKA CEPAT TEPAT MATEMATIKA. Fungsi kuadrat y ( p ) ( p ) = + + + definit postif untuk konstanta p yang memenuhi adalah. Jika persamaan kuadrat p ( p p) + 4 = 0 mempunyai dua akar

Lebih terperinci

SATUAN ACARA PERKULIAHAN PROGRAM KOMPETENSI GANDA DEPAG S1 KEDUA PROGRAM STUDI PENDIDIKAN MATEMATIKA

SATUAN ACARA PERKULIAHAN PROGRAM KOMPETENSI GANDA DEPAG S1 KEDUA PROGRAM STUDI PENDIDIKAN MATEMATIKA SATUAN ACARA PERKULIAHAN PROGRAM GANDA DEPAG S1 DUA PROGRAM STUDI PENDIDIKAN MATEMATIKA 1. PROGRAM STUDI : Pendidikan Matematika 2. MATA KULIAH/SEMESTER : Kalkulus/2 3. PRASYARAT : -- 4. JENJANG / SKS

Lebih terperinci

Materi UTS. Kalkulus 1. Semester Gasal Pengajar: Hazrul Iswadi

Materi UTS. Kalkulus 1. Semester Gasal Pengajar: Hazrul Iswadi Materi UTS Kalkulus 1 Semester Gasal 2016-2017 Pengajar: Hazrul Iswadi Daftar Isi Pengantar...hal 1 Pertemuan 1...hal 2-5 Pertemuan 2...hal 6-10 Pertemuan 3...hal 11-13 Pertemuan 4...hal 14-21 Pertemuan

Lebih terperinci

VI. FUNGSI EKSPONEN DAN FUNGSI LOGARITMA

VI. FUNGSI EKSPONEN DAN FUNGSI LOGARITMA VI. FUNGSI EKSPONEN DAN FUNGSI LOGARITMA 6. Pendahuluan A. Tujuan Setelah mempelajari bagian ini diharapkan mahasiswa dapat:. menuliskan bentuk umum fungsi eksponen; 2. menggambar grafik fungsi eksponen;

Lebih terperinci

= F (x)= f(x)untuk semua x dalam I. Misalnya F(x) =

= F (x)= f(x)untuk semua x dalam I. Misalnya F(x) = Nama : Deami Astenia Purtisari Nim : 125100300111014 Kelas : L / TIP A. Integral Integral merupakan konsep yang bermanfaat, kegunaan integral terdapat dalam berbagai bidang. Misalnya dibidang ekonomi,

Lebih terperinci

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode/ Nama Mata Kuliah : E124204 / KALKULUS 2 Revisi : 4 Satuan Kredit Semester : 2 SKS Tanggal Release : 16 Juli 2015 Jml Jam Kuliah Dalam Seminggu

Lebih terperinci

44. Mata Pelajaran Matematika untuk Sekolah Menengah Atas (SMA)/ Madrasah Aliyah (MA)

44. Mata Pelajaran Matematika untuk Sekolah Menengah Atas (SMA)/ Madrasah Aliyah (MA) 44. Mata Pelajaran Matematika untuk Sekolah Menengah Atas (SMA)/ Madrasah Aliyah (MA) A. Latar Belakang Matematika merupakan ilmu universal yang mendasari perkembangan teknologi modern, mempunyai peran

Lebih terperinci

RENCANA PROGRAM KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) MATEMATIKA TEKNIK

RENCANA PROGRAM KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) MATEMATIKA TEKNIK RENCANA PROGRAM KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) MATEMATIKA TEKNIK Program Studi: Teknik Elektro dan Teknologi Informasi Semester: Genap 2013/2014 OLEH : Ir. Mulyana Husni Rois Ali, S.T., M.Eng.

Lebih terperinci

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO SPMI- UNDIP GBPP xx.xx.xx xx Revisi ke Tanggal Dikaji Ulang Oleh Dikendalikan Oleh Disetujui Oleh Ketua Program Studi GPM DekanFakultas. UNIVERSITAS

Lebih terperinci

PENGEMBANGAN SILABUS TAHUN PELAJARAN 2012/2013

PENGEMBANGAN SILABUS TAHUN PELAJARAN 2012/2013 PENGEMBANGAN SILABUS TAHUN PELAJARAN 01/013 NAMA SEKOLAH : SMK DIPONEGORO LEBAKSIU MATA PELAJARAN : MATEMATIKA KELAS / SEMESTER : X / 1 STANDAR KOMPETENSI : MEMECAHKAN MASALAH BERKAITAN DENGAN KONSEP OPERASI

Lebih terperinci

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan KALKULUS 1 HADI SUTRISNO 1 Pendidikan Matematika STKIP PGRI Bangkalan BAB I PENDAHULUAN A. Sistem Bilangan Real Untuk mempelajari kalkulus kita terlebih dahulu perlu memahami bahasan tentang sistem bilangan

Lebih terperinci

KONTRAK PERKULIAHAN. Mata Kuliah : Kalkulus I Kode / SKS : FTI2001 / 3 : Ir. Caecilia Pujiastuti, MT Ir. Nurul Widji Triana, MT

KONTRAK PERKULIAHAN. Mata Kuliah : Kalkulus I Kode / SKS : FTI2001 / 3 : Ir. Caecilia Pujiastuti, MT Ir. Nurul Widji Triana, MT KONTRAK PERKULIAHAN Mata Kuliah : Kalkulus I Kode / SKS : FTI2001 / 3 Dosen : Ir. Caecilia Pujiastuti, MT Ir. Nurul Widji Triana, MT Semester : I ( Satu ) Hari Pertemuan / pukul : Selasa, pukul 07.30-10.00

Lebih terperinci

FUNGSI-FUNGSI INVERS

FUNGSI-FUNGSI INVERS FUNGSI-FUNGSI INVERS Logaritma, Eksponen, Trigonometri Invers Departemen Matematika FMIPA IPB Bogor, 202 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 202 / 49 Topik Bahasan Fungsi Satu ke Satu 2

Lebih terperinci

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4)

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4) LIMIT FUNGSI A. Menentukan Limit Fungsi Aljabar A.. Limit a Contoh A.:. ( ) 3 Contoh A. : 4 ( )( ) ( ) 4 Latihan. Hitunglah nilai it fungsi-fungsi berikut ini. a. (3 ) b. ( 4) c. ( 4) d. 0 . Hitunglah

Lebih terperinci

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping

Lebih terperinci

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada,

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, Lecture 4. Limit B A. Continuity Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, (2) lim f(x) ada, (3) lim f(x) =

Lebih terperinci

Tinjauan Mata Kuliah

Tinjauan Mata Kuliah i M Tinjauan Mata Kuliah ata kuliah Kalkulus 1 diperuntukkan bagi mahasiswa yang mempelajari matematika baik untuk mengajar bidang matematika di tingkat Sekolah Lanjutan Tingkat Pertama (SLTP), Sekolah

Lebih terperinci

Ringkasan Materi Kuliah Bab II FUNGSI

Ringkasan Materi Kuliah Bab II FUNGSI Ringkasan Materi Kuliah Bab II FUNGSI. FUNGSI REAL, FUNGSI ALJABAR, DAN FUNGSI TRIGONOMETRI. TOPIK-TOPIK YANG BERKAITAN DENGAN FUNGSI.3 FUNGSI KOMPOSISI DAN FUNGSI INVERS. FUNGSI REAL, FUNGSI ALJABAR,

Lebih terperinci

KISI-KISI SOAL UJIAN SEKOLAH SEKOLAH MENENGAH KEJURUAN (SMK)

KISI-KISI SOAL UJIAN SEKOLAH SEKOLAH MENENGAH KEJURUAN (SMK) 0 KISI-KISI UJIAN SEKOLAH SEKOLAH MENENGAH KEJURUAN (SMK) MATA PELAJARAN : MATEMATIKA KELAS : XII KELOMPOK : TEKNOLOGI, PERTANIAN DAN KESEHATAN BENTUK & JMl : PILIHAN GANDA = 35 DAN URAIAN = 5 WAKTU :

Lebih terperinci

GAMBARAN UMUM SMA/MA. Hak Cipta pada Pusat Penilaian Pendidikan BALITBANG DEPDIKNAS 1

GAMBARAN UMUM SMA/MA. Hak Cipta pada Pusat Penilaian Pendidikan BALITBANG DEPDIKNAS 1 GAMBARAN UMUM Pada ujian nasional tahun pelajaran 006/007, bentuk tes Matematika tingkat berupa tes tertulis dengan bentuk soal pilihan ganda, sebanyak 0 soal dengan alokasi waktu 0 menit. Acuan yang digunakan

Lebih terperinci

TUJUAN INSTRUKSIONAL KHUSUS

TUJUAN INSTRUKSIONAL KHUSUS PREVIEW KALKULUS TUJUAN INSTRUKSIONAL KHUSUS Mahasiswa mampu: menyebutkan konsep-konsep utama dalam kalkulus dan contoh masalah-masalah yang memotivasi konsep tersebut; menjelaskan menyebutkan konsep-konsep

Lebih terperinci

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan BAB II KAJIAN TEORI Pada bab ini akan dibahas beberapa hal yang digunakan sebagai landasan pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

09. Mata Pelajaran Matematika

09. Mata Pelajaran Matematika 09. Mata Pelajaran Matematika A. Latar Belakang Matematika merupakan ilmu universal yang mendasari perkembangan teknologi modern, mempunyai peran penting dalam berbagai disiplin dan mengembangkan daya

Lebih terperinci

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN SATUAN ACARA PERKULIAHAN Mata Kuliah : Kalukulus Dasar Kode Mata Kulih : Bobot Semester Tujuan Instruksi Umum Media / Alat yang digunakan Daftar Referensi : 3 sks : 1(satu) : Mahasiswa dapat memahami konsep-konsep

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

INTERGRAL. Sifat dasar dari bentuk integral tak tentu sebagai berikut.

INTERGRAL. Sifat dasar dari bentuk integral tak tentu sebagai berikut. INTERGRAL Operasi balikan dari diferensial adalah anti diferensial atau integral. Suatu fungsi F dikatakan sebagai anti diferensial dari fungsi f apabila F (x) = f(x) untuk setiap x dalam domain F. Jika

Lebih terperinci

matematika LIMIT TRIGONOMETRI K e l a s Kurikulum 2006/2013 Tujuan Pembelajaran

matematika LIMIT TRIGONOMETRI K e l a s Kurikulum 2006/2013 Tujuan Pembelajaran Kurikulum 6/ matematika K e l a s XI LIMIT TRIGONOMETRI Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Dapat menghitung it fungsi trigonometri di suatu

Lebih terperinci

Modul 1 : Barisan dan Deret Takhingga. Kegiatan Belajar 1 : Barisan Takhingga. Kegiatan Belajar 2 : Deret Takhingga.

Modul 1 : Barisan dan Deret Takhingga. Kegiatan Belajar 1 : Barisan Takhingga. Kegiatan Belajar 2 : Deret Takhingga. ix M Tinjauan Mata Kuliah ata kuliah Kalkulus 2 yang disajikan pada bahan ajar ini membahas materi tentang barisan, deret, dan integral. Pembahasan barisan dan deret hanya sekitar 11 persen dari dari keseluruhan

Lebih terperinci

4.1 Konsep Turunan. lim Turunan di satu titik. Pendahuluan ( dua masalah dalam satu tema ) a. Garis Singgung Kemiringan tali busur PQ adalah :

4.1 Konsep Turunan. lim Turunan di satu titik. Pendahuluan ( dua masalah dalam satu tema ) a. Garis Singgung Kemiringan tali busur PQ adalah : 4. TURUNAN 4. Konsep Turunan 4.. Turunan di satu titik Pendahuluan dua masalah dalam satu tema a. Garis Singgung Kemiringan tali busur PQ adalah : m PQ c c Q -c Jika c, maka tali busur PQ akan berubah

Lebih terperinci

INTEGRAL. disebut integral tak tentu dan f(x) disebut integran. = X n+1 + C, a = konstanta

INTEGRAL. disebut integral tak tentu dan f(x) disebut integran. = X n+1 + C, a = konstanta INTEGRAL Jika f(x) = F (x) adalah turunan pertama dari fungsi F(x) maka F(x) adalah antiturunan dari f(x)dan ditulis dengan F(x) = (dibaca integral f(x) terhadap x) = lambang integral, f(x) = integran.

Lebih terperinci

MA1201 KALKULUS 2A Do maths and you see the world

MA1201 KALKULUS 2A Do maths and you see the world Catatan Kuliah MA20 KALKULUS 2A Do maths and you see the world disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 203 Catatan kuliah ini ditulis

Lebih terperinci

09. Mata Pelajaran Matematika

09. Mata Pelajaran Matematika 09. Mata Pelajaran Matematika A. Latar Belakang Matematika merupakan ilmu universal yang mendasari perkembangan teknologi modern, mempunyai peran penting dalam berbagai disiplin dan mengembangkan daya

Lebih terperinci

BAB II MACAM-MACAM FUNGSI

BAB II MACAM-MACAM FUNGSI BAB II MACAM-MACAM FUNGSI (Pertemuan ke 3) PENDAHULUAN Diskripsi singkat Pada bab ini dibahas tentang macam-macam fungsi, yaitu fungsi aljabar, fungsi trigonometri, fungsi logaritma, fungsi eksponensial,

Lebih terperinci

Kelompok Mata Kuliah : MKU Program Studi/Program : Teknik Tenaga Elektrik/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T.

Kelompok Mata Kuliah : MKU Program Studi/Program : Teknik Tenaga Elektrik/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T. DESKIPSI MATA KULIAH EL-... Matematika Lanjut: S1, 3 SKS, Semester II Mata kuliah ini merupakan kuliah lanjut. Selesai mengikuti perkuliahan ini mahasiswa diharapkan mampu memahami konsep-konsep matematika

Lebih terperinci

22. MATEMATIKA SMA/MA (PROGRAM IPA)

22. MATEMATIKA SMA/MA (PROGRAM IPA) 22. MATEMATIKA SMA/MA (PROGRAM IPA) NO. 1. Memahami pernyataan dalam matematika dan ingkarannya, menentukan nilai kebenaran pernyataan majemuk serta menggunakan prinsip logika matematika dalam pemecahan

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV 101. Limit Fungsi. Pertemuan - 2

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV 101. Limit Fungsi. Pertemuan - 2 Respet, Proessionalism, & Entrepreneurship Mata Kuliah : Kalkulus Kode : CIV 101 SKS : 3 SKS Limit Fungsi Pertemuan - Respet, Proessionalism, & Entrepreneurship Kemampuan Akhir yang Diharapkan Mahasiswa

Lebih terperinci

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use INTISARI KALKULUS Penyusun: Drs. Warsoma Djohan M.Si. Program Studi Matematika - FMIPA Institut Teknologi Bandung Januari 010 Pengantar Kalkulus 1 & merupakan matakuliah wajib tingkat pertama bagi semua

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV Turunan. Pertemuan 3, 4, 5, 6, 7

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV Turunan. Pertemuan 3, 4, 5, 6, 7 Mata Kuliah : Kalkulus Kode : CIV - 101 SKS : 3 SKS Turunan Pertemuan 3, 4, 5, 6, 7 Kemampuan Akhir ang Diharapkan Mahasiswa mampu : - menjelaskan arti turunan ungsi - mencari turunan ungsi - menggunakan

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. HASIL PENELITIAN 1. Hasil Pengembangan Produk Penelitian ini merupakan penelitian pengembangan yang bertujuan untuk mengembangkan produk berupa Skema Pencapaian

Lebih terperinci

Seri : Modul Diskusi Fakultas Ilmu Komputer. FAKULTAS ILMU KOMPUTER Sistem Komputer & Sistem Informasi HANDOUT : KALKULUS DASAR

Seri : Modul Diskusi Fakultas Ilmu Komputer. FAKULTAS ILMU KOMPUTER Sistem Komputer & Sistem Informasi HANDOUT : KALKULUS DASAR Seri : Modul Diskusi Fakultas Ilmu Komputer FAKULTAS ILMU KOMPUTER Sistem Komputer & Sistem Informasi HANDOUT : KALKULUS DASAR Ole : Tony Hartono Bagio 00 KALKULUS DASAR Tony Hartono Bagio KATA PENGANTAR

Lebih terperinci

karena limit dari kiri = limit dari kanan

karena limit dari kiri = limit dari kanan A. DEFINISI LIMIT Istilah it dalam matematika hampir sama artinya dengan istilah mendekati. Akibatnya, nilai it sering dikatakan sebagai nilai pendekatan.. Pengertian Limit secara Intusi Untuk memahami

Lebih terperinci

SILABUS PENGALAMAN BELAJAR ALOKASI WAKTU

SILABUS PENGALAMAN BELAJAR ALOKASI WAKTU SILABUS Mata Pelajaran : Matematika Satuan Pendidikan : SMA Ungguan BPPT Darus Sholah Jember kelas : XII IPA Semester : Ganjil Jumlah Pertemuan : 44 x 35 menit (22 pertemuan) STANDAR 1. Menggunakan konsep

Lebih terperinci

BAB I. SISTEM KOORDINAT, NOTASI & FUNGSI

BAB I. SISTEM KOORDINAT, NOTASI & FUNGSI BAB I. SISTEM KRDINAT, NTASI & FUNGSI (Pertemuan ke 1 & 2) PENDAHULUAN Diskripsi singkat Pada bab ini akan dijelaskan tentang bilangan riil, sistem koordinat Cartesius, notasi-notasi ang sering digunakan

Lebih terperinci