BAB III FUNGSI MAYOR DAN MINOR. Pada bab ini akan dibahas konsep-konsep dasar dari fungsi mayor dan fungsi

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB III FUNGSI MAYOR DAN MINOR. Pada bab ini akan dibahas konsep-konsep dasar dari fungsi mayor dan fungsi"

Transkripsi

1 BAB III FUNGSI MAYOR DAN MINOR Pada bab n akan dbahas konsep-konsep dasar dar fungs mayor dan fungs mnor dar suatu fungs yang terdefns pada suatu nterval tertutup. Pendefnsan fungs mayor dan mnor tersebut berdasarkan pada konsep dervatf atas dan dervatf bawah yang telah dbahas pada bagan.5 defns.5.4. Defns dar fungs mayor dan mnor dgunakan untuk mendefnskan ntegral Perron yang akan dbahas pada bab IV. Sajan berkut n dmula dengan membahas defns dan contoh dar fungs mayor dan mnor, kemudan dlanjutkan dengan bahasan tentang sfat monoton dan ε adjoned dar fungs mayor dan fungs mnor. Defns dan Contoh Fungs Mayor dan Fungs Mnor Msalkan fungs f :[ a, b] { +, } dengan a, b. Berkut n defns dar fungs mayor dan fungs mnor dar fungs f pada [ a, b ]. Defns Suatu fungs ψ dsebut fungs mayor untuk f pada nterval [ a, b ] jka Dψ ( x) f ( x), untuk setap x [ a, b]. 9

2 30 Defns 3.1. Suatu fungs ϕ dsebut fungs Mnor untuk f pada nterval [a,b] jka f ( x) Dϕ ( x) +, untuk setap x [ a, b]. Untuk lebh jelasnya, berkut akan d berkan beberapa contoh fungs mayor dan fungs mnor dar suatu fungs f. Contoh π Msalkan E : = x 0 x dan f : E dengan defns f ( x ) = sn x. Dplh ψ ( x) = cos x dan ϕ ( x) = cos x sn x, maka dperoleh Dψ ( x) = sn x dan + Dϕ ( x) = sn x cos x, untuk setap x Selanjutnya dpenuh konds-konds sebaga berkut : Dψ ( x) = sn x f ( x) dan + Dϕ ( x) = sn x cos x f ( x) untuk setap x Berdasarkan defns dan 3.1. fungs ψ adalah fungs mayor dar f dan ϕ adalah fungs mnor dar f pada

3 31 Contoh Msalkan E = [1,3], f : E dengan f ( x) = x. Dplh ψ ( x) = x 1 dan ϕ ( x) = x 1, maka dperoleh ψ ( ) D x = x dan + Dϕ ( x) = x, untuk setap x [1,3]. Selanjutnya dpenuh konds-konds Dψ ( x) = x f ( x) dan + Dϕ ( x) = x f ( x), untuk setap x [1,3]. Berdasarkan defns dan 3.1. fungs ψ adalah fungs mayor dar f dan ϕ adalah fungs mnor dar f pada [ 1,3 ]. Sfat Monoton dan ε adjoned dar Fungs Mayor dan Mnor Berkut akan dbahas kemonoton dar fungs mayor dan mnor, kemudan dlanjutkan dengan sfat ε adjoned dar fungs mayor dan mnor suatu fungs f pada nterval tertutup [a,b]. Teorema 3..1 Jka ψ fungs Mayor dan ϕ fungs mnor dar f pada nterval [ a, b ] dan ψ, ϕ masng-masng terdferensabel hampr dsetap x [ a, b] kecual pada hmpunan denumerabel, maka fungs ψ ϕ monoton nak pada nterval [ a, b ]. Bukt : Dberkan sembarang fungs mayorψ dan fungs mnor ϕ dar f pada nterval [a,b] yang terdferensal hampr dsetap x [ a, b]. Berdasarkan teorema.5.7 dan

4 3 teorema.5. berlaku ( ) D ψ ( x) ϕ( x) Dψ ( x) + D( ϕ ( x)) Dψ ( x) Dϕ ( x) ψ '( x) ϕ '( x) (1) hampr dsetap x [ a, b]. Selanjutnya berdasarkan defns dan 3.1. dketahu bahwa Dψ ( x) f ( x) Dϕ ( x), tetap berdasarkan defns.5.5 (c) dperoleh ψ '( x) f ( x) ϕ '( x). () Akbatnya dar (1) dan () dperoleh ( ) D ψ ( x) ϕ( x) ψ '( x) ϕ '( x) 0 Jad dapat dsmpulkan bahwa ψ ϕ merupakan fungs yang monoton nak hampr dsetap x [ a, b]. Contoh 3.. Msalkan fungs- fungs pada contoh 3.1. yatu ψ ( x) = cos x dan ϕ ( x) = cos x sn x yang berturut-turut merupakan fungs Mayor dan fungs mnor untuk fungs f ( x) = sn x pada nterval. Msalkan pula : g( x) = ψ ( x) ϕ( x) = ( cos x) ( cos x sn x) = sn x untuk setap x

5 33 Karena g '( x) = cos x 0 untuk setap x, n berart ψ ϕ monoton nak pada nterval Berkut n defns dar fungs mayor dan fungs mnor yang ε adjoned ke suatu fungs f. Fungs-fungs ϕ, ϕ, ϕ, dan ϕ berturut-turut akan dsebut fungs mayor kanan, mayor kr, mnor kr, dan mnor kanan dar fungs f. Defns 3..3 Msalkan f suatu fungs yang terdefns pada nterval [ a, b ]. Fungs-fungs ϕ, ϕ, ϕ, dan ϕ dsebut ε adjoned ke f pada nterval [ a, b ] jka : a) ϕ ( x) kontnu pada nterval [a,b] dan ϕ ( a) = 0 untuk, j = 1,,3, 4 ; b) kecual mungkn untuk suatu hmpunan yang denumerable konds-konds berkut berlaku 1 D f, +ϕ D ϕ f ϕ 3 + D f, ϕ D f j c) fungs ϕ ( x) memenuh konds ϕ ( b) ϕ ( b) < ε untuk setap ε > 0 dengan, j = 1,,3,4.

6 34 Contoh 3..4 Msalkan f adalah fungs yang ddefnskan pada contoh Dplh ϕ ( x) = x 1 untuk = 1,,3, 4, maka dperoleh konds-konds sebaga berkut: a) Fungs-fungs ϕ ( x) = x 1 kontnu pada nterval [1,3], dan ϕ (1) = 1 1 = 0 untuk = 1,,3, 4. b) Fungs-fungs ϕ ( x) untuk = 1,,3, 4 merupakan fungs polnom maka fungsfungs tersebut akan terdferensalkan d, selanjutnya akan berlaku D+ϕ 1 ( x) = x f ( x), + D ϕ 3 ( x) = x f ( x), D ϕ ( x) = x f ( x) + + D ϕ 4 ( x) = x f ( x) c) Untuk setap ε > 0 berlaku ϕ (3) ϕ (3) = = 0 < ε Jad berdasarkan defns 3..3, fungs-fungs ϕ ( x) = x 1 merupakan fungs-fungs yang ε adjoned ke f pada nterval [1,3], untuk = 1,,3, 4. Berkut n akan bahas satu sfat dar fungs-fungs yang ε adjoned ke suatu fungs f pada nterval [a,b] yang akan dgunakan untuk menunjukkan sfat dar ntegral Perron pada bab V. Teorema 3..5 Jka fungs ϕ, ϕ, ϕ, ϕ ε adjoned ke f pada [ a, b ], maka fungs ϕ, ϕ, ϕ, ϕ juga ε adjoned ke f pada [ a, x ] untuk setap x ( a, b].

7 35 Bukt : Dberkan sembarang ε > 0 dan nterval [a,b]. Berdasarkan defns 3..3 dketahu bahwa ϕ, ϕ, ϕ, ϕ yang ε adjoned ke f pada ϕ, ϕ, ϕ, ϕ kontnu pada nterval [a,b] dengan ϕ ( a) = 0 untuk, j = 1,,3,4, dan fungs-fungs ϕ, ϕ, ϕ, ϕ berturut-turut merupakan fungs mayor kanan, mayor kr, mnor kr, dan mnor kanan dar fungs f pada nterval [a,b]. Akan dtunjukkan bahwa ϕ ϕ < ε. Msalkan ( x) ( x) 1 ϕ > ϕ dan 3 4 ϕ < ϕ, berdasarkan defns 3..3 nla maksmum dar ϕ ( x), ϕ ( x), ϕ ( x), ϕ ( x) adalah nla ϕ 1 ( x), dan nla mnmum dar ϕ ( x), ϕ ( x), ϕ ( x), ϕ ( x) adalah nla ϕ 3 ( x). Ambl sembarang x [ a, b] dan pandang selang [ a, x ]. Berdasarkan teorema 3..1 fungs ϕ yang monoton nak sehngga untuk x b berlaku ϕ ϕ ϕ ϕ < ε ( x) ( x) ( b) ( b) ϕ merupakan fungs 1 3 Akbatnya ϕ, ϕ, ϕ, ϕ akan ε adjoned ke f pada [ a, x ]

BAB III HASILKALI TENSOR PADA RUANG VEKTOR. Misalkan V ruang vektor atas lapangan F. Suatu transformasi linear f L ( V, F )

BAB III HASILKALI TENSOR PADA RUANG VEKTOR. Misalkan V ruang vektor atas lapangan F. Suatu transformasi linear f L ( V, F ) 28 BAB III HASILKALI TENSOR PADA RUANG VEKTOR III.1 Ruang Dual Defns III.1.2: Ruang Dual [10] Msalkan V ruang vektor atas lapangan F. Suatu transformas lnear f L ( V, F ) dkatakan fungsonal lnear (atau

Lebih terperinci

DIMENSI PARTISI GRAF GIR

DIMENSI PARTISI GRAF GIR Jurnal Matematka UNAND Vol. 1 No. 2 Hal. 21 27 ISSN : 2303 2910 c Jurusan Matematka FMIPA UNAND DIMENSI PARTISI GRAF GIR REFINA RIZA Program Stud Matematka, Fakultas Matematka dan Ilmu Pengetahuan Alam,

Lebih terperinci

BEBERAPA SIFAT TERKAIT SUBMODUL SEMIPRIMA

BEBERAPA SIFAT TERKAIT SUBMODUL SEMIPRIMA BEBERAPA SIFAT TERKAIT SUBMODUL SEMIPRIMA A-3 Dan Aresta Yuwanngsh 1 1 Mahasswa S Matematka UGM dan.aresta17@yahoo.com Abstrak Dberkan R merupakan rng dengan elemen satuan, M R-modul kanan, dan R S End

Lebih terperinci

BAB X RUANG HASIL KALI DALAM

BAB X RUANG HASIL KALI DALAM BAB X RUANG HASIL KALI DALAM 0. Hasl Kal Dalam Defns. Hasl kal dalam adalah fungs yang mengatkan setap pasangan vektor d ruang vektor V (msalkan pasangan u dan v, dnotaskan dengan u, v ) dengan blangan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang dan Permasalahan

BAB I PENDAHULUAN Latar Belakang dan Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan Matematka dbag menjad beberapa kelompok bdang lmu, antara lan analss, aljabar, dan statstka. Ruang barsan merupakan salah satu bagan yang ada d bdang

Lebih terperinci

SISTEM LINEAR MAX-PLUS KABUR WAKTU INVARIANT AUTONOMOUS

SISTEM LINEAR MAX-PLUS KABUR WAKTU INVARIANT AUTONOMOUS SISTEM LINEAR MAX-PLUS KABUR WAKTU INVARIANT AUTONOMOUS A8 M. Andy Rudhto 1 1 Program Stud Penddkan Matematka FKIP Unverstas Sanata Dharma Kampus III USD Pangan Maguwoharjo Yogyakarta 1 e-mal: arudhto@yahoo.co.d

Lebih terperinci

DISTRIBUSI HASIL PENGUKURAN DAN NILAI RATA-RATA

DISTRIBUSI HASIL PENGUKURAN DAN NILAI RATA-RATA DISTRIBUSI HASIL PENGUKURAN DAN NILAI RATA-RATA Dstrbus Bnomal Msalkan dalam melakukan percobaan Bernoull (Bernoull trals) berulang-ulang sebanyak n kal, dengan kebolehjadan sukses p pada tap percobaan,

Lebih terperinci

BAB V INTEGRAL KOMPLEKS

BAB V INTEGRAL KOMPLEKS 6 BAB V INTEGRAL KOMPLEKS 5.. INTEGRAL LINTASAN Msal suatu lntasan yang dnyatakan dengan : (t) = x(t) + y(t) dengan t rl dan a t b. Lntasan dsebut lntasan tutup bla (a) = (b). Lntasan tutup dsebut lntasan

Lebih terperinci

BAB 3 PEMBAHASAN. 3.1 Prosedur Penyelesaian Masalah Program Linier Parametrik Prosedur Penyelesaian untuk perubahan kontinu parameter c

BAB 3 PEMBAHASAN. 3.1 Prosedur Penyelesaian Masalah Program Linier Parametrik Prosedur Penyelesaian untuk perubahan kontinu parameter c 6 A PEMAHASA Pada bab sebelumnya telah dbahas teor-teor yang akan dgunakan untuk menyelesakan masalah program lner parametrk. Pada bab n akan dperlhatkan suatu prosedur yang lengkap untuk menyelesakan

Lebih terperinci

Bab 1 Ruang Vektor. R. Leni Murzaini/0906577381

Bab 1 Ruang Vektor. R. Leni Murzaini/0906577381 Bab 1 Ruang Vektor Defns Msalkan F adalah feld, yang elemen-elemennya dnyatakansebaga skalar. Ruang vektor atas F adalah hmpunan tak kosong V, yang elemen-elemennya merupakan vektor, bersama dengan dua

Lebih terperinci

UJI PRIMALITAS. Sangadji *

UJI PRIMALITAS. Sangadji * UJI PRIMALITAS Sangadj * ABSTRAK UJI PRIMALITAS. Makalah n membahas dan membuktkan tga teorema untuk testng prmaltas, yatu teorema Lucas, teorema Lucas yang dsempurnakan dan teorema Pocklngton. D sampng

Lebih terperinci

KAJIAN DAN ALGORITMA PELABELAN PSEUDO EDGE-MAGIC. memiliki derajat maksimum dan tidak ada titik yang terisolasi. Jika n i adalah

KAJIAN DAN ALGORITMA PELABELAN PSEUDO EDGE-MAGIC. memiliki derajat maksimum dan tidak ada titik yang terisolasi. Jika n i adalah BAB III KAJIAN DAN ALGORITMA PELABELAN PSEUDO EDGE-MAGIC III. Batas Bawah Magc Number pada Pelabelan Total Pseudo Edge-Magc Teorema 3.. Anggap G = (,E) adalah sebuah graf dengan n-ttk dan m-ss dan memlk

Lebih terperinci

BAB III PEMBAHASAN. Pada bab ini akan dibahas mengenai ring embedding dan faktorisasi. tunggal pada ring komutatif tanpa elemen kesatuan.

BAB III PEMBAHASAN. Pada bab ini akan dibahas mengenai ring embedding dan faktorisasi. tunggal pada ring komutatif tanpa elemen kesatuan. BAB III PEMBAHASAN Pada bab n akan dbahas mengena rng embeddng dan faktorsas tunggal pada rng komutatf tanpa elemen kesatuan. A. Rng Embeddng Defns 3.1 (Malk et al. 1997: 318 Suatu rng R dkatakan embedded

Lebih terperinci

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) IV. PEMBAHASAN

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) IV. PEMBAHASAN 8 IV PEMBAHASAN 4 Aum Berkut n aum yang dgunakan dalam memodelkan permanan a Harga paar P ( merupakan fung turun P ( kontnu b Fung baya peruahaan- C ( fung baya peruahaan- C ( merupakan fung nak C ( C

Lebih terperinci

PADA GRAF PRISMA BERCABANG

PADA GRAF PRISMA BERCABANG PELABELAN TOTAL SUPER (a, d)-busur ANTI AJAIB PADA GRAF PRISMA BERCABANG Achmad Fahruroz,, Dew Putre Lestar,, Iffatul Mardhyah, Unverstas Gunadarma Depok Program Magster Fakultas MIPA Unverstas Indonesa

Lebih terperinci

Teori Himpunan. Modul 1 PENDAHULUAN. impunan sebagai koleksi (pengelompokan) dari objek-objek yang

Teori Himpunan. Modul 1 PENDAHULUAN. impunan sebagai koleksi (pengelompokan) dari objek-objek yang Modul 1 Teor Hmpunan PENDAHULUAN Prof SM Nababan, PhD Drs Warsto, MPd mpunan sebaga koleks (pengelompokan) dar objek-objek yang H dnyatakan dengan jelas, banyak dgunakan dan djumpa dberbaga bdang bukan

Lebih terperinci

Bab 3 Analisis Ralat. x2 x2 x. y=x 1 + x 2 (3.1) 3.1. Menaksir Ralat

Bab 3 Analisis Ralat. x2 x2 x. y=x 1 + x 2 (3.1) 3.1. Menaksir Ralat Mater Kulah Ekspermen Fska Oleh : Drs. Ishaft, M.S. Program Stud Penddkan Fska Unverstas Ahmad Dahlan, 07 Bab 3 Analss Ralat 3.. Menaksr Ralat Msalna suatu besaran dhtung dar besaran terukur,,..., n. Jka

Lebih terperinci

Dekomposisi Nilai Singular dan Aplikasinya

Dekomposisi Nilai Singular dan Aplikasinya A : Dekomposs Nla Sngular dan Aplkasnya Gregora Aryant Dekomposs Nla Sngular dan Aplkasnya Oleh : Gregora Aryant Program Stud Penddkan Matematka nverstas Wdya Mandala Madun aryant_gregora@yahoocom Abstrak

Lebih terperinci

SOLUSI SISTEM PERSAMAAN DIFERENSIAL PARSIAL DENGAN MENGGUNAKAN METODE PERTURBASI HOMOTOPI DAN METODE DEKOMPOSISI ADOMIAN

SOLUSI SISTEM PERSAMAAN DIFERENSIAL PARSIAL DENGAN MENGGUNAKAN METODE PERTURBASI HOMOTOPI DAN METODE DEKOMPOSISI ADOMIAN SOLUSI SISTEM PERSAMAAN DIFERENSIAL PARSIAL DENGAN MENGGUNAKAN METODE PERTURBASI HOMOTOPI DAN METODE DEKOMPOSISI ADOMIAN Ita Rahmadayan 1, Syamsudhuha 2, Asmara Karma 2 1 Mahasswa Program Stud S1 Matematka

Lebih terperinci

PENERAPAN PROGRAM LINIER KABUR DALAM ANALISIS SENSITIVITAS PROGRAM LINIER

PENERAPAN PROGRAM LINIER KABUR DALAM ANALISIS SENSITIVITAS PROGRAM LINIER Penerapan Program Lner Kabur dalam Analss.. Elfranto PENERAPAN PROGRAM LINIER KABUR DALAM ANALISIS SENSITIVITAS PROGRAM LINIER Elfranto Dosen Unverstas Muhammadyah Sumatera Utara Abstrak: Salah satu kaan

Lebih terperinci

ALJABAR LINIER LANJUT

ALJABAR LINIER LANJUT ALABAR LINIER LANUT Ruang Bars dan Ruang Kolom suatu Matrks Msalkan A adalah matrks mnatas lapangan F. Bars pada matrks A merentang subruang F n dsebut ruang bars A, dnotaskan dengan rs(a) dan kolom pada

Lebih terperinci

SEMI RING POLINOM ATAS ALJABAR MAX-PLUS

SEMI RING POLINOM ATAS ALJABAR MAX-PLUS JMP : Volume 4 Nomor 2, Desember 2012, hal. 289-297 SEMI RING POLINOM ATAS ALJABAR MAX-PLUS Suroto Prod Matematka, Jurusan MIPA, Fakultas Sans dan Teknk Unverstas Jenderal Soedrman e-mal : suroto_80@yahoo.com

Lebih terperinci

Catatan Kuliah 12 Memahami dan Menganalisa Optimisasi dengan Kendala Ketidaksamaan

Catatan Kuliah 12 Memahami dan Menganalisa Optimisasi dengan Kendala Ketidaksamaan Catatan Kulah Memaham dan Menganalsa Optmsas dengan Kendala Ketdaksamaan. Non Lnear Programmng Msalkan dhadapkan pada lustras berkut n : () Ma U = U ( ) :,,..., n st p B.: ; =,,..., n () Mn : C = pk K

Lebih terperinci

Bab 3. Teori Comonotonic. 3.1 Pengurutan Variabel Acak

Bab 3. Teori Comonotonic. 3.1 Pengurutan Variabel Acak Bab 3 Teor Comonotonc Pada bab n konsep teor comonotonc akan dpaparkan dar awal dan berakhr pada konsep teor n untuk jumlah dar peubah - peubah acak 1. Setelah tu untuk membantu pemahaman akan dberkan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Fuzzy Set Pada tahun 1965, Zadeh memodfkas teor hmpunan dmana setap anggotanya memlk derajat keanggotaan yang bernla kontnu antara 0 sampa 1. Hmpunan n dsebut dengan hmpunaan

Lebih terperinci

BILANGAN RAMSEY SISI DARI r ( P, )

BILANGAN RAMSEY SISI DARI r ( P, ) Charul Imron dan dy Tr Baskoro, Blangan Ramsey Ss BILANGAN RAMSY SISI DARI r ( P, ) (Ramsey Number from the Sde r ( P, ) ) Charul Imron dan dy Tr Baskoro Jurusan Matemátca, FMIPA ITS Surabaya mron-ts@matematka.ts.ac.d

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Di dalam matematika mulai dari SD, SMP, SMA, dan Perguruan Tinggi

BAB I PENDAHULUAN. 1.1 Latar Belakang. Di dalam matematika mulai dari SD, SMP, SMA, dan Perguruan Tinggi Daftar Is Daftar Is... Kata pengantar... BAB I...1 PENDAHULUAN...1 1.1 Latar Belakang...1 1.2 Rumusan Masalah...2 1.3 Tujuan...2 BAB II...3 TINJAUAN TEORITIS...3 2.1 Landasan Teor...4 BAB III...5 PEMBAHASAN...5

Lebih terperinci

BAB VB PERSEPTRON & CONTOH

BAB VB PERSEPTRON & CONTOH BAB VB PERSEPTRON & CONTOH Model JST perseptron dtemukan oleh Rosenblatt (1962) dan Mnsky Papert (1969). Model n merupakan model yang memlk aplkas dan pelathan yang lebh bak pada era tersebut. 5B.1 Arstektur

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN. Latar Belakang Matematka sebaga bahasa smbol yang bersfat unversal memegang peranan pentng dalam perkembangan suatu teknolog. Matematka sangat erat hubungannya dengan kehdupan nyata.

Lebih terperinci

Sifat-sifat Operasi Perkalian Modular pada Graf Fuzzy

Sifat-sifat Operasi Perkalian Modular pada Graf Fuzzy SEMINAR MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 07 Sfat-sfat Operas Perkalan Modular pada raf Fuzzy T - 3 Tryan, ahyo Baskoro, Nken Larasat 3, Ar Wardayan 4,, 3, 4 Unerstas Jenderal Soedrman transr@yahoo.com.au

Lebih terperinci

APLIKASI PERKONGRUENAN DALAM MENYELESAIKAN SISTEM PERSAMAAN LINEAR DUA PEUBAH. Yuni Yulida dan Muhammad Ahsar K

APLIKASI PERKONGRUENAN DALAM MENYELESAIKAN SISTEM PERSAMAAN LINEAR DUA PEUBAH. Yuni Yulida dan Muhammad Ahsar K Jurnal Matematka Murn dan Terapan Vol. 3 No. Desember 009: 4-6 APLIKASI PERKONGRUENAN DALAM MENYELESAIKAN SISTEM PERSAMAAN LINEAR DUA PEUBAH Yun Yulda dan Muhammad Ahsar K Program Stud Matematka Unverstas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Penjadwalan Baker (1974) mendefnskan penjadwalan sebaga proses pengalokasan sumber-sumber dalam jangka waktu tertentu untuk melakukan sejumlah pekerjaan. Menurut Morton dan

Lebih terperinci

JMP : Volume 5 Nomor 1, Juni 2013, hal SPEKTRUM PADA GRAF REGULER KUAT

JMP : Volume 5 Nomor 1, Juni 2013, hal SPEKTRUM PADA GRAF REGULER KUAT JMP : Volume 5 Nomor, Jun 03, hal. 3 - SPEKTRUM PD GRF REGULER KUT Rzk Mulyan, Tryan dan Nken Larasat Program Stud Matematka, Fakultas Sans dan Teknk Unerstas Jenderal Soedrman Emal : rzky90@gmal.com BSTRCT.

Lebih terperinci

BAB 2 ANALISIS ARUS FASA PADA KONEKSI BEBAN BINTANG DAN POLIGON UNTUK SISTEM MULTIFASA

BAB 2 ANALISIS ARUS FASA PADA KONEKSI BEBAN BINTANG DAN POLIGON UNTUK SISTEM MULTIFASA BAB ANALISIS ARUS FASA PADA KONEKSI BEBAN BINTANG DAN POLIGON UNTUK SISTEM MULTIFASA.1 Pendahuluan Pada sstem tga fasa, rak arus keluaran nverter pada beban dengan koneks delta dan wye memlk hubungan yang

Lebih terperinci

(1.1) maka matriks pembayaran tersebut dikatakan mempunyai titik pelana pada (r,s) dan elemen a

(1.1) maka matriks pembayaran tersebut dikatakan mempunyai titik pelana pada (r,s) dan elemen a Lecture 2: Pure Strategy A. Strategy Optmum Hal pokok yang sesungguhnya menad nt dar teor permanan adalah menentukan solus optmum bag kedua phak yang salng bersang tersebut yang bersesuaan dengan strateg

Lebih terperinci

Pembayaran harapan yang berkaitan dengan strategi murni pemain P 2. Pembayaran Harapan bagi Pemain P1

Pembayaran harapan yang berkaitan dengan strategi murni pemain P 2. Pembayaran Harapan bagi Pemain P1 Lecture : Mxed Strategy: Graphcal Method A. Metode Campuran dengan Metode Grafk Metode grafk dapat dgunakan untuk menyelesakan kasus permanan dengan matrks pembayaran berukuran n atau n. B. Matrks berukuran

Lebih terperinci

PRAKTIKUM 6 Penyelesaian Persamaan Non Linier Metode Newton Raphson Dengan Modifikasi Tabel

PRAKTIKUM 6 Penyelesaian Persamaan Non Linier Metode Newton Raphson Dengan Modifikasi Tabel PRAKTIKUM 6 Penyelesaan Persamaan Non Lner Metode Newton Raphson Dengan Modfkas Tabel Tujuan : Mempelajar metode Newton Raphson dengan modfkas tabel untuk penyelesaan persamaan non lner Dasar Teor : Permasalahan

Lebih terperinci

STATISTIK DESKRIPTIF UKURAN LETAK DATA

STATISTIK DESKRIPTIF UKURAN LETAK DATA UKURAN LETAK DATA OLEH HERDIAN S.Pd., M.Pd. SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER (STIMIK) PRINGSEWU UKURAN LETAK DATA Selan ukuran pemusatan data, ada juga yang dsebut ukuran letak data. Adapun

Lebih terperinci

UKURAN GEJALA PUSAT &

UKURAN GEJALA PUSAT & UKURAN GEJALA PUSAT & UKURAN LETAK UKURAN GEJALA PUSAT & LETAK Untuk mendapatkan gambaran yang jelas mengena suatu populas atau sampel Ukuran yang merupakan wakl kumpulan data mengena populas atau sampel

Lebih terperinci

MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM

MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM Tut Susant, Mashad, Sukamto Mahasswa Program S Matematka Dosen Jurusan Matematka Fakultas Matematka dan Ilmu Pengetahuan Alam

Lebih terperinci

ANALISIS DATA KATEGORIK (STK351)

ANALISIS DATA KATEGORIK (STK351) Suplemen Respons Pertemuan ANALISIS DATA KATEGORIK (STK351) 7 Departemen Statstka FMIPA IPB Pokok Bahasan Sub Pokok Bahasan Referens Waktu Korelas Perngkat (Rank Correlaton) Bag. 1 Koefsen Korelas Perngkat

Lebih terperinci

Pertemuan ke-4 Analisa Terapan: Metode Numerik. 4 Oktober 2012

Pertemuan ke-4 Analisa Terapan: Metode Numerik. 4 Oktober 2012 Pertemuan ke-4 Analsa Terapan: Metode Numerk 4 Oktober Persamaan Non Non--Lner: Metode NewtonNewton-Raphson Dr.Eng. Agus S. Muntohar Metode Newton Newton--Raphson f( f( f( + [, f(] + = α + + f( f ( Gambar

Lebih terperinci

RANGKAIAN SERI. 1. Pendahuluan

RANGKAIAN SERI. 1. Pendahuluan . Pendahuluan ANGKAIAN SEI Dua elemen dkatakan terhubung ser jka : a. Kedua elemen hanya mempunya satu termnal bersama. b. Ttk bersama antara elemen tdak terhubung ke elemen yang lan. Pada Gambar resstor

Lebih terperinci

P n e j n a j d a u d a u l a a l n a n O pt p im i a m l a l P e P m e b m a b n a g n k g i k t Oleh Z r u iman

P n e j n a j d a u d a u l a a l n a n O pt p im i a m l a l P e P m e b m a b n a g n k g i k t Oleh Z r u iman OTIMISASI enjadualan Optmal embangkt Oleh : Zurman Anthony, ST. MT Optmas pengrman daya lstrk Dmaksudkan untuk memperkecl jumlah keseluruhan baya operas dengan memperhtungkan rug-rug daya nyata pada saluran

Lebih terperinci

PELABELAN TOTAL SISI AJAIB SUPER PADA GRAF CORONA-LIKE UNICYCLIC

PELABELAN TOTAL SISI AJAIB SUPER PADA GRAF CORONA-LIKE UNICYCLIC PELABELAN TOTAL SISI AJAIB SUPER PADA GRAF CORONA-LIKE UNICYCLIC Kurnawan *, Rolan Pane, Asl Srat Mahasswa Program Stud S Matematka Dosen Jurusan Matematka Fakultas Matematka dan Ilmu Pengetahuan Alam

Lebih terperinci

PELABELAN TOTAL SISI TAK BERATURAN PADA GRAF GABUNGAN BIPARTIT LENGKAP

PELABELAN TOTAL SISI TAK BERATURAN PADA GRAF GABUNGAN BIPARTIT LENGKAP JMP : Volume 1 Nomor 2, Oktober 2009 PELABELAN TOTAL SISI TAK BERATURAN PADA GRAF GABUNGAN BIPARTIT LENGKAP Tryan dan Nken Larasat Fakultas Sans dan Teknk, Unverstas Jenderal Soedrman Purwokerto, Indonesa

Lebih terperinci

EKSISTENSI DAN KETUNGGALAN SOLUSI HARGA OPSI EROPA

EKSISTENSI DAN KETUNGGALAN SOLUSI HARGA OPSI EROPA Prosdng Semnar Nasonal Peneltan, Penddkan dan Penerapan MIPA Fakultas MIPA, Unverstas Neger Yogyakarta, 6 Me 009 EKSISTENSI DAN KETUNGGALAN SOLUSI HARGA OPSI EROPA SUTRIMA zutrma@yahoo.co.d Jurusan Matematka

Lebih terperinci

Didownload dari ririez.blog.uns.ac.id BAB I PENDAHULUAN

Didownload dari ririez.blog.uns.ac.id BAB I PENDAHULUAN BAB I PENDAHULUAN Sebuah jarngan terdr dar sekelompok node yang dhubungkan oleh busur atau cabang. Suatu jens arus tertentu berkatan dengan setap busur. Notas standart untuk menggambarkan sebuah jarngan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 ENDAHULUAN 1.1 Latar Belakang Manusa dlahrkan ke duna dengan ms menjalankan kehdupannya sesua dengan kodrat Illah yakn tumbuh dan berkembang. Untuk tumbuh dan berkembang, berart setap nsan harus

Lebih terperinci

berasal dari pembawa muatan hasil generasi termal, sehingga secara kuat

berasal dari pembawa muatan hasil generasi termal, sehingga secara kuat 10 KARAKTRISTIK TRANSISTOR 10.1 Dasar Pengoperasan JT Pada bab sebelumnya telah dbahas dasar pengoperasan JT, utamannya untuk kasus saat sambungan kolektor-bass berpanjar mundur dan sambungan emtor-bass

Lebih terperinci

TRANSITIF KLOSUR DARI GABUNGAN DUA RELASI EKUIVALENSI PADA SUATU HIMPUNAN DENGAN STRUKTUR DATA DINAMIS

TRANSITIF KLOSUR DARI GABUNGAN DUA RELASI EKUIVALENSI PADA SUATU HIMPUNAN DENGAN STRUKTUR DATA DINAMIS TRANSITIF KLOSUR DARI PADA SUATU HIMPUNAN Sukmawat Nur Endah Program Stud Ilmu Komputer Jurusan Matematka FMIPA UNDIP Jl. Prof. H. Soedarto, S.H, Semarang 5275 Abstract. A relaton R on set A s an equvalence

Lebih terperinci

PENDAHULUAN Latar Belakang

PENDAHULUAN Latar Belakang PENDAHULUAN Latar Belakang Menurut teor molekuler benda, satu unt volume makroskopk gas (msalkan cm ) merupakan suatu sstem yang terdr atas sejumlah besar molekul (kra-kra sebanyak 0 0 buah molekul) yang

Lebih terperinci

BOKS A SUMBANGAN SEKTOR-SEKTOR EKONOMI BALI TERHADAP EKONOMI NASIONAL

BOKS A SUMBANGAN SEKTOR-SEKTOR EKONOMI BALI TERHADAP EKONOMI NASIONAL BOKS A SUMBANGAN SEKTOR-SEKTOR EKONOMI BALI TERHADAP EKONOMI NASIONAL Analss sumbangan sektor-sektor ekonom d Bal terhadap pembangunan ekonom nasonal bertujuan untuk mengetahu bagamana pertumbuhan dan

Lebih terperinci

LAMPIRAN A PENURUNAN PERSAMAAN NAVIER-STOKES

LAMPIRAN A PENURUNAN PERSAMAAN NAVIER-STOKES LAMPIRAN A PENURUNAN PERSAMAAN NAVIER-STOKES Hubungan n akan dawal dar gaya yang beraks pada massa fluda. Gaya-gaya n dapat dbag ke dalam gaya bod, gaya permukaan, dan gaya nersa. a. Gaya Bod Gaya bod

Lebih terperinci

toto_suksno@uny.ac.d Economc load dspatch problem s allocatng loads to plants for mnmum cost whle meetng the constrants, (lhat d http://en.wkpeda.org/) Economc Dspatch adalah pembagan pembebanan pada pembangktpembangkt

Lebih terperinci

III PEMBAHASAN. merupakan cash flow pada periode i, dan C. berturut-turut menyatakan nilai rata-rata dari V. dan

III PEMBAHASAN. merupakan cash flow pada periode i, dan C. berturut-turut menyatakan nilai rata-rata dari V. dan Pada bab n akan dbahas mengena penyelesaan masalah ops real menggunakan pohon keputusan bnomal. Dalam menentukan penlaan proyek, dapat dgunakan beberapa metode d antaranya dscounted cash flow (DF). DF

Lebih terperinci

BAB IV PEMBAHASAN HASIL PENELITIAN PENGARUH PENGGUNAAN METODE GALLERY WALK

BAB IV PEMBAHASAN HASIL PENELITIAN PENGARUH PENGGUNAAN METODE GALLERY WALK BAB IV PEMBAASAN ASIL PENELITIAN PENGARU PENGGUNAAN METODE GALLERY WALK TERADAP ASIL BELAJAR MATA PELAJARAN IPS MATERI POKOK KERAGAMAN SUKU BANGSA DAN BUDAYA DI INDONESIA A. Deskrps Data asl Peneltan.

Lebih terperinci

Contoh 5.1 Tentukan besar arus i pada rangkaian berikut menggunakan teorema superposisi.

Contoh 5.1 Tentukan besar arus i pada rangkaian berikut menggunakan teorema superposisi. BAB V TEOEMA-TEOEMA AGKAIA 5. Teorema Superposs Teorema superposs bagus dgunakan untuk menyelesakan permasalahan-permasalahan rangkaan yang mempunya lebh dar satu sumber tegangan atau sumber arus. Konsepnya

Lebih terperinci

MENCERMATI BERBAGAI JENIS PERMASALAHAN DALAM PROGRAM LINIER KABUR. Mohammad Asikin Jurusan Matematika FMIPA UNNES. Abstrak

MENCERMATI BERBAGAI JENIS PERMASALAHAN DALAM PROGRAM LINIER KABUR. Mohammad Asikin Jurusan Matematika FMIPA UNNES. Abstrak JURAL MATEMATIKA DA KOMUTER Vol. 6. o., 86-96, Agustus 3, ISS : 4-858 MECERMATI BERBAGAI JEIS ERMASALAHA DALAM ROGRAM LIIER KABUR Mohammad Askn Jurusan Matematka FMIA UES Abstrak Konsep baru tentang hmpunan

Lebih terperinci

IV HASIL DAN PEMBAHASAN

IV HASIL DAN PEMBAHASAN 7 IV HASIL DAN PEMBAHASAN 4. Pengumpulan Data Data yang dgunakan dalam peneltan n data sekunder yang dperoleh dar rujukan utama jurnal Fuzzy Condtonal Probablty elatons and ther Applcatons n Fuzzy Informaton

Lebih terperinci

KRITERIA MEMILIH PENDUGA TITIK TERBAIK. Abstrak

KRITERIA MEMILIH PENDUGA TITIK TERBAIK. Abstrak KRITERIA MEMILIH PENDUGA TITIK TERBAIK Oleh : Sufr Abstrak Msalkan X varabel random dengan fungs padat peluang ( x / ), θ parameter populas yang tdak dketahu, dan T = t x ) ( f X adalah penduga ttk (statstk)

Lebih terperinci

3 METODE HEURISTIK UNTUK VRPTW

3 METODE HEURISTIK UNTUK VRPTW 12 3 METODE HEURISTIK UNTUK VRPTW 3.1 Metode Heurstk Metode heurstk merupakan salah satu metode penentuan solus optmal dar permasalahan optmas kombnatoral. Berbeda dengan solus eksak yang menentukan nla

Lebih terperinci

VLE dari Korelasi nilai K

VLE dari Korelasi nilai K VLE dar orelas nla Penggunaan utama hubungan kesetmbangan fasa, yatu dalam perancangan proses pemsahan yang bergantung pada kecenderungan zat-zat kma yang dberkan untuk mendstrbuskan dr, terutama dalam

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 59-70, Agustus 2003, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 59-70, Agustus 2003, ISSN : JURNA MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 59-70, Agustus 2003, ISSN : 1410-8518 MASAAH RUTE TERPENDEK PADA JARINGAN JAAN MENGGUNAKAN AMPU AU-INTAS Stud Kasus: Rute Peralanan Ngesrep Smpang ma Eko Bud

Lebih terperinci

SOLUTION INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA

SOLUTION INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA ISTITUT TEKOLOGI BADUG FAKULTAS MATEMATIKA DA ILMU PEGETAHUA ALAM PROGRAM STUDI FISIKA FI-500 Mekanka Statstk SEMESTER/ Sem. - 06/07 PR#4 : Dstrbus bose Ensten dan nteraks kuat Kumpulkan d Selasa 9 Aprl

Lebih terperinci

BAB IV PEMBAHASAN MODEL

BAB IV PEMBAHASAN MODEL BAB IV PEMBAHASAN MODEL Pada bab IV n akan dlakukan pembuatan model dengan melakukan analss perhtungan untuk permasalahan proses pengadaan model persedaan mult tem dengan baya produks cekung dan jont setup

Lebih terperinci

BAB III. Monte Carlo dan metode least-square, maka pada bab ini diantaranya akan

BAB III. Monte Carlo dan metode least-square, maka pada bab ini diantaranya akan BAB III METODE LEAST-SQUARE MONTE CARLO Pada bab sebelumnya telah delaskan antara lan mengena smulas Monte Carlo dan metode least-square, maka pada bab n dantaranya akan dbahas penggunaan kedua metode

Lebih terperinci

Kecocokan Distribusi Normal Menggunakan Plot Persentil-Persentil yang Distandarisasi

Kecocokan Distribusi Normal Menggunakan Plot Persentil-Persentil yang Distandarisasi Statstka, Vol. 9 No., 4 47 Me 009 Kecocokan Dstrbus Normal Menggunakan Plot Persentl-Persentl yang Dstandarsas Lsnur Wachdah Program Stud Statstka Fakultas MIPA Unsba e-mal : Lsnur_w@yahoo.co.d ABSTRAK

Lebih terperinci

Tinjauan Algoritma Genetika Pada Permasalahan Himpunan Hitting Minimal

Tinjauan Algoritma Genetika Pada Permasalahan Himpunan Hitting Minimal 157 Vol. 13, No. 2, 157-161, Januar 2017 Tnjauan Algortma Genetka Pada Permasalahan Hmpunan Httng Mnmal Jusmawat Massalesse, Bud Nurwahyu Abstrak Beberapa persoalan menark dapat dformulaskan sebaga permasalahan

Lebih terperinci

III. PEMBAHASAN. Untuk transaksi dengan arah x y z x, maka tiap kurs dapat didefinisikan sebagai berikut:

III. PEMBAHASAN. Untuk transaksi dengan arah x y z x, maka tiap kurs dapat didefinisikan sebagai berikut: 8 III. EMBAHASAN. Model Makroskops dar Arbtrase Trangular Model makroskops menggunakan data aktual kurs yang dambl dar www.oanda.com untuk tga mata uang yatu IDR J dan USD dalam kurun waktu dar Januar

Lebih terperinci

BAB I PENDAHULUAN. Analisis regresi merupakan metode statistika yang digunakan untuk

BAB I PENDAHULUAN. Analisis regresi merupakan metode statistika yang digunakan untuk BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Analss regres merupakan metode statstka ang dgunakan untuk meramalkan sebuah varabel respon Y dar satu atau lebh varabel bebas X, selan tu juga dgunakan untuk

Lebih terperinci

Teori Himpunan. Modul 1 PENDAHULUAN

Teori Himpunan. Modul 1 PENDAHULUAN Modul 1 Teor Hmpunan Dr. Subanar K PENDHULUN arena banyak karakterstk dar masalah probabltas dapat dnyatakan secara formal dan dmodelkan secara rngkas dengan menggunakan notas hmpunan elementer, maka pertama-tama

Lebih terperinci

Bab III Reduksi Orde Model Sistem LPV

Bab III Reduksi Orde Model Sistem LPV Bab III Reduks Ode Model Sstem PV Metode eduks ode model melalu MI telah dgunakan untuk meeduks ode model sstem I bak untuk kasus kontnu maupun dskt. Melalu metode n telah dhaslkan pula bentuk da model

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2. Tnjauan Pustaka Kegatan pemberan beasswa dlakukan oleh nstans penddkan maupun non penddkan. Secara khusus nstans penddkan memberkan beberapa jens beasswa setap tahunnya. Persyaratan

Lebih terperinci

METODE NUMERIK. INTERPOLASI Interpolasi Beda Terbagi Newton Interpolasi Lagrange Interpolasi Spline.

METODE NUMERIK. INTERPOLASI Interpolasi Beda Terbagi Newton Interpolasi Lagrange Interpolasi Spline. METODE NUMERIK INTERPOLASI Interpolas Beda Terbag Newton Interpolas Lagrange Interpolas Splne http://maulana.lecture.ub.ac.d Interpolas n-derajat polnom Tujuan Interpolas berguna untuk menaksr hargaharga

Lebih terperinci

IV. UKURAN SIMPANGAN, DISPERSI & VARIASI

IV. UKURAN SIMPANGAN, DISPERSI & VARIASI IV. UKURAN SIMPANGAN, DISPERSI & VARIASI Pendahuluan o Ukuran dspers atau ukuran varas, yang menggambarkan derajat bagamana berpencarnya data kuanttatf, dntaranya: rentang, rentang antar kuartl, smpangan

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 33-40, April 2001, ISSN : KLASIFIKASI INTERAKSI GELOMBANG PERMUKAAN BERTIPE DUA SOLITON

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 33-40, April 2001, ISSN : KLASIFIKASI INTERAKSI GELOMBANG PERMUKAAN BERTIPE DUA SOLITON JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No., 33-40, Aprl 00, ISSN : 40-858 KLASIFIKASI INTERAKSI GELOMBANG PERMUKAAN BERTIPE DUA SOLITON Sutmn dan Agus Rusgyono Jurusan Matematka FMIPA UNDIP Abstrak Pada

Lebih terperinci

V = adalah himpunan hingga, dan misalkan

V = adalah himpunan hingga, dan misalkan BAB III ALJABAR HIPERGRAF 3. Hpergraf Defns Msalkan { v, v2,..., vn} V = adalah hpunan hngga, dan salkan ε = {, I} adalah koleks dar hpunan bagan dar V. Koleks ε enjad E suatu hpergraf pada V jka hpergraf.

Lebih terperinci

STATISTIKA. Rumus : 1. Menentukan banyaknya data/responden dari diagram lingkaran:

STATISTIKA. Rumus : 1. Menentukan banyaknya data/responden dari diagram lingkaran: STATISTIKA Jens-jens soal statstka yang serng dujkan adalah soal-soal tentang : 1. Membaca sajan data dalam bentuk dagram. Ukuran pemusatan data 3. Ukuran Letak Data 4. Ukuran Penyebaran Data SOAL DAN

Lebih terperinci

Bab 2 AKAR-AKAR PERSAMAAN

Bab 2 AKAR-AKAR PERSAMAAN Analsa Numerk Bahan Matrkulas Bab AKAR-AKAR PERSAMAAN Pada kulah n akan dpelajar beberapa metode untuk mencar akar-akar dar suatu persamaan yang kontnu. Untuk persamaan polnomal derajat, persamaannya dapat

Lebih terperinci

BAB IV METODA RUNGE-KUTTA ORDE 4 PADA MODEL ALIRAN FLUIDA YANG TERGANGGU

BAB IV METODA RUNGE-KUTTA ORDE 4 PADA MODEL ALIRAN FLUIDA YANG TERGANGGU BAB IV METODA RUNGE-KUTTA ORDE 4 PADA MODEL ALIRAN FLUIDA YANG TERGANGGU Pada bab III, ka elah melakukan penguan erhadap meoda Runge-Kua orde 4 pada persamaan panas. Haslnya, solus analk persamaan panas

Lebih terperinci

Bab 1 PENDAHULUAN Latar Belakang

Bab 1 PENDAHULUAN Latar Belakang 11 Bab 1 PENDAHULUAN 1.1. Latar Belakang Perbankan adalah ndustr yang syarat dengan rsko. Mula dar pengumpulan dana sebaga sumber labltas, hngga penyaluran dana pada aktva produktf. Berbaga kegatan jasa

Lebih terperinci

ANALISIS BENTUK HUBUNGAN

ANALISIS BENTUK HUBUNGAN ANALISIS BENTUK HUBUNGAN Analss Regres dan Korelas Analss regres dgunakan untuk mempelajar dan mengukur hubungan statstk yang terjad antara dua varbel atau lebh varabel. Varabel tersebut adalah varabel

Lebih terperinci

PENENTUAN DENSITAS PERMUKAAN

PENENTUAN DENSITAS PERMUKAAN PENENTUAN DENSITAS PERMUKAAN Pada koreks topograf ada satu nla yang belum dketahu nlanya yatu denstas batuan permukaan (rapat massa batuan dekat permukaan). Rapat massa batuan dekat permukaan dapat dtentukan

Lebih terperinci

U JIAN A KHIR S EMESTER M ATEMATIKA T EKNIK

U JIAN A KHIR S EMESTER M ATEMATIKA T EKNIK Jurusan Teknk Spl dan Lngkungan FT UGM U JIAN A KHIR S EMESTER M ATEMATIKA T EKNIK SABTU, JULI OPEN BOOK WAKTU MENIT PETUNJUK ) Saudara bole menggunakan komputer untuk mengerjakan soal- soal ujan n. Tabel

Lebih terperinci

Jurnal Pendidikan Matematika & Matematika

Jurnal Pendidikan Matematika & Matematika Jurnal Penddkan Mateatka & Mateatka Syasah. (2011). Pengaruh Puasa Terhadap Konsentras Belajar Sswa. Jakarta: UIN Syarf Hdayatullah Jakarta. Thabrany, Hasbullah. (1995). Rahasa Sukses Belajar. Jakarta:

Lebih terperinci

PENERAPAN METODE MAMDANI DALAM MENGHITUNG TINGKAT INFLASI BERDASARKAN KELOMPOK KOMODITI (Studi Kasus pada Data Inflasi Indonesia)

PENERAPAN METODE MAMDANI DALAM MENGHITUNG TINGKAT INFLASI BERDASARKAN KELOMPOK KOMODITI (Studi Kasus pada Data Inflasi Indonesia) PENERAPAN METODE MAMDANI DALAM MENGHITUNG TINGKAT INFLASI BERDASARKAN KELOMPOK KOMODITI (Stud Kasus pada Data Inflas Indonesa) Putr Noorwan Effendy, Amar Sumarsa, Embay Rohaet Program Stud Matematka Fakultas

Lebih terperinci

BAB VII STABILITAS TEBING

BAB VII STABILITAS TEBING BAB VII STABILITAS TEBING VII - BAB VII STABILITAS TEBING 7. TINJAUAN UMUM Perhtungan stabltas lereng/tebng dgunakan untuk perhtungan keamanan tebng dss-ss sunga yang terganggu kestablannya akbat adanya

Lebih terperinci

BAB 1 PENDAHULUAN. Pertumbuhan dan kestabilan ekonomi, adalah dua syarat penting bagi kemakmuran

BAB 1 PENDAHULUAN. Pertumbuhan dan kestabilan ekonomi, adalah dua syarat penting bagi kemakmuran BAB 1 PENDAHULUAN 1.1. Latar Belakang Pertumbuhan dan kestablan ekonom, adalah dua syarat pentng bag kemakmuran dan kesejahteraan suatu bangsa. Dengan pertumbuhan yang cukup, negara dapat melanjutkan pembangunan

Lebih terperinci

BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER

BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER 5.1 Pembelajaran Dengan Fuzzy Program Lner. Salah satu model program lnear klask, adalah : Maksmumkan : T f ( x) = c x Dengan batasan : Ax b x 0 n m mxn Dengan

Lebih terperinci

MODEL SUMBER - KONSUMEN. Oleh : UMI HIDAYATI G

MODEL SUMBER - KONSUMEN. Oleh : UMI HIDAYATI G MODEL SUMBER - KONSUMEN Oleh : UMI HIDAYATI G05400046 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR 2006 ABSTRAK UMI HIDAYATI. Model Sumber Konsumen. D bawah

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISA

BAB IV PENGUJIAN DAN ANALISA BAB IV PENGUJIAN DAN ANALISA 4. PENGUJIAN PENGUKURAN KECEPATAN PUTAR BERBASIS REAL TIME LINUX Dalam membuktkan kelayakan dan kehandalan pengukuran kecepatan putar berbass RTLnux n, dlakukan pengujan dalam

Lebih terperinci

Preferensi untuk alternatif A i diberikan

Preferensi untuk alternatif A i diberikan Bahan Kulah : Topk Khusus Metode Weghted Product (WP) menggunakan perkalan untuk menghubungkan ratng atrbut, dmana ratng setap atrbut harus dpangkatkan dulu dengan bobot atrbut yang bersangkutan. Proses

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. Deskrps Data Hasl Peneltan Satelah melakukan peneltan, penelt melakukan stud lapangan untuk memperoleh data nla post test dar hasl tes setelah dkena perlakuan.

Lebih terperinci

BAB 4 PERHITUNGAN NUMERIK

BAB 4 PERHITUNGAN NUMERIK Mata kulah KOMPUTASI ELEKTRO BAB PERHITUNGAN NUMERIK. Kesalahan error Pada Penelesaan Numerk Penelesaan secara numers dar suatu persamaan matemats kadang-kadang hana memberkan nla perkraan ang mendekat

Lebih terperinci

II. TEORI DASAR. Definisi 1. Transformasi Laplace didefinisikan sebagai

II. TEORI DASAR. Definisi 1. Transformasi Laplace didefinisikan sebagai II. TEORI DASAR.1 Transormas Laplace Ogata (1984) mengemukakan bahwa transormas Laplace adalah suatu metode operasonal ang dapat dgunakan untuk menelesakan persamaan derensal lnear. Dengan menggunakan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN A. Jens Peneltan Jens peneltan n adalah peneltan quas expermental dengan one group pretest posttest desgn. Peneltan n tdak menggunakan kelas pembandng namun sudah menggunakan

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN Latar elakang Sekolah merupakan salah satu bagan pentng dalam penddkan Oleh karena tu sekolah harus memperhatkan bagan-bagan yang ada d dalamnya Salah satu bagan pentng yang tdak dapat dpsahkan

Lebih terperinci

MULTIVARIATE ANALYSIS OF VARIANCE (MANOVA) MAKALAH Untuk Memenuhi Tugas Matakuliah Multivariat yang dibimbing oleh Ibu Trianingsih Eni Lestari

MULTIVARIATE ANALYSIS OF VARIANCE (MANOVA) MAKALAH Untuk Memenuhi Tugas Matakuliah Multivariat yang dibimbing oleh Ibu Trianingsih Eni Lestari MULTIVARIATE ANALYSIS OF VARIANCE (MANOVA) MAKALAH Untuk Memenuh Tugas Matakulah Multvarat yang dbmbng oleh Ibu Tranngsh En Lestar oleh Sherly Dw Kharsma 34839 Slva Indrayan 34844 Vvn Octana 34633 UNIVERSITAS

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertan Regres Regres pertama kal dpergunakan sebaga konsep statstka oleh Sr Francs Galton (1822 1911). Belau memperkenalkan model peramalan, penaksran, atau pendugaan, yang

Lebih terperinci