( ) ( ) ( ) ( ) ( ) III MODEL. , θ Ω. 1 Pendugaan parameter dengan metode maximum lkelihood estimation dapat diperoleh dari:

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "( ) ( ) ( ) ( ) ( ) III MODEL. , θ Ω. 1 Pendugaan parameter dengan metode maximum lkelihood estimation dapat diperoleh dari:"

Transkripsi

1 5 Mamum Lkelhood Estmato Defs Fugs Lkelhood Msalka X, X,, X adalah eubah acak d dega fugs massa eluag ( ; θ, dega θ dasumska skalar da tdak dketahu, maka rosedur fugs lkelhood daat dtulska sebaga berkut : L θ; ; θ, θ Ω, dega ( ( ( X X, X,, X (Hogg et al 5 Defs Pedugaa Parameter Msalka fugs lkelhood adalah L θ; ; θ, maka fugs log dar ( ( L( θ, daat dotaska dega : l log L log ; ( θ ( θ ( θ, θ Ω Pedugaa arameter dega metode mamum lkelhood estmato daat deroleh dar: l ( θ (Hogg et al 5 6 Metode Newto-Rahso Defs (Metode Newto-Rahso Metode Newto-Rahso meruaka salah satu metode umerk yag alg ouler utuk meghtug hamra akar-akar f suatu ersamaa o-lear Msalka ( fugs dferesabel ada [ ab, ] maka f ( memuya kemrga tertetu da gars sggug tuggal ada seta ttk d dalam ( ab, Gars sggug d ttk (, f ( meruaka edekata grafk f ( d dekat ttk (, f ( Msalka adalah abss ttk awal yag dberka, grade gars sggug kurva y f ( d ttk (, f ( adalah f (, sehgga ersamaa gars sggugya adalah y f ( f ( ( Jka y maka ersamaaya mead : f ( f ( ( ( f f Dega cara yag sama akhrya deroleh ersamaa umum sebaga berkut : f ( +,,, f ( Persamaa d atas dsebut uga dega teras Newto-Rahso (Sahd 5 III MODEL 3 Model Lear Umum Model lear umum (Geeralzed Lear Model meruaka erluasa dar model lear klask Msalka Y adalah eubah acak dega la rata-rata, ada model lear klask eubah acak Y megguaka asums keormala, sedagka ada model lear umum eubah acak Y harus berasal dar famly eksoe Selautya aka daarka tetag famly eksoe 3 Famly Eksoe Msalka fugs keekata eluag dar eubah acak Y adalah ( y; θφ, yag memuya arameter φ da θ maka ( y; θφ, daat dagga sebaga famly eksoe ka daat dbetuk sebaga berkut: yθb( θ ( y; θφ, e + c( y, φ a( φ 3 Nla Haraa da Ragam Famly Eksoe Dketahu bahwa fugs keekata eluag dar famly eksoe adalah ( y; θφ, e { yθ b( θ a( φ + c( y, φ maka ersamaa log lkelhood daat dbetuk sebaga berkut: yθ b( θ + c( y, φ a ( φ sehgga y b ( θ ( θ da a( φ ( a( φ

2 4 Nla haraa da ragam famly eksoe daat ddefska sebaga berkut : EY ( b ( θ ( da ar( Y ( θ a( φ ( Bukt ersamaa : Aka dbuktka bahwa : EY ( b ( θ Dketahu : Yb ( θ a( φ Dega megguaka ersamaa berkut: E θ sehgga E( Y b ( θ a( φ EY ( b ( θ a( φ Karea a( φ maka deroleh : EY ( b ( θ EY ( b ( θ Dega demka, terbukt bahwa EY ( b ( θ Bukt ersamaa : Aka dbuktka bahwa ar( Y ( θ a( φ Dega megguaka ersamaa dettas Bartlett (McCullagh 989 berkut : E E + ( θ θ, maka : ( θ y b ( E E θ a( φ + a( φ ( θ a ( φ ( a ( φ ( ( θ ( θ a ( φ ( a ( φ ( E( Y ( θ ar( Y + a( φ ( a( φ ar ( Y ( θ ( a( φ a ( φ ar ( Y a ( φ ( θ ( a ( φ + E y b + E y ( ar Y ( θ ( a( φ a ( φ ar( Y ( θ a( φ Maka terbukt bahwa ar( Y ( θ a( φ eorema Sebara ormal termasuk ke dalam famly eksoe Bukt: Msalka Y eubah acak yag meyebar ormal, maka fugs keekata eluagya daat dtulska sebaga berkut: ( y ( y; θφ, e πσ σ Fugs keekata eluag tersebut daat dtuls dalam betuk: ( y ( y; θφ, e l ( πσ σ ( y y e l ( πσ σ y y e l ( πσ σ σ Dega θ, b( θ, a( φ σ, da y c( y, φ l ( πσ σ Dega demka terbukt bahwa sebara ormal termasuk ke dalam famly eksoe, sehgga daat dtuukka bahwa meurut ersamaa ( da ( ddaatka la haraa da ragam sebara ormal sebaga berkut: E( Y b ( θ da ar Y θ a φ σ σ ( ( ( eorema 3 Sebara Posso termasuk ke dalam famly eksoe Bukt: Msalka Y eubah acak yag meyebar Posso, maka fugs massa eluagya daat dtulska sebaga berkut: y P( y; θφ, e[ ], y! maka fugs massa eluag tersebut daat dtuls dalam betuk: P( y; θφ, e[ + yl l y! ]

3 5 Dega θ l, b( θ, a( φ, c( y, φ l y! Dega demka terbukt bahwa sebara Posso termasuk ke dalam famly eksoe, sehgga daat dtuukka bahwa meurut ersamaa ( da ( ddaatka la haraa da ragam sebara Posso sebaga berkut: E( Y b ( θ e( θ da ar ( Y ( θ a ( φ 33 Lk Fucto Lk fucto meruaka fugs yag meghubugka atara η dega la haraa Pada famly eksoe ersamaa lk fucto, daat dtulska sebaga θ η, dega η daat dtulska sebaga berkut η g ( da selautya g ( daat dsebut dega lk fucto Utuk sebara ormal daat dlhat dar eorema bahwa θ, sehgga lk fucto utuk sebara ormal adalah η Sedagka utuk sebara Posso yag daat dlhat dar eorema 3 bahwa θ l, sehgga lk fucto utuk sebara Posso adalah η l 34 Model Regres Lear Klask Msalka ada suatu egamata eubah acak Y yag meyebar ormal dega ratarata, maka dalam model lear klask terdaat tga betuk komoe yag berhubuga dega la yatu sebaga berkut : Komoe acak : Y meyebar ormal dega ragam kosta σ da EY ( Komoe sstemats : msalka terdaat covarat,,, yag meghaslka redktor lear η yag dberka dega ersamaa : η β 3 Hubuga (lk atara komoe acak da komoe sstemats : η Sehgga la daat dtulska sebaga berkut : β dega β meruaka arameter yag laya tdak dketahu Jka deks egamata maka model daat dtulska sebaga berkut : EY ( β,, N dega adalah la egamata ke- utuk eubah ke- Dalam matrks model daat dtulska sebaga berkut : Xβ dega matrks berukura, X matrks berukura da β matrks yag berukura 35 Model Regres Lear Umum Pada model lear umum terdaat dua erluasa dar model regres lear klask tetag la yatu: Komoe acak : Y harus berasal dar famly eksoe Komoe sstemats : msalka terdaat covarat,,, yag meghaslka redktor lear η yag dberka dega ersamaa: η β 3 Hubuga (lk atara komoe acak da komoe sstemats : f ( η, dega f ( η meruaka fugs dar η yag mooto da terturuka 36 Pedugaa Parameter Secara umum edugaa arameter dlakuka dega metode kemugka maksmum (Mamum Lkelhood Estmato/MLE Msalka betuk fugs keekata eluag famly eksoe dtulska sebaga berkut: ( y; θφ, e { yθ b( θ a( φ + c( y, φ Maka betuk dar log lkelhood daat dtuls dega: yθb( θ + c( y, φ a( φ Dar ersamaa (, dketahu EY ( b ( θ, maka yb ( θ [ y ], a( φ a( φ sehgga

4 6 [ y ] a( φ ( θ Karea ( θ θ b ( θ Meurut ersamaa ( maka : ar( Y ( θ a( φ ( θ a( φ Sehgga d θ dθ y ( θ a ( φ y a( φ a( φ y a ( φ a( φ [ y ] η Karea η β maka β [ y ] sehgga [ y ] β β Maka fugs kemugka maksmum utuk β dberka dalam ersamaa berkut : [ y ] w[ y ] η Karea w w w, ka dyataka dalam betuk matrks, maka ersamaa d atas mead: wy [ ] XW [ y ] (3 Aka dtetuka la haraa utuk fugs yag dturuka terhada arameter β da β yatu sebaga berkut : [ ] E E y ββ β E ( y + β η [ ] E y β E β η E β η η w dega w meruaka bobot utuk metode kuadrat terkecl, sehgga dalam betuk matrks daat dtulska sebaga berkut : E XWX ' ββ Dega megguaka teras Newto- Rahso, ersamaa edugaa arameter dega megguaka metode IWLS regres daat dtulska sebaga berkut : - β β + I z (4 ( r ( r- ( r- ( r- dega β da β adalah vektor utuk ( r ( r- β, I meruaka formas egatf dar ( r- la haraa turua kedua log lkelhood da Z ( r- yatu vektor yag megadug turua ertama log lkelhood Persamaa (3 meruaka turua ertama dar log lkelhood, sehgga dalam betuk matrks daat dtulska sebaga berkut : z X W k dega k y Negatf dar la haraa ada turua kedua log lkelhood yatu sebaga berkut : E w (5 ββ Selautya formas matrks I yag megadug egatf dar la haraa turua kedua log lkelhood ada ersamaa (5 daat dtulska sebaga berkut :

5 7 I XWX Pada akhrya ersamaa teras ada ersamaa (4 daat dtulska sebaga berkut: β ( r β + XW ( ( r X XW r ( r k ( r Dega demka ersamaa d atas mr dega metode kuadrat terkecl terbobot 3 Model Regres Posso Msalka Y eubah acak yag meyebar Posso maka tga komoe yag berhubuga dega la adalah sebaga berkut: Komoe acak : Y harus berasal dar famly eksoe Komoe sstemats : msalka terdaat covarat,,, yag meghaslka redktor lear η yag dberka dega ersamaa: η β 3 Hubuga (lk atara komoe acak da komoe sstemats : η l Jka dasumska la EY ( e e( β, dega e adalah suatu kostata eosure yag tdak beregaruh terhada model, adalah vektor yag berukura yag meelaska eubah eelas da β adalah vektor yag berukura yag meruaka arameter regres, maka fugs massa eluag regres Posso adalah sebaga berkut: ( ( e e ( y, θφ β, e e e( y! β Aka dbuktka bahwa ( y, θφ, termasuk ke dalam famly eksoe Fugs massa eluag tersebut daat dtuls dalam betuk: y ( ( β ( β y, θφ, e[ e e + yl e e l y!] dega l e e( b( e e( θ β, θ β, a( φ, c( y, φ l y! (6 Dega demka terbukt bahwa fugs massa eluag yag meyebar meurut sebara regres Posso termasuk ke dalam famly eksoe Selautya aka dbuktka EY ( e( θ e e( β da ar( Y e e( β Bukt : Dar ersamaa (6, maka daat dtuukka bahwa : EY b θ e θ ee β ( ( ( ( ( ( θ ( φ e( β ar Y b a e Utuk ersamaa lkelhood dar fugs massa eluag regres Posso daat dtulska sebaga berkut: ( β ( y l l y! (7 (bukt lhat Lamra dega ( y ;,,, (8 β (bukt lhat Lamra da ( β s ; s,,,, (9 β βs (bukt lhat Lamra 3 Dega cara yag sama ada edugaa arameter famly eksoe d sub bab 36, maka edugaa arameter utuk regres Posso megguaka teras Newto- Rahso Persamaa teras utuk edugaa arameter dega megguaka IWLS regres daat dtulska sebaga berkut: I β β + z ( ( r ( r ( r ( r dega β ( r da β ( r- adalah vektor utuk β, I megadug formas egatf dar ( r la haraa turua kedua log lkelhood da z ( r- meruaka vektor yag megadug turua ertama log lkelhood urua ertama dar log lkelhood daat dtuukka oleh ersamaa (8 sehgga daat dtulska sebaga berkut: z X W k dega w da k y Sedagka egatf dar la haraa turua kedua ada ersamaa (9 daat dtulska dega ersamaa berkut :

6 8 ( β s s β β E ; s,,,, Selautya formas matrks I yag megadug egatf dar la haraa turua kedua tersebut daat dtulska dalam matrks sebaga berkut: I XWX Pada akhrya ersamaa teras ada ersamaa ( daat dtulska: β β + ( XW ( ( r ( r r X ( XW ( r k( r Dega demka ersamaa d atas mr dega metode kuadrat terkecl terbobot 33 Overdserso Overdserso adalah stuas dmaa ragam lebh besar darada rata-rata Pada sub bab daarka bahwa dalam model Posso daat terad ermasalaha overdserso Msalka dalam egamata Y ada roses Posso yag memlk aag terval sebaga berkut : Y Z + Z + + ZN, dega Z adalah eubah acak d da N meyebar Posso, maka la haraa da ragam daat dtulska sebaga berkut : E( Y E( N E( Z da ar ( Y E ( N ar ( Z + ar ( N E( Z E( N E ( Z { Bukt: Aka dbuktka EY ( EN ( EZ ( Dketahu Y Z + Z + + ZN dega Z meyebar d da N meyebar Posso, maka : N E ( Y E( E( Y N E E( Z N N E ( Z N P( N E ( Z P( N ( E ( Z P( N ( ( E Z P N E Z P N ( ( E ( N E( Z Aka dbuktka { ar ( Y E ( N ar ( Z + ar ( N E( Z ( ( E N E Z Bukt : ( ( ( ( ary EY EY ( ( ( E Y E E Y N ( ( ( E E Z N P N ( ( ( ( E Z + E Z E Z P N ( E ( Z ( ( E ( Z P ( N + ( ( E Z P N + ( E( Z ( P( N { ( ( ( ( ( ( E Z E N + E Z E N E N ( ( ( ( ary EY EY { ( ( ( ( ( ( E Z E N + E Z E N E N { E( Z E( N { ( ( ( ( ( ( E Z E N + E Z E N E N ( E( Z ( E( N ( ( ( ( { E ( N E ( N ( E ( N E ( Z E( N ( E( Z { E ( N ( E( N E( N E( Z E( N ( E( Z { ar( N E( N E( Z E( N ( E( Z ar( N ( E( Z E( N E Z E N + E Z { ( ( ( ( ( ( ( E N E Z E Z + E Z ar N ( ( ( ( ( E N ar Z + ar N E Z Karea N meyebar Posso maka ar( N E( N sehgga ersamaa d atas mead : { ( ( ( ( EN ( EZ ( EZ + EN ( EZ ( ( ( ( ( ( ( ( E N E Z E N E Z + E N E Z ( ( E NEZ Jad ersamaa d atas daat meuukka ar Y E Y E Z > E Z, yatu ( ( > ka ( ( ersamaa yag megdkaska bahwa dalam model Posso daat terad ermasalaha overdserso, sehgga ada bab selautya dbahas tetag model geeralzed Posso utuk meaga errasalaha overdserso

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah BAB III INEGRAL RIEMANN-SIELJES. Pedahulua Pada Bab, telah dsggug bahwa ukura meghtug merupaka salah satu pedekata utuk membetuk proses ttk. Berkata dega masalah perhtuga, ada hal meark yag perlu amat,

Lebih terperinci

PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD

PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Mayag Novhta Sar *, Bustam, Sgt Sugarto Mahasswa Program Stud S Matematka FMIPA Uverstas Rau Dose Fakultas

Lebih terperinci

BAB III ESTIMASI MODEL PROBIT TERURUT

BAB III ESTIMASI MODEL PROBIT TERURUT BAB III ESTIMASI MODEL PROBIT TERURUT 3. Pedahulua Model eurua kods embata destmas dega model robt terurut. Estmas terhada arameter model robt terurut yatu koefse model da threshold dlakuka dega metode

Lebih terperinci

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Ruag Baach Sumaag Muhtar Gozal UNIVERSITAS PENDIDIKAN INDONESIA Satu kose etg d kulah Aalss ugsoal adalah teor ruag Baach. Pada baga aka drevu defs, cotoh-cotoh, serta sfat-sfat etg ruag Baach. Kta aka

Lebih terperinci

BAB III PERSAMAAN PANAS DIMENSI SATU

BAB III PERSAMAAN PANAS DIMENSI SATU BAB III PERSAMAAN PANAS DIMENSI SAU Pada baga sebelumya, kta telah membahas peerapa metoda Ruge-Kutta orde 4 utuk meyelesaka masalah la awal dar persamaa dferesal basa orde. Pada bab, kta aka melakuka

Lebih terperinci

BAB III ISI. x 2. 2πσ

BAB III ISI. x 2. 2πσ BAB III ISI 4. Keadata Normal Multvarat da Sfat-sfatya Keadata ormal multvarat meruaka geeralsas dar keadata ormal uvarat utuk dmes. f ( x) [( x )/ ] / = e x π x = ( x )( ) ( x ). < < (-) (-) Betuk (-)

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres

Lebih terperinci

Bab II Teori Pendukung

Bab II Teori Pendukung Bab II Teor Pedukug.. asar Statstka Utuk keperlua peaksra outstadg clams lablty, pegetahua dalam statstka mead hal yag petg. asar statstka yag dguaka dalam tess atara la :. strbus ormal Sebuah peubah acak

Lebih terperinci

CAL ( ) ( ) E r. Var rp i M im

CAL ( ) ( ) E r. Var rp i M im LAIRAN 3 Lampra Bukt ersamaa ( Gambar: Kurva Froter da CAL E ( r CAL E ( r ( E r r roter r ( E r r Kemrga gars CAL adalah, merupaka market prce o rsk (rsko harga pasar da dsebut raso mbal hasl terhadap

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu. BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska

Lebih terperinci

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton,

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton, BAB LANDASAN TEORI Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut varabel tak bebas (depedet

Lebih terperinci

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL 3. Pegerta Masalah regres vers dega betuk lear dapat djumpa dalam berbaga bdag kehdupa, dataraya dalam bdag ekoom, kesehata, fska, kma

Lebih terperinci

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Tgg tekaa [m] UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 11 Desember 017 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 50%] Sebuah PDAM melakuka pegukura

Lebih terperinci

SIFAT-SIFAT LANJUT FUNGSI TERBATAS

SIFAT-SIFAT LANJUT FUNGSI TERBATAS Bulet Ilmah Mat. Stat. da Terapaya (Bmaster) Volume 03, No. 2(204), hal 35 42. SIFAT-SIFAT LANJUT FUNGSI TERBATAS Suhard, Helm, Yudar INTISARI Fugs terbatas merupaka fugs yag memlk batas atas da batas

Lebih terperinci

π ( ) menyatakan peluang bahwa

π ( ) menyatakan peluang bahwa GRF RN SNY D SSTE ERSN CHN- OOGOROV u Nugrahe Jurusa eddka atematka F Uverstas uhammadyah uroreo Jala H.. Dahla uroreo e-mal: u_r@telkom.et bstrak Tuua dar eulsa adalah megetahu kostruks betuk graf alra

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 19 Desember 016 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 40%] Hasl pegukura sampel d beberapa sekolah da

Lebih terperinci

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teoremateorema

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teoremateorema II. LANDAAN TEORI Pada bab II aka dbahas pegerta-pegerta (defs) da teoremateorema ag medukug utuk pembahasa pada bab IV. Pegerta (defs) da teorema tersebut dtulska sebaga berkut.. Teorema Proeks Teorema

Lebih terperinci

BAB 5. ANALISIS REGRESI DAN KORELASI

BAB 5. ANALISIS REGRESI DAN KORELASI BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh

Lebih terperinci

Regresi Linier Sederhana Definisi Pengaruh

Regresi Linier Sederhana Definisi Pengaruh Regres Ler Sederhaa Dah Idra Baga Bostatstka da Kepeduduka Fakultas Kesehata Masyarakat Uverstas Arlagga Defs Pegaruh Jka terdapat varabel, msalka da yag data-dataya dplot sepert gambar dbawah 3 Defs Pegaruh

Lebih terperinci

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real.

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real. BAB 5 BARIAN DAN DERET KOMPLEK ecara eses, pembahasa tetag barsa da deret komlpeks sama dega barsa da deret real. 5. Barsa Barsa merupaka sebuah fugs dega doma berupa hmpua blaga asl N. ebuah barsa kompleks

Lebih terperinci

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat.

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat. KALKULUS LANJUT Pertemua ke-4 Rey Ra Marlaa, S.S.,M.Stat. Plot Mater Notas Jumlah & Sgma Itegral Tetu Jumlah Rema Pedahulua Luas Notas Jumlah & Sgma Purcell, et all. (page 226,2003): Sebuah fugs yag daerah

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling BAB LANDASAN TEORI Kosep Dasar Aalss Regres Aalss regres adalah suatu proses memperkraka secara sstemats tetag apa yag palg mugk terjad dmasa yag aka datag berdasarka formas yag sekarag dmlk agar memperkecl

Lebih terperinci

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua

Lebih terperinci

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( )

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( ) Regres & Korelas Ler Sederhaa 1. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk yag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

RELATIF EFISIENSI PENAKSIR MOMEN TERHADAP PENAKSIR MAKSIMUM LIKELIHOOD UNTUK PARAMATER BERDISTRIBUSI SEGITIGA. Haposan Sirait 1, Usman Malik 2 ABSTRAK

RELATIF EFISIENSI PENAKSIR MOMEN TERHADAP PENAKSIR MAKSIMUM LIKELIHOOD UNTUK PARAMATER BERDISTRIBUSI SEGITIGA. Haposan Sirait 1, Usman Malik 2 ABSTRAK Relatf Efses Peaksr Mome Terhada Peaksr Maksmum Lkelhood RELATIF EFISIENSI PENAKSIR MOMEN TERHADAP PENAKSIR MAKSIMUM LIKELIHOOD UNTUK PARAMATER BERDISTRIBUSI SEGITIGA Haosa Srat, Usma Malk ABSTRAK Makalah

Lebih terperinci

III PEMBAHASAN. Karena vektor-vektor kolom X adalah bebas linear, maka L(ε) mempunyai n vektor eigen yang bebas linear. (Terbukti)

III PEMBAHASAN. Karena vektor-vektor kolom X adalah bebas linear, maka L(ε) mempunyai n vektor eigen yang bebas linear. (Terbukti) Karea vektor-vektor kolom X adalah bebas lear maka mempuya vektor ege yag bebas lear. erbukt eorema 9 Jka... adalah la ege dar maka... adalah la ege dar. BUK : salka... adalah la ege dar yag bersesuaa

Lebih terperinci

Proses inferensi pada model logit Agus Rusgiyono. Abstracts

Proses inferensi pada model logit Agus Rusgiyono. Abstracts Proses eres ada model logt Agus Rusgoo Let dstrbuto wth Abstracts 3 rereset the resose o a omal radom varable o Beroull P P where s a arameter wth ukow value. Problems o estmatg used smallest square methods

Lebih terperinci

Regresi & Korelasi Linier Sederhana

Regresi & Korelasi Linier Sederhana Regres & Korelas Ler Sederhaa. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar la peubah

Lebih terperinci

REPRESENTASI BILANGAN FIBONACCI DALAM BENTUK KOMBINATORIAL

REPRESENTASI BILANGAN FIBONACCI DALAM BENTUK KOMBINATORIAL REPRESENTASI BILANGAN FIBONACCI DALAM BENTUK KOMBINATORIAL Rzky Maulaa Nugraha Tekk Iformatka Isttut Tekolog Badug Blok Sumurwed I RT/RW 4/, Haurgeuls, Idramayu, 4564 e-mal: laa_cfre@yahoo.com ABSTRAK

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai dasar-dasar teori yang akan

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai dasar-dasar teori yang akan BAB II LANDASAN TEORI Pada bab aka dbahas megea dasar-dasar teor ag aka dguaka dalam eulsa skrs, atu megea data hrark, model regres -level, model logstk, estmas arameter model logstk, uj sgfkas arameter

Lebih terperinci

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP Msal dguaka kode ler C[, k, d] dega matrks pembagu G da matrks cek partas H. Sebuah blok formas x = x 1 x 2 x k, x = 0 atau 1, yag aka dkrm terlebh

Lebih terperinci

BAB II LANDASAN TEORI. merepresentasikan dan menjelaskan permasalahan pada dunia nyata ke dalam. pernyataan matematis (Widowati & Sutimin, 2007 : 1).

BAB II LANDASAN TEORI. merepresentasikan dan menjelaskan permasalahan pada dunia nyata ke dalam. pernyataan matematis (Widowati & Sutimin, 2007 : 1). BAB II LANDASAN EORI.. Model Matematka Model Matematka merupaka represetas matematka yag dhaslka dar pemodela Matematka. Pemodela Matematka merupaka suatu proses merepresetaska da mejelaska permasalaha

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,

Lebih terperinci

Penaksiran Parameter Model Regresi Polinomial Berkson Menggunakan Metode Minimum Distance

Penaksiran Parameter Model Regresi Polinomial Berkson Menggunakan Metode Minimum Distance Peaksra Parameter Model Regres Polomal Berkso Megguaka Metode Mmum Dstace Da Kurawat Dearteme Matematka, FMIPA UI, Kamus UI Deok 16 da61@gmal.com Abstrak Berkso Measuremet Error Model meruaka model regres

Lebih terperinci

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

REGRESI & KORELASI LINIER SEDERHANA

REGRESI & KORELASI LINIER SEDERHANA . Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

MATEMATIKA INTEGRAL RIEMANN

MATEMATIKA INTEGRAL RIEMANN MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN Ses NGAN INTEGRAL RIEMANN A. NOTASI SIGMA a. Defs Notas Sgma Sgma (Σ) adalah otas matematka megguaka smbol yag mewakl pejumlaha da beberapa suku yag memlk

Lebih terperinci

PENDUGAAN BERBASIS MODEL UNTUK KASUS BINER PADA SMALL AREA ESTIMATION. Kismiantini

PENDUGAAN BERBASIS MODEL UNTUK KASUS BINER PADA SMALL AREA ESTIMATION. Kismiantini PENDUGAAN BERBASIS MODEL UNUK KASUS BINER PADA SMALL AREA ESIMAION Ksmat Jurusa Peddka Matematka, Uverstas Neger Yogyakarta Karagmalag, Yogyakarta 558, Idoesa e-mal : ksm_uy@yahoo.com ABSRAK Small Area

Lebih terperinci

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis STATISTIK Ukura Gejala Pusat Ukura Letak Ukura Smpaga, Dspers da Varas Mome, Kemrga, da Kurtoss Notas Varabel dyataka dega huruf besar Nla dar varabel dyataka dega huruf kecl basaya dtuls Tmes New Roma

Lebih terperinci

NORM VEKTOR DAN NORM MATRIKS

NORM VEKTOR DAN NORM MATRIKS NORM VEKTOR DN NORM MTRIK umaag Muhtar Gozal UNIVERIT PENDIDIKN INDONEI. Pedahulua Jka kta membcaraka topk ruag vektor maka cotoh sederhaa yag dapat kta ambl adalah ruag Eucld R. D ruag kta medefska pajag

Lebih terperinci

Penelitian Operasional II Teori Permainan TEORI PERMAINAN

Penelitian Operasional II Teori Permainan TEORI PERMAINAN Peelta Operasoal II Teor Permaa 7 2 TEORI PERMAINAN 2 Pegatar 2 Krtera Tekk Permaa : () Terdapat persaga kepetga datara pelaku (2) Setap pema memlk stateg, bak terbatas maupu tak terbatas (3) Far Game

Lebih terperinci

UKURAN GEJALA PUSAT DAN UKURAN LETAK

UKURAN GEJALA PUSAT DAN UKURAN LETAK UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Dalam pemodela program ler, semua parameter yag dguaka dalam model dasumska dapat dketahu secara past. Parameter-parameter terdr dar koefse batasa ( ) a, la kuattas batasa

Lebih terperinci

ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF

ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF KELOMPOK A I GUSTI BAGUS HADI WIDHINUGRAHA (0860500) NI PUTU SINTYA DEWI (0860507) LUH GEDE PUTRI SUARDANI (0860508) I PUTU INDRA MAHENDRA PRIYADI (0860500)

Lebih terperinci

ESTIMASI PARAMETER REGRESI GANDA MENGGUNAKAN BOOTSTRAP DAN JACKNIFE.

ESTIMASI PARAMETER REGRESI GANDA MENGGUNAKAN BOOTSTRAP DAN JACKNIFE. Prosdg Semar Nasoal Alkas Sas & Tekolog (SNAST) Yogakarta, 6 November 6 ISSN : 979 9X eissn : 54 58X ESTIMASI PARAMETER REGRESI GANDA MENGGUNAKAN BOOTSTRAP DAN JACKNIFE Noerat, Rka Herda,, Jurusa Statstka,

Lebih terperinci

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES * PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka

Lebih terperinci

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas:

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas: ANALISIS REGRESI Pedahulua Aalss regres berkata dega stud megea ketergatuga satu peubah (peubah terkat) terhadap satu atau lebh peubah laya (peubah pejelas). Jka Y dumpamaka sebaga peubah terkat da X1,X,...,X

Lebih terperinci

XI. ANALISIS REGRESI KORELASI

XI. ANALISIS REGRESI KORELASI I ANALISIS REGRESI KORELASI Aalss regres mempelajar betuk hubuga atara satu atau lebh peubah bebas dega satu peubah tak bebas dalam peelta peubah bebas basaya peubah yag dtetuka oelh peelt secara bebas

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL Hesty ala, Arsma Ada, Bustam hestyfala@ymalcom Mahasswa Program S Matematka MIPA-UR Dose Matematka MIPA-UR

Lebih terperinci

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN // REGRESI LINEAR SEDERHANA DAN KORELASI. Model Regres Lear. Peaksr Kuadrat Terkecl 3. Predks Nla Respos 4. Iferes Utuk Parameter-parameter Regres 5. Kecocoka Model Regres 6. Korelas Utrwe Mukhayar MA

Lebih terperinci

Estimasi dan Statistik Uji pada Model Probit Biner Bivariat. Estimation and Statistical Test in Bivariate Binary Probit Model

Estimasi dan Statistik Uji pada Model Probit Biner Bivariat. Estimation and Statistical Test in Bivariate Binary Probit Model Jural ILMU DASAR Vol. No.. 0 : 97-0 97 Estmas da Statstk Uj ada Model robt Ber Bvarat Estmato ad Statstcal est Bvarate Bar robt Model Vta Ratasar, urhad, Isma & Suhartoo Mahasswa S-3 Statstka FMIA IS,

Lebih terperinci

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teorema-teorema

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teorema-teorema II. LANDASAN TEORI Pada bab II aka dbahas pegerta-pegerta (defs) da teorea-teorea ag edukug utuk pebahasa pada bab IV. Pegerta (defs) da teorea tersebut dtulska sebaga berkut... Teorea Proeks Teorea proeks

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Defes Aalss Korelas da Regres a Aalss Korelas adalah metode statstka yag dguaka utuk meetuka kuatya atau derajat huuga lear atara dua varael atau leh. Semak yata huuga ler gars lurus,

Lebih terperinci

Penarikan Contoh Acak Berlapis (Stratified Random Sampling) Pertemuan IV

Penarikan Contoh Acak Berlapis (Stratified Random Sampling) Pertemuan IV Pearka Cotoh Acak Berlas (Stratfed Radom Samlg Pertemua IV Defs Cotoh acak berlas ddaatka dega cara membag oulas mejad beberaa kelomok ag tdak salg tumag tdh, da kemuda megambl secara acak dar seta kelomokkelomok

Lebih terperinci

BAB 5 HASIL DAN PEMBAHASAN

BAB 5 HASIL DAN PEMBAHASAN 3 BAB 5 HASIL DAN PEMBAHASAN Dalam baga hasl da embahasa aka dtamlka roses aalss da egolaha data, dalam betuk deskrtf, tabel-tabel yag dguaka, gambar-gambar beserta hasl da embahasaya. Dega memerhatka

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,

Lebih terperinci

IDEAL DALAM ALJABAR LINTASAN LEAVITT

IDEAL DALAM ALJABAR LINTASAN LEAVITT Delta-P: Jural Matematka da Peddka Matematka ISSN 289-855X Vol., No. 2, Oktober 22 IDAL DALAM ALJABAR LINTASAN LAVITT Ida Kura Walyat Program Stud Peddka Matematka Jurusa Peddka MIPA FKIP Uverstas Kharu

Lebih terperinci

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 11-19, Aprl 004, ISSN : 1410-8518 TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM Sudaro Jurusa Matematka FMIPA UNDIP Abstrak Sstem yag dbetuk

Lebih terperinci

BAB II LANDASAN TEORI. penulisan skripsi yaitu mengenai data panel, beberapa bentuk dan sifat

BAB II LANDASAN TEORI. penulisan skripsi yaitu mengenai data panel, beberapa bentuk dan sifat BAB II LANDASAN TEORI Pada Bab II aka dbahas dasar-dasar teor yag dguaka dalam peulsa skrps yatu megea data pael, beberapa betuk da sfat matrks, matrks parts, betuk ler da betuk kuadratk beserta ekspektasya,

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN MATRIKS TERREDUKSI REGULER DALAM ALJABAR MAX-PLUS INTERVAL

NILAI EIGEN DAN VEKTOR EIGEN MATRIKS TERREDUKSI REGULER DALAM ALJABAR MAX-PLUS INTERVAL NILAI EIGEN DAN VEKTOR EIGEN MATRIKS TERREDUKSI REGULER DALAM ALJABAR MAX-PLUS INTERVAL A-12 Sswato 1, Ar Suparwato 2, M Ady Rudhto 3 1 Mahasswa S3 Matematka FMIPA UGM da Staff Pegajar FMIPA UNS Surakarta,

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN 11 Latar Belakag Peelta yag dlakuka oleh Va der Pol pada sebuah tabug trode tertutup, yatu sebuah alat yag dguaka utuk megedalka arus lstrk dalam suatu srkut pada trasmtter da recever meghaslka

Lebih terperinci

REGRESI & KORELASI LINIER SEDERHANA

REGRESI & KORELASI LINIER SEDERHANA 1. Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable)

Lebih terperinci

Penarikan Contoh Acak Sederhana (Simple Random Sampling)

Penarikan Contoh Acak Sederhana (Simple Random Sampling) Pearka Cotoh Acak Sederhaa (Smple Radom Samplg) Defs Jka sebuah cotoh berukura dambl dar suatu populas sedemka rupa sehgga setap cotoh berukura ag mugk memlk peluag sama utuk terambl, maka prosedur tu

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel BAB I PENDAHULUAN 1.1 Statstka Deskrptf da Statstka Iferesal Dewasa d berbaga bdag lmu da kehdupa utuk memaham/megetahu sesuatu dperluka dat Sebaga cotoh utuk megetahu berapa bayak rakyat Idoesa yag memerluka

Lebih terperinci

BAB II KAJIAN LITERATUR

BAB II KAJIAN LITERATUR BAB II Kaja Lteratur 4 BAB II KAJIAN LITERATUR. Jarak Mahalaobs Megut artkel tetag jarak Mahalaobs dar htt://e.wkeda.org ada 8 Maret 008, jarak Mahalaobs adalah ukura jarak yag derkealka oleh Prasata Chadra

Lebih terperinci

BAB II LANDASAN TEORI. digunakan dengan mengabaikan asumsi-asumsi yang melandasi penggunaan metode

BAB II LANDASAN TEORI. digunakan dengan mengabaikan asumsi-asumsi yang melandasi penggunaan metode BAB II ANDASAN TEORI. Regres Noparametrk Metode statstka oparametrk merupaka metode statstka ag dapat dguaka dega megabaka asums-asums ag meladas pegguaa metode statstk parametrk. Terutama ag berkata dega

Lebih terperinci

II. TINJAUAN PUSTAKA. variabel. Dalam regresi sederhana dikaji dua variabel, sedangkan dalam regresi

II. TINJAUAN PUSTAKA. variabel. Dalam regresi sederhana dikaji dua variabel, sedangkan dalam regresi 3 II. TINJAUAN PUSTAKA. Aalss Regres Aalss regres merupaka salah satu metode statstka ag dguaka utuk mempelajar da megukur huuga statstk ag terjad atara dua atau leh varael. Dalam regres sederhaa dkaj

Lebih terperinci

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER TUGAS ATA KULIAH TEORI RING LANJUT ODUL NOETHER Da Aresta Yuwagsh (/364/PPA/03489) Sebelumya, telah dketahu bahwa sebaga rg dega eleme satua memeuh sfat rata ak utuk deal-deal d. Apabla dpadag sebaga modul,

Lebih terperinci

BAB 1 ERROR PERHITUNGAN NUMERIK

BAB 1 ERROR PERHITUNGAN NUMERIK BAB ERROR PERHITUNGAN NUMERIK A. Tujua a. Memaham galat da hampra b. Mampu meghtug galat da hampra c. Mampu membuat program utuk meelesaka perhtuga galat da hampra dega Matlab B. Peragkat da Mater a. Software

Lebih terperinci

BAB III PEMBENTUKAN SKEMA PEMBAGIAN RAHASIA

BAB III PEMBENTUKAN SKEMA PEMBAGIAN RAHASIA BAB III PEMBENTUKAN SKEMA PEMBAGIAN RAHASIA 3. Pegkodea Matrks Ketetaggaa Matrks ketetaggaa A adaah matrks smetr, sehgga, dega memh semua eeme pada dagoa utama da eeme-eeme dbawah dagoa utama, maka aka

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Eka Mer Krst ), Arsma Ada ), Sgt Sugarto ) ekamer_tross@ymal.com ) Mahasswa Program S Matematka FMIPA-UR

Lebih terperinci

Mengubah bahan baku menjadi produk yang lebih bernilai melalui sintesis kimia banyak dilakukan di industri

Mengubah bahan baku menjadi produk yang lebih bernilai melalui sintesis kimia banyak dilakukan di industri Megubah baha baku mead produk yag lebh berla melalu stess kma bayak dlakuka d dustr Asam sulfat, ammoa, etlea, proplea, asam fosfat, klor, asam trat, urea, bezea, metaol, etaol, da etle glkol Serat/beag,

Lebih terperinci

I adalah himpunan kotak terbatas dan tertutup yang berisi lebih dari satu

I adalah himpunan kotak terbatas dan tertutup yang berisi lebih dari satu METODE FUNGS QUAS-FED SATU ARAMETER UNTUK MENYEESAKAN MASAAH ROGRAM NTEGER TAK NEAR Ra Hardyat (M4) ABSTRAK Dalam kehdupa sehar-har serg djumpa masalah optmas yag membutuhka hasl teger Masalah tersebut

Lebih terperinci

PRAKTIKUM 5 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel

PRAKTIKUM 5 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel Praktkum 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa

Lebih terperinci

PELABELAN GRACEFUL PADA DIGRAF LINTASAN DAN DIGRAF BIPARTIT LENGKAP

PELABELAN GRACEFUL PADA DIGRAF LINTASAN DAN DIGRAF BIPARTIT LENGKAP PELABELAN GRACEFUL PADA DIGRAF LINTASAN DAN DIGRAF BIPARTIT LENGKAP Lusa Tr Lstyowat Krstaa Waya M Fatekurohma Jurusa Matematka FMIPA Uerstas Jember e-mal: krstaa_waya@yahoocom da m_fatkur@yahoocom Abstract:

Lebih terperinci

REGRESI SEDERHANA Regresi

REGRESI SEDERHANA Regresi P a g e REGRESI SEDERHANA.. Regres Istlah regres dkemukaka utuk pertama kal oleh seorag atropolog da ahl meteorology Fracs Galto dalam artkelya Famly Lkeess Stature pada tahu 886. Ada juga sumber la yag

Lebih terperinci

ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL

ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL Prosdg Semar Nasoal Peelta, Peddka da Peerapa MIPA, Fakultas MIPA, Uverstas Neger Yogyakarta, 4 Me ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL Ksmat Jurusa Peddka

Lebih terperinci

PENDUGAAN BERBASIS MODEL UNTUK KASUS BINER PADA SMALL AREA ESTIMATION 1. Kismiantini

PENDUGAAN BERBASIS MODEL UNTUK KASUS BINER PADA SMALL AREA ESTIMATION 1. Kismiantini PENDUGAAN BERBASIS MODEL UNUK KASUS BINER PADA SMALL AREA ESIMAION Ksmat Jurusa Peddka Matematka, Uverstas Neger Yogyakarta Karagmalag, Yogyakarta 5528, Idoesa e-mal : ksm_uy@yahoo.com ABSRAK Small Area

Lebih terperinci

PEMILIHAN MODEL REGRESI TERBAIK MENGGUNAKAN R 2, Cp MALLOW, dan S PADA KASUS INDEKS HARGA SAHAM BURSA GLOBAL

PEMILIHAN MODEL REGRESI TERBAIK MENGGUNAKAN R 2, Cp MALLOW, dan S PADA KASUS INDEKS HARGA SAHAM BURSA GLOBAL Majalah Ekoom ISSN 4-950 : Vol. VII No. Des 03 PEMILIHAN MODEL REGRESI TERBAIK MENGGUNAKAN R, C MALLOW, da S PADA KASUS INDEKS HARGA SAHAM BURSA GLOBAL Oleh : Wara Pramest, Martha Suhardyah Fakultas Matematka

Lebih terperinci

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan Aalsa Numerk Baha Matrkulas PENDAHULUAN Metode umerk merupaka suatu tekk atau cara utuk megaalsa da meyelesaka masalah masalah d dalam bdag rekayasa tekk da sa dega megguaka operas perhtuga matematk Masalah-masalah

Lebih terperinci

Pendahuluan. Relasi Antar Variabel. Relasi Antar Variabel. Relasi Antar Variabel 4/6/2015. Oleh : Fauzan Amin

Pendahuluan. Relasi Antar Variabel. Relasi Antar Variabel. Relasi Antar Variabel 4/6/2015. Oleh : Fauzan Amin 4/6/015 Oleh : Fauza Am Se, 06 Aprl 015 GDL 11 (07.30-10.50) Pedahulua Aalsa regres dguaka utuk mempelajar da megukur hubuga statstk ag terjad atara dua atau lebh varbel. Dalam regres sederhaa dkaj dua

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 8 BAB II TINJAUAN PUSTAKA. Latar Belakag Dar zama dahulu hgga zama moder orag tertark megetahu tetag umur tertgg yag g a capa. Hdup adalah suatu persoala prbad yag sukar dramalka blamaa aka berakhrya.

Lebih terperinci

UJI ROBUST T 2 -HOTELLING DENGAN MENGGUNAKAN PENDUGA MINIMUM COVARIANCE DETERMINANT AINI TIMUR

UJI ROBUST T 2 -HOTELLING DENGAN MENGGUNAKAN PENDUGA MINIMUM COVARIANCE DETERMINANT AINI TIMUR UJI OBUST T -HOTELLING DENGAN MENGGUNAKAN PENDUGA MINIMUM COVAIANCE DETEMINANT AINI TIMU DEPATEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PETANIAN BOGO BOGO ABSTACT AINI TIMU

Lebih terperinci

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2 INTERVAL KEPERCAAAN UNTUK PERBEDAAN KOEFIIEN VARIAI DARI DITRIBUI LOGNORMAL I. Pebrya * Bustam. ugarto Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu Pegetahua Alam Uverstas

Lebih terperinci

3 Departemen Statistika FMIPA IPB

3 Departemen Statistika FMIPA IPB Supleme Respos Pertemua ANALISIS DATA KATEGORIK (STK51) Departeme Statstka FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referes Waktu U potess Tga Cotoh atau Lebh U Kruskal-Walls (aalss ragam satu-arah berdasarka

Lebih terperinci

TAKSIRAN YANG LEBIH EFISIEN UNTUK PARAMETER PADA DISTRUSI WEIBULL. Erma Kusuma Wati 1), Sigit Sugiarto 2), Bustami 2)

TAKSIRAN YANG LEBIH EFISIEN UNTUK PARAMETER PADA DISTRUSI WEIBULL. Erma Kusuma Wati 1), Sigit Sugiarto 2), Bustami 2) TAKSIRAN YANG LEBIH EFISIEN UNTUK PARAMETER PADA DISTRUSI WEIBULL Erma Kusuma Wat, Sgt Sugarto, Bustam emakusumawat7@yahooco Mahasswa Program S Matematka Dose Matematka, Jurusa Matematka Fakultas Matematka

Lebih terperinci

V ANALISIS SENSITIVITAS

V ANALISIS SENSITIVITAS 5 + + = 5 + + = 5 + 5 = + = (6) Pegtuga (lat Lapra 8 baga ) Berdasarka asl pegtuga SPL (6) epuya bayak solus dega satu varabel bebas Msalka sebaga varabel bebas, aka pegtuga solus PGD dlajutka ke prosedur

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam proses penelitian untuk menganalisis aproksimasi fungsi dengan metode

II. TINJAUAN PUSTAKA. Dalam proses penelitian untuk menganalisis aproksimasi fungsi dengan metode II. TINJAUAN PUSTAKA Dalam proses peelta utuk megaalss aproksmas fugs dega metode mmum orm pada ruag hlbert C[ab] (Stud kasus: fugs rasoal) peuls megguaka defs teorema da kosep dasar sebaga berkut:.. Aproksmas

Lebih terperinci

Volume 1, Nomor 2, Desember 2007

Volume 1, Nomor 2, Desember 2007 Volume, Nomor, Desember 007 Barekeg, Desember 007. hal.-7 Vol.. No. ESTIMASI PARAMETER DISTRIBUSI EKPONENSIAL PADA LOKASI TERBATAS (Estmatg Parameter Dstrbuto Expoetal At Fte Locato MOZART W TALAKUA, JEFRI

Lebih terperinci

PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel

PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel Praktkum 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa

Lebih terperinci

Estimasi Densitas Mulus dengan Metode Wavelet. (Wavelet Method in Smooth Density Estimation)

Estimasi Densitas Mulus dengan Metode Wavelet. (Wavelet Method in Smooth Density Estimation) Supart da Subaar Estmas Destas Mulus dega Metode Wavelet (Wavelet Method Smooth Desty Estmato) Oleh Supart ) da Subaar ) Let X Abstract =,,, be depedet observato data from a dstrbuto wth a ukow desty fucto

Lebih terperinci

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran Kurkulum 013/006 matematka K e l a s XI STATISTIKA: UKURAN PEMUSATAN Tujua Pembelajara Setelah mempelajar mater, kamu dharapka memlk kemampua berkut. 1. Dapat meetuka rata-rata data tuggal da data berkelompok..

Lebih terperinci

MASALAH NORM MINIMUM PADA RUANG HILBERT DAN APLIKASINYA

MASALAH NORM MINIMUM PADA RUANG HILBERT DAN APLIKASINYA Masalah Norm Mmum (Karat) MASALAH NORM MINIMUM PADA RUANG HILBERT DAN APLIKASINYA Karat da Dhorva Urwatul Wutsqa Jurusa Peddka Matematka FMIPA Uverstas Neger Yogakarta Abstract I ths paper, wll be dscussed

Lebih terperinci

FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani

FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani FMDAM (2) Chartas Fbra Techque for Order Preferece by Smlarty to Ideal Soluto () ddasarka pada kosep dmaa alteratf terplh yag terbak tdak haya memlk jarak terpedek dar solus deal postf, amu juga memlk

Lebih terperinci

Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2

Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2 M 81 STTISTIK DSR SEMESTER II 11/1 KK STTISTIK, FMIP IT SOLUSI UJIN TENGH SEMESTER (UTS) Sabtu, 1 Me 1, Pukul 9. 1.4 WI (1 met) Kelas 1. Pegajar: Udjaa S. Pasarbu/Rr. Kura Novta Sar, Kelas. Pegajar: Utrwe

Lebih terperinci

X, Y, yang diasumsikan mengikuti model :

X, Y, yang diasumsikan mengikuti model : PERBANDINGAN MODEL REGRESI NONPARAMETRIK DENGAN REGRESI SPLINE DAN KERNEL Lls Laome Jurusa Matematka FMIPA Uverstas Haluoleo Kedar 933 emal : ls@yaoo.com Abstrak Tulsa membaas model regres oarametrk utuk

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab aka mejelaska megea ladasa teor yag dpaka oleh peuls dalam peelta. Bab dbag mejad beberapa baga, yag masg masg aka mejelaska Prcpal Compoet Aalyss (PCA), Egeface, Klusterg K-Meas,

Lebih terperinci