π ( ) menyatakan peluang bahwa

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "π ( ) menyatakan peluang bahwa"

Transkripsi

1 GRF RN SNY D SSTE ERSN CHN- OOGOROV u Nugrahe Jurusa eddka atematka F Uverstas uhammadyah uroreo Jala H.. Dahla uroreo e-mal: bstrak Tuua dar eulsa adalah megetahu kostruks betuk graf alra syal ada sstem ersamaa Chama-olmogorov. ersamaa Chama- olmogorov daat dkostrukska ke dalam betuk graf alra syal. Cara megkostruks graf alra syal yag deroleh dar sstem ersamaa Chama olmogorov dega metode agsug adalah meyataka sstem ersamaa Chama olmogorov ke dalam betuk ersamaa matrks. ata uc: ersamaa Chama olmogorov graf alra syal edahulua Salah satu cotoh betuk roses stokastk adalah Rata arkov. Rata arkov memuat ragkaa keada atau keduduka yag kemuculaya berdasarka eluag tertetu yag haya tergatug ada keduduka sebelumya. Rata arkov dbag mead dua macam yatu Rata arkov aktu dskrt da Rata arkov aktu kotu. Dalam makalah yag aka dbahas adalah Rata arkov aktu dskrt. Rata arkov aktu dskrt adalah roses stokastk yag dstrbus eluagya memeuh sfat arkov berkut. X X X... X X X utuk... da utuk seta keduduka.... meuukka eluag keduduka ada saat bergatug ada saat. ada rata arkov terdaat keduduka aal maka rata arkov dega X dlegka dega dstrbus aal π { X } utuk seta S. Dstrbus aal π meyataka eluag baha ada saat roses dmula rata 8 u Nugrahe: Graf lra Syal ada ersamaa Chama-olmogorov

2 arkov ada keduduka. Dstrbus aal π dar rata arkov dega ruag keduduka S {... } daat dadag sebaga vektor bars berukura yatu: π π π π... π salka X adalah rata arkov yag memuya ruag keduduka S da fugs trass. Jka π S adalah blaga o egatf yag umlahya sama dega satu π da ka S π y π y y S maka dsebut dstrbus stasoer. salka dstrbus stasoer π ada da lm y π y y S... maka taa memerhatka dstrbus aalya dstrbus dar medekat π utuk π X. Utuk kasus seert π dkataka dstrbus dega keduduka teta steady state dstrbuto. Jka π adalah dstrbus stasoer da ka ersamaa berlaku dega. dstrbus aal π maka: X y π y y S... Dar ersamaa da maka utuk ddaatka: Jka lm X y lm lm π y π lm y π π y π y π lm π y y y lm y maka ddaatka y utuk.. ersamaa y daat dubah kedalam betuk matrks mead. Selautya dsebut dega ersamaa Chama olmogorov. embahasa ostruks betuk graf lra Syal ada ersamaa Chama- olmogorov megacu ada kostruks betuk graf lra Syal ada u Nugrahe: Graf lra Syal ada ersamaa Chama-olmogorov 9

3 sstem lear. Berkut uraa dalam megkostruks graf lra Syal ada ersamaa Chama olmogorov. Dberka sstem ersamaa Chama olmogorov dar suatu rata arkov yag dyataka dalam ersamaa matrks sebaga berkut.... dega da ersamaa daat dabarka sebaga berkut. Betuk ersamaa 5 adalah sstem ersamaa dega ersamaa sehgga daat dtuls mead sebaga berkut Dega demka ersamaa 4 ersamaa 6 adalah sstem daat dyataka sebaga berkut. ersamaa dega ersamaa dalam 5 blaga tak dketahu. Oleh karea tu ersamaa 6 memuya emecaha lebh dar satu. Selautya karea meruaka rata arkov maka emecaha dar ersamaa 6 harus memeuh:... 7 eurut atura Cramer ka XB adalah sstem ersamaa yag terdr dar ersamaa lear dalam blaga yag tak dketahu sehgga u Nugrahe: Graf lra Syal ada ersamaa Chama-olmogorov

4 det maka sstem ersamaa tersebut memuya emecaha u Nugrahe: Graf lra Syal ada ersamaa Chama-olmogorov det det det det det det d maa adalah matrks yag ddaatka dega meggatka etr-etr dalam kolom ke- dar dega etr-etr dalam matrks B. Jad dar ersamaa 6 da 7 maka ddaatka ersamaa sebaga berkut. V... 8 d maa adalah matrks yag ddaatka dar matrks dega meggat etr-etr dar suatu kolom ke- dega da V adalah vektor bars dega semua etrya ol kecual ada etr keya adalah. Jad Betuk ada ersamaa 9 daat dabarka sebaga berkut.

5 u Nugrahe: Graf lra Syal ada ersamaa Chama-olmogorov atau daat dubah kedalam betuk:... kbat ersamaa maka ersamaa 9 mead sebaga berkut.... [ ] T T v V ersamaa daat dabarka sebaga berkut. s v sehgga deroleh: v

6 aka sstem ersamaa Chama olmogorov daat dyataka dalam betuk graf lra Syal utuk eubah... sebaga berkut. Gambar. Graf lra Syal utuk eubah Gambar. Graf lra Syal utuk eubah Gambar 4. Graf lra Syal utuk eubah Gambar. Graf lra Syal utuk eubah Gambar 5. Graf lra Syal utuk eubah u Nugrahe: Graf lra Syal ada ersamaa Chama-olmogorov

7 yatu busur Gambar 6. Graf lra Syal utuk eubah seert ada gambar berkut. Berdasarka gambar graf lra Syal utuk seta eubah maka dhaslka ola graf lra Syal utuk eubah sebaga berkut.. Terdaat busur yag meghubugka smul dega smul eubah v yatu busur v dega bobot - yag dtuukka sebaga berkut. Busur Gambar 8. lustras ada gambar 8. daat dyataka secara umum dalam betuk sebaga berkut. Gambar 7. Busur v dega bobot - eubah ke- utuk. Terdaat busur yag meghubugka smul eubah dega smul eubah Gambar 9. Busur eubah ke- utuk eubah ke- utuk. Terdaat busur yag meghubugka smul eubah 4 u Nugrahe: Graf lra Syal ada ersamaa Chama-olmogorov

8 dega bobot ada busur smul eubah gambar berkut. yatu busur seert ada utuk 4. Terdaat skel yag terdr atas smul yatu smul eubah da k yag salg terhubug satu sama la dega seta smulya terdaat busur gelag seert yag dtuukka ada gambar berkut. Gambar. Busur lustras ada gambar. daat dyataka secara umum sebaga berkut. Gambar. lustras skel eubah k k da eabara lebh laut ada skel yag memuat smul da berdasarka gambar dtuukka sebaga berkut. utuk k Gambar. Busur eubah ke- utuk eubah ke- utuk dega utuk k u Nugrahe: Graf lra Syal ada ersamaa Chama-olmogorov 5

9 Daftar ustaka Chatrad G.985. troducto Grah Theory.Ne York: Dover ublcato c dega utuk k Che Wa a.976.led Grah Theory Grahs ad Electrcal Netorks.Ne York: North- Hollad ublshg Comay. Harary F.969. Grah Theory. assachussets: ddso Wesley ublshg Comay c. dega utuk k dega Gambar. lustras eabara skel dega smul da eutu k Berdasarka ola graf lra Syal utuk eubah ada sstem lear maka dhaslka kostruks keseluruha graf lra Syal ada sstem ersamaa Chama olmogorov. Hoel aul G. ort Sdey C. & StoeCharles J.97. troducto to Stochastc rocesses. Bosto: Houghto ffl Comay. ardyoo S.996. atematka Dskret. Yogyakarta: F Yogyakarta Narsgh Deo.997. Grah Theory th lcatos to Egerg ad Comuter.Ne Delh: retce Hall of da. Sutaro Her. rata Naag. & Nuraah.. atematka Dskrt. Badug: U ress. Wlso Rob J & Beeke oell W.979. lcato of Grah Theory. odo: cademc ress. 6 u Nugrahe: Graf lra Syal ada ersamaa Chama-olmogorov

( ) ( ) ( ) ( ) ( ) III MODEL. , θ Ω. 1 Pendugaan parameter dengan metode maximum lkelihood estimation dapat diperoleh dari:

( ) ( ) ( ) ( ) ( ) III MODEL. , θ Ω. 1 Pendugaan parameter dengan metode maximum lkelihood estimation dapat diperoleh dari: 5 Mamum Lkelhood Estmato Defs Fugs Lkelhood Msalka X, X,, X adalah eubah acak d dega fugs massa eluag ( ; θ, dega θ dasumska skalar da tdak dketahu, maka rosedur fugs lkelhood daat dtulska sebaga berkut

Lebih terperinci

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Ruag Baach Sumaag Muhtar Gozal UNIVERSITAS PENDIDIKAN INDONESIA Satu kose etg d kulah Aalss ugsoal adalah teor ruag Baach. Pada baga aka drevu defs, cotoh-cotoh, serta sfat-sfat etg ruag Baach. Kta aka

Lebih terperinci

Jika f terintegral Henstock-Dunford pada

Jika f terintegral Henstock-Dunford pada PRLUS HRCK D SIFT CUCHY ITRL HSTOCK-DUFORD PD RU UCLID Solkh Jurusa Matematka FMIP UDIP Jl. Pro. H. Soedarto, S. H, Tembalag, Semarag e-mal : sol_er@yahoo.com bstract. I ths aer we study Hestock-Duord

Lebih terperinci

BAB III PERSAMAAN PANAS DIMENSI SATU

BAB III PERSAMAAN PANAS DIMENSI SATU BAB III PERSAMAAN PANAS DIMENSI SAU Pada baga sebelumya, kta telah membahas peerapa metoda Ruge-Kutta orde 4 utuk meyelesaka masalah la awal dar persamaa dferesal basa orde. Pada bab, kta aka melakuka

Lebih terperinci

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah BAB III INEGRAL RIEMANN-SIELJES. Pedahulua Pada Bab, telah dsggug bahwa ukura meghtug merupaka salah satu pedekata utuk membetuk proses ttk. Berkata dega masalah perhtuga, ada hal meark yag perlu amat,

Lebih terperinci

NORM VEKTOR DAN NORM MATRIKS

NORM VEKTOR DAN NORM MATRIKS NORM VEKTOR DN NORM MTRIK umaag Muhtar Gozal UNIVERIT PENDIDIKN INDONEI. Pedahulua Jka kta membcaraka topk ruag vektor maka cotoh sederhaa yag dapat kta ambl adalah ruag Eucld R. D ruag kta medefska pajag

Lebih terperinci

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 11-19, Aprl 004, ISSN : 1410-8518 TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM Sudaro Jurusa Matematka FMIPA UNDIP Abstrak Sstem yag dbetuk

Lebih terperinci

PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD

PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Mayag Novhta Sar *, Bustam, Sgt Sugarto Mahasswa Program Stud S Matematka FMIPA Uverstas Rau Dose Fakultas

Lebih terperinci

PELABELAN GRACEFUL PADA DIGRAF LINTASAN DAN DIGRAF BIPARTIT LENGKAP

PELABELAN GRACEFUL PADA DIGRAF LINTASAN DAN DIGRAF BIPARTIT LENGKAP PELABELAN GRACEFUL PADA DIGRAF LINTASAN DAN DIGRAF BIPARTIT LENGKAP Lusa Tr Lstyowat Krstaa Waya M Fatekurohma Jurusa Matematka FMIPA Uerstas Jember e-mal: krstaa_waya@yahoocom da m_fatkur@yahoocom Abstract:

Lebih terperinci

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER TUGAS ATA KULIAH TEORI RING LANJUT ODUL NOETHER Da Aresta Yuwagsh (/364/PPA/03489) Sebelumya, telah dketahu bahwa sebaga rg dega eleme satua memeuh sfat rata ak utuk deal-deal d. Apabla dpadag sebaga modul,

Lebih terperinci

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI BB 6 PRINSIP INKLUSI DN EKSKLUSI Pada baga aka ddskuska topk berkutya yatu eumeras yag damaka Prsp Iklus da Eksklus. Kosep dalam bab merupaka perluasa de dalam Dagram Ve beserta oepras rsa da gabuga, amu

Lebih terperinci

BAB III ISI. x 2. 2πσ

BAB III ISI. x 2. 2πσ BAB III ISI 4. Keadata Normal Multvarat da Sfat-sfatya Keadata ormal multvarat meruaka geeralsas dar keadata ormal uvarat utuk dmes. f ( x) [( x )/ ] / = e x π x = ( x )( ) ( x ). < < (-) (-) Betuk (-)

Lebih terperinci

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI MINGGU KE-0 HUBUNGAN ANTAR KONVERGENSI Hubuga atar koverges Hrark atar koverges dyataka dalam teorema berkut. Teorema Msalka X da X, X, X 3,... adalah varabel radom yag ddefska pada ruag probabltas yag

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG MASALAH

BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG MASALAH BAB ENDAHULUAN. LATAR BELAKANG MASALAH Dalam kehidua yata, sejumlah feomea daat diikirka sebagai ercobaa yag mecaku sederata egamata yag berturut-turut da buka satu kali egamata. Umumya, tia egamata dalam

Lebih terperinci

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka

Lebih terperinci

Bab II Teori Pendukung

Bab II Teori Pendukung Bab II Teor Pedukug.. asar Statstka Utuk keperlua peaksra outstadg clams lablty, pegetahua dalam statstka mead hal yag petg. asar statstka yag dguaka dalam tess atara la :. strbus ormal Sebuah peubah acak

Lebih terperinci

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real.

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real. BAB 5 BARIAN DAN DERET KOMPLEK ecara eses, pembahasa tetag barsa da deret komlpeks sama dega barsa da deret real. 5. Barsa Barsa merupaka sebuah fugs dega doma berupa hmpua blaga asl N. ebuah barsa kompleks

Lebih terperinci

SIFAT-SIFAT LANJUT FUNGSI TERBATAS

SIFAT-SIFAT LANJUT FUNGSI TERBATAS Bulet Ilmah Mat. Stat. da Terapaya (Bmaster) Volume 03, No. 2(204), hal 35 42. SIFAT-SIFAT LANJUT FUNGSI TERBATAS Suhard, Helm, Yudar INTISARI Fugs terbatas merupaka fugs yag memlk batas atas da batas

Lebih terperinci

CAL ( ) ( ) E r. Var rp i M im

CAL ( ) ( ) E r. Var rp i M im LAIRAN 3 Lampra Bukt ersamaa ( Gambar: Kurva Froter da CAL E ( r CAL E ( r ( E r r roter r ( E r r Kemrga gars CAL adalah, merupaka market prce o rsk (rsko harga pasar da dsebut raso mbal hasl terhadap

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel BAB I PENDAHULUAN 1.1 Statstka Deskrptf da Statstka Iferesal Dewasa d berbaga bdag lmu da kehdupa utuk memaham/megetahu sesuatu dperluka dat Sebaga cotoh utuk megetahu berapa bayak rakyat Idoesa yag memerluka

Lebih terperinci

PELABELAN HARMONIS GANJIL PADA GRAF KINCIR ANGIN BELANDA DAN GABUNGAN GRAF KINCIR ANGIN BELANDA

PELABELAN HARMONIS GANJIL PADA GRAF KINCIR ANGIN BELANDA DAN GABUNGAN GRAF KINCIR ANGIN BELANDA PELABELAN HARMONIS GANJIL PADA GRAF KINIR ANGIN BELANDA DAN GABUNGAN GRAF KINIR ANGIN BELANDA Fery Frmasah ), Kk Aryat Sugeg ) Abstrak : Gra G V G, EG dega V G adalah hmpua smpul da G hmpua busur dsebut

Lebih terperinci

PRINSIP INKLUSI- EKSKLUSI INCLUSION- EXCLUSION PRINCIPLE

PRINSIP INKLUSI- EKSKLUSI INCLUSION- EXCLUSION PRINCIPLE RISI IKLUSI- EKSKLUSI ICLUSIO- EXCLUSIO RICILE rsp Iklus-Eksklus Ada berapa aggota dalam gabuga dua hmpua hgga? A A = A A - A A Cotoh Ada berapa blaga bulat postf lebh kecl atau sama dega 00 yag habs dbag

Lebih terperinci

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat.

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat. KALKULUS LANJUT Pertemua ke-4 Rey Ra Marlaa, S.S.,M.Stat. Plot Mater Notas Jumlah & Sgma Itegral Tetu Jumlah Rema Pedahulua Luas Notas Jumlah & Sgma Purcell, et all. (page 226,2003): Sebuah fugs yag daerah

Lebih terperinci

SOLUSI TUGAS I HIMPUNAN

SOLUSI TUGAS I HIMPUNAN Program Stud S1 Tekk Iformatka Fakultas Iformatka, Telkom Uversty SOLUSI TUGAS I HIMPUNAN Matematka Dskrt (MUG2A3) Halama 1 dar 6 Soal 1 Tetukalah eleme-eleme dar hmpua berkut! 2 x x adalah blaga real

Lebih terperinci

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teoremateorema

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teoremateorema II. LANDAAN TEORI Pada bab II aka dbahas pegerta-pegerta (defs) da teoremateorema ag medukug utuk pembahasa pada bab IV. Pegerta (defs) da teorema tersebut dtulska sebaga berkut.. Teorema Proeks Teorema

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu. BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska

Lebih terperinci

BAB III ESTIMASI MODEL PROBIT TERURUT

BAB III ESTIMASI MODEL PROBIT TERURUT BAB III ESTIMASI MODEL PROBIT TERURUT 3. Pedahulua Model eurua kods embata destmas dega model robt terurut. Estmas terhada arameter model robt terurut yatu koefse model da threshold dlakuka dega metode

Lebih terperinci

Penelitian Operasional II Teori Permainan TEORI PERMAINAN

Penelitian Operasional II Teori Permainan TEORI PERMAINAN Peelta Operasoal II Teor Permaa 7 2 TEORI PERMAINAN 2 Pegatar 2 Krtera Tekk Permaa : () Terdapat persaga kepetga datara pelaku (2) Setap pema memlk stateg, bak terbatas maupu tak terbatas (3) Far Game

Lebih terperinci

On A Generalized Köthe-Toeplitz Duals

On A Generalized Köthe-Toeplitz Duals JMP : Volume 4 Nomor, Ju 202, hal. 3-39 O A Geeralzed Köthe-Toepltz Duals Sumardoo, Supama 2, da Soepara Darmawaa 3 PPPPTK Matematka, smrd2007@gmal.com 2 Mathematcs Departmet, Gadah Mada Uverst, supama@ugm.ac.d

Lebih terperinci

MATEMATIKA INTEGRAL RIEMANN

MATEMATIKA INTEGRAL RIEMANN MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN Ses NGAN INTEGRAL RIEMANN A. NOTASI SIGMA a. Defs Notas Sgma Sgma (Σ) adalah otas matematka megguaka smbol yag mewakl pejumlaha da beberapa suku yag memlk

Lebih terperinci

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua

Lebih terperinci

Seminar Nasional Matematika HIMPUNAN KRITIS PADA GRAF CYCLE CATERPILLAR. Chairul Imron Jurusan Matematika ITS

Seminar Nasional Matematika HIMPUNAN KRITIS PADA GRAF CYCLE CATERPILLAR. Chairul Imron Jurusan Matematika ITS Semar Nasoal Matematka 009 78 HIMPUNAN KRITIS PADA GRAF CYCLE CATERPILLAR Charul Imro Jurusa Matematka ITS mro-ts@matematka.ts.ac.d ABSTRAK Pelabela ada graf cycle caterllar C adalah member label smul

Lebih terperinci

III PEMBAHASAN. Karena vektor-vektor kolom X adalah bebas linear, maka L(ε) mempunyai n vektor eigen yang bebas linear. (Terbukti)

III PEMBAHASAN. Karena vektor-vektor kolom X adalah bebas linear, maka L(ε) mempunyai n vektor eigen yang bebas linear. (Terbukti) Karea vektor-vektor kolom X adalah bebas lear maka mempuya vektor ege yag bebas lear. erbukt eorema 9 Jka... adalah la ege dar maka... adalah la ege dar. BUK : salka... adalah la ege dar yag bersesuaa

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 19 Desember 016 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 40%] Hasl pegukura sampel d beberapa sekolah da

Lebih terperinci

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis STATISTIK Ukura Gejala Pusat Ukura Letak Ukura Smpaga, Dspers da Varas Mome, Kemrga, da Kurtoss Notas Varabel dyataka dega huruf besar Nla dar varabel dyataka dega huruf kecl basaya dtuls Tmes New Roma

Lebih terperinci

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP Msal dguaka kode ler C[, k, d] dega matrks pembagu G da matrks cek partas H. Sebuah blok formas x = x 1 x 2 x k, x = 0 atau 1, yag aka dkrm terlebh

Lebih terperinci

S2 MP Oleh ; N. Setyaningsih

S2 MP Oleh ; N. Setyaningsih S2 MP Oleh ; N. Setyagsh MATERI PERTEMUAN 1-3 (1)Pedahulua pera statstka dalam peelta ; (2)Peyaja data : dalam betuk (a) tabel da (b) dagram; (3) ukura tedes setaral da ukura peympaga (4)dstrbus ormal

Lebih terperinci

RELATIF EFISIENSI PENAKSIR MOMEN TERHADAP PENAKSIR MAKSIMUM LIKELIHOOD UNTUK PARAMATER BERDISTRIBUSI SEGITIGA. Haposan Sirait 1, Usman Malik 2 ABSTRAK

RELATIF EFISIENSI PENAKSIR MOMEN TERHADAP PENAKSIR MAKSIMUM LIKELIHOOD UNTUK PARAMATER BERDISTRIBUSI SEGITIGA. Haposan Sirait 1, Usman Malik 2 ABSTRAK Relatf Efses Peaksr Mome Terhada Peaksr Maksmum Lkelhood RELATIF EFISIENSI PENAKSIR MOMEN TERHADAP PENAKSIR MAKSIMUM LIKELIHOOD UNTUK PARAMATER BERDISTRIBUSI SEGITIGA Haosa Srat, Usma Malk ABSTRAK Makalah

Lebih terperinci

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi.

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi. Mea utuk Data Tuggal Des. Jka suatu sampel berukura dega aggota x1, x, x3,, x, maka mea sampel ddesska : 1... N 1 Mea utuk Data Kelompok Des Mea dar data yag dkelompoka adalah : x x 1 1 1 dega : x = ttk

Lebih terperinci

STATISTIKA. A. Tabel Langkah untuk mengelompokkan data ke dalam tabel distribusi frekuensi data berkelompok/berinterval: a. Rentang/Jangkauan (J)

STATISTIKA. A. Tabel Langkah untuk mengelompokkan data ke dalam tabel distribusi frekuensi data berkelompok/berinterval: a. Rentang/Jangkauan (J) STATISTIKA A. Tabel Lagkah utuk megelompokka data ke dalam tabel dstrbus frekues data berkelompok/berterval: a. Retag/Jagkaua (J) J X maks X m b. Bayak kelas (k) Megguaka atura Sturgess, yatu k,. log c.

Lebih terperinci

PELABELAN HARMONIS GANJIL PADA GRAF

PELABELAN HARMONIS GANJIL PADA GRAF Jural EduTech ol. No. Maret 08 ISSN: -60 e-issn: -06 PELABELAN HARMONIS GANJIL PADA GRAF Zulf Amr, Arda Aula, Army Syella, Harsma Pratamal, Saftr Ramadha, Charusa Uverstas Muhammadyah Sumatera Utara zulfamr@umsu.ac.d;

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres

Lebih terperinci

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton,

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton, BAB LANDASAN TEORI Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut varabel tak bebas (depedet

Lebih terperinci

BAB II LANDASAN TEORI. merepresentasikan dan menjelaskan permasalahan pada dunia nyata ke dalam. pernyataan matematis (Widowati & Sutimin, 2007 : 1).

BAB II LANDASAN TEORI. merepresentasikan dan menjelaskan permasalahan pada dunia nyata ke dalam. pernyataan matematis (Widowati & Sutimin, 2007 : 1). BAB II LANDASAN EORI.. Model Matematka Model Matematka merupaka represetas matematka yag dhaslka dar pemodela Matematka. Pemodela Matematka merupaka suatu proses merepresetaska da mejelaska permasalaha

Lebih terperinci

Extra 4 Pengantar Teori Modul

Extra 4 Pengantar Teori Modul Extra 4 Pegatar Teor odul Apabla selama dkealka suatu kosep aljabar megea ruag vektor, maka modul merupaka perumuma dar ruag vektor. Pada modul, syarat skalar dperumum mejad eleme pada suatu rg da buka

Lebih terperinci

NPV DAN IRR IR. ASEP TOTO KARTAMAN, MENG

NPV DAN IRR IR. ASEP TOTO KARTAMAN, MENG DAN IRR IR. ASEP TOTO KARTAMAN, MENG SEMESTER PENDEK SEMESTER TAHUN AKADEMIK 03-04 Prod Tekk Idustr Fakultas Tekk Uverstas Pasuda Badug 04 PERHITUNGAN KELAYAKAN INVESTASI. Net Preset Value () merupaka

Lebih terperinci

MENENTUKAN POLINOMIAL MINIMAL ATAS GF p YANG MEMBANGUN GF p. Nunung Andriani 1 dan Bambang Irawanto 2

MENENTUKAN POLINOMIAL MINIMAL ATAS GF p YANG MEMBANGUN GF p. Nunung Andriani 1 dan Bambang Irawanto 2 MENENTUKAN POLINOMIAL MINIMAL ATAS GF YANG MEMBANGUN GF Nuug Ara 1 a Bambag Irawato 1 Jurusa Matematka FMIPA UNDIP Jl Pro H Soearto SH Tembalag Semarag Abstract Let F s te el wth elemets eote by GF I E

Lebih terperinci

Teori Permainan (Game Theory) Disusun oleh : Prof. Ir.Sigit Nugroho, M.Sc. Ph.D. Universitas Bengkulu. smr

Teori Permainan (Game Theory) Disusun oleh : Prof. Ir.Sigit Nugroho, M.Sc. Ph.D. Universitas Bengkulu. smr Teor Peraa (Gae Theor) Dsusu oleh : Prof. Ir.Sgt Nugroho, M.Sc. Ph.D. Uverstas Begkulu sr Pa-off Matr Two erso zero su gae a = tdaka ag dabl ea ertaa; b = tdaka ag dabl ea kedua. eruaka aoff akbat teraks

Lebih terperinci

Proses inferensi pada model logit Agus Rusgiyono. Abstracts

Proses inferensi pada model logit Agus Rusgiyono. Abstracts Proses eres ada model logt Agus Rusgoo Let dstrbuto wth Abstracts 3 rereset the resose o a omal radom varable o Beroull P P where s a arameter wth ukow value. Problems o estmatg used smallest square methods

Lebih terperinci

Functionally Small Riemann Sums Fungsi Terintegral Henstock-Dunford pada [a,b]

Functionally Small Riemann Sums Fungsi Terintegral Henstock-Dunford pada [a,b] Jural Sas da Matemata Vol (3): 58-63 () Fuctoally Small Rema Sums Fugs Tertegral Hestoc-uford ada [a,b] Solh, Sumato, St Khabbah 3,,3 Program Stud Matemata, FSM UNIP Jl Prof Soedarto, SH Semarag, 575 E-mal:

Lebih terperinci

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teorema-teorema

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teorema-teorema II. LANDASAN TEORI Pada bab II aka dbahas pegerta-pegerta (defs) da teorea-teorea ag edukug utuk pebahasa pada bab IV. Pegerta (defs) da teorea tersebut dtulska sebaga berkut... Teorea Proeks Teorea proeks

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Tgg tekaa [m] UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 11 Desember 017 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 50%] Sebuah PDAM melakuka pegukura

Lebih terperinci

: sebagai standar pembanding bagi sifat-sifat gas nyata Larutan ideal : sebagai standar pembanding bagi sifat-sifat larutan nyata Pers. (3.

: sebagai standar pembanding bagi sifat-sifat gas nyata Larutan ideal : sebagai standar pembanding bagi sifat-sifat larutan nyata Pers. (3. as deal : sebaga stadar pembadg bag sfat-sfat gas yata Laruta deal : sebaga stadar pembadg bag sfat-sfat laruta yata ers. (3.47): g g ly Laruta deal ddefska sebaga laruta dega: (3.47) d l (4.) Utuk besara

Lebih terperinci

2.2.3 Ukuran Dispersi

2.2.3 Ukuran Dispersi 3 Ukura Dspers Yag aka dbahas ds adalah smpaga baku da varas karea dua ukura dspers yag palg serg dguaka Hubuga atara smpaga baku dega varas adalah Varas = Kuadrat dar Smpaga baku otas yag umum dguaka

Lebih terperinci

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi STATISTIKA A. Des Umum. Pegerta statstk Statstk adalah kumpula akta yag berbetuk agka da dsusu dalam datar atau tabel yag meggambarka suatu persoala. Cotoh: statstk kurs dolar Amerka, statstk pertumbuha

Lebih terperinci

REPRESENTASI BILANGAN FIBONACCI DALAM BENTUK KOMBINATORIAL

REPRESENTASI BILANGAN FIBONACCI DALAM BENTUK KOMBINATORIAL REPRESENTASI BILANGAN FIBONACCI DALAM BENTUK KOMBINATORIAL Rzky Maulaa Nugraha Tekk Iformatka Isttut Tekolog Badug Blok Sumurwed I RT/RW 4/, Haurgeuls, Idramayu, 4564 e-mal: laa_cfre@yahoo.com ABSTRAK

Lebih terperinci

I adalah himpunan kotak terbatas dan tertutup yang berisi lebih dari satu

I adalah himpunan kotak terbatas dan tertutup yang berisi lebih dari satu METODE FUNGS QUAS-FED SATU ARAMETER UNTUK MENYEESAKAN MASAAH ROGRAM NTEGER TAK NEAR Ra Hardyat (M4) ABSTRAK Dalam kehdupa sehar-har serg djumpa masalah optmas yag membutuhka hasl teger Masalah tersebut

Lebih terperinci

ALGORITMA MENENTUKAN HIMPUNAN TERBESAR DARI SUATU MATRIKS INTERVAL DALAM ALJABAR MAX-PLUS

ALGORITMA MENENTUKAN HIMPUNAN TERBESAR DARI SUATU MATRIKS INTERVAL DALAM ALJABAR MAX-PLUS LGORITM MENENTUKN HIMPUNN TERBESR DRI SUTU MTRIKS INTERVL DLM LJBR MX-PLUS Rata Novtasar Program Stud Matematka FMIP UNDIP JlProfSoedarto SH Semarag 575 bstract Ths research dscussed about how to obtaed

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN MATRIKS TERREDUKSI REGULER DALAM ALJABAR MAX-PLUS INTERVAL

NILAI EIGEN DAN VEKTOR EIGEN MATRIKS TERREDUKSI REGULER DALAM ALJABAR MAX-PLUS INTERVAL NILAI EIGEN DAN VEKTOR EIGEN MATRIKS TERREDUKSI REGULER DALAM ALJABAR MAX-PLUS INTERVAL A-12 Sswato 1, Ar Suparwato 2, M Ady Rudhto 3 1 Mahasswa S3 Matematka FMIPA UGM da Staff Pegajar FMIPA UNS Surakarta,

Lebih terperinci

ANALISIS STABILITAS PADA MODEL EPIDEMIK MULTI GRUP DENGAN LAJU PENULARAN TAK LINEAR

ANALISIS STABILITAS PADA MODEL EPIDEMIK MULTI GRUP DENGAN LAJU PENULARAN TAK LINEAR ANAL TABLTA PADA MODEL EPDEMK MULT GRUP DENGAN LAJU PENULARAN TAK LNEAR Nama : Dy Tr War NRP : 748 Jurusa : Matematka FMPA T Dose Pembmbg : Drs. M. etjo Warko, M. Drs. uhud Wahyud,M. Abstrak Dalam suatu

Lebih terperinci

BAB III UKURAN PEMUSATAN DATA

BAB III UKURAN PEMUSATAN DATA BAB III UKURAN PEMUSATAN DATA A. Ukura Gejala Pusat Ukura pemusata adalah suatu ukura yag meujukka d maa suatu data memusat atau suatu kumpula pegamata memusat (megelompok). Ukura pemusata data adalah

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN 11 Latar Belakag Peelta yag dlakuka oleh Va der Pol pada sebuah tabug trode tertutup, yatu sebuah alat yag dguaka utuk megedalka arus lstrk dalam suatu srkut pada trasmtter da recever meghaslka

Lebih terperinci

SEMIKONDUKTOR. Gambar 6.1 Ikatan kovalen silikon dalam dua dimensi

SEMIKONDUKTOR. Gambar 6.1 Ikatan kovalen silikon dalam dua dimensi 6 BAHAN SEMIKONDUKTOR 6.1 Semkoduktor Itrsk (mur) Slko da germaum meruaka dua jes semkoduktor yag sagat etg dalam elektroka. Keduaya terletak ada kolom emat dalam tabel erodk da memuya elektro vales emat.

Lebih terperinci

BAB 2 : BUNGA, PERTUMBUHAN DAN PELURUHAN

BAB 2 : BUNGA, PERTUMBUHAN DAN PELURUHAN Jl. Raya Wagu Kel. Sdagsar Kota Bogor Telp. 0251-8242411, emal: prohumas@smkwkrama.et, webste : www.smkwkrama.et BAB 2 : BUNGA, PERTUBUHAN DAN PELURUHAN PENGERTIAN BUNGA Buga adalah jasa dar smpaa atau

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,

Lebih terperinci

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES * PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka

Lebih terperinci

UKURAN GEJALA PUSAT DAN UKURAN LETAK

UKURAN GEJALA PUSAT DAN UKURAN LETAK UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu

Lebih terperinci

MASALAH NORM MINIMUM PADA RUANG HILBERT DAN APLIKASINYA

MASALAH NORM MINIMUM PADA RUANG HILBERT DAN APLIKASINYA Masalah Norm Mmum (Karat) MASALAH NORM MINIMUM PADA RUANG HILBERT DAN APLIKASINYA Karat da Dhorva Urwatul Wutsqa Jurusa Peddka Matematka FMIPA Uverstas Neger Yogakarta Abstract I ths paper, wll be dscussed

Lebih terperinci

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS C. Pembelajara 3 1. Slabus N o STANDA R KOMPE TENSI KOMPE TENSI DASAR INDIKATOR MATERI TUGAS BUKTI BELAJAR KON TEN INDIKA TOR WAK TU SUM BER BELA JAR Meerap ka atura kosep statstka dalam pemecah a masalah

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai dasar-dasar teori yang akan

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai dasar-dasar teori yang akan BAB II LANDASAN TEORI Pada bab aka dbahas megea dasar-dasar teor ag aka dguaka dalam eulsa skrs, atu megea data hrark, model regres -level, model logstk, estmas arameter model logstk, uj sgfkas arameter

Lebih terperinci

"8, Iurusan r""#iff;mil1ffi$$;i?m"* pontianak APLIKASI SEMIMODUL RASIONAL ATAS SEN{IRING PADA TEORI SISTEM.

8, Iurusan r#iff;mil1ffi$$;i?m* pontianak APLIKASI SEMIMODUL RASIONAL ATAS SEN{IRING PADA TEORI SISTEM. Kusumastut,N Dsajka ada Semr da Rryat Tahuam BKS-PTN Wlayah Bard ke-21 Uverstas Rau l0 - ll Me 2010,,* G "8, tt'- APLIKASI SEMIMODUL RASIONAL ATAS SEN{IRING PADA TEORI SISTEM Iurusa r""#ff;ml1ff$$;i?m"*

Lebih terperinci

PROGRAM LINIEAR DENGAN METODE SIMPLEX

PROGRAM LINIEAR DENGAN METODE SIMPLEX POGAM LINIEA DENGAN METODE SIMPLEX A. TEKNIK PENYELESAIAN Betuk Soal Progra Lear Kedala utaa asalah rogra lear daat eretuk a atau a atau a. Kedala yag eretuk ertdaksaaa daoat duah ead ersaaa seaga erkut

Lebih terperinci

III. METODOLOGI PENELITIAN

III. METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN 3.. Watu da Temat Peelta Peelta srs dlaua d Jurusa Matemata Faultas Matemata da Ilmu Pegetahua Alam Uverstas Lamug ada tahu aadem 2009/200. 3.2. Metode Peelta Secara umum, elasaaa

Lebih terperinci

INTEGRAL LEBESGUE PADA FUNGSI TERBATAS SKRIPSI

INTEGRAL LEBESGUE PADA FUNGSI TERBATAS SKRIPSI INTGRAL LBSGU PADA FUNGSI TRBATAS SKRIPSI Dajuka Kepada Fakultas Matematka da Ilmu Pegetahua Alam Uverstas Neger Yogyakarta utuk memeuh sebaga persyarata gua memperoleh gelar Sarjaa Sas Dsusu Oleh : Fauzah

Lebih terperinci

KODE SIKLIK (CYCLIC CODES)

KODE SIKLIK (CYCLIC CODES) Pegatar Teor Pegkodea (Codg Theory) KODE SIKLIK (CYCLIC CODES) Dose Pegampu : Al Sutjaa DISUSUN OLEH: Nama : M Zak Ryato Nm : /5679/PA/8944 Program Stud : Matematka JURUSAN MATEMATIKA FAKULTAS MATEMATIKA

Lebih terperinci

LOCALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA RUANG n EUCLIDE

LOCALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA RUANG n EUCLIDE LOLLY SMLL RIMNN SUMS FUNGSI TRINTGRL HNSTOK-UNFOR P RUNG ULI Solh Program Stud Matemata Faultas Sas da Matemata UNIP Jl Prof Soedarto, SH Semarag 575, sol_erf@yahoocom BSTRK I ths aer we study Hestoc-uford

Lebih terperinci

ANALISIS MASALAH GENERATOR DARI POSSIBLE DAN UNIVERSAL EIGENVECTOR PADA MATRIKS INTERVAL DALAM ALJABAR MAX-PLUS

ANALISIS MASALAH GENERATOR DARI POSSIBLE DAN UNIVERSAL EIGENVECTOR PADA MATRIKS INTERVAL DALAM ALJABAR MAX-PLUS Sear Nasoal Mateatka IV (SeNasMat) Isttut Tekolog Sepuluh Nopeber, Surabaya, 3 Deseber NLISIS MSLH GENERTOR DRI POSSIBLE DN UNIVERSL EIGENVECTOR PD MTRIKS INTERVL DLM LJBR MX-PLUS Rata Novtasar, Suboo,

Lebih terperinci

b) Untuk data berfrekuensi fixi Data (Xi)

b) Untuk data berfrekuensi fixi Data (Xi) B. Meghtug ukura pemusata, ukura letak da ukura peyebara data serta peafsraya A. Ukura Pemusata Data Msalka kumpula data berkut meujukka hasl pegukura tgg bada dar orag sswa. 0 cm 30 cm 5 cm 5 cm 35 cm

Lebih terperinci

IDEAL DALAM ALJABAR LINTASAN LEAVITT

IDEAL DALAM ALJABAR LINTASAN LEAVITT Delta-P: Jural Matematka da Peddka Matematka ISSN 289-855X Vol., No. 2, Oktober 22 IDAL DALAM ALJABAR LINTASAN LAVITT Ida Kura Walyat Program Stud Peddka Matematka Jurusa Peddka MIPA FKIP Uverstas Kharu

Lebih terperinci

ESTIMASI PARAMETER REGRESI GANDA MENGGUNAKAN BOOTSTRAP DAN JACKNIFE.

ESTIMASI PARAMETER REGRESI GANDA MENGGUNAKAN BOOTSTRAP DAN JACKNIFE. Prosdg Semar Nasoal Alkas Sas & Tekolog (SNAST) Yogakarta, 6 November 6 ISSN : 979 9X eissn : 54 58X ESTIMASI PARAMETER REGRESI GANDA MENGGUNAKAN BOOTSTRAP DAN JACKNIFE Noerat, Rka Herda,, Jurusa Statstka,

Lebih terperinci

HUBUNGAN MATRIKS AB DAN BA PADA STRUKTUR JORDAN NILPOTEN

HUBUNGAN MATRIKS AB DAN BA PADA STRUKTUR JORDAN NILPOTEN HUBUNGAN ARKS AB DAN BA ADA SRUKUR ORDAN NLOEN Sodag uraasar aaha (sodag@ub-ut.ac.d) UB-U eda Elva Herawaty FA ateata Uverstas Suatera Utara ABSRAC ths aer, we gve aother roof about the relatosh betwee

Lebih terperinci

I. PENDAHULUAN II. LANDASAN TEORI

I. PENDAHULUAN II. LANDASAN TEORI I PENDAHULUAN Latar Belakag Dala teor ekoo, setap perusahaa dasuska bertujua eperoleh bala yag aksu Ibala yag ddapat bergatug pada strateg yag dabl perusahaa Kuattas erupaka salah satu strateg perusahaa

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Dalam pemodela program ler, semua parameter yag dguaka dalam model dasumska dapat dketahu secara past. Parameter-parameter terdr dar koefse batasa ( ) a, la kuattas batasa

Lebih terperinci

ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF

ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF KELOMPOK A I GUSTI BAGUS HADI WIDHINUGRAHA (0860500) NI PUTU SINTYA DEWI (0860507) LUH GEDE PUTRI SUARDANI (0860508) I PUTU INDRA MAHENDRA PRIYADI (0860500)

Lebih terperinci

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl

Lebih terperinci

BAB III PEMBENTUKAN SKEMA PEMBAGIAN RAHASIA

BAB III PEMBENTUKAN SKEMA PEMBAGIAN RAHASIA BAB III PEMBENTUKAN SKEMA PEMBAGIAN RAHASIA 3. Pegkodea Matrks Ketetaggaa Matrks ketetaggaa A adaah matrks smetr, sehgga, dega memh semua eeme pada dagoa utama da eeme-eeme dbawah dagoa utama, maka aka

Lebih terperinci

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN // REGRESI LINEAR SEDERHANA DAN KORELASI. Model Regres Lear. Peaksr Kuadrat Terkecl 3. Predks Nla Respos 4. Iferes Utuk Parameter-parameter Regres 5. Kecocoka Model Regres 6. Korelas Utrwe Mukhayar MA

Lebih terperinci

Sudaryatno Sudirham. Permutasi dan Kombinasi

Sudaryatno Sudirham. Permutasi dan Kombinasi Sudaryato Sudrham Permutas da Kombas Permutas Permutas adalah bayakya peelompoka sejumlah tertetu kompoe ya dambl dar sejumlah kompoe ya terseda; dalam setap kelompok uruta kompoe dperhatka Msalka terseda

Lebih terperinci

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2 INTERVAL KEPERCAAAN UNTUK PERBEDAAN KOEFIIEN VARIAI DARI DITRIBUI LOGNORMAL I. Pebrya * Bustam. ugarto Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu Pegetahua Alam Uverstas

Lebih terperinci

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan Aalsa Numerk Baha Matrkulas PENDAHULUAN Metode umerk merupaka suatu tekk atau cara utuk megaalsa da meyelesaka masalah masalah d dalam bdag rekayasa tekk da sa dega megguaka operas perhtuga matematk Masalah-masalah

Lebih terperinci

H dinotasikan dengan B H

H dinotasikan dengan B H Delta-P: Jural Matemata da Pedda Matemata ISSN 089-855X Vol., No., Aprl 03 OPERATOR KOMPAK Mustafa A. H. Ruhama Program Stud Pedda Matemata, Uverstas Kharu ABSTRAK Detahu H da H dua ruag Hlbert, B H )

Lebih terperinci

5/12/2014. Tempat Kedudukan Akar(Root Locus Analysis) ROOT LOCUS ANALYSIS

5/12/2014. Tempat Kedudukan Akar(Root Locus Analysis) ROOT LOCUS ANALYSIS 5//04 Matakulah: T EDALI Tahu : 04 Pertemuaa 45 Tempat eduduka Akar(Root Lou Aaly) Learg Outome Pada akhr pertemua, dharapka mahawa aka mampu : meerapka aal da aplka Tempat keduduka Akar dalam dea tem

Lebih terperinci

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL 3. Pegerta Masalah regres vers dega betuk lear dapat djumpa dalam berbaga bdag kehdupa, dataraya dalam bdag ekoom, kesehata, fska, kma

Lebih terperinci

KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH. Ariyanto* ABSTRACT

KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH. Ariyanto* ABSTRACT Aryato, Kaja Sfat Keompaa pada Ruag Baah KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH Aryato* ABSTRACT The propertes of ompatess Baah spaes ths paper s a geeralzato of a ompat uderstadg the system o the real

Lebih terperinci

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran Kurkulum 013/006 matematka K e l a s XI STATISTIKA: UKURAN PEMUSATAN Tujua Pembelajara Setelah mempelajar mater, kamu dharapka memlk kemampua berkut. 1. Dapat meetuka rata-rata data tuggal da data berkelompok..

Lebih terperinci

KARAKTERISTIK NILAI EIGEN DARI MATRIKS LAPLACIAN

KARAKTERISTIK NILAI EIGEN DARI MATRIKS LAPLACIAN JMP : Volume 3 Nomor, Jui 2 KARAKTERISTIK NILAI EIGEN DARI MATRIKS LAPLACIAN Siti Rahmah Nurshiami, Mutia Nur Estri, Noor Sofiyati Program Studi Matematika, Fakultas Sais da Tekik Uiversitas Jederal soedirma,

Lebih terperinci

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut 3/9/202 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

Penyelesaian Sistem Persamaan Linier Kompleks Dengan Invers Matriks Menggunakan Metode Faddev (Contoh Kasus: SPL Kompleks dan Hermit)

Penyelesaian Sistem Persamaan Linier Kompleks Dengan Invers Matriks Menggunakan Metode Faddev (Contoh Kasus: SPL Kompleks dan Hermit) Jural Sas Matematka da Statstka, Vol., No. I, Jauar ISSN - Peyelesaa Sstem Persamaa Ler Kompleks Dega Ivers Matrks Megguaka Metode Faddev Cotoh Kasus: SPL Kompleks da Hermt F. rya da Tka Rzka, Jurusa Matematka,

Lebih terperinci