11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN"

Transkripsi

1 // REGRESI LINEAR SEDERHANA DAN KORELASI. Model Regres Lear. Peaksr Kuadrat Terkecl 3. Predks Nla Respos 4. Iferes Utuk Parameter-parameter Regres 5. Kecocoka Model Regres 6. Korelas Utrwe Mukhayar MA 8 Aalss Data TUJUAN. Meetuka/meaksr parameterparameter yag terlbat dalam suatu model matematk yag lear terhadap parameter-parameter tersebut. Melakuka predks terhadap la suatu varabel, msalka Y, berdasarka la varabel yag la, msalka X, dega megguaka model regres ler (terpolas). f(x) Suhu (X) Gula yag Dhaslka (Y) X meetuka Y predktor respos buka peubah acak peubah acak Memlk dstrbus 3

2 // Observas 3 X X X X 3 X Y Y Y Y 3 Y Varabel yag laya mempegaruh varabel yag laya. Maa yag merupaka predktor?? Varabel yag kejadaya lebh dahulu terjad. 3 Varabel yag varasya terkecl 4 MODEL REGRESI LINEAR SEDERHANA Y X e - da merupaka parameter-parameter model yag aka dtaksr - e adalah galat pada observas ke- (acak) 5 SUMBER GALAT. Ketdakmampua model regres dalam memodelka hubuga predktor da respos dega tepat. Ketdakmampua peelt dalam melakuka pegukura dega tepat 3. Ketdakmampua model utuk melbatka semua varabel predktor 6

3 // PENAKSIR KUADRAT TERKECIL - da dtaksr dega metode kuadrat terkecl (least square) - Asums-asums :. Ada pegaruh X terhadap Y. Y X e, utuk =,,..., 3. Nla harapa dar e adalah, atau E[ e ] = 4. Varas dar e, sama utuk semua =,,, 5. e berdstrbus ormal utuk semua =,,, 6. e,e,...,e salg bebas (depede) 7 Msalka b adalah taksra bag da b adalah taksra bag. Maka taksra bag model regres adalah Yˆ b b X Krtera peaksra kuadrat terkecl adalah memmumka e terhadap b da b, dega e Y Yˆ Y b b X. 8 Dperoleh JK b JK XY X XY Y b Y bx X X Sedagka taksra utuk varas galat acak adalah Y ˆ Y JKG ˆ 9 3

4 // Suhu (X) Gula yg dhaslka (Y) Sumber: Walpole ad Myers, 989 e = x x.5 y y 9.3 b x xy y x x.89 b Y bx Y ˆ X Model persamaa regres PREDIKSI NILAI RESPONS Suhu (x ) Gula yg dhaslka (y ) Predks (y model ˆ ) e y yˆ Taksra varas galat acak ˆ 9 y yˆ.4 4

5 // Msalka suhu proses (X) adalah.55 satua suhu. Maka predks bayakya gula yag dhaslka pada suhu tersebut adalah ŷ x = (.55) = ASUMSI KENORMALAN Asums e berdstrbus ormal utuk semua =,,, Y berstrbus ormal utuk semua =,,, 3 b da b berdstrbus ormal 4 INFERENSI UNTUK PARAMETER T= ˆ b x / JK berdstrbus t dega derajat kebebasa -. Selag kepercayaa (-α) utuk : t ˆ ˆ / x t/ x b / JK b / JK t / adalah la dstrbus t dega derajat kebebasa - 5 5

6 // INFERENSI UNTUK PARAMETER b T= ˆ/ JK berdstrbus t dega derajat kebebasa -. Selag kepercayaa (-α) utuk : t ˆ t b b ˆ / / JK JK t / adalah la dstrbus t dega derajat kebebasa - 6 PENGUJIAN PARAMETER REGRESI Rumusa Hpotess H : β = H : β H : β = H : β b t b x t ˆ ˆ JK JK 7 SELANG PREDIKSI Msalka la respos Y utuk X = X adalah Y, da msalka adalah predks model regres bag Y. Maka Ŷ-Y T ˆ +(/)+[(x x) /JK ] berdstrbus t dega derajat kebebasa -. Selag predks ( α) bag y adalah (x x) (x x) yˆ t ˆ + + y yˆ t ˆ + + JK JK / / 8 6

7 // CONTOH; SELANG KEPERCAYAAN - (.6)(.4) (.6)(.4) TINJAU CONTOH SEBELUMNYA Selag kepercayaa 95% utuk β : b =,89 b =6,436 Selag kepercayaa 95% utuk β : (.6)(.4) (.6)(.4) ()(.) ()(.) 9 CONTOH; UJI HIPOTESIS H : β = H : β derajat kebebasa = 9, la krts t.5 =.6 t > t.5 & t > t.5 5 maka masgmasg H dtolak H : β = H : β Kesmpula β da β tdak dapat dabaka KECOCOKAN MODEL REGRESI Salah satu alat ukur utuk melhat apakah model regres yag dperoleh sudah memada adalah koefse determas yatu (yˆ y) JK R = JKT (y y) = R = =, dega R Besara R meujukka propors varas total dalam respos Y yag dteragka oleh model regres yag dperoleh 7

8 // UJI KEBAIKAN MODEL H : Model regres yag dperoleh tdak memada H : Model memada Statstk uj (yˆ y) JKR = f ˆ ˆ Tolak H pada tgkat keberarta α jka f > f,(,-), dmaa f,(,-) adalah la dstrbus F dega derajat kebebasa da. CONTOH Utuk cotoh sebelumya dperoleh R =,499. Artya propors varas total dalam respos Y yag dteragka oleh model regres yag dperoleh adalah 49.9% 9% Uj kebaka model (yˆ y) JK R = f 8.99 ˆ ˆ Utuk α = 5%, ttk krts f.5,(,9) = 5, f > f.5,(,9), model memada. 3 KORELASI Megukur hubuga lear dua peubah acak Msalka X da Y adalah dua peubah acak, maka korelas atara X da Y dyataka dega XY E(X X)(Y Y) X Y 4 8

9 // Jka la korelas medekat maka hubuga kedua peubah sagat erat da searah sedagka jka la korelas medekat maka hubuga kedua peubah sagat erat da berlawaa arah. 5 Gambar Korelas postf Gambar Korelas egatf Gambar 3 Korelas ol Gambar 4 Korelas ol 6 KORELASI SAMPEL Korelas dapat dtaksr dega koefse korelas sampel, yatu r XY JK JK XY JK = YY (X X)(Y Y) (X X) (Y Y) = = 7 9

10 // CONTOH Data dua peubah acak berat bada bay (kg) da ukura dada bay (cm) berat (kg) ukura dada (cm) Rata-rata berat = 3.63, Rata-rata ukura dada = ukura (cm) berat (kg) 9 (X X)(Y Y) r = 9 9 (X X) (Y Y).78 = = 9 Referes Pasarbu, U.S., 7, Catata Kulah Bostatstka. Walpole, Roald E. Da Myers, Raymod H., Ilmu Peluag da Statstka utuk Isyur da Ilmuwa, Eds 4, Badug: Peerbt ITB,

Regresi Linear Sederhana dan Korelasi

Regresi Linear Sederhana dan Korelasi Regres Lnear Sederhana dan Korelas 1. Model Regres Lnear. Penaksr Kuadrat Terkecl 3. Predks Nla Respons 4. Inferens Untuk Parameter-parameter Regres 5. Kecocokan Model Regres 6. Korelas Utrwen Mukhayar

Lebih terperinci

Suhu (X) Gula yang Dihasilkan (Y)

Suhu (X) Gula yang Dihasilkan (Y) Regresi Liear Sederhaa da Korelasi MA 208 Statistika Dasar Sei, 27 April 2009 2008 by USP & RFU Dose : Udjiaa S. Pasaribu Utriwei i Mukhaiyar Model Regresi Liear Tujua :. Meetuka/meaksir parameter-parameter

Lebih terperinci

BAB 5. ANALISIS REGRESI DAN KORELASI

BAB 5. ANALISIS REGRESI DAN KORELASI BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu. BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska

Lebih terperinci

Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2

Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2 M 81 STTISTIK DSR SEMESTER II 11/1 KK STTISTIK, FMIP IT SOLUSI UJIN TENGH SEMESTER (UTS) Sabtu, 1 Me 1, Pukul 9. 1.4 WI (1 met) Kelas 1. Pegajar: Udjaa S. Pasarbu/Rr. Kura Novta Sar, Kelas. Pegajar: Utrwe

Lebih terperinci

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton,

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton, BAB LANDASAN TEORI Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut varabel tak bebas (depedet

Lebih terperinci

Regresi Linier Sederhana Definisi Pengaruh

Regresi Linier Sederhana Definisi Pengaruh Regres Ler Sederhaa Dah Idra Baga Bostatstka da Kepeduduka Fakultas Kesehata Masyarakat Uverstas Arlagga Defs Pegaruh Jka terdapat varabel, msalka da yag data-dataya dplot sepert gambar dbawah 3 Defs Pegaruh

Lebih terperinci

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

REGRESI LINEAR SEDERHANA

REGRESI LINEAR SEDERHANA REGRESI LINEAR SEDERHANA DAN KORELASI 1. Model Regresi Linear 2. Penaksir Kuadrat Terkecil 3. Prediksi Nilai Respons 4. Inferensi Untuk Parameter-parameter Regresi 5. Kecocokan Model Regresi 6. Korelasi

Lebih terperinci

Analisis Korelasi dan Regresi

Analisis Korelasi dan Regresi Aalss Korelas da Regres Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uad LOGO www.themegaller.com LOGO Data varat Data dega dua varael Terhadap satu pegamata dlakuka pegukurapegamata terhadap varael

Lebih terperinci

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal)

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal) LANGKAH-LANGKAH UJI HIPOTESIS DENGAN (Utuk Data Nomal). Merumuska hpotess (termasuk rumusa hpotess statstk). Data hasl peelta duat dalam etuk tael slag (tael frekues oservas) 3. Meetuka krtera uj atau

Lebih terperinci

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling BAB LANDASAN TEORI Kosep Dasar Aalss Regres Aalss regres adalah suatu proses memperkraka secara sstemats tetag apa yag palg mugk terjad dmasa yag aka datag berdasarka formas yag sekarag dmlk agar memperkecl

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Defes Aalss Korelas da Regres a Aalss Korelas adalah metode statstka yag dguaka utuk meetuka kuatya atau derajat huuga lear atara dua varael atau leh. Semak yata huuga ler gars lurus,

Lebih terperinci

Analisis Regresi dan Korelasi

Analisis Regresi dan Korelasi Metode Statstka Pertemua III Aalss Regres da Korelas Pegatar Apa tu aalss regres? Apa edaya dega korelas? Aalss Regres Aalss statstka yag memafaatka huuga atara dua atau leh peuah kuattatf sehgga salah

Lebih terperinci

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( )

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( ) Regres & Korelas Ler Sederhaa 1. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk yag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas:

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas: ANALISIS REGRESI Pedahulua Aalss regres berkata dega stud megea ketergatuga satu peubah (peubah terkat) terhadap satu atau lebh peubah laya (peubah pejelas). Jka Y dumpamaka sebaga peubah terkat da X1,X,...,X

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,

Lebih terperinci

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL 3. Pegerta Masalah regres vers dega betuk lear dapat djumpa dalam berbaga bdag kehdupa, dataraya dalam bdag ekoom, kesehata, fska, kma

Lebih terperinci

BAB II TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan,

BAB II TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan, BAB II TINJAUAN TEORITIS.1 Kosep Dasar Statstka Statstk merupaka cara cara tertetu yag dguaka dalam megumpulka, meyusu atau megatur, meyajka, megaalsa da member terpretas terhadap sekumpula data, sehgga

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan,

BAB 2 TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan, BAB TINJAUAN TEORITIS 1 Kosep Dasar Statstka Statstk merupaka cara cara tertetu yag dguaka dalam megumpulka, meyusu atau megatur, meyajka, megaalsa da member terpretas terhadap sekumpula data, sehgga kumpula

Lebih terperinci

dan Korelasi 1. Model Regresi Linear 2. Penaksir Kuadrat Terkecil 3. Prediksi Nilai Respons 4. Inferensi Untuk Parameter-parameter Regresi 6.

dan Korelasi 1. Model Regresi Linear 2. Penaksir Kuadrat Terkecil 3. Prediksi Nilai Respons 4. Inferensi Untuk Parameter-parameter Regresi 6. Regresi Linear Sederhana dan Korelasi 1. Model Regresi Linear 2. Penaksir Kuadrat Terkecil 3. Prediksi Nilai Respons 4. Inferensi Untuk Parameter-parameter Regresi 5. Kecocokan Model Regresi 6. Korelasi

Lebih terperinci

Metode Statistika Pertemuan XII. Analisis Korelasi dan Regresi

Metode Statistika Pertemuan XII. Analisis Korelasi dan Regresi Metode Statstka Pertemua XII Aalss Korelas da Regres Aalss Hubuga Jes/tpe hubuga Ukura Keterkata Skala pegukura varabel Pemodela Keterkata Relatoshp vs Causal Relatoshp Tdak semua hubuga (relatoshp) berupa

Lebih terperinci

1. Model Regresi Linear dan Penaksir Kuadrat Terkecil 2. Prediksi Nilai Respons 3. Inferensi Untuk Parameter-parameter Regresi 4.

1. Model Regresi Linear dan Penaksir Kuadrat Terkecil 2. Prediksi Nilai Respons 3. Inferensi Untuk Parameter-parameter Regresi 4. * 1. Model Regresi Linear dan Penaksir Kuadrat Terkecil 2. Prediksi Nilai Respons 3. Inferensi Untuk Parameter-parameter Regresi 4. Kecocokan Model Regresi 5. Korelasi Utriweni Mukhaiyar MA 2081 Statistika

Lebih terperinci

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua

Lebih terperinci

Regresi & Korelasi Linier Sederhana

Regresi & Korelasi Linier Sederhana Regres & Korelas Ler Sederhaa. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar la peubah

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Tgg tekaa [m] UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 11 Desember 017 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 50%] Sebuah PDAM melakuka pegukura

Lebih terperinci

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel BAB LANDASAN TEORI.1 Pegerta Regres Regres dalam statstka adalah salah satu metode utuk meetuka tgkat pegaruh suatu varabel terhadap varabel yag la. Varabel yag pertama dsebut dega bermacam-macam stlah:

Lebih terperinci

REGRESI & KORELASI LINIER SEDERHANA

REGRESI & KORELASI LINIER SEDERHANA . Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

Regresi Linear Sederhana

Regresi Linear Sederhana Regresi Linear Sederhana dan Korelasi 1. Model Regresi Linear dan Penaksir Kuadrat Terkecil 2. Prediksi Nilai Respons 3. Inferensi Untuk Parameter-parameter Regresi 4. Kecocokan Model Regresi 5. Korelasi

Lebih terperinci

Analisis Regresi. Oleh : Dewi Rachmatin

Analisis Regresi. Oleh : Dewi Rachmatin Aalss Regres Oleh : Dew Rachmat Pedahulua Dalam peelta basaya dguaka suatu model atau hubuga fugsoal atara peubah. Dega model kta berusaha memaham, meeragka, megedalka da kemuda mempredkska kelakua sstem

Lebih terperinci

REGRESI & KORELASI LINIER SEDERHANA

REGRESI & KORELASI LINIER SEDERHANA 1. Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable)

Lebih terperinci

Bab II Teori Pendukung

Bab II Teori Pendukung Bab II Teor Pedukug.. asar Statstka Utuk keperlua peaksra outstadg clams lablty, pegetahua dalam statstka mead hal yag petg. asar statstka yag dguaka dalam tess atara la :. strbus ormal Sebuah peubah acak

Lebih terperinci

REGRESI LINEAR SEDERHANA

REGRESI LINEAR SEDERHANA REGRESI LINEAR SEDERHANA MODUL Dra. Sr Pagest, S.U. PENDAHULUAN A alss regres merupaka aalss statstk yag mempelajar ubuga atara dua varabel atau leb. Dalam aalss regres lear dasumska berlakuya betuk ubuga

Lebih terperinci

Uji Statistika yangb digunakan dikaitan dengan jenis data

Uji Statistika yangb digunakan dikaitan dengan jenis data Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas

Lebih terperinci

REGRESI LINIER SEDERHANA

REGRESI LINIER SEDERHANA MODUL REGRESI LINIER SEDERHANA Dsusu oleh : I MADE YULIARA Jurusa Fska Fakultas Matematka Da Ilmu Pegetahua Alam Uverstas Udayaa Tahu 016 Kata Pegatar Puj syukur saya ucapka ke hadapa Tuha Yag Maha Kuasa

Lebih terperinci

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS = 1 + + + + k k + u PowerPot Sldes baa Rohmaa Educato Uverst of Idoesa 007 Laboratorum Ekoom & Koperas Publshg Jl. Dr. Setabud

Lebih terperinci

III BAHAN/OBJEK DAN METODE PENELITIAN. Objek yang digunakan dalam penelitian ini adalah 50 ekor sapi Pasundan

III BAHAN/OBJEK DAN METODE PENELITIAN. Objek yang digunakan dalam penelitian ini adalah 50 ekor sapi Pasundan III BAHAN/OBJEK DAN METODE PENELITIAN 3.1. Baha da Alat Peelta 3.1.1. Baha Peelta Objek yag dguaka dalam peelta adalah 50 ekor sap Pasuda jata da beta dewasa dega umur -3 tahu da tdak butg utuk meghdar

Lebih terperinci

Pendahuluan. Relasi Antar Variabel. Relasi Antar Variabel. Relasi Antar Variabel 4/6/2015. Oleh : Fauzan Amin

Pendahuluan. Relasi Antar Variabel. Relasi Antar Variabel. Relasi Antar Variabel 4/6/2015. Oleh : Fauzan Amin 4/6/015 Oleh : Fauza Am Se, 06 Aprl 015 GDL 11 (07.30-10.50) Pedahulua Aalsa regres dguaka utuk mempelajar da megukur hubuga statstk ag terjad atara dua atau lebh varbel. Dalam regres sederhaa dkaj dua

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. regresi berkenaan dengan studi ketergantungan antara dua atau lebih variabel yaitu

BAB 2 TINJAUAN TEORITIS. regresi berkenaan dengan studi ketergantungan antara dua atau lebih variabel yaitu BAB TINJAUAN TEORITIS. Pegerta Aalsa Regres Istlah regres pertama kal dperkealka oleh Fracs Galto. Meurutya, aalss regres berkeaa dega stud ketergatuga atara dua atau lebh varabel yatu varabel yag meeragka

Lebih terperinci

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis STATISTIK Ukura Gejala Pusat Ukura Letak Ukura Smpaga, Dspers da Varas Mome, Kemrga, da Kurtoss Notas Varabel dyataka dega huruf besar Nla dar varabel dyataka dega huruf kecl basaya dtuls Tmes New Roma

Lebih terperinci

REGRESI SEDERHANA Regresi

REGRESI SEDERHANA Regresi P a g e REGRESI SEDERHANA.. Regres Istlah regres dkemukaka utuk pertama kal oleh seorag atropolog da ahl meteorology Fracs Galto dalam artkelya Famly Lkeess Stature pada tahu 886. Ada juga sumber la yag

Lebih terperinci

ANALISIS REGRESI DAN KORELASI

ANALISIS REGRESI DAN KORELASI MODUL KULIAH ANALISIS REGRESI DAN KORELASI Oleh: Drs. I WAYAN SANTIYASA, M.Si JURUSAN ILMU KOMPUTER FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS UDAYANA 016 RANCANGAN AKTIVITAS TUTORIAL (RAT)

Lebih terperinci

X a, TINJAUAN PUSTAKA

X a, TINJAUAN PUSTAKA PENELITIAN SEBELUMNYA Statstka Deskrptf TINJAUAN PUSTAKA TINJAUAN STATISTIKA Uj Idepedes Uj depedes dguak utuk megetahu adaya hubuga atara dua varabel (Agrest, 1990). H 0 : tdak ada hubuga atara varabel

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Pedahulua Sebelum membahas megea prosedur peguja hpotess, terlebh dahulu aka djelaska beberapa teor da metode yag meujag utuk mempermudah pembahasa. Adapu teor da metode tersebut

Lebih terperinci

Uji Modifikasi Peringkat Bertanda Wilcoxon Untuk Masalah Dua Sampel Berpasangan 1 Wili Solidayah 2 Siti Sunendiari 3 Lisnur Wachidah

Uji Modifikasi Peringkat Bertanda Wilcoxon Untuk Masalah Dua Sampel Berpasangan 1 Wili Solidayah 2 Siti Sunendiari 3 Lisnur Wachidah Prosdg Statstka ISSN 40-45 Uj Modfkas Pergkat Bertada Wlcoxo Utuk Masalah Dua Sampel Berpasaga 1 Wl Soldayah St Suedar 3 Lsur Wachdah 1, Statstka, Fakultas MIPA, Uverstas Islam Badug, Jl. Tamasar No. 1

Lebih terperinci

PENAKSIRAN M A S T A T I S T I K A D A S A R 1 7 M A R E T 2014 U T R I W E N I M U K H A I Y A R

PENAKSIRAN M A S T A T I S T I K A D A S A R 1 7 M A R E T 2014 U T R I W E N I M U K H A I Y A R PENAKSIRAN P E N A K S I R A N T I T I K P E N A K S I R A N S E L A N G S E L A N G K E P E R C A Y A A N U N T U K R A T A A N S E L A N G K E P E R C A Y A A N U N T U K V A R I A N S I M A 0 8 S T

Lebih terperinci

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES * PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka

Lebih terperinci

PENAKSIRAN. Penaksiran Titik. Selang Kepercayaan untuk VARIANSI. MA2181 ANALISIS DATA Utriweni Mukhaiyar 17 Oktober 2011

PENAKSIRAN. Penaksiran Titik. Selang Kepercayaan untuk VARIANSI. MA2181 ANALISIS DATA Utriweni Mukhaiyar 17 Oktober 2011 PENAKSIRAN Peaksira Titik Peaksira Selag Selag Kepercayaa utuk RATAAN Selag Kepercayaa utuk VARIANSI MA8 ANALISIS DATA Utriwei Mukhaiyar 7 Oktober 0 Metode Peaksira Peaksira Titik Peaksira Selag Nilai

Lebih terperinci

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB Pearka Cotoh Gerombol (Cluster Samplg) Departeme Statstka FMIPA IPB Radom samplg (Revew) Smple radom samplg Stratfed radom samplg Rato, regresso, ad dfferece estmato Systematc radom samplg Cluster radom

Lebih terperinci

Uji apakah ada perbedaan signifikan antara mean masing-masing laboratorium. Gunakan α=0.05.

Uji apakah ada perbedaan signifikan antara mean masing-masing laboratorium. Gunakan α=0.05. MA 8 STATISTIKA DASAR SEMESTER I /3 KK STATISTIKA, FMIPA ITB UJIAN AKHIR SEMESTER (UAS) Sei, Desember, 9.3.3 WIB ( MENIT) Kelas. Pegajar: Utriwei Mukhaiyar, Kelas. Pegajar: Sumato Wiotoharjo Jawablah pertayaa

Lebih terperinci

REGRESI DAN KORELASI LINEAR SEDERHANA. Regresi Linear

REGRESI DAN KORELASI LINEAR SEDERHANA. Regresi Linear REGRESI DAN KORELASI LINEAR SEDERHANA Regres Lnear Tujuan Pembelajaran Menjelaskan regres dan korelas Menghtung dar persamaan regres dan standard error dar estmas-estmas untuk analss regres lner sederhana

Lebih terperinci

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar

Lebih terperinci

3 Departemen Statistika FMIPA IPB

3 Departemen Statistika FMIPA IPB Supleme Respos Pertemua ANALISIS DATA KATEGORIK (STK51) Departeme Statstka FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referes Waktu U potess Tga Cotoh atau Lebh U Kruskal-Walls (aalss ragam satu-arah berdasarka

Lebih terperinci

ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL

ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL Prosdg Semar Nasoal Peelta, Peddka da Peerapa MIPA, Fakultas MIPA, Uverstas Neger Yogyakarta, 4 Me ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL Ksmat Jurusa Peddka

Lebih terperinci

Penaksiran Titik Penaksiran Selang. Selang Kepercayaan untuk VARIANSI MA2081 STATISTIKA DASAR

Penaksiran Titik Penaksiran Selang. Selang Kepercayaan untuk VARIANSI MA2081 STATISTIKA DASAR PENAKSIRAN Peaksira Titik Peaksira Selag Selag Kepercayaa utuk RATAAN Selag Kepercayaa utuk VARIANSI MA08 STATISTIKA DASAR MA08 STATISTIKA DASAR Utriwei Mukhaiyar 5 Oktober 0 Metode Peaksira Peaksira Titik

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Metode penelitian sangat diperlukan dalam sebuah penelitian untuk

BAB III METODOLOGI PENELITIAN. Metode penelitian sangat diperlukan dalam sebuah penelitian untuk BAB III METODOLOGI PENELITIAN A. Metode Peelta Metode peelta sagat dperluka dalam sebuah peelta utuk memaham suatu objek peelta da utuk medapatka sejumlah formas tetag masalah pokok yag aka dpecahka. Ada

Lebih terperinci

ANALISIS KORELASI DAN REGRESI (LINEAR)

ANALISIS KORELASI DAN REGRESI (LINEAR) ANALISIS KORELASI DAN REGRESI (LINEAR) Hubuga atara dua kejada dapat dyataka dega hubuga dua varabel Apabla dua varabel da mempuya hubuga, maka la varabel yag sudah dketahu dapat dperguaka utuk memperkraka/meaksr.

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,

Lebih terperinci

PENAKSIRAN METODE PENAKSIRAN CONTOH. Kasus 1: taksiran titik IP = 3,5 Kasus 2: taksiran selang IP = [3,4]

PENAKSIRAN METODE PENAKSIRAN CONTOH. Kasus 1: taksiran titik IP = 3,5 Kasus 2: taksiran selang IP = [3,4] PENAKIRAN Peaksira Titik Peaksira elag elag Kepercayaa utuk µ elag Kepercayaa utuk σ MA 8 Aalisis Data Utriwei Mukhaiyar Oktober 00 008 by UP & UM METODE PENAKIRAN. Peaksira Titik Nilai tuggal dari suatu

Lebih terperinci

A. Soal 1 yg dikerjakan seharian tadi ttg regresi tunggal MENGHITUNG REGRESI LINEAR SEDERHANA

A. Soal 1 yg dikerjakan seharian tadi ttg regresi tunggal MENGHITUNG REGRESI LINEAR SEDERHANA 009 T u g a s a p l k a s S t a t s t k P a g e 1 A. Soal 1 yg dkerjakan seharan tad ttg regres tunggal MENGHITUNG REGRESI LINEAR SEDERHANA Persamaan umum regres lnear sederhana adalah : Ŷ = a + bx Contoh

Lebih terperinci

S2 MP Oleh ; N. Setyaningsih

S2 MP Oleh ; N. Setyaningsih S2 MP Oleh ; N. Setyagsh MATERI PERTEMUAN 1-3 (1)Pedahulua pera statstka dalam peelta ; (2)Peyaja data : dalam betuk (a) tabel da (b) dagram; (3) ukura tedes setaral da ukura peympaga (4)dstrbus ormal

Lebih terperinci

Ukuran Pemusatan Data. Arum Handini P., M.Sc Ayundyah K., M.Si.

Ukuran Pemusatan Data. Arum Handini P., M.Sc Ayundyah K., M.Si. Ukura Pemusata Data Arum Had P., M.Sc Ayudyah K., M.S. Notas utuk Populas da Sampel Notas: Mea (rata-rata) Sample x Populas μ Varas s 2 σ 2 Smpaga baku s σ Ukura Pemusata Data 1. Mea (rata-rata) 2. Meda

Lebih terperinci

ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET

ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET Prosdg Semar Nasoal Peelta, Peddka da Peerapa MIPA Fakultas MIPA, Uverstas Neger Yogyakarta, 6 Me 9 ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET Sty Rachyay Pusat Pemafaata Sas Atarksa,

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi dalam statistika adalah salah satu metode untuk menentukan tingkat

BAB 2 LANDASAN TEORI. Regresi dalam statistika adalah salah satu metode untuk menentukan tingkat 0 BAB LANDASAN TEORI. Pegerta Regres Regres dalam statstka adalah salah satu metode utuk meetuka tgkat pegaruh suatu varael terhadap varael yag la. Varael yag pertama dseut dega ermacam-macam stlah: varael

Lebih terperinci

TINJAUAN PUSTAKA Evaluasi Pengajaran

TINJAUAN PUSTAKA Evaluasi Pengajaran TINJAUAN PUSTAKA Evaluas Pegajara Evaluas adalah suatu proses merecaaka, memperoleh da meyedaka formas yag sagat dperluka utuk membuat alteratf- alteratf keputusa. Dalam hubuga dega kegata pegajara evaluas

Lebih terperinci

REGRESI LINIER GANDA

REGRESI LINIER GANDA REGRESI LINIER GANDA Secara umum, data hasil pegamata Y bisa terjadi karea akibat variabelvariabel bebas,,, k. Aka ditetuka hubuga atara Y da,,, k sehigga didapat regresi Y atas,,, k amu masih meujukka

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4. Deskrps Peelta Berdasarka hasl peelta, d peroleh data megea kemempua sswa melakuka smash sebelum da sesudah latha power otot lega adalah sebaga berkut : Tabel.

Lebih terperinci

BAB III ISI. x 2. 2πσ

BAB III ISI. x 2. 2πσ BAB III ISI 4. Keadata Normal Multvarat da Sfat-sfatya Keadata ormal multvarat meruaka geeralsas dar keadata ormal uvarat utuk dmes. f ( x) [( x )/ ] / = e x π x = ( x )( ) ( x ). < < (-) (-) Betuk (-)

Lebih terperinci

REGRESI NONPARAMETRIK SPLINE UNTUK DATA BERAT BADAN BALITA MENURUT UMUR DI KABUPATEN BOJONEGORO TAHUN 2010

REGRESI NONPARAMETRIK SPLINE UNTUK DATA BERAT BADAN BALITA MENURUT UMUR DI KABUPATEN BOJONEGORO TAHUN 2010 REGRESI NONPARAMETRIK SPLINE UNTUK DATA BERAT BADAN BALITA MENURUT UMUR DI KABUPATEN BOJONEGORO TAUN Mahasswa Yulda Federka 9 5 6 Dose Pembmbg Ir. Mutah Salamah,M.Kes da Jerry Dw T.P.,S.S,M.S ABSTRAK Pertumbuha

Lebih terperinci

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2 INTERVAL KEPERCAAAN UNTUK PERBEDAAN KOEFIIEN VARIAI DARI DITRIBUI LOGNORMAL I. Pebrya * Bustam. ugarto Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu Pegetahua Alam Uverstas

Lebih terperinci

ANALISIS REGRESI. Untuk mengetahui bentuk linear atau nonlinear dapat dilakukan dengan membuat scatterplot seperti berikut : Gambar.

ANALISIS REGRESI. Untuk mengetahui bentuk linear atau nonlinear dapat dilakukan dengan membuat scatterplot seperti berikut : Gambar. ANALISIS REGRESI Berdasara betu eleara data, model regres dapat dlasfasa mead dua macam yatu lear da o-lear. Ja pola data lear maa dguaa pemodela lear. Begtu uga sebalya apabla pola data tda lear maa dguaa

Lebih terperinci

LOGO ANALISIS REGRESI LINIER

LOGO ANALISIS REGRESI LINIER LOGO ANALISIS REGRESI LINIER BERGANDA Hazmra Yozza Jur. Maemaka FMIPA Uv. Adalas KOMPETENSI megdefkaska model regres ler bergada dalam oas aljabar basa maupu oas marks da asumsya medapaka model regres

Lebih terperinci

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl

Lebih terperinci

Pemodelan Jumlah Kematian Ibu di Jawa Timur dengan Pendekatan Generalized Poisson Regression (GPR) dan Regresi Binomial Negatif

Pemodelan Jumlah Kematian Ibu di Jawa Timur dengan Pendekatan Generalized Poisson Regression (GPR) dan Regresi Binomial Negatif Pemodela Jumlah Kemata Ibu d Jawa mur dega Pedekata Geeralzed Posso Regresso (GPR) da Regres Bomal Negatf Retdasyah Rsky Agga Permaa, Mutah Salamah Jurusa Statstka, Fakultas MIPA, Isttut ekolog Sepuluh

Lebih terperinci

BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI

BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI 9.1. Dstrbus Kotu Dstrbus memlk sfat kotu dmaa data yag damat berjala secara kesambuga da tdak terputus. Maksudya adalah bahwa data yag damat tersebut tergatug

Lebih terperinci

BAB 2 LANDASAN TEORI. persamaan penduga dibentuk untuk menerangkan pola hubungan variabel-variabel

BAB 2 LANDASAN TEORI. persamaan penduga dibentuk untuk menerangkan pola hubungan variabel-variabel BAB LANDASAN TEORI. Analss Regres Regres merupakan suatu alat ukur yang dgunakan untuk mengukur ada atau tdaknya hubungan antar varabel. Dalam analss regres, suatu persamaan regres atau persamaan penduga

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA. Peahulua Dalam bab aka membahas megea teor-teor tetag statstka oparametrk, korelas parsal tau Keall a korelas parsal meurut Ebuh GU a Oeka ICA.. Statstka Noparametrk Istlah oparametrk

Lebih terperinci

Pendugaan Parameter Regresi. Itasia & Y Angraini, Dep Statistika FMIPA - IPB

Pendugaan Parameter Regresi. Itasia & Y Angraini, Dep Statistika FMIPA - IPB Pendugaan Parameter Regres Menduga gars regres Menduga gars regres lner sederhana = menduga parameter-parameter regres β 0 dan β 1 : Penduga parameter yang dhaslkan harus merupakan penduga yang bak Software

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakag Masalah Regres merupaka suatu metode statstka yag dguaka utuk meyeldk pola hubuga atara dua atau lebh varabel.betuk atau pola hubuga varabelvarabel tersebut dapat ddetfkas

Lebih terperinci

II. TINJAUAN PUSTAKA. variabel. Dalam regresi sederhana dikaji dua variabel, sedangkan dalam regresi

II. TINJAUAN PUSTAKA. variabel. Dalam regresi sederhana dikaji dua variabel, sedangkan dalam regresi 3 II. TINJAUAN PUSTAKA. Aalss Regres Aalss regres merupaka salah satu metode statstka ag dguaka utuk mempelajar da megukur huuga statstk ag terjad atara dua atau leh varael. Dalam regres sederhaa dkaj

Lebih terperinci

Pemodelan Regresi Linier Menggunakan Metode Theil (Studi Kasus: Kompensasi Pegawai di Badan Kepegawaian Daerah Kota Samarinda)

Pemodelan Regresi Linier Menggunakan Metode Theil (Studi Kasus: Kompensasi Pegawai di Badan Kepegawaian Daerah Kota Samarinda) Jural EKSPONENSIAL Volume 4, Nomor 1, Me 2013 ISSN 2085-7829 Pemodela Regres Ler Megguaka Metode Thel (Stud Kasus: Kompesas Pegawa d Bada Kepegawaa Daerah Kota Samarda) Lear Regresso Modelg Wth Thel Method

Lebih terperinci

BAB 2 LANDASAN TEORI. diteliti. Banyaknya pengamatan atau anggota suatu populasi disebut ukuran populasi,

BAB 2 LANDASAN TEORI. diteliti. Banyaknya pengamatan atau anggota suatu populasi disebut ukuran populasi, BAB LANDASAN TEORI.1 Populas dan Sampel Populas adalah keseluruhan unt atau ndvdu dalam ruang lngkup yang ngn dtelt. Banyaknya pengamatan atau anggota suatu populas dsebut ukuran populas, sedangkan suatu

Lebih terperinci

BAB II LANDASAN TEORI. teori dan definisi mengenai variabel random, regresi linier, metode kuadrat

BAB II LANDASAN TEORI. teori dan definisi mengenai variabel random, regresi linier, metode kuadrat BAB II LANDASAN TEORI Sebaga pedukug dalam pembahasa selajutya, dperluka beberapa teor da defs megea varabel radom, regres ler, metode kuadrat terkecl, peguja asums aalss regres, outler, da regres robust.

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL Hesty ala, Arsma Ada, Bustam hestyfala@ymalcom Mahasswa Program S Matematka MIPA-UR Dose Matematka MIPA-UR

Lebih terperinci

L A T I H A N S O A L A N R E G 1 Muhamad Ferdiansyah, S. Stat.

L A T I H A N S O A L A N R E G 1 Muhamad Ferdiansyah, S. Stat. L A T I H A N S O A L A N R E G Muhamad Ferdiasyah, S. Stat. *Saya saraka utuk mecoba sediri baru lihat jawabaya **Jawaba saya BELUM TENTU BENAR karea saya mausia biasa. Silaka dikosultasika jika ada jawaba

Lebih terperinci

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN Idah Vltr, Harso, Haposa Srat Mahassa Program S Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu

Lebih terperinci

HAND OUT STATISTIKA DASAR (MT308) Oleh : Dewi Rachmatin, S.Si., M.Si.

HAND OUT STATISTIKA DASAR (MT308) Oleh : Dewi Rachmatin, S.Si., M.Si. HAND OUT STATISTIKA DASAR (MT308) Oleh : Dew Rachmat, S.S., M.S. JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN IPA UNIVERSITAS PENDIDIKAN INDONESIA 008 Idettas Mata Kulah. Nama Mata

Lebih terperinci

METODE PENAKSIRAN PENAKSIRAN ILUSTRASI CONTOH. pendekatan metode tertentu. Nilai sesungguhnya dari suatu parameter yang berada di selang tertentu.

METODE PENAKSIRAN PENAKSIRAN ILUSTRASI CONTOH. pendekatan metode tertentu. Nilai sesungguhnya dari suatu parameter yang berada di selang tertentu. ENAKIRAN eaksira Titik eaksira elag elag Kepercayaa utuk µ elag Kepercayaa utuk MA 08 tatistika Dasar Dose : Udjiaa. asaribu Utriwei Mukhaiyar 6 April 009 METODE ENAKIRAN. eaksira Titik Nilai tuggal dari

Lebih terperinci

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri III. METODE PEELITIA A. Metodolog Peelta Metodolog peelta adalah cara yag dlakuka secara sstemats megkut atura-atura, recaaka oleh para peeltutuk memecahka permasalaha yag hdup da bergua bag masyarakat,

Lebih terperinci

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah BAB III INEGRAL RIEMANN-SIELJES. Pedahulua Pada Bab, telah dsggug bahwa ukura meghtug merupaka salah satu pedekata utuk membetuk proses ttk. Berkata dega masalah perhtuga, ada hal meark yag perlu amat,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB LANDASAN TEORI.1 Analsa Regres Analsa regres dnterpretaskan sebaga suatu analsa yang berkatan dengan stud ketergantungan (hubungan kausal) dar suatu varabel tak bebas (dependent varable) atu dsebut

Lebih terperinci

b) Untuk data berfrekuensi fixi Data (Xi)

b) Untuk data berfrekuensi fixi Data (Xi) B. Meghtug ukura pemusata, ukura letak da ukura peyebara data serta peafsraya A. Ukura Pemusata Data Msalka kumpula data berkut meujukka hasl pegukura tgg bada dar orag sswa. 0 cm 30 cm 5 cm 5 cm 35 cm

Lebih terperinci

Analisis Regresi Robust Menggunakan Kuadrat Terkecil Terpangkas untuk Pendugaan Parameter

Analisis Regresi Robust Menggunakan Kuadrat Terkecil Terpangkas untuk Pendugaan Parameter Vol. 6, No., 9-6, Jauar Aalss Regres Robust Megguaka Kuadrat Terkecl Terpagkas utuk Pedugaa Parameter Asa, Raupog, Sarmat Zaudd Abstrak Prosedur regres robust dtujuka utuk megakomodas adaya keaeha data,

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

TRANSFORMASI BOX COX DALAM ANALISIS REGRESI LINIER SEDERHANA ABSTRAK

TRANSFORMASI BOX COX DALAM ANALISIS REGRESI LINIER SEDERHANA ABSTRAK TRANSFORMASI BO CO DALAM ANALISIS REGRESI LINIER SEDERHANA Welly Frasska, Sgt Nugroho, da fachr Fasal Alum Jurusa Matematka Fakultas MIPA Uverstas Begkulu Staf Pegajar Jurusa Matematka Fakultas MIPA Uverstas

Lebih terperinci