PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD"

Transkripsi

1 PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Mayag Novhta Sar *, Bustam, Sgt Sugarto Mahasswa Program Stud S Matematka FMIPA Uverstas Rau Dose Fakultas Matematka da Ilmu Pegetahua Alam Uverstas Rau Kamus Bawdya Pekabaru (893), Idoesa * ABSTRACT Ths artcledscusses the arameter estmator of eoetal Pareto dstrbuto. Parameters are estmated by costas ad, usg the method of momets ad method of mamum lkelhood. Method of momets estmator s ubased estmator ad themethod of mamum lkelhood estmator s ubased estmator for adbasfor. ace of method of momets ad mea square error of method of mamum lkelhood are obtaed usg umercal smulato. The smulato results show that the method of mamum lkelhood estmator better tha the method of momets estmator. Keywords: Eoetal dstrbuto, Paretodstrbuto, method of momets, method of mamum lkelhood, mea square error ABSTRAK Artkel membahas tetag eaksr arameter dstrbus eksoesal Pareto. Parameter yag dtaksr adalah arameter dega da kosta, megguaka metode mome da metode maksmum lkelhood. Peaksr dar metode mome meruaka eaksr tak bas da eaksr dar metode maksmum lkelhood meruaka eaksr tak bas utuk da bas utuk. as dar metode mome da Mea Square Error dar metode maksmum lkelhood dcar megguaka smulas umerk. Hasl smulas meujukka eaksr dar metode maksmum lkelhood lebh bak dbadg eaksr dar metode mome. Kata Kuc: dstrbus eksoesal, dstrbus Pareto, metode mome, metode maksmum lkelhood, mea square error. PENDAHULUAN Probabltas adalah ukura kemugka terjad atau tdakya suatu erstwa. Utuk meyataka suatu robabltas derluka model matemats yag secara teorts dyataka dega dstrbus robabltas. Dstrbus robabltas ada umumya dbedaka mejad dua yatu dstrbus robabltas dskrt da dstrbus robabltas kotu. Dstrbus robabltas dskrt adalah dstrbus yag memuya la varabel radom berua ttk-ttk atau bayakya terhtug. Dstrbus robabltas kotu Reostory FMIPA

2 adalah dstrbus yag memuya la varabel radom berua terval da bayakya tak terhtug. Dalam suatu dstrbus terdaat arameter yag laya belum dketahu. Oleh karea tu erlu dtaksr melalu formas yag ada dalam statstk samel. Peaksra suatu arameter daat dlakuka dega berbaga metode, dataraya yatu metode mome da metode maksmum lkelhood. Peaksr yag deroleh dar dharaka memuya la tdak terlalu jauh dega la arameter yag dtaksr. Peaksra suatu arameter dstrbus telah bayak dlakuka sebelumya. Al-Athar [] membahas tetag eaksra arameter dstrbus Pareto gada dega megguaka metode maksmum lkelhood da metode mome. Aula et al [3] membahas eaksr arameter dstrbus eksoesal dega megguaka arameter metode mome, metode lkelhood da metode Bayesa. Rytgaard [7] membahas tetag eaksra arameter dstrbus eksoesal dega megguaka metode mome da metode maksmum lkelhood. Peelta membahas tetag eaksra arameter dstrbus eksoesal Pareto yag meruaka rujuka dar jural Eoetal Pareto Dstrbuto yag derkealka oleh Al-Kadm da Bosh [].. DISTRIBUSI EKSPONENSIAL PARETO Dstrbus eksoesal Pareto memuya tga erameter, yatu satu arameter betuk yag meruaka arameter betuk dar dstrbus Pareto da dua arameter skala da yag masg-masg meruaka arameter skala dar dstrbus Pareto da arameter skala dar dstrbus eksoesal. Parameter yag aka dtaksr adalah arameter dega da dagga kosta. Dstrbus eksoesal Pareto meruaka dstrbus yag bergatug ada dstrbus eksoetal da dstrbus Pareto. Berkut dberka fugs kumulatf dstrbus da fugs keadata eluag (fk) dar dstrbus eksoesal Pareto da ;,, e, F 0, f ;,, e, 0. () Dstrbus eksoesal Pareto memuya eksektas, varas da mome keberturut-turut sebaga berkut E.. E r r r, r,,... Reostory FMIPA

3 Selajutya aka dbahas eaksr arameter dega da kosta megguaka metode mome da metode maksmum lkelhood dserta sfat da MSE kedua metode. 3. PENAKSIR DARI METODE MOMEN Msalka,, 3,..., meruaka samel radom dar dstrbus eksoesal Pareto dega fk ada ersamaa (), kemuda aka dtetuka eaksr arameter dega megguaka metode mome. Mome samel ertama adalah m. Peaksr mome ddaatka dar eyelesaa ersamaa berkut [5] m Asumska da kosta,maka eaksr arameter metode mome adalah m. () 4. PENAKSIR DARI METODE MAKSIMUM LIKELIHOOD Msalka,, 3,..., meruaka samel radom berukura yag berasal dar fk ada ersamaa (), maka fugs lkelhood mejad e L;,,. Utuk medaatka eaksr maksmum lkelhood dar arameter dguaka l fugs lkelhood yag dsebut log-lkelhood da dotaska dega l L Loglkelhood meruaka fugs ak. Maksmum dar l L meruaka maksmum lkelhood dar adalahsolus dar ersamaa berkut l e 0 Asumska da kosta, maka eaksr arameter metode maksmum lkelhood adalah. (3) Reostory FMIPA 3

4 Reostory FMIPA 4 Utuk meetuka eaksr terbak atara eaksr dar metode mome da eaksr dar metode maksmum lkelhood dlakuka erbadga MSE dar kedua metode. Berdasarka ersamaa () yag meruaka eaksr dar metode mome da ersamaa (3) yag meruaka eaksr dar metode Maksmum lkelhood. Utuk la eaksr dar metode mome da eaksr dar metode maksmum lkelhood berla sama. Oleh karea tu MSE yag dbadgka adalah MSE eaksr arameter utuk. 5. MEAN SQUARE ERROR (MSE) MSE yag deroleh dar metode mome da MSE yag deroleh dar metode maksmum lkelhood ddaatka setelah sfat dar eaksr tersebut dketahu. Sfat eaksr yag dguaka adalah eaksr bas da eaksr tak bas. jka eaksr meruaka eaksr tak bas maka dcar varas, amu jka eaksr adalah eaksr bas, maka dcar MSE eaksr tersebut. Berkut dberka teroema MSE. Teorema [4, h. 309]Jka adalah eaksr dar maka. b MSE Bukt: Pembukta Teorema daat dlhat ada buku Ba [4, h. 30]. MSE Peaksr dar Metode Mome Peaksr arameter dar metode mome ada ersamaa () meruaka eaksr takbas. Berdasarka Teorema la MSE sama dega la varas. as eaksr dar metode mome adalah m m

5 MSE PeaksrdarMetode Maksmum Lkelhood Peaksr ada ersamaa (3) meruaka eaksr bas maka erlu dcar MSE eaksr metode maksmum lkelhood. Utuk medaatka la MSE berdasarka Teorema, erlu dcar da b. Berkut dberka la dar (4) Utuk medaatka dguaka Teorema da Akbat berkut Teorema [5, h. 309] Msalka adalah varabel radom yag memlk Mome ke-, dega E da E E. Bla g suatu fugs yag memlk E g mejad turua ke-, maka E g g g g g r r r r g E. r! r! g Bukt: Pembukta Teorema daat dlhat ada buku Dudewcz [5, h. 309]. Akbat 3 [5, h. 30] Jka dambl d Teorema, maka deroleh hamra sebaga berkut E g g g. Bukt: Pembukta Akbat 3 daat dlhat ada buku Dudewcz [5, h. 30]. Akbat 4 [5, h. 30] as dar g adalah g g. Bukt: Pembukta Akbat 4 daat dlhat ada buku Dudewcz [5, h. 30]. Msalka Y mejad, Y Y g maka g Y Y g EY Y., dega megguaka Akbat (5) Reostory FMIPA 5

6 Utuk medaatka la megguaka teorema berkut E Y da Y maka erlu dketahu dstrbus dar Teorema 5 [4, h. 98] Msalka adalah varabel radom dega fk f, asumska Y g meruaka trasformas satu-satu dar A f 0 ke B y fy y 0, dega vers trasformas g Y. Jka dferesal dar g kotu da berla tdak ol ada B, maka fk dar adalah f Y y f g y g y, y B. y Bukt: Pembukta Teorema 5 daat dlhat ada buku Ba[4, h. 98]. Msalka Z maka g z z da z g z z, dega megguaka ersamaa ada Teorema 3 da fk ada ersamaa () dega > 0, 0 da > 0. Fk dar Z adalah f Y z z e, z 0. (6) Berdasarka ersamaa (6)dketahu Z berdstrbus eksoesal dega arameter, sehgga fugs embagkt mome dar adalah M Y t, t. t Setelah dstrbus dketahu maka daat dcar dstrbus Y megguaka metode fugs embagkt mome sebaga berkut Teorema 6 [4, h. ] Jka embagkt mome M t,..., Z dega, varabel radom deede dega fugs Z maka fugs embagkt mome dar Y M Y t M t M t M t z z Bukt: Pembukta Teorema 6 daat dlhat ada buku Ba [4, h. ]. z adalah M Y t t t t Reostory FMIPA 6

7 Asumska Z, Z, Z 3,..., Z meruaka samel radom berdstrbus eksoesal dega arameter, maka fugs embagkt mome dar Y Z mejad M Y t. (7) t Fugs embagkt mome ada ersamaa (7) meujukka Z berdstrbus gamma dega arameter da, sehgga eksektas da varas dar adalah E Y (8) Y (9) Substtuska ersamaa (8) da ersamaa (9) ada ersamaa (5) maka mejad. (0) mejad Selajutya subttuska ersama (0) ke ersamaa (4) maka. () Setelah selajutya aka dcar b. Utuk medaatka dcar E sebaga berkut E E E E, dega megguaka Akbat maka E mejad E. b erlu Reostory FMIPA 7

8 Nla b adalah b, () Selajutya substtuska ersamaa () da ersamaa () ke ersamaa ada MSE mejad Teorema maka MSE Setelah varas dar metode mome da MSEdar metode maksmum lkelhood dketahu. Selajutya aka dlakuka erbadga dar varas mome da MSE maksmum lkelhood utuk medaatka eaksr arameter terbak. Karea ada la varas metode mome terdaat fugs gamma maka erlu dlakuka smulas utuk medaatka erbadga dar varas dar metode mome da MSE dar metode maksmum lkelhood. SIMULASI Utuk memeroleh la samel radom suatu daat dlakuka dega metode trasformas vers fugs komulatf dstrbus [6], dega megguaka fugs kumulatf dstrbus dar dstrbus eksoesal Pareto ada ersamaa () da U adalah varabel radom dstrbus Uform 0, maka la samel radom dstrbus eksoesal Pareto mejad l U, U 0. Smulas dlakuka dega megguaka ukura samel = 0, 0, 30 da 40. Nla arameter 0.5,,.5,,.5 da serta egulaga sebayak R 00. Nla dar varas metode mome da MSE metode maksmum lkelhood djelaska ada Tabel. TABEL. Nla as Metode Mome da MSE Metode Maksmum Lkelhood dega 0.5,,.5,,. 5 da m 0.5 MSE Selsh MSE Nla m Selsh Nla Reostory FMIPA 8

9 m.5 MSE Selsh MSE Nla m Selsh Nla Dar Tabel daat dlhat bahwa eaksr arameter dar metode maksmum lkelhood memlk la MSE lebh kecl dar la varas eaksr dar metode mome. Utuk seta la berbeda, semak besar ukura samel maka selsh dar MSE aka medekat ol. Hal meujuka bahwa la la m da aka medekat la m MSE utuk ukura samel yag semak besar. KESIMPULAN Peaksr arameter dar metode mome adalah eaksr tak bas da eaksr arameter dar metode maksmum lkelhood eaksr bersfat tak bas utuk da bas utuk dega arameter da kosta. Utuk la eaksr dar mome da eaksr dar maksmum lkelhood berla sama. Hasl smulas juga meujukka bahwa la MSEdar metode maksmum lkelhood lebh kecl dbadg la varas dar metode mome, sehgga daat dsmulka metode maksmum lkelhood lebh bak dar metode mome utuk dalam meaksr arameter dar dstrbus eksoesal Pareto. DAFTAR PUSTAKA [] Al-Kadm, K. A. & M. A. Bosh. 03. Eoetal Pareto Dstrbuto. Mathematcal Theory ad Modelg, 5: [] Al-Athar, F. M. 0. Parameter Estmato for Double Pareto Dstrbuto. Joural of Mathematcs ad Statstcs, 7: [3] Aula, R., Noor, F & Nur, S. 0. Estmas Parameter Pada Dstrbus Eksoesal.Jural Matematka Mur da Teraa, 5: [4] Ba, L.J Itroducto to Probablty ad Mathematcal Statstcs, d ed. Dubury Press. Belmot, Calfora. [5] Dudewcz, E.J.& S.N. Mshra., 995. Statstka Matematka Moder, Terj. dar Moder Matematcal Statstcs, oleh Sembrg, RK. Peerbt ITB, Badug. [6] Ross, M. S. 00. Itroducto to Probablty Models, 0 th ed. Elsever Academc Press. Los Ageles, Calfora. [7] Rytgaard, M Estmato The Pareto Dstrbuto. Ast Bullet, 0: 0-6. Reostory FMIPA 9

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Eka Mer Krst ), Arsma Ada ), Sgt Sugarto ) ekamer_tross@ymal.com ) Mahasswa Program S Matematka FMIPA-UR

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL Hesty ala, Arsma Ada, Bustam hestyfala@ymalcom Mahasswa Program S Matematka MIPA-UR Dose Matematka MIPA-UR

Lebih terperinci

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2 INTERVAL KEPERCAAAN UNTUK PERBEDAAN KOEFIIEN VARIAI DARI DITRIBUI LOGNORMAL I. Pebrya * Bustam. ugarto Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu Pegetahua Alam Uverstas

Lebih terperinci

RELATIF EFISIENSI PENAKSIR MOMEN TERHADAP PENAKSIR MAKSIMUM LIKELIHOOD UNTUK PARAMATER BERDISTRIBUSI SEGITIGA. Haposan Sirait 1, Usman Malik 2 ABSTRAK

RELATIF EFISIENSI PENAKSIR MOMEN TERHADAP PENAKSIR MAKSIMUM LIKELIHOOD UNTUK PARAMATER BERDISTRIBUSI SEGITIGA. Haposan Sirait 1, Usman Malik 2 ABSTRAK Relatf Efses Peaksr Mome Terhada Peaksr Maksmum Lkelhood RELATIF EFISIENSI PENAKSIR MOMEN TERHADAP PENAKSIR MAKSIMUM LIKELIHOOD UNTUK PARAMATER BERDISTRIBUSI SEGITIGA Haosa Srat, Usma Malk ABSTRAK Makalah

Lebih terperinci

( ) ( ) ( ) ( ) ( ) III MODEL. , θ Ω. 1 Pendugaan parameter dengan metode maximum lkelihood estimation dapat diperoleh dari:

( ) ( ) ( ) ( ) ( ) III MODEL. , θ Ω. 1 Pendugaan parameter dengan metode maximum lkelihood estimation dapat diperoleh dari: 5 Mamum Lkelhood Estmato Defs Fugs Lkelhood Msalka X, X,, X adalah eubah acak d dega fugs massa eluag ( ; θ, dega θ dasumska skalar da tdak dketahu, maka rosedur fugs lkelhood daat dtulska sebaga berkut

Lebih terperinci

Proses inferensi pada model logit Agus Rusgiyono. Abstracts

Proses inferensi pada model logit Agus Rusgiyono. Abstracts Proses eres ada model logt Agus Rusgoo Let dstrbuto wth Abstracts 3 rereset the resose o a omal radom varable o Beroull P P where s a arameter wth ukow value. Problems o estmatg used smallest square methods

Lebih terperinci

TAKSIRAN YANG LEBIH EFISIEN UNTUK PARAMETER PADA DISTRUSI WEIBULL. Erma Kusuma Wati 1), Sigit Sugiarto 2), Bustami 2)

TAKSIRAN YANG LEBIH EFISIEN UNTUK PARAMETER PADA DISTRUSI WEIBULL. Erma Kusuma Wati 1), Sigit Sugiarto 2), Bustami 2) TAKSIRAN YANG LEBIH EFISIEN UNTUK PARAMETER PADA DISTRUSI WEIBULL Erma Kusuma Wat, Sgt Sugarto, Bustam emakusumawat7@yahooco Mahasswa Program S Matematka Dose Matematka, Jurusa Matematka Fakultas Matematka

Lebih terperinci

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah BAB III INEGRAL RIEMANN-SIELJES. Pedahulua Pada Bab, telah dsggug bahwa ukura meghtug merupaka salah satu pedekata utuk membetuk proses ttk. Berkata dega masalah perhtuga, ada hal meark yag perlu amat,

Lebih terperinci

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN Idah Vltr, Harso, Haposa Srat Mahassa Program S Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu

Lebih terperinci

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl

Lebih terperinci

BAB III ISI. x 2. 2πσ

BAB III ISI. x 2. 2πσ BAB III ISI 4. Keadata Normal Multvarat da Sfat-sfatya Keadata ormal multvarat meruaka geeralsas dar keadata ormal uvarat utuk dmes. f ( x) [( x )/ ] / = e x π x = ( x )( ) ( x ). < < (-) (-) Betuk (-)

Lebih terperinci

KOMBINASI PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KOEFISIEN KURTOSIS DAN KOEFISIEN VARIASI

KOMBINASI PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KOEFISIEN KURTOSIS DAN KOEFISIEN VARIASI KOMBINASI PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KOEFISIEN KURTOSIS DAN KOEFISIEN VARIASI Defl Ardh 1, Frdaus, Haposa Srat defl_math@ahoo.com

Lebih terperinci

Volume 1, Nomor 2, Desember 2007

Volume 1, Nomor 2, Desember 2007 Volume, Nomor, Desember 007 Barekeg, Desember 007. hal.-7 Vol.. No. ESTIMASI PARAMETER DISTRIBUSI EKPONENSIAL PADA LOKASI TERBATAS (Estmatg Parameter Dstrbuto Expoetal At Fte Locato MOZART W TALAKUA, JEFRI

Lebih terperinci

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

SIFAT-SIFAT LANJUT FUNGSI TERBATAS

SIFAT-SIFAT LANJUT FUNGSI TERBATAS Bulet Ilmah Mat. Stat. da Terapaya (Bmaster) Volume 03, No. 2(204), hal 35 42. SIFAT-SIFAT LANJUT FUNGSI TERBATAS Suhard, Helm, Yudar INTISARI Fugs terbatas merupaka fugs yag memlk batas atas da batas

Lebih terperinci

PENAKSIR RASIO REGRESI LINEAR SEDERHANA UNTUK RATA-RATA POPULASI MENGGUNAKANKARAKTER TAMBAHAN

PENAKSIR RASIO REGRESI LINEAR SEDERHANA UNTUK RATA-RATA POPULASI MENGGUNAKANKARAKTER TAMBAHAN PENAKIR RAIO REGREI LINEAR EDERHANA UNTUK RATA-RATA POPULAI MENGGUNAKANKARAKTER TAMBAHAN Astar Rahmadta *, Harso, Haosa rat Mahasswa Program tud Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu

Lebih terperinci

Penaksiran Parameter Model Regresi Polinomial Berkson Menggunakan Metode Minimum Distance

Penaksiran Parameter Model Regresi Polinomial Berkson Menggunakan Metode Minimum Distance Peaksra Parameter Model Regres Polomal Berkso Megguaka Metode Mmum Dstace Da Kurawat Dearteme Matematka, FMIPA UI, Kamus UI Deok 16 da61@gmal.com Abstrak Berkso Measuremet Error Model meruaka model regres

Lebih terperinci

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Ruag Baach Sumaag Muhtar Gozal UNIVERSITAS PENDIDIKAN INDONESIA Satu kose etg d kulah Aalss ugsoal adalah teor ruag Baach. Pada baga aka drevu defs, cotoh-cotoh, serta sfat-sfat etg ruag Baach. Kta aka

Lebih terperinci

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton,

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton, BAB LANDASAN TEORI Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut varabel tak bebas (depedet

Lebih terperinci

BAB II KAJIAN LITERATUR

BAB II KAJIAN LITERATUR BAB II Kaja Lteratur 4 BAB II KAJIAN LITERATUR. Jarak Mahalaobs Megut artkel tetag jarak Mahalaobs dar htt://e.wkeda.org ada 8 Maret 008, jarak Mahalaobs adalah ukura jarak yag derkealka oleh Prasata Chadra

Lebih terperinci

PENAKSIR DUAL RATIO-CUM-PRODUCT UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA

PENAKSIR DUAL RATIO-CUM-PRODUCT UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA ENAKSI DUAL ATIO-UM-ODUT UNTUK ATA-ATA OULASI ADA SAMLING AAK SEDEHANA hrsta ajata, Frdaus, Haposa Srat Mahasswa rogram Stud S Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu egetahua Alam Uverstas

Lebih terperinci

BAB III ESTIMASI MODEL PROBIT TERURUT

BAB III ESTIMASI MODEL PROBIT TERURUT BAB III ESTIMASI MODEL PROBIT TERURUT 3. Pedahulua Model eurua kods embata destmas dega model robt terurut. Estmas terhada arameter model robt terurut yatu koefse model da threshold dlakuka dega metode

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu. BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska

Lebih terperinci

PENAKSIR RASIO REGRESI LINEAR YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN

PENAKSIR RASIO REGRESI LINEAR YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN PENAKIR RAIO REGREI LINEAR ANG EFIIEN UNTUK RATA-RATA POPULAI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN Ed Jamlu 1* Harso Haposa rat 1 Mahasswa Program tud 1 Matematka Dose Jurusa Matematka Fakultas Matematka

Lebih terperinci

PENAKSIR REGRESI CUM RASIO UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN KOEFISIEN KURTOSIS DAN KOEFISIEN SKEWNESS

PENAKSIR REGRESI CUM RASIO UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN KOEFISIEN KURTOSIS DAN KOEFISIEN SKEWNESS PENAKIR REGREI CUM RAIO UNTUK RATA-RATA POPULAI DENGAN MENGGUNAKAN KOEFIIEN KURTOI DAN KOEFIIEN KEWNE usta Wula ar *, Arsma Ada, Haposa rat Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka

Lebih terperinci

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI MINGGU KE-0 HUBUNGAN ANTAR KONVERGENSI Hubuga atar koverges Hrark atar koverges dyataka dalam teorema berkut. Teorema Msalka X da X, X, X 3,... adalah varabel radom yag ddefska pada ruag probabltas yag

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres

Lebih terperinci

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL 3. Pegerta Masalah regres vers dega betuk lear dapat djumpa dalam berbaga bdag kehdupa, dataraya dalam bdag ekoom, kesehata, fska, kma

Lebih terperinci

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP Msal dguaka kode ler C[, k, d] dega matrks pembagu G da matrks cek partas H. Sebuah blok formas x = x 1 x 2 x k, x = 0 atau 1, yag aka dkrm terlebh

Lebih terperinci

UKURAN GEJALA PUSAT DAN UKURAN LETAK

UKURAN GEJALA PUSAT DAN UKURAN LETAK UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu

Lebih terperinci

PENAKSIR RATIO-CUM-PRODUCT YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS

PENAKSIR RATIO-CUM-PRODUCT YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS PEASIR RATIO-UM-PRODUT AG EFISIE UTU RATA-RATA POPULASI PADA SAMPLIG AA SEDERHAA MEGGUAA OEFISIE VARIASI DA OEFISIE URTOSIS Lza armata *, Arsma Ada, Frdaus Mahasswa Program S Matematka Dose Jurusa Matematka

Lebih terperinci

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis STATISTIK Ukura Gejala Pusat Ukura Letak Ukura Smpaga, Dspers da Varas Mome, Kemrga, da Kurtoss Notas Varabel dyataka dega huruf besar Nla dar varabel dyataka dega huruf kecl basaya dtuls Tmes New Roma

Lebih terperinci

PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN VARIASI DAN MEDIAN

PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN VARIASI DAN MEDIAN PENAKI AIO UNTUK ATA-ATA POPULAI PADA AMPLING ACAK EDEHANA MENGGUNAKAN KOEFIIEN VAIAI DAN MEDIAN sk ahmada *, Arsma Ada, Haposa rat Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da

Lebih terperinci

Bab II Teori Pendukung

Bab II Teori Pendukung Bab II Teor Pedukug.. asar Statstka Utuk keperlua peaksra outstadg clams lablty, pegetahua dalam statstka mead hal yag petg. asar statstka yag dguaka dalam tess atara la :. strbus ormal Sebuah peubah acak

Lebih terperinci

S2 MP Oleh ; N. Setyaningsih

S2 MP Oleh ; N. Setyaningsih S2 MP Oleh ; N. Setyagsh MATERI PERTEMUAN 1-3 (1)Pedahulua pera statstka dalam peelta ; (2)Peyaja data : dalam betuk (a) tabel da (b) dagram; (3) ukura tedes setaral da ukura peympaga (4)dstrbus ormal

Lebih terperinci

BAB III UKURAN PEMUSATAN DATA

BAB III UKURAN PEMUSATAN DATA BAB III UKURAN PEMUSATAN DATA A. Ukura Gejala Pusat Ukura pemusata adalah suatu ukura yag meujukka d maa suatu data memusat atau suatu kumpula pegamata memusat (megelompok). Ukura pemusata data adalah

Lebih terperinci

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN // REGRESI LINEAR SEDERHANA DAN KORELASI. Model Regres Lear. Peaksr Kuadrat Terkecl 3. Predks Nla Respos 4. Iferes Utuk Parameter-parameter Regres 5. Kecocoka Model Regres 6. Korelas Utrwe Mukhayar MA

Lebih terperinci

PELABELAN HARMONIS GANJIL PADA GRAF

PELABELAN HARMONIS GANJIL PADA GRAF Jural EduTech ol. No. Maret 08 ISSN: -60 e-issn: -06 PELABELAN HARMONIS GANJIL PADA GRAF Zulf Amr, Arda Aula, Army Syella, Harsma Pratamal, Saftr Ramadha, Charusa Uverstas Muhammadyah Sumatera Utara zulfamr@umsu.ac.d;

Lebih terperinci

b) Untuk data berfrekuensi fixi Data (Xi)

b) Untuk data berfrekuensi fixi Data (Xi) B. Meghtug ukura pemusata, ukura letak da ukura peyebara data serta peafsraya A. Ukura Pemusata Data Msalka kumpula data berkut meujukka hasl pegukura tgg bada dar orag sswa. 0 cm 30 cm 5 cm 5 cm 35 cm

Lebih terperinci

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi.

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi. Mea utuk Data Tuggal Des. Jka suatu sampel berukura dega aggota x1, x, x3,, x, maka mea sampel ddesska : 1... N 1 Mea utuk Data Kelompok Des Mea dar data yag dkelompoka adalah : x x 1 1 1 dega : x = ttk

Lebih terperinci

IMPUTASI MENGGUNAKAN PENAKSIR REGRESI UNTUK MENAKSIR RATA-RATA POPULASI PADA SAMPLING GANDA

IMPUTASI MENGGUNAKAN PENAKSIR REGRESI UNTUK MENAKSIR RATA-RATA POPULASI PADA SAMPLING GANDA IMPUTAI MEGGUAKA PEAKIR REGREI UTUK MEAKIR RATA-RATA POPUAI PADA AMPIG GADA Berad Fudka Marpaug * Rustam Efed Haposa rat Mahasswa Program tud Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu

Lebih terperinci

REGRESI NONPARAMETRIK KERNEL ADJUSTED. Novita Eka Chandra Universitas Islam Darul Ulum Lamongan

REGRESI NONPARAMETRIK KERNEL ADJUSTED. Novita Eka Chandra Universitas Islam Darul Ulum Lamongan JMP : Volume 7 Nomor, Ju 05, hal. - 0 REGRESI NONPARAMETRIK KERNEL ADJUSTED Novta Eka Chadra Uverstas Islam Darul Ulum Lamoga ovtaekachadra@gmal.com Sr Haryatm da Zulaela Jurusa Matematka FMIPA UGM ABSTRACT.

Lebih terperinci

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI BB 6 PRINSIP INKLUSI DN EKSKLUSI Pada baga aka ddskuska topk berkutya yatu eumeras yag damaka Prsp Iklus da Eksklus. Kosep dalam bab merupaka perluasa de dalam Dagram Ve beserta oepras rsa da gabuga, amu

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai dasar-dasar teori yang akan

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai dasar-dasar teori yang akan BAB II LANDASAN TEORI Pada bab aka dbahas megea dasar-dasar teor ag aka dguaka dalam eulsa skrs, atu megea data hrark, model regres -level, model logstk, estmas arameter model logstk, uj sgfkas arameter

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,

Lebih terperinci

ESTIMASI FUNGSI REGRESI MENGGUNAKAN METODE DERET FOURIER

ESTIMASI FUNGSI REGRESI MENGGUNAKAN METODE DERET FOURIER Supart da Sudargo Estmas Regres Deret Fourer ESTIMASI FUNGSI REGRESI MENGGUNAKAN METODE DERET FOURIER Supart da Sudargo 2 ) Jurusa Matematka, FMIPA, Udp 2) Jurusa Ped. Matematka, FPMIPA, IKIP PGRI, Semarag

Lebih terperinci

BAB III PERSAMAAN PANAS DIMENSI SATU

BAB III PERSAMAAN PANAS DIMENSI SATU BAB III PERSAMAAN PANAS DIMENSI SAU Pada baga sebelumya, kta telah membahas peerapa metoda Ruge-Kutta orde 4 utuk meyelesaka masalah la awal dar persamaa dferesal basa orde. Pada bab, kta aka melakuka

Lebih terperinci

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER TUGAS ATA KULIAH TEORI RING LANJUT ODUL NOETHER Da Aresta Yuwagsh (/364/PPA/03489) Sebelumya, telah dketahu bahwa sebaga rg dega eleme satua memeuh sfat rata ak utuk deal-deal d. Apabla dpadag sebaga modul,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,

Lebih terperinci

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka

Lebih terperinci

MATEMATIKA INTEGRAL RIEMANN

MATEMATIKA INTEGRAL RIEMANN MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN Ses NGAN INTEGRAL RIEMANN A. NOTASI SIGMA a. Defs Notas Sgma Sgma (Σ) adalah otas matematka megguaka smbol yag mewakl pejumlaha da beberapa suku yag memlk

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 11-19, Aprl 004, ISSN : 1410-8518 TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM Sudaro Jurusa Matematka FMIPA UNDIP Abstrak Sstem yag dbetuk

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 19 Desember 016 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 40%] Hasl pegukura sampel d beberapa sekolah da

Lebih terperinci

BAB 5. ANALISIS REGRESI DAN KORELASI

BAB 5. ANALISIS REGRESI DAN KORELASI BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling BAB LANDASAN TEORI Kosep Dasar Aalss Regres Aalss regres adalah suatu proses memperkraka secara sstemats tetag apa yag palg mugk terjad dmasa yag aka datag berdasarka formas yag sekarag dmlk agar memperkecl

Lebih terperinci

BAB II LANDASAN TEORI. digunakan dengan mengabaikan asumsi-asumsi yang melandasi penggunaan metode

BAB II LANDASAN TEORI. digunakan dengan mengabaikan asumsi-asumsi yang melandasi penggunaan metode BAB II ANDASAN TEORI. Regres Noparametrk Metode statstka oparametrk merupaka metode statstka ag dapat dguaka dega megabaka asums-asums ag meladas pegguaa metode statstk parametrk. Terutama ag berkata dega

Lebih terperinci

Uji Statistika yangb digunakan dikaitan dengan jenis data

Uji Statistika yangb digunakan dikaitan dengan jenis data Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas

Lebih terperinci

BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI

BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI 9.1. Dstrbus Kotu Dstrbus memlk sfat kotu dmaa data yag damat berjala secara kesambuga da tdak terputus. Maksudya adalah bahwa data yag damat tersebut tergatug

Lebih terperinci

4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data

4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data //203 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas Ukura

Lebih terperinci

; θ ) dengan parameter θ,

; θ ) dengan parameter θ, Vol. 4. No. 3, 5-59, Desember 00, ISSN : 40-858 APLIKASI METODE BESARAN PIVOTAL DALAM PENENTUAN SELANG KEYAKINAN TAKSIRAN PARAMETER POPULASI. Agus Rusgyoo Jurusa Matematka FMIPA UNDIP Abstraks Dberka populas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Pedahulua Sebelum membahas megea prosedur peguja hpotess, terlebh dahulu aka djelaska beberapa teor da metode yag meujag utuk mempermudah pembahasa. Adapu teor da metode tersebut

Lebih terperinci

PENDUGAAN BERBASIS MODEL UNTUK KASUS BINER PADA SMALL AREA ESTIMATION. Kismiantini

PENDUGAAN BERBASIS MODEL UNTUK KASUS BINER PADA SMALL AREA ESTIMATION. Kismiantini PENDUGAAN BERBASIS MODEL UNUK KASUS BINER PADA SMALL AREA ESIMAION Ksmat Jurusa Peddka Matematka, Uverstas Neger Yogyakarta Karagmalag, Yogyakarta 558, Idoesa e-mal : ksm_uy@yahoo.com ABSRAK Small Area

Lebih terperinci

SOLUSI TUGAS I HIMPUNAN

SOLUSI TUGAS I HIMPUNAN Program Stud S1 Tekk Iformatka Fakultas Iformatka, Telkom Uversty SOLUSI TUGAS I HIMPUNAN Matematka Dskrt (MUG2A3) Halama 1 dar 6 Soal 1 Tetukalah eleme-eleme dar hmpua berkut! 2 x x adalah blaga real

Lebih terperinci

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan Aalsa Numerk Baha Matrkulas PENDAHULUAN Metode umerk merupaka suatu tekk atau cara utuk megaalsa da meyelesaka masalah masalah d dalam bdag rekayasa tekk da sa dega megguaka operas perhtuga matematk Masalah-masalah

Lebih terperinci

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas TEKNIK SAMPLING Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uverstas Adalas Defs Suatu cotoh gerombol adalah suatu cotoh acak sederhaa dmaa setap ut pearka cotoh adalah kelompok atau gerombol dar

Lebih terperinci

ESTIMASI PARAMETER MODEL INTEGER-VALUE AUTOREGRESSIVE

ESTIMASI PARAMETER MODEL INTEGER-VALUE AUTOREGRESSIVE ESTIMASI PARAMETER MODEL INTEGER-VALUE AUTOREGRESSIVE UNTUK MENENTUKAN PROBABILITAS TERJADINYA KEBAKARAN YANG DISEBABKAN OLEH GAS ELPIJI DI KOTA SURAKARTA Nurmaltasar Jurusa Sstem Iformas, STMIK Duta Bagsa

Lebih terperinci

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES * PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka

Lebih terperinci

STATISTIKA. A. Tabel Langkah untuk mengelompokkan data ke dalam tabel distribusi frekuensi data berkelompok/berinterval: a. Rentang/Jangkauan (J)

STATISTIKA. A. Tabel Langkah untuk mengelompokkan data ke dalam tabel distribusi frekuensi data berkelompok/berinterval: a. Rentang/Jangkauan (J) STATISTIKA A. Tabel Lagkah utuk megelompokka data ke dalam tabel dstrbus frekues data berkelompok/berterval: a. Retag/Jagkaua (J) J X maks X m b. Bayak kelas (k) Megguaka atura Sturgess, yatu k,. log c.

Lebih terperinci

BAB II TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan,

BAB II TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan, BAB II TINJAUAN TEORITIS.1 Kosep Dasar Statstka Statstk merupaka cara cara tertetu yag dguaka dalam megumpulka, meyusu atau megatur, meyajka, megaalsa da member terpretas terhadap sekumpula data, sehgga

Lebih terperinci

8. MENGANALISIS HASIL EVALUASI

8. MENGANALISIS HASIL EVALUASI 8. MENGANALISIS HASIL EVALUASI Tujua : Mampu megaalsa tgkat kesukara hasl evaluas utuk megkatka hasl proses pembelajara Kegata megaals hasl evaluas merupaka upaya utuk memperbak programprogram pembelajara

Lebih terperinci

PROSEDUR ESTIMASI PARAMETER MODEL REGRESI MENGGUNAKAN RESAMPLING BOOTSTRAP DAN JACKKNIFE

PROSEDUR ESTIMASI PARAMETER MODEL REGRESI MENGGUNAKAN RESAMPLING BOOTSTRAP DAN JACKKNIFE PROSEDUR ESTIMASI PARAMETER MODEL REGRESI MENGGUNAKAN RESAMPLING BOOTSTRAP DAN JACKKNIFE ESTIMATION OF PARAMETER REGRESION MODEL USING BOOTSTRAP AND JACKKNIFE Hed (Staf Pegajar UP MKU Poltekk Neger Badug)

Lebih terperinci

X a, TINJAUAN PUSTAKA

X a, TINJAUAN PUSTAKA PENELITIAN SEBELUMNYA Statstka Deskrptf TINJAUAN PUSTAKA TINJAUAN STATISTIKA Uj Idepedes Uj depedes dguak utuk megetahu adaya hubuga atara dua varabel (Agrest, 1990). H 0 : tdak ada hubuga atara varabel

Lebih terperinci

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut 3/9/202 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas

Lebih terperinci

UKURAN PEMUSATAN & PENYEBARAN

UKURAN PEMUSATAN & PENYEBARAN UKURAN PEMUSATAN & PENYEBARAN RATA - RATA UKURAN PEMUSATAN MEDIAN MODUS Rata rata htug (mea) Merupaka hasl bag dar sejumlah skr dega bayakya respde Utuk Data Tdak Berkelmpk x Dmaa : = la samapa x = la

Lebih terperinci

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN MEDIAN DAN KOEFISIEN KURTOSIS

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN MEDIAN DAN KOEFISIEN KURTOSIS PENAKIR RAIO YANG EFIIEN UNTUK RATA-RATA POPULAI PADA AMPLING ACAK EDERHANA MENGGUNAKAN MEDIAN DAN KOEFIIEN KURTOI abarah * Haro H rat Mahawa Program Matematka Doe Jurua Matematka Fakulta Matematka da

Lebih terperinci

PEMILIHAN MODEL REGRESI TERBAIK MENGGUNAKAN R 2, Cp MALLOW, dan S PADA KASUS INDEKS HARGA SAHAM BURSA GLOBAL

PEMILIHAN MODEL REGRESI TERBAIK MENGGUNAKAN R 2, Cp MALLOW, dan S PADA KASUS INDEKS HARGA SAHAM BURSA GLOBAL Majalah Ekoom ISSN 4-950 : Vol. VII No. Des 03 PEMILIHAN MODEL REGRESI TERBAIK MENGGUNAKAN R, C MALLOW, da S PADA KASUS INDEKS HARGA SAHAM BURSA GLOBAL Oleh : Wara Pramest, Martha Suhardyah Fakultas Matematka

Lebih terperinci

Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2

Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2 M 81 STTISTIK DSR SEMESTER II 11/1 KK STTISTIK, FMIP IT SOLUSI UJIN TENGH SEMESTER (UTS) Sabtu, 1 Me 1, Pukul 9. 1.4 WI (1 met) Kelas 1. Pegajar: Udjaa S. Pasarbu/Rr. Kura Novta Sar, Kelas. Pegajar: Utrwe

Lebih terperinci

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri III. METODE PEELITIA A. Metodolog Peelta Metodolog peelta adalah cara yag dlakuka secara sstemats megkut atura-atura, recaaka oleh para peeltutuk memecahka permasalaha yag hdup da bergua bag masyarakat,

Lebih terperinci

ESTIMASI PARAMETER REGRESI GANDA MENGGUNAKAN BOOTSTRAP DAN JACKNIFE.

ESTIMASI PARAMETER REGRESI GANDA MENGGUNAKAN BOOTSTRAP DAN JACKNIFE. Prosdg Semar Nasoal Alkas Sas & Tekolog (SNAST) Yogakarta, 6 November 6 ISSN : 979 9X eissn : 54 58X ESTIMASI PARAMETER REGRESI GANDA MENGGUNAKAN BOOTSTRAP DAN JACKNIFE Noerat, Rka Herda,, Jurusa Statstka,

Lebih terperinci

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas:

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas: ANALISIS REGRESI Pedahulua Aalss regres berkata dega stud megea ketergatuga satu peubah (peubah terkat) terhadap satu atau lebh peubah laya (peubah pejelas). Jka Y dumpamaka sebaga peubah terkat da X1,X,...,X

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel BAB I PENDAHULUAN 1.1 Statstka Deskrptf da Statstka Iferesal Dewasa d berbaga bdag lmu da kehdupa utuk memaham/megetahu sesuatu dperluka dat Sebaga cotoh utuk megetahu berapa bayak rakyat Idoesa yag memerluka

Lebih terperinci

Penarikan Contoh Acak Berlapis (Stratified Random Sampling) Pertemuan IV

Penarikan Contoh Acak Berlapis (Stratified Random Sampling) Pertemuan IV Pearka Cotoh Acak Berlas (Stratfed Radom Samlg Pertemua IV Defs Cotoh acak berlas ddaatka dega cara membag oulas mejad beberaa kelomok ag tdak salg tumag tdh, da kemuda megambl secara acak dar seta kelomokkelomok

Lebih terperinci

BAB II LANDASAN TEORI. teori dan definisi mengenai variabel random, regresi linier, metode kuadrat

BAB II LANDASAN TEORI. teori dan definisi mengenai variabel random, regresi linier, metode kuadrat BAB II LANDASAN TEORI Sebaga pedukug dalam pembahasa selajutya, dperluka beberapa teor da defs megea varabel radom, regres ler, metode kuadrat terkecl, peguja asums aalss regres, outler, da regres robust.

Lebih terperinci

2.2.3 Ukuran Dispersi

2.2.3 Ukuran Dispersi 3 Ukura Dspers Yag aka dbahas ds adalah smpaga baku da varas karea dua ukura dspers yag palg serg dguaka Hubuga atara smpaga baku dega varas adalah Varas = Kuadrat dar Smpaga baku otas yag umum dguaka

Lebih terperinci

IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB

IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB Semar Nasoal Tekolog 007 (SNT 007) ISSN : 978 9777 IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB Krsawat STMIK AMIKOM Yogyakarta e-mal : krsa@amkom.ac.d

Lebih terperinci

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS C. Pembelajara 3 1. Slabus N o STANDA R KOMPE TENSI KOMPE TENSI DASAR INDIKATOR MATERI TUGAS BUKTI BELAJAR KON TEN INDIKA TOR WAK TU SUM BER BELA JAR Meerap ka atura kosep statstka dalam pemecah a masalah

Lebih terperinci

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi STATISTIKA A. Des Umum. Pegerta statstk Statstk adalah kumpula akta yag berbetuk agka da dsusu dalam datar atau tabel yag meggambarka suatu persoala. Cotoh: statstk kurs dolar Amerka, statstk pertumbuha

Lebih terperinci

ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET

ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET Prosdg Semar Nasoal Peelta, Peddka da Peerapa MIPA Fakultas MIPA, Uverstas Neger Yogyakarta, 6 Me 9 ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET Sty Rachyay Pusat Pemafaata Sas Atarksa,

Lebih terperinci

DISTRIBUSI GAMMA. Ada beberapa distribusi penting dalam distribusi uji hidup, salah satunya adalah distribusi gamma.

DISTRIBUSI GAMMA. Ada beberapa distribusi penting dalam distribusi uji hidup, salah satunya adalah distribusi gamma. DITRIBUI GAMMA Ada beberaa dsrbus eg dalam dsrbus uj hdu, salah sauya adalah dsrbus gamma. A. Fugs keadaa eluag (fk) Fugs keadaa eluag (fk) dar dsrbus gamma dega dua arameer yau da adalah sebaga berku:

Lebih terperinci

Prosiding SNaPP2011 Sains, Teknologi, dan Kesehatan. 1 Joko Riyono. (Kampus A Jl.Kiyai Tapa No.1,Jakarta11440)

Prosiding SNaPP2011 Sains, Teknologi, dan Kesehatan. 1 Joko Riyono. (Kampus A Jl.Kiyai Tapa No.1,Jakarta11440) Prosdg NaPP as, Tekolog, da Kesehata IN:89-58 MODIFIKAI TATITIK UJI-t PADA TET INFERENIA MEAN MEREDUKI PENGARUH KEAIMETRIKAN POPULAI MENGGUNAKAN EKPANI CORNIH-FIHER Joko Ryoo taf.pegajar Fakultas Tekolog

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Tgg tekaa [m] UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 11 Desember 017 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 50%] Sebuah PDAM melakuka pegukura

Lebih terperinci

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: ANALISIS REGRESI LINEAR BERGANDA DENGAN SATU VARIABEL BONEKA (DUMMY VARIABLE)

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: ANALISIS REGRESI LINEAR BERGANDA DENGAN SATU VARIABEL BONEKA (DUMMY VARIABLE) Jural Matematka Mur da Terapa Vol. 4 No. esember : 4 - ANALISIS REGRESI LINEAR BERGANA ENGAN SATU VARIABEL BONEKA (UMMY VARIABLE Tat Krsawardha Nur Salam da ew Aggra Program Stud Matematka Uverstas Lambug

Lebih terperinci

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran Kurkulum 013/006 matematka K e l a s XI STATISTIKA: UKURAN PEMUSATAN Tujua Pembelajara Setelah mempelajar mater, kamu dharapka memlk kemampua berkut. 1. Dapat meetuka rata-rata data tuggal da data berkelompok..

Lebih terperinci

REPRESENTASI BILANGAN FIBONACCI DALAM BENTUK KOMBINATORIAL

REPRESENTASI BILANGAN FIBONACCI DALAM BENTUK KOMBINATORIAL REPRESENTASI BILANGAN FIBONACCI DALAM BENTUK KOMBINATORIAL Rzky Maulaa Nugraha Tekk Iformatka Isttut Tekolog Badug Blok Sumurwed I RT/RW 4/, Haurgeuls, Idramayu, 4564 e-mal: laa_cfre@yahoo.com ABSTRAK

Lebih terperinci

BAB II LANDASAN TEORI. merepresentasikan dan menjelaskan permasalahan pada dunia nyata ke dalam. pernyataan matematis (Widowati & Sutimin, 2007 : 1).

BAB II LANDASAN TEORI. merepresentasikan dan menjelaskan permasalahan pada dunia nyata ke dalam. pernyataan matematis (Widowati & Sutimin, 2007 : 1). BAB II LANDASAN EORI.. Model Matematka Model Matematka merupaka represetas matematka yag dhaslka dar pemodela Matematka. Pemodela Matematka merupaka suatu proses merepresetaska da mejelaska permasalaha

Lebih terperinci

I adalah himpunan kotak terbatas dan tertutup yang berisi lebih dari satu

I adalah himpunan kotak terbatas dan tertutup yang berisi lebih dari satu METODE FUNGS QUAS-FED SATU ARAMETER UNTUK MENYEESAKAN MASAAH ROGRAM NTEGER TAK NEAR Ra Hardyat (M4) ABSTRAK Dalam kehdupa sehar-har serg djumpa masalah optmas yag membutuhka hasl teger Masalah tersebut

Lebih terperinci

KONSISTENSI KOEFISIEN DETERMINASI SEBAGAI UKURAN KESESUAIAN MODEL PADA REGRESI ROBUST

KONSISTENSI KOEFISIEN DETERMINASI SEBAGAI UKURAN KESESUAIAN MODEL PADA REGRESI ROBUST KONSISTENSI KOEFISIEN DETERINASI SEBAGAI UKURAN KESESUAIAN ODEL PADA REGRESI ROBUST Harm Sugart (harm@ut.ac.d) Ad egawar Jurusa Statstka FIPA Uverstas Terbuka ABSTRACT I statstcs, the coeffcet of determato

Lebih terperinci

Uji Modifikasi Peringkat Bertanda Wilcoxon Untuk Masalah Dua Sampel Berpasangan 1 Wili Solidayah 2 Siti Sunendiari 3 Lisnur Wachidah

Uji Modifikasi Peringkat Bertanda Wilcoxon Untuk Masalah Dua Sampel Berpasangan 1 Wili Solidayah 2 Siti Sunendiari 3 Lisnur Wachidah Prosdg Statstka ISSN 40-45 Uj Modfkas Pergkat Bertada Wlcoxo Utuk Masalah Dua Sampel Berpasaga 1 Wl Soldayah St Suedar 3 Lsur Wachdah 1, Statstka, Fakultas MIPA, Uverstas Islam Badug, Jl. Tamasar No. 1

Lebih terperinci