Pendahuluan. Relasi Antar Variabel. Relasi Antar Variabel. Relasi Antar Variabel 4/6/2015. Oleh : Fauzan Amin

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Pendahuluan. Relasi Antar Variabel. Relasi Antar Variabel. Relasi Antar Variabel 4/6/2015. Oleh : Fauzan Amin"

Transkripsi

1 4/6/015 Oleh : Fauza Am Se, 06 Aprl 015 GDL 11 ( ) Pedahulua Aalsa regres dguaka utuk mempelajar da megukur hubuga statstk ag terjad atara dua atau lebh varbel. Dalam regres sederhaa dkaj dua varabel, sedagka dalam regres majemuk dkaj lebh dar dua varabel. Dalam aalsa regres suatu persamaa regres hedak dtetuka da dguaka utuk meggambarka pola atau fugs hubuga ag terdapat atar varabel. Varabel ag aka destmas laa dsebut varabel terkat (depedet varable atau respose varable) da basaa dplot pada sumbu tegak (sumbu-). Sedagka varabel bebas (depedet varable atau eplaator varable) adalah varabel ag dasumska memberka pegaruh terhadap varas varabel terkat da basaa dplot pada sumbu datar (sumbu-). Pedahulua Aalsa korelas bertujua utuk megukur "seberapa kuat" atau "derajat kedekata" suatu relas ag terjad atar varabel. Aalss regres dalam baak hal dla lebh akurat dbadgka dega aalss korelasoal. Sebab dalam aalss regres dapat dtetuka kemrga (slop) atau tgkat perubaha suatu varabel terhadap varabel ag laa. Relas Atar Varabel Lagkah pertama dalam megaalsa relas atar varabel adalah dega membuat dagram pecar (scatter dagram) ag meggambarka ttk-ttk plot dar data ag dperoleh. Dagram pecar bergua utuk membatu dalam melhat apakah ada relas ag bergua atar varabel, membatu dalam meetuka jes persamaa ag aka dguaka utuk meetuka hubuga tersebut. Relas Atar Varabel Relas Atar Varabel Ler postf Ler egatf Curveler postf Curveler egatf 1

2 4/6/015 Relas Atar Varabel Aalss Regres Lear Curveler Tak tetu Fugs regres lear dapat dataka dalam hubuga matemats oleh: Y A B. Sebaga msal Y = + 1,4, secara teorts bla = 10, maka Y = 16. Pada keataaa tdak demka, sebab ag mempegaruh Y buka haa tetap ada faktor la ag tdak dmasukka dalam persamaa, faktor tersebut secara keseluruha dsebut sebaga kesalaha (dsturbace s error). Adaa kesalaha mejadka perkraa mejad tdak akurat, selalu ada resko ag dsebabka oleh adaa kesalaha. Kesalaha tdak dapat dhlagka sama sekal, maka resko harus dperkecl sekecl mugk dega memperkecl kesalaha. Dega memperhtugka kesalaha, regres lear dataka sebaga Y A B. REGRESI LINIER SEDERHANA UNTUK POPULASI Gars regres populato ag merupaka gars lurus ag meggambarka tgkat ketergatuga satu varabel terhadap varabel laa) Nla Ttk potog gars regres dega sumbu Y (tersep) Varabel Depede (Respose) Y Gars Regres Populas (codtoal mea) Koefse kemrga (slope) Galat Varabel Idepede (Predctor, eplaator) REGRESI LINIER SEDERHANA UNTUK SAMPEL Gars regres Sampel merupaka suatu la taksra (estmate) dar gars regres populas da merupaka la taksra utuk varabel Y Ttk potog (tercept) dega sumbu Y Y b b e Yˆ b b Koefse kemrga (Slope) Galat sampel Gars regres sampel (Gars regres ag dplotka, la taksra) Aalss Regres Lear Aalss Regres Lear peurua parsal terhadap a da b ag sederhaa dperoleh Y Y a Y b da Y b Y a (0) ŷ a b (0) Gambar Gars regres ler pada dagram pecar

3 4/6/015 Cotoh 1 Aalss Regres Lear Dar suatu praktkum fska dasar dperoleh data ag meghubugka varabel bebas da varabel terkat sepert dtujukka dalam tabel berkut. Uj ke Aalss Regres Lear Jka berdasarka kaja teorts da sfat dar feomea ag meghubugka da dapat dasumska mempua betuk hubuga ler, maka persamaa gars regresa dapat dtetuka sebaga berkut. Tabel perhtuga: Uj ke Aalss Regres Lear Kolom dtambahka pada tabel meskpu belum dguaka utuk perhtuga persamaa gars regres. Nla tersebut aka dguaka kemuda. Jad dega megguaka hasl pada tabel, la dar kostata a da b dapat dtetuka: 8(57) (56)(96) 1480 b 5,1389 8(48) (56) 88 a b 37 (5,1389)(7) 1,077 Jad persamaa gars regres ler ag meggambarka hubuga atara varabel da dar data sampel pada percobaa/praktkum d atas adalah: ˆ a b 1,077 5,1389 Dega megguaka persamaa gars regres ag dperoleh, maka dapat dperkraka hasl ag aka dperoleh (la ) utuk suatu la tertetu. Msala utuk = 4 maka dapat dperkraka bahwa aka berla: ˆ a b 1,077 5,1389 =1, ,1389(4) = 1,583. Aalss Regres Lear = Gambar. Gars regres utuk cotoh soal 1 Cotoh Soal Berkut data megea pegalama kerja da pejuala =pegalama kerja (tahu) Y=omzet pejuala (rbua) Y Tetuka la a da b! Buatka persamaa regresa! Berapa omzet pegjuala dar seorag karawa g pegalama kerjaa 3,5 tahu Peelesaa : Y Y Y Y 7 8 (8)(198) (4)(56) b (8)(96) (4) b 1, a 7 1,5(3) a 3,5 3

4 4/6/015 Koefse Determas (R ) (( )( Y) ( )( Y )) R ( ( ) ( ) ( ( Y ) ( Y ) ) ((8)(198) (4)(56)) R (8(96) (4) (8(448) (56) ) ( ) R ( )( ) (40) R (19)(448) , Nla determas (R) sebesar 0,6696,arta sumbaga atau pegaruh pegalama Kerjaterhadap ak turua omzet pejuala adalah sebesar 66,96%. Ssaa 33,04% Dsebabka oleh faktor la ag tdak dmasukka dalam model. Cotoh soal lag Dketahu data sebaga berkut: Tetuka kosetras Fe utuk sampel dega absorbas 0.138? Regres Lear Dagram tebar (scatter-plot) Sumbu Varabel Idepede Sumbu Y Varabel Depede Page 1 Korelas Mela hubuga varabel umerk Cotoh: 1. Apakah ada hubuga atara motvas dega prestas sswa. Apakah ada hubuga atara come keluarga dega IP mhs 3. Apakah ada hubuga atara umur pase dega lama har rawat 4. Apakah ada hubuga atara keaka BBM dega keaka harga baha pokok Jur. Bostatstka, FKM UI, 001 Korelas Mela kekuata hubuga ler var umerk: Pearso s Coefse Correlato (r) Dar la r kta dapat meetuka: a. Kekuata hubuga(0 s.d 1) b. Arah hubuga: (+/-) Ksara la r atara 0 s.d 1: 0 = Tdak ada hubuga ler 1 = Ada hubuga ler sempura Arah hubuga: + = Hubuga drect:semak besar la semak besar la Y - = Hubuga verse:semak besar la semak kecl la Y ASUMSI Korelas Pearso s Coef. Correlato haa vald jka asums berkut terpeuh: 1. Utuk setap la, Nla Y terdstrbus secara ormal. Utuk setap la Y, Nla terdstrbus secara ormal 3. Perkala atara la da Y terdstrbus secara ormal (bvarate ormal dstr.) Koefse Determas (r ): Melhat besara varas varabel Y (dalam perse) ag dapat djelaska oleh varabel. Msal r=0.8, r =0.64. Arta sebesar 64% varas la Y dapat djelaska oleh varabel Page 3 Aalss Korelas Sebelum dlakuka aalsa regres, lagkah ag basa dtempuh adalah melakuka aalsa korelas ag dtujuka utuk megetahu erat tdaka hubuga atar varabel. Pada aalsa regres, utuk observas Y dasumska bahwa adalah tetap kosta dar sampel ke sampel. Iterpretas koefse korelas utuk megukur kuata hubuga atar varabel tergatug pada asums ag dguaka utuk da Y. Bla da Y bervaras maka koefse korelas aka megukur covarablt (kesamaa varas) atara da Y. D dalam aalsa regres, koefse korelas dguaka utuk megukur cocok/tepat (ftess) gars regres sebaga pedekata data observas. Besara koefse korelas dataka sebaga cov(, Y) Dalam prakteka, tdak dketahu tetap laa dapat destmas berdasar data sampel. Bla r adalah peduga, dega r dataka sebaga r Y Y Y Y 4

5 4/6/015 r r Korelas: Data La-out da perhtuga r Subjek Y Y.Y Y 1 Y 1 Y 1... Y. Y. Y.... Y. Y. Y. Y Y Y () = ( ) (Y) (Y ) (Y) = ( ).( Y) ( Y) b Y ( ). ( Y ) * * * * * * Page 5 Korelas INTERPRETASI KOEF. KORELASI Kekuata hubuga: (Subjektf) r < 0.4 : Lemah 0.4< r <0.8 : Sedag r > 0.8 : Kuat Korelas tdak selalu berart hubuga sebab akbat (causalt) Korelas ag lemah tdak selalu berart tdak adaa hubuga Korelas ag kuat tdak selalu berart adaa gars lurus CONTOH KORELASI: Korelas Subjek () Usa (Y) Lama har rawat.y () = 150 (Y) = 31 (Y) = 970 ( ) = 4750 (Y ) = 199 SOAL r 970*5 150*31 [4750* 5 (150) ]* 199*5 (31) 0,97 Regres Lear TERIMA KASIH SEMUA TUGAS DIKUMPULKAN MINGGU DEPAN HARI SENIN TGL 13 APRIL 015 SEBAGAI PERSYARATAN UTS MENGGUNAKAN TULISAN TANGAN DI KERTAS FOLIO BERGARIS Regres Lear 5

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton,

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton, BAB LANDASAN TEORI Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut varabel tak bebas (depedet

Lebih terperinci

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres

Lebih terperinci

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu. BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska

Lebih terperinci

BAB 5. ANALISIS REGRESI DAN KORELASI

BAB 5. ANALISIS REGRESI DAN KORELASI BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh

Lebih terperinci

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua

Lebih terperinci

REGRESI & KORELASI LINIER SEDERHANA

REGRESI & KORELASI LINIER SEDERHANA 1. Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable)

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,

Lebih terperinci

Regresi & Korelasi Linier Sederhana

Regresi & Korelasi Linier Sederhana Regres & Korelas Ler Sederhaa. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar la peubah

Lebih terperinci

REGRESI & KORELASI LINIER SEDERHANA

REGRESI & KORELASI LINIER SEDERHANA . Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

Regresi Linier Sederhana Definisi Pengaruh

Regresi Linier Sederhana Definisi Pengaruh Regres Ler Sederhaa Dah Idra Baga Bostatstka da Kepeduduka Fakultas Kesehata Masyarakat Uverstas Arlagga Defs Pegaruh Jka terdapat varabel, msalka da yag data-dataya dplot sepert gambar dbawah 3 Defs Pegaruh

Lebih terperinci

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal)

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal) LANGKAH-LANGKAH UJI HIPOTESIS DENGAN (Utuk Data Nomal). Merumuska hpotess (termasuk rumusa hpotess statstk). Data hasl peelta duat dalam etuk tael slag (tael frekues oservas) 3. Meetuka krtera uj atau

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling BAB LANDASAN TEORI Kosep Dasar Aalss Regres Aalss regres adalah suatu proses memperkraka secara sstemats tetag apa yag palg mugk terjad dmasa yag aka datag berdasarka formas yag sekarag dmlk agar memperkecl

Lebih terperinci

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( )

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( ) Regres & Korelas Ler Sederhaa 1. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk yag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas:

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas: ANALISIS REGRESI Pedahulua Aalss regres berkata dega stud megea ketergatuga satu peubah (peubah terkat) terhadap satu atau lebh peubah laya (peubah pejelas). Jka Y dumpamaka sebaga peubah terkat da X1,X,...,X

Lebih terperinci

Analisis Korelasi dan Regresi

Analisis Korelasi dan Regresi Aalss Korelas da Regres Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uad LOGO www.themegaller.com LOGO Data varat Data dega dua varael Terhadap satu pegamata dlakuka pegukurapegamata terhadap varael

Lebih terperinci

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN // REGRESI LINEAR SEDERHANA DAN KORELASI. Model Regres Lear. Peaksr Kuadrat Terkecl 3. Predks Nla Respos 4. Iferes Utuk Parameter-parameter Regres 5. Kecocoka Model Regres 6. Korelas Utrwe Mukhayar MA

Lebih terperinci

ANALISIS KORELASI DAN REGRESI (LINEAR)

ANALISIS KORELASI DAN REGRESI (LINEAR) ANALISIS KORELASI DAN REGRESI (LINEAR) Hubuga atara dua kejada dapat dyataka dega hubuga dua varabel Apabla dua varabel da mempuya hubuga, maka la varabel yag sudah dketahu dapat dperguaka utuk memperkraka/meaksr.

Lebih terperinci

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS = 1 + + + + k k + u PowerPot Sldes baa Rohmaa Educato Uverst of Idoesa 007 Laboratorum Ekoom & Koperas Publshg Jl. Dr. Setabud

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,

Lebih terperinci

REGRESI DAN KORELASI LINEAR SEDERHANA. Regresi Linear

REGRESI DAN KORELASI LINEAR SEDERHANA. Regresi Linear REGRESI DAN KORELASI LINEAR SEDERHANA Regres Lnear Tujuan Pembelajaran Menjelaskan regres dan korelas Menghtung dar persamaan regres dan standard error dar estmas-estmas untuk analss regres lner sederhana

Lebih terperinci

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel BAB LANDASAN TEORI.1 Pegerta Regres Regres dalam statstka adalah salah satu metode utuk meetuka tgkat pegaruh suatu varabel terhadap varabel yag la. Varabel yag pertama dsebut dega bermacam-macam stlah:

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan,

BAB 2 TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan, BAB TINJAUAN TEORITIS 1 Kosep Dasar Statstka Statstk merupaka cara cara tertetu yag dguaka dalam megumpulka, meyusu atau megatur, meyajka, megaalsa da member terpretas terhadap sekumpula data, sehgga kumpula

Lebih terperinci

BAB II TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan,

BAB II TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan, BAB II TINJAUAN TEORITIS.1 Kosep Dasar Statstka Statstk merupaka cara cara tertetu yag dguaka dalam megumpulka, meyusu atau megatur, meyajka, megaalsa da member terpretas terhadap sekumpula data, sehgga

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Defes Aalss Korelas da Regres a Aalss Korelas adalah metode statstka yag dguaka utuk meetuka kuatya atau derajat huuga lear atara dua varael atau leh. Semak yata huuga ler gars lurus,

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. regresi berkenaan dengan studi ketergantungan antara dua atau lebih variabel yaitu

BAB 2 TINJAUAN TEORITIS. regresi berkenaan dengan studi ketergantungan antara dua atau lebih variabel yaitu BAB TINJAUAN TEORITIS. Pegerta Aalsa Regres Istlah regres pertama kal dperkealka oleh Fracs Galto. Meurutya, aalss regres berkeaa dega stud ketergatuga atara dua atau lebh varabel yatu varabel yag meeragka

Lebih terperinci

REGRESI LINIER SEDERHANA

REGRESI LINIER SEDERHANA MODUL REGRESI LINIER SEDERHANA Dsusu oleh : I MADE YULIARA Jurusa Fska Fakultas Matematka Da Ilmu Pegetahua Alam Uverstas Udayaa Tahu 016 Kata Pegatar Puj syukur saya ucapka ke hadapa Tuha Yag Maha Kuasa

Lebih terperinci

Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2

Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2 M 81 STTISTIK DSR SEMESTER II 11/1 KK STTISTIK, FMIP IT SOLUSI UJIN TENGH SEMESTER (UTS) Sabtu, 1 Me 1, Pukul 9. 1.4 WI (1 met) Kelas 1. Pegajar: Udjaa S. Pasarbu/Rr. Kura Novta Sar, Kelas. Pegajar: Utrwe

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Tgg tekaa [m] UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 11 Desember 017 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 50%] Sebuah PDAM melakuka pegukura

Lebih terperinci

Analisis Regresi dan Korelasi

Analisis Regresi dan Korelasi Metode Statstka Pertemua III Aalss Regres da Korelas Pegatar Apa tu aalss regres? Apa edaya dega korelas? Aalss Regres Aalss statstka yag memafaatka huuga atara dua atau leh peuah kuattatf sehgga salah

Lebih terperinci

II. TINJAUAN PUSTAKA. variabel. Dalam regresi sederhana dikaji dua variabel, sedangkan dalam regresi

II. TINJAUAN PUSTAKA. variabel. Dalam regresi sederhana dikaji dua variabel, sedangkan dalam regresi 3 II. TINJAUAN PUSTAKA. Aalss Regres Aalss regres merupaka salah satu metode statstka ag dguaka utuk mempelajar da megukur huuga statstk ag terjad atara dua atau leh varael. Dalam regres sederhaa dkaj

Lebih terperinci

3. METODOLOGI PENELITIAN

3. METODOLOGI PENELITIAN 3. METODOLOGI PENELITIAN 3.1 Waktu da Tempat Peelta dlakuka mula taggal 13 Me sampa dega 19 Agustus 007d perara Teluk Lasogko, Kabupate Buto, Sulawes Teggara. Lokas dplh dega pertmbaga bahwa perara merupaka

Lebih terperinci

TINJAUAN PUSTAKA Evaluasi Pengajaran

TINJAUAN PUSTAKA Evaluasi Pengajaran TINJAUAN PUSTAKA Evaluas Pegajara Evaluas adalah suatu proses merecaaka, memperoleh da meyedaka formas yag sagat dperluka utuk membuat alteratf- alteratf keputusa. Dalam hubuga dega kegata pegajara evaluas

Lebih terperinci

PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel

PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel Praktkum 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa

Lebih terperinci

PRAKTIKUM 5 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel

PRAKTIKUM 5 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel Praktkum 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa

Lebih terperinci

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan Aalsa Numerk Baha Matrkulas PENDAHULUAN Metode umerk merupaka suatu tekk atau cara utuk megaalsa da meyelesaka masalah masalah d dalam bdag rekayasa tekk da sa dega megguaka operas perhtuga matematk Masalah-masalah

Lebih terperinci

STATISTICAL STUDENT OF IST AKPRIND

STATISTICAL STUDENT OF IST AKPRIND STATISTICAL STUDNT OF IST AKPRIND Sekretarat : Jl. Bmasakt No:3 Pegok Yogakarta 55 Tlp. 74 54454 -mal : statstkasta@ahoo.com Blog : http://sssta.wordpress.com/ Aalss Regres Lses Dokume: Coprght sssta.wordpress.com

Lebih terperinci

Metode Statistika Pertemuan XII. Analisis Korelasi dan Regresi

Metode Statistika Pertemuan XII. Analisis Korelasi dan Regresi Metode Statstka Pertemua XII Aalss Korelas da Regres Aalss Hubuga Jes/tpe hubuga Ukura Keterkata Skala pegukura varabel Pemodela Keterkata Relatoshp vs Causal Relatoshp Tdak semua hubuga (relatoshp) berupa

Lebih terperinci

BAB 2 LANDASAN TEORI. yang akan terjadi pada masa yang akan datang dengan waktu yang relative lama.

BAB 2 LANDASAN TEORI. yang akan terjadi pada masa yang akan datang dengan waktu yang relative lama. BAB 2 LANDASAN TEORI 2.1 Pegerta Peramala Peramala ( forecastg ) adalah kegata memperkraka atau mempredkska apa yag aka terjad pada masa yag aka datag dega waktu yag relatve lama. Sedagka ramala adalah

Lebih terperinci

III BAHAN/OBJEK DAN METODE PENELITIAN. Objek yang digunakan dalam penelitian ini adalah 50 ekor sapi Pasundan

III BAHAN/OBJEK DAN METODE PENELITIAN. Objek yang digunakan dalam penelitian ini adalah 50 ekor sapi Pasundan III BAHAN/OBJEK DAN METODE PENELITIAN 3.1. Baha da Alat Peelta 3.1.1. Baha Peelta Objek yag dguaka dalam peelta adalah 50 ekor sap Pasuda jata da beta dewasa dega umur -3 tahu da tdak butg utuk meghdar

Lebih terperinci

REGRESI SEDERHANA Regresi

REGRESI SEDERHANA Regresi P a g e REGRESI SEDERHANA.. Regres Istlah regres dkemukaka utuk pertama kal oleh seorag atropolog da ahl meteorology Fracs Galto dalam artkelya Famly Lkeess Stature pada tahu 886. Ada juga sumber la yag

Lebih terperinci

MODUL ANALISIS REGRESI DAN KORELASI

MODUL ANALISIS REGRESI DAN KORELASI ANALISIS REGRESI DAN KORELASI MODUL 13 ANALISIS REGRESI DAN KORELASI Dalam kehdupa sehar-har, sergkal djumpa hubuga atara suatu varabel dega satu atau lebh varabel la. D dalam bdag pertaa sebaga cotoh,

Lebih terperinci

ANALISIS BENTUK HUBUNGAN

ANALISIS BENTUK HUBUNGAN ANALISIS BENTUK HUBUNGAN Analss Regres dan Korelas Analss regres dgunakan untuk mempelajar dan mengukur hubungan statstk yang terjad antara dua varbel atau lebh varabel. Varabel tersebut adalah varabel

Lebih terperinci

S2 MP Oleh ; N. Setyaningsih

S2 MP Oleh ; N. Setyaningsih S2 MP Oleh ; N. Setyagsh MATERI PERTEMUAN 1-3 (1)Pedahulua pera statstka dalam peelta ; (2)Peyaja data : dalam betuk (a) tabel da (b) dagram; (3) ukura tedes setaral da ukura peympaga (4)dstrbus ormal

Lebih terperinci

XI. ANALISIS REGRESI KORELASI

XI. ANALISIS REGRESI KORELASI I ANALISIS REGRESI KORELASI Aalss regres mempelajar betuk hubuga atara satu atau lebh peubah bebas dega satu peubah tak bebas dalam peelta peubah bebas basaya peubah yag dtetuka oelh peelt secara bebas

Lebih terperinci

Uji Statistika yangb digunakan dikaitan dengan jenis data

Uji Statistika yangb digunakan dikaitan dengan jenis data Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas

Lebih terperinci

BAB III PERSAMAAN PANAS DIMENSI SATU

BAB III PERSAMAAN PANAS DIMENSI SATU BAB III PERSAMAAN PANAS DIMENSI SAU Pada baga sebelumya, kta telah membahas peerapa metoda Ruge-Kutta orde 4 utuk meyelesaka masalah la awal dar persamaa dferesal basa orde. Pada bab, kta aka melakuka

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: ANALISIS REGRESI LINEAR BERGANDA DENGAN SATU VARIABEL BONEKA (DUMMY VARIABLE)

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: ANALISIS REGRESI LINEAR BERGANDA DENGAN SATU VARIABEL BONEKA (DUMMY VARIABLE) Jural Matematka Mur da Terapa Vol. 4 No. esember : 4 - ANALISIS REGRESI LINEAR BERGANA ENGAN SATU VARIABEL BONEKA (UMMY VARIABLE Tat Krsawardha Nur Salam da ew Aggra Program Stud Matematka Uverstas Lambug

Lebih terperinci

KORELASI DAN REGRESI LINIER. Debrina Puspita Andriani /

KORELASI DAN REGRESI LINIER. Debrina Puspita Andriani    / KORELASI DAN REGRESI LINIER 9 Debrna Puspta Andran www. E-mal : debrna.ub@gmal.com / debrna@ub.ac.d 2 Outlne 3 Perbedaan mendasar antara korelas dan regres? KORELASI Korelas hanya menunjukkan sekedar hubungan.

Lebih terperinci

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas TEKNIK SAMPLING Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uverstas Adalas Defs Suatu cotoh gerombol adalah suatu cotoh acak sederhaa dmaa setap ut pearka cotoh adalah kelompok atau gerombol dar

Lebih terperinci

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL 3. Pegerta Masalah regres vers dega betuk lear dapat djumpa dalam berbaga bdag kehdupa, dataraya dalam bdag ekoom, kesehata, fska, kma

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Metode penelitian sangat diperlukan dalam sebuah penelitian untuk

BAB III METODOLOGI PENELITIAN. Metode penelitian sangat diperlukan dalam sebuah penelitian untuk BAB III METODOLOGI PENELITIAN A. Metode Peelta Metode peelta sagat dperluka dalam sebuah peelta utuk memaham suatu objek peelta da utuk medapatka sejumlah formas tetag masalah pokok yag aka dpecahka. Ada

Lebih terperinci

BAB I TEORI KETAKPASTIAN

BAB I TEORI KETAKPASTIAN Teor Ketakpasta BAB I TEORI KETAKPASTIAN 1. KETEPATAN PENGUKURAN Pegukura merupaka aktvtas ag bertujua utuk megetahu kualtas atau kuattas suatu besara. Pegukura dalam fska tdak luput dar ketakpasta, arta

Lebih terperinci

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri III. METODE PEELITIA A. Metodolog Peelta Metodolog peelta adalah cara yag dlakuka secara sstemats megkut atura-atura, recaaka oleh para peeltutuk memecahka permasalaha yag hdup da bergua bag masyarakat,

Lebih terperinci

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES * PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka

Lebih terperinci

BAB 2 LANDASAN TEORITIS. yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama.

BAB 2 LANDASAN TEORITIS. yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama. BAB 2 LANDASAN TEORITIS 2.1 Pegerta Peramala Peramala ( forecastg ) adalah kegata memperkraka atau mempredkska apa yag aka terjad pada masa yag aka datag dega waktu yag relatf lama. Sedagka ramala adalah

Lebih terperinci

PRAKTIKUM 20 Interpolasi Polinomial dan Lagrange

PRAKTIKUM 20 Interpolasi Polinomial dan Lagrange Praktkum 0 Iterpolas Polomal da Lagrage PRAKTIKUM 0 Iterpolas Polomal da Lagrage Tuua : Mempelaar berbaga metode Iterpolas ag ada utuk meetuka ttkttk atara dar buah ttk dega megguaka suatu fugs pedekata

Lebih terperinci

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 11-19, Aprl 004, ISSN : 1410-8518 TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM Sudaro Jurusa Matematka FMIPA UNDIP Abstrak Sstem yag dbetuk

Lebih terperinci

BAB 1 ERROR PERHITUNGAN NUMERIK

BAB 1 ERROR PERHITUNGAN NUMERIK BAB ERROR PERHITUNGAN NUMERIK A. Tujua a. Memaham galat da hampra b. Mampu meghtug galat da hampra c. Mampu membuat program utuk meelesaka perhtuga galat da hampra dega Matlab B. Peragkat da Mater a. Software

Lebih terperinci

REGRESI LINEAR SEDERHANA

REGRESI LINEAR SEDERHANA REGRESI LINEAR SEDERHANA MODUL Dra. Sr Pagest, S.U. PENDAHULUAN A alss regres merupaka aalss statstk yag mempelajar ubuga atara dua varabel atau leb. Dalam aalss regres lear dasumska berlakuya betuk ubuga

Lebih terperinci

Penarikan Contoh Acak Sederhana (Simple Random Sampling)

Penarikan Contoh Acak Sederhana (Simple Random Sampling) Pearka Cotoh Acak Sederhaa (Smple Radom Samplg) Defs Jka sebuah cotoh berukura dambl dar suatu populas sedemka rupa sehgga setap cotoh berukura ag mugk memlk peluag sama utuk terambl, maka prosedur tu

Lebih terperinci

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB Pearka Cotoh Gerombol (Cluster Samplg) Departeme Statstka FMIPA IPB Radom samplg (Revew) Smple radom samplg Stratfed radom samplg Rato, regresso, ad dfferece estmato Systematc radom samplg Cluster radom

Lebih terperinci

REGRESI LINIER SEDERHANA

REGRESI LINIER SEDERHANA REGRESI LINIER SEDERHANA REGRESI, KAUSALITAS DAN KORELASI DALAM EKONOMETRIKA Regresi adalah salah satu metode aalisis statistik yag diguaka utuk melihat pegaruh atara dua atau lebih variabel Kausalitas

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

ANALISIS REGRESI. . Berdasarkan sample acak, persamaan regresi populasi (1) akan ditaksir, ini dilakukan dengan jalan menaksir parameter-parameter 1

ANALISIS REGRESI. . Berdasarkan sample acak, persamaan regresi populasi (1) akan ditaksir, ini dilakukan dengan jalan menaksir parameter-parameter 1 ANALII REGREI. PENDAHULUAN Jka kta memlk data yag terdr atas dua atau lebh varabel, adalah sewajarya utuk suatu cara bagamaa varabel-varabel tersebut berhubuga. Hubuga yag dperoleh pada umumya dyataka

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Dalam pemodela program ler, semua parameter yag dguaka dalam model dasumska dapat dketahu secara past. Parameter-parameter terdr dar koefse batasa ( ) a, la kuattas batasa

Lebih terperinci

POLIGON TERBUKA TERIKAT SEMPURNA

POLIGON TERBUKA TERIKAT SEMPURNA MODUL KULIAH ILMU UKUR TANAH POLIGON TERBUKA TERIKAT SEMPURNA Pegerta : peetua azmuth awal da akhr, peetuat kesalaha peutup sudut,koreks sudut, kesalaha lear da koreks lear kearah sumbu X da Y, Peetua

Lebih terperinci

Statistika Deskriptif

Statistika Deskriptif Statstka Deskrptf Statstka Deskrptf Statstka deskrptf (descrptve statstcs) berkata dega peerapa metode statstk utuk megumpulka, megolah, meyajka, da megaalss data kuattatf secara deskrptf. Statstka Deskrptf

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai dasar-dasar teori yang akan

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai dasar-dasar teori yang akan BAB II LANDASAN TEORI Pada bab aka dbahas megea dasar-dasar teor ag aka dguaka dalam eulsa skrs, atu megea data hrark, model regres -level, model logstk, estmas arameter model logstk, uj sgfkas arameter

Lebih terperinci

PENGARUH MODAL KERJA TERHADAP PENDAPATAN PENGRAJIN INDUSTRI KECIL TEMPE DI DESA SAMBAK KECAMATAN KAJORAN KABUPATEN MAGELANG

PENGARUH MODAL KERJA TERHADAP PENDAPATAN PENGRAJIN INDUSTRI KECIL TEMPE DI DESA SAMBAK KECAMATAN KAJORAN KABUPATEN MAGELANG PENGARUH MODAL KERJA TERHADAP PENDAPATAN PENGRAJIN INDUSTRI KECIL TEMPE DI DESA SAMBAK KECAMATAN KAJORAN KABUPATEN MAGELANG Asa Kurat Peddka Ekoom, FKIP Uverstas Muhammadah Purworejo asachaca8@ahoo.com

Lebih terperinci

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat.

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat. KALKULUS LANJUT Pertemua ke-4 Rey Ra Marlaa, S.S.,M.Stat. Plot Mater Notas Jumlah & Sgma Itegral Tetu Jumlah Rema Pedahulua Luas Notas Jumlah & Sgma Purcell, et all. (page 226,2003): Sebuah fugs yag daerah

Lebih terperinci

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Pedahulua Sebelum membahas megea prosedur peguja hpotess, terlebh dahulu aka djelaska beberapa teor da metode yag meujag utuk mempermudah pembahasa. Adapu teor da metode tersebut

Lebih terperinci

Regresi Linier Sederhana dan Korelasi (3 sesi)

Regresi Linier Sederhana dan Korelasi (3 sesi) Regre Ler Sederhaa da Korela (3 e) Duu oleh Sgt Nugroho Uverta Begkulu Pegerta Regre merupaka tekk tattka ag dguaka utuk mempelajar huuga fugoal dar atu atau eerapa peuah ea (peuah ag mempegaruh) terhadap

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel BAB I PENDAHULUAN 1.1 Statstka Deskrptf da Statstka Iferesal Dewasa d berbaga bdag lmu da kehdupa utuk memaham/megetahu sesuatu dperluka dat Sebaga cotoh utuk megetahu berapa bayak rakyat Idoesa yag memerluka

Lebih terperinci

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2 INTERVAL KEPERCAAAN UNTUK PERBEDAAN KOEFIIEN VARIAI DARI DITRIBUI LOGNORMAL I. Pebrya * Bustam. ugarto Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu Pegetahua Alam Uverstas

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4. Deskrps Peelta Berdasarka hasl peelta, d peroleh data megea kemempua sswa melakuka smash sebelum da sesudah latha power otot lega adalah sebaga berkut : Tabel.

Lebih terperinci

ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL

ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL Prosdg Semar Nasoal Peelta, Peddka da Peerapa MIPA, Fakultas MIPA, Uverstas Neger Yogyakarta, 4 Me ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL Ksmat Jurusa Peddka

Lebih terperinci

X a, TINJAUAN PUSTAKA

X a, TINJAUAN PUSTAKA PENELITIAN SEBELUMNYA Statstka Deskrptf TINJAUAN PUSTAKA TINJAUAN STATISTIKA Uj Idepedes Uj depedes dguak utuk megetahu adaya hubuga atara dua varabel (Agrest, 1990). H 0 : tdak ada hubuga atara varabel

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi dalam statistika adalah salah satu metode untuk menentukan tingkat

BAB 2 LANDASAN TEORI. Regresi dalam statistika adalah salah satu metode untuk menentukan tingkat 0 BAB LANDASAN TEORI. Pegerta Regres Regres dalam statstka adalah salah satu metode utuk meetuka tgkat pegaruh suatu varael terhadap varael yag la. Varael yag pertama dseut dega ermacam-macam stlah: varael

Lebih terperinci

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl

Lebih terperinci

NPV DAN IRR IR. ASEP TOTO KARTAMAN, MENG

NPV DAN IRR IR. ASEP TOTO KARTAMAN, MENG DAN IRR IR. ASEP TOTO KARTAMAN, MENG SEMESTER PENDEK SEMESTER TAHUN AKADEMIK 03-04 Prod Tekk Idustr Fakultas Tekk Uverstas Pasuda Badug 04 PERHITUNGAN KELAYAKAN INVESTASI. Net Preset Value () merupaka

Lebih terperinci

Model Regresi Sederhana (Lanjutan)

Model Regresi Sederhana (Lanjutan) LECTURE NOTES #3 Model Regres Sederhaa (Lajuta) I. Ut Pegukura da Betuk Fugsoal Terdapat dua su petg ddalam peelta terapa dbdag lmu ekoom, yak: a. Pemahama atas dampak perubaha ut pegukura dar varabel

Lebih terperinci

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis STATISTIK Ukura Gejala Pusat Ukura Letak Ukura Smpaga, Dspers da Varas Mome, Kemrga, da Kurtoss Notas Varabel dyataka dega huruf besar Nla dar varabel dyataka dega huruf kecl basaya dtuls Tmes New Roma

Lebih terperinci

BAB II LANDASAN TEORI. teori dan definisi mengenai variabel random, regresi linier, metode kuadrat

BAB II LANDASAN TEORI. teori dan definisi mengenai variabel random, regresi linier, metode kuadrat BAB II LANDASAN TEORI Sebaga pedukug dalam pembahasa selajutya, dperluka beberapa teor da defs megea varabel radom, regres ler, metode kuadrat terkecl, peguja asums aalss regres, outler, da regres robust.

Lebih terperinci

III. METODOLOGI. Gambar 3.1 Lokasi Penelitian

III. METODOLOGI. Gambar 3.1 Lokasi Penelitian III. METODOLOGI 3. Lokas da Waktu Peelta Peelta dlakuka pada bula Agustus hgga bula November tahu 009. Lokas peelta melput seluruh Wlaah Pegembaga Tegallega, Kota Badug. Gambar 3. Lokas Peelta 5 3. Baha

Lebih terperinci

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI BB 6 PRINSIP INKLUSI DN EKSKLUSI Pada baga aka ddskuska topk berkutya yatu eumeras yag damaka Prsp Iklus da Eksklus. Kosep dalam bab merupaka perluasa de dalam Dagram Ve beserta oepras rsa da gabuga, amu

Lebih terperinci

BAB II LANDASAN TEORI. digunakan dengan mengabaikan asumsi-asumsi yang melandasi penggunaan metode

BAB II LANDASAN TEORI. digunakan dengan mengabaikan asumsi-asumsi yang melandasi penggunaan metode BAB II ANDASAN TEORI. Regres Noparametrk Metode statstka oparametrk merupaka metode statstka ag dapat dguaka dega megabaka asums-asums ag meladas pegguaa metode statstk parametrk. Terutama ag berkata dega

Lebih terperinci

Model Regresi Sederhana

Model Regresi Sederhana LECTURE NOTES # Model Regres Sederhaa I. Pegatar Aalsa regres merupaka salah satu topk utama ekoometrka. Dega regres, kta berupaya megugkapka hubuga atar varabel dega memasukka usur kausaltas. Dega kata

Lebih terperinci

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN Idah Vltr, Harso, Haposa Srat Mahassa Program S Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu

Lebih terperinci

SIFAT-SIFAT LANJUT FUNGSI TERBATAS

SIFAT-SIFAT LANJUT FUNGSI TERBATAS Bulet Ilmah Mat. Stat. da Terapaya (Bmaster) Volume 03, No. 2(204), hal 35 42. SIFAT-SIFAT LANJUT FUNGSI TERBATAS Suhard, Helm, Yudar INTISARI Fugs terbatas merupaka fugs yag memlk batas atas da batas

Lebih terperinci

PENAKSIR REGRESI CUM RASIO UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN KOEFISIEN KURTOSIS DAN KOEFISIEN SKEWNESS

PENAKSIR REGRESI CUM RASIO UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN KOEFISIEN KURTOSIS DAN KOEFISIEN SKEWNESS PENAKIR REGREI CUM RAIO UNTUK RATA-RATA POPULAI DENGAN MENGGUNAKAN KOEFIIEN KURTOI DAN KOEFIIEN KEWNE usta Wula ar *, Arsma Ada, Haposa rat Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka

Lebih terperinci

BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI

BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI 9.1. Dstrbus Kotu Dstrbus memlk sfat kotu dmaa data yag damat berjala secara kesambuga da tdak terputus. Maksudya adalah bahwa data yag damat tersebut tergatug

Lebih terperinci

Analisis Regresi. Oleh : Dewi Rachmatin

Analisis Regresi. Oleh : Dewi Rachmatin Aalss Regres Oleh : Dew Rachmat Pedahulua Dalam peelta basaya dguaka suatu model atau hubuga fugsoal atara peubah. Dega model kta berusaha memaham, meeragka, megedalka da kemuda mempredkska kelakua sstem

Lebih terperinci

INTERPOLASI. FTI-Universitas Yarsi

INTERPOLASI. FTI-Universitas Yarsi BAB VI INTERPOLASI FTI-Uverstas Yars Pedahulua Bla dketahu taulas ttk-ttk (y seaga erkut (yag dalam hal rumus ugs y ( tdak dketahu secara eksplst: Htug taksra la y utuk 3.8! FTI-Uverstas Yars Persoala

Lebih terperinci

METODOLOGI PENELITIAN

METODOLOGI PENELITIAN MEOOLOGI PENELIIAN empat da Waktu Peelta Peelta dlaksaaka d P Bukt Raya Mudsa, Kabupate Sawah Luto/Sjujug, Props Sumatera Barat. Peelta dlakuka dua tahap selama 3 bula yatu bula Maret sampa dega bula Me

Lebih terperinci