PENAKSIR REGRESI CUM RASIO UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN KOEFISIEN KURTOSIS DAN KOEFISIEN SKEWNESS

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "PENAKSIR REGRESI CUM RASIO UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN KOEFISIEN KURTOSIS DAN KOEFISIEN SKEWNESS"

Transkripsi

1 PENAKIR REGREI CUM RAIO UNTUK RATA-RATA POPULAI DENGAN MENGGUNAKAN KOEFIIEN KURTOI DAN KOEFIIEN KEWNE usta Wula ar *, Arsma Ada, Haposa rat Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu Pegetahua Alam Uverstas Rau Kampus Bawda Pekabaru, 89, Idoesa * ABTRACT Ths paper dscusses the estmators of regresso cum-rato proposed b a ad Ta for the populato mea. These three estmators use the aular varables of the coeffcets of curtoss ad skewess smple radom samplg. All estmators are based estmators. The most effcet estmator s the estmator that has the smallest mea square error (ME) obtaed b comparg ther MEs. A eample s gve at the ed of dscussso. Kewords: regresso cum-rato estmator, coeffcet of skewess, based ad mea square error curtoss, coeffcet of ABTRAK Tulsa membahas tga peaksr regres cum-raso ag dajuka oleh a da Ta utuk rata-rata populas. Ketga peaksr megguaka formas tambaha koefse kurtoss da skewess pada samplg acak sederhaa. Masg-masg peaksr merupaka peaksr bas. Peaksr ag palg efse merupaka peaksr ag memlk Mea quare Error (ME) terkecl ag dperoleh dega membadgka ME dar masg-masg peaksr. Cotoh umerk dberka pada akhr pembahasa. Kata kuc: peaksr regres cum-raso, koefse kurtoss, koefse skewess, bas da mea square error. PENDAHULUAN Peaksr regres cum-raso merupaka suatu metode ag dguaka utuk megkatka ketelta suatu peaksr, dega megambl mafaat hubuga atara da dmaa adalah ut dar populas berkarakter da adalah ut dar

2 populas berkarakter X. Varabel merupaka suatu varabel pedukug ag berkorelas postf dega varabel da varabel tlah dtelt sbeluma sehgga varabel dapat dguaka sebaga varabel batu utuk meaksr varabel []. Betuk umum peaksr raso utuk rata-rata populas dar varabel ag dtelt drumuska dega ˆ R X RX ˆ dega adalah rata-rata sampel dar populas, adalah rata-rata sampel dar populas X da X adalah rata-rata populas X. Dalam artkel dbahas tga modfkas peaksr regres cum-raso utuk ratarata populas pada samplg acak sederhaa dega megguaka koefse kurtoss da skewess ag dajuka oleh a da Ta [5], atu X r () b X X r () b X X r () b X dega adalah koefsse skewess da adalah koefsse kurtoss. Ketga modfkas peaksr regres cum-raso utuk rata-rata populas tersebut merupaka peaksr bas, kemuda dtetuka ME. Berdasarka de dar a da Ta [5], peuls membadgka ME dar masg-masg peaksr utuk memperoleh peaksr regres cum-raso ag efse. Peaksr ag memlk la ME terkecl merupaka peaksr ag efse. amplg Acak ederhaa amplg acak sederhaa adalah sebuah metode ag dguaka utuk megambl ut sampel dar N ut populas sehgga setap ut populas memlk kesempata ag sama utuk dplh mejad ut sampel. Dalam hal pegambla sampel dlakuka tapa pegembala agar hasl ag dperoleh mejad represetatf []. Pada pegambla sampel tapa pegembala probabltas terplha dar N populas terplh mejad ut sampel pada pegambla pertama adalah N, N, sampa probabltas pada probabltas pada pegambla kedua adalah

3 pegambla ke- atu N ag terplh dalam pegambla adalah, sehgga peluag seluruh ut-ut tertetu C. N Teorema. [ : h. 7] Apabla sampel berukura dambl dar populas berukura N ag berkarakter, dega samplg acak sederhaa tapa pegembala maka varas rata-rata sampel dotaska dega V atu V N N f dega f N adalah fraks pearka sampel da N adalah varas pada populas berkarakter. Bukt: Bukt dar teorema dapat dlhat pada []. Teorema. [ : h. 9] Jka, adalah sebuah pasaga ag bervaras dalam ut dalam populas da, adalah rata-rata dar sampel acak sederhaa berukura, maka kovaras adalah Cov f N N N, X Bukt: Bukt dar teorema dapat dlhat pada []. f Utuk meetuka ME dar peaksr dalam betuk dua varabel dguaka suatu pedekata dega megguaka deret Talor dua varabel. Deret Talor utuk dua varabel [4: h.47] Msalka varabel da, I. Jka I f ' '' f, f, f,, f adalah kotu pada I da,, maka, f, ( ) f, (! dega < θ <.! f ) ( ) f,, f, adalah suatu fugs dua. f ada pada I utuk (4)

4 dega memsalka X, X,,, da megabaka pagkatpagkat ag lebh besar dar satu, maka dar persamaa (4) dperoleh la pedekata uuk mecar ME atu f, f, f (, ) f X, X (5) X, X,. PENAKIR REGREI UNTUK RATA-RATA POPULAI Betuk umum model regres lear sederhaa dalah X e, (6) dega adalah varabel tak bebas, X adalah varabel bebas, da adalah parameter (koefse regres), e adalah kesalaha pegamata []. Metode ag dguaka utuk medapatka parameter da adalah metode kuadrat terkecl. Msalka,,,,, da adalah pasaga data pegamata,, dega demka persamaa (6) dapat dtuls e,,,,. (7) Dasumska E sehgga E. e Dar persamaa (7) maka jumlah kuadrat kesalaha pegamata data terhadap gars regres dtuls e. (8) Dega meggat da pada persamaa (8) dega masg-masg taksraa adalah a da b, sehgga dperoleh la taksra sebaga berkut da b b ( )( ), ( ) a b (9) 4

5 Ketka gars regres lear melalu ttk pagkal a, maka persamaa (9) mejad b, () b ag dperoleh dar sampel dguaka juga utuk populas sehgga rata-rata populas dotaska dega ˆ ˆ bx. () Dar peguraga persamaa () dega persamaa () secara aljabar, dperoleh ˆ b X. ˆ dsebut peaksr regres ler utuk rata-rata populas ag dotaska dega sehgga ˆ bx. LR ˆ LR. BIA DAN ME PENAKIR RAIO UNTUK RATA-RATA POPULAI Bas da ME peaksr regres cum-raso ag dajuka oleh a da Ta [5] utuk rata-rata populas pada samplg acak sederhaa dar masg-masg peaksr sebaga berkut Bas da ME dar persamaa () dperoleh f B( r) Rr f ME r Rr dega adalah koefse korelas da R r. X dega Bas da ME dar persamaa () dperoleh R r f B( r ) Rr f ME r Rr X 5

6 Bas da ME dar persamaa () dperoleh dega R r X f B( r) Rr f ME r Rr 4. PENAKIR REGREI CUM-RAIO ANG EFIIEN Utuk meetuka peaksr ag efse dar peaksr ag bas, dapat dtetuka dega cara membadgka ME dar masg-masg peaksr tersebut.. Perbadga atara peaksr regres cum-raso r dega peaksr regres cumraso r dperoleh ME r ME r jka X. 4 4 X X X X X. Perbadga atara peaksr regres cum-raso r dega peaksr regres cumraso r dperoleh ME ME jka r r X X X 4 atau X X X X 4. X. Perbadga atara peaksr regres cum-raso r dega peaksr regres cumraso r dperoleh ME r ME r jka a. da X X atau X. b. da atau X X. X atau 5. CONTOH Cotoh berkut merupaka pedapata peta karet per hektar per tahu da baa teaga kerja dar Desrta Lestar []. Data tersebut dtelt d Ar Trs, Kabupate Kampar, Kecamata Kampar, Provs Rau pada tahu 8. Data pedapata da baa teaga kerja dberka pada Tabel. 6

7 No Pedapata Tabel. Data pedapata da baa teaga kerja Baa Teaga Kerja X No Pedapata Baa Teaga Kerja X umber: Desrta Lestar []. Dega megguaka data pada Tabel aka dtetuka peaksr regres cumraso ag efse utuk meaksr rata-rata pedapata peta karet per hektar per tahu dega megguaka sarat peaksr lebh efse ag dperoleh sebeluma. Hal secara umum dapat dtujukka dega meghtug ME dar masg-masg peaksr. ebaga formas tambaha utuk meaksr rata-rata pedapata peta akret per hektar per tahu dguaka baa teaga kerja. Utuk meghtug ME dar masg-masg peaksr terlebh dahulu dtetuka la ag dbutuhka. Iformas ag dperoleh dar pedapata da baa teaga kerja dega megguaka Mcrosoft Ecel, atu N 4, 8 R r, 56 6, f,5 49,. 585 X 49.5 R r 4, R r, 69 7

8 Dega megguaka formas sebeluma, dperoleh bahwa () r ME r () ME ME jka ME jka 9. 5 atau r r () ME ME jka atau r r atau.784. elajuta la ME dar masg-masg peaksr dberka pada Tabel. Tabel. Nla ME dar masg-masg peaksr No Peaksr ME r 7.,9 r.779,87 r 5.54, Berdasarka Tabel, dapat dlhat bahwa peaksr raso r memlk la ME ag terkecl dega sarat bahwa kods lebh efse dapat terpeuh. 6. KEIMPULAN Dar pembahasa d atas, dapat dsmpulka bahwa peaksr regres cum-raso r merupaka peaksr ag palg efse dar peaksr regres cum-raso r da peaksr regres cum-raso r jka sarat efse terpeuh. DAFTAR PUTAKA [] Cochra, W. G. 99. Tekk Pearka ampel, Eds Ketga. Terj. Dar amplg Techques, oleh Rudasah & E. R Osma. UI Press, Jakarta. [] Lestar, Desrta. 8. Aalss faktor-faktor ag mempegaruh Pedapata Peta Karet d Keluraha Ar Trs Kecamata Kampar. krps Jurusa osal Ekoom Pertaa (Agrobss) Fakultas Pertaa Uverstas Rau, Pekabaru. [] Mers, R. H Classcal ad Moder Regresso wth Applcatos. Wadsworth, Ic, Amerca. [4] Phllps, G. M. & P. J. Talor. 97. Theor ad Applcatos of Numercal Aalss. ecod Edto. Academc Press, New ork. [5] a Z. & B. Ta.. Rato Method to the Mea Estmato Usg Coeffcet of kewess of Aular Varable. ICICA, Part II, CCI. 6: -. 8

PENAKSIR RASIO REGRESI LINEAR YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN

PENAKSIR RASIO REGRESI LINEAR YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN PENAKIR RAIO REGREI LINEAR ANG EFIIEN UNTUK RATA-RATA POPULAI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN Ed Jamlu 1* Harso Haposa rat 1 Mahasswa Program tud 1 Matematka Dose Jurusa Matematka Fakultas Matematka

Lebih terperinci

PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN VARIASI DAN MEDIAN

PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN VARIASI DAN MEDIAN PENAKI AIO UNTUK ATA-ATA POPULAI PADA AMPLING ACAK EDEHANA MENGGUNAKAN KOEFIIEN VAIAI DAN MEDIAN sk ahmada *, Arsma Ada, Haposa rat Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da

Lebih terperinci

PENAKSIR RATIO-CUM-PRODUCT YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS

PENAKSIR RATIO-CUM-PRODUCT YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS PEASIR RATIO-UM-PRODUT AG EFISIE UTU RATA-RATA POPULASI PADA SAMPLIG AA SEDERHAA MEGGUAA OEFISIE VARIASI DA OEFISIE URTOSIS Lza armata *, Arsma Ada, Frdaus Mahasswa Program S Matematka Dose Jurusa Matematka

Lebih terperinci

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN Idah Vltr, Harso, Haposa Srat Mahassa Program S Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu

Lebih terperinci

KOMBINASI PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KOEFISIEN KURTOSIS DAN KOEFISIEN VARIASI

KOMBINASI PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KOEFISIEN KURTOSIS DAN KOEFISIEN VARIASI KOMBINASI PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KOEFISIEN KURTOSIS DAN KOEFISIEN VARIASI Defl Ardh 1, Frdaus, Haposa Srat defl_math@ahoo.com

Lebih terperinci

PENAKSIR DUAL RATIO-CUM-PRODUCT UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA

PENAKSIR DUAL RATIO-CUM-PRODUCT UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA ENAKSI DUAL ATIO-UM-ODUT UNTUK ATA-ATA OULASI ADA SAMLING AAK SEDEHANA hrsta ajata, Frdaus, Haposa Srat Mahasswa rogram Stud S Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu egetahua Alam Uverstas

Lebih terperinci

PENAKSIR RASIO REGRESI LINEAR SEDERHANA UNTUK RATA-RATA POPULASI MENGGUNAKANKARAKTER TAMBAHAN

PENAKSIR RASIO REGRESI LINEAR SEDERHANA UNTUK RATA-RATA POPULASI MENGGUNAKANKARAKTER TAMBAHAN PENAKIR RAIO REGREI LINEAR EDERHANA UNTUK RATA-RATA POPULAI MENGGUNAKANKARAKTER TAMBAHAN Astar Rahmadta *, Harso, Haosa rat Mahasswa Program tud Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu

Lebih terperinci

IMPUTASI MENGGUNAKAN PENAKSIR REGRESI UNTUK MENAKSIR RATA-RATA POPULASI PADA SAMPLING GANDA

IMPUTASI MENGGUNAKAN PENAKSIR REGRESI UNTUK MENAKSIR RATA-RATA POPULASI PADA SAMPLING GANDA IMPUTAI MEGGUAKA PEAKIR REGREI UTUK MEAKIR RATA-RATA POPUAI PADA AMPIG GADA Berad Fudka Marpaug * Rustam Efed Haposa rat Mahasswa Program tud Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu

Lebih terperinci

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia ABSTRACT

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia ABSTRACT PENAKI AIO DAN PENAKI EGEI YANG EFIIEN UNTUK ATA-ATA POPULAI PADA AMPLING ACAK EDEHANA MENGGUNAKAN DEVIAI KUATIL DAN KOEFIIEN KEWNE Lda Veroka *, gt ugarto, ustam Efed Mahasswa Program tud Matematka Dose

Lebih terperinci

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN MEDIAN DAN KOEFISIEN KURTOSIS

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN MEDIAN DAN KOEFISIEN KURTOSIS PENAKIR RAIO YANG EFIIEN UNTUK RATA-RATA POPULAI PADA AMPLING ACAK EDERHANA MENGGUNAKAN MEDIAN DAN KOEFIIEN KURTOI abarah * Haro H rat Mahawa Program Matematka Doe Jurua Matematka Fakulta Matematka da

Lebih terperinci

MODIFIKASI PENAKSIR UNTUK RASIO PADA SAMPLING BERPERINGKAT. ABSTRACT 1. PENDAHULUAN

MODIFIKASI PENAKSIR UNTUK RASIO PADA SAMPLING BERPERINGKAT. ABSTRACT 1. PENDAHULUAN MODIFIKAI PAKIR UTUK RAIO PADA AMPLIG BRPRIGKAT Deva rw, Arsma Ada, Rstam fed Devaerw@ahoo.com Mahasswa Program Matematka Dose Jrsa Matematka Fakltas Matematka da Ilm Pegetaha Alam Kamps Bawda Pekabar,893,Idoesa

Lebih terperinci

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl

Lebih terperinci

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2 INTERVAL KEPERCAAAN UNTUK PERBEDAAN KOEFIIEN VARIAI DARI DITRIBUI LOGNORMAL I. Pebrya * Bustam. ugarto Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu Pegetahua Alam Uverstas

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL Hesty ala, Arsma Ada, Bustam hestyfala@ymalcom Mahasswa Program S Matematka MIPA-UR Dose Matematka MIPA-UR

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Eka Mer Krst ), Arsma Ada ), Sgt Sugarto ) ekamer_tross@ymal.com ) Mahasswa Program S Matematka FMIPA-UR

Lebih terperinci

PENAKSIR RANTAI RASIO-CUM-DUAL UNTUK RATA-RATA POPULASI PADA SAMPLING GANDA

PENAKSIR RANTAI RASIO-CUM-DUAL UNTUK RATA-RATA POPULASI PADA SAMPLING GANDA PEAKI ATAI AIO-CUM-DUAL UTUK ATA-ATA POPULAI PADA AMPLIG GADA Holla Maalu Bustam Haposa rat Mahasswa Program Matemata Dose Jurusa Matemata Faultas Matemata da Ilmu Pegetahua Alam Uverstas au Kampus Bawda

Lebih terperinci

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton,

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton, BAB LANDASAN TEORI Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut varabel tak bebas (depedet

Lebih terperinci

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka

Lebih terperinci

Penarikan Contoh Acak Sederhana (Simple Random Sampling)

Penarikan Contoh Acak Sederhana (Simple Random Sampling) Pearka Cotoh Acak Sederhaa (Smple Radom Samplg) Defs Jka sebuah cotoh berukura dambl dar suatu populas sedemka rupa sehgga setap cotoh berukura ag mugk memlk peluag sama utuk terambl, maka prosedur tu

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres

Lebih terperinci

PENAKSIR RASIO YANG EFISIEN UNTUK VARIANSI POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN FRAKSI PENGAMBILAN SAMPEL

PENAKSIR RASIO YANG EFISIEN UNTUK VARIANSI POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN FRAKSI PENGAMBILAN SAMPEL PENAKIR RAIO YANG EFIIEN UNTUK VARIANI POPULAI PADA AMPLING ACAK EDERHANA MENGGUNAKAN FRAKI PENGAMBILAN AMPEL Rio Permadi 1*, Bustami, Haposa irait 1 Mahasiswa Program 1 Matematika Dose Jurusa Matematika

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,

Lebih terperinci

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL 3. Pegerta Masalah regres vers dega betuk lear dapat djumpa dalam berbaga bdag kehdupa, dataraya dalam bdag ekoom, kesehata, fska, kma

Lebih terperinci

PERTEMUAN 14-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK

PERTEMUAN 14-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK PERTEMUAN 4-MPC PRAKTIK Oleh: Adh Kurawa SEKOLAH TINGGI ILMU STATISTIK Double Samplg Utuk Peduga Beda, Rato, Regres Msalka, pada kods tertetu, kta g megguaka dfferece estmator, rato estmator, atau regresso

Lebih terperinci

PENAKSIR RASIO DAN REGRESI MENGGUNAKAN DUA VARIABEL TAMBAHAN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA

PENAKSIR RASIO DAN REGRESI MENGGUNAKAN DUA VARIABEL TAMBAHAN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA PENAKI AIO DAN EGEI MENGGUNAKAN DUA VAIAEL TAMAHAN UNTUK ATA-ATA POPULAI PADA AMPLING AAK EDEHANA azat Fauz * Frdaus gt ugarto Mahasswa Program tud Matematka Dose urusa Matematka Fakultas Matematka da

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu. BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska

Lebih terperinci

PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD

PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Mayag Novhta Sar *, Bustam, Sgt Sugarto Mahasswa Program Stud S Matematka FMIPA Uverstas Rau Dose Fakultas

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

Regresi & Korelasi Linier Sederhana

Regresi & Korelasi Linier Sederhana Regres & Korelas Ler Sederhaa. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar la peubah

Lebih terperinci

Regresi Linier Sederhana Definisi Pengaruh

Regresi Linier Sederhana Definisi Pengaruh Regres Ler Sederhaa Dah Idra Baga Bostatstka da Kepeduduka Fakultas Kesehata Masyarakat Uverstas Arlagga Defs Pegaruh Jka terdapat varabel, msalka da yag data-dataya dplot sepert gambar dbawah 3 Defs Pegaruh

Lebih terperinci

BAB 5. ANALISIS REGRESI DAN KORELASI

BAB 5. ANALISIS REGRESI DAN KORELASI BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh

Lebih terperinci

REGRESI & KORELASI LINIER SEDERHANA

REGRESI & KORELASI LINIER SEDERHANA 1. Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable)

Lebih terperinci

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas:

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas: ANALISIS REGRESI Pedahulua Aalss regres berkata dega stud megea ketergatuga satu peubah (peubah terkat) terhadap satu atau lebh peubah laya (peubah pejelas). Jka Y dumpamaka sebaga peubah terkat da X1,X,...,X

Lebih terperinci

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB Pearka Cotoh Gerombol (Cluster Samplg) Departeme Statstka FMIPA IPB Radom samplg (Revew) Smple radom samplg Stratfed radom samplg Rato, regresso, ad dfferece estmato Systematc radom samplg Cluster radom

Lebih terperinci

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS = 1 + + + + k k + u PowerPot Sldes baa Rohmaa Educato Uverst of Idoesa 007 Laboratorum Ekoom & Koperas Publshg Jl. Dr. Setabud

Lebih terperinci

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal)

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal) LANGKAH-LANGKAH UJI HIPOTESIS DENGAN (Utuk Data Nomal). Merumuska hpotess (termasuk rumusa hpotess statstk). Data hasl peelta duat dalam etuk tael slag (tael frekues oservas) 3. Meetuka krtera uj atau

Lebih terperinci

MEAN SQUARE ERROR TERKECIL DARI KOMBINASI PENAKSIR RASIO-PRODUK UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK BERSTRATA

MEAN SQUARE ERROR TERKECIL DARI KOMBINASI PENAKSIR RASIO-PRODUK UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK BERSTRATA MEA QUARE ERROR TERKEIL DARI KOMBIAI PEAKIR RAIO-PRODUK UTUK RATA-RATA POPULAI PADA AMPLIG AAK BERTRATA R Kurat *, gt ugarto, Ruam Efed Maasswa Program Matemata Dose Jurusa Matemata Faultas Matemata da

Lebih terperinci

REGRESI & KORELASI LINIER SEDERHANA

REGRESI & KORELASI LINIER SEDERHANA . Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah BAB III INEGRAL RIEMANN-SIELJES. Pedahulua Pada Bab, telah dsggug bahwa ukura meghtug merupaka salah satu pedekata utuk membetuk proses ttk. Berkata dega masalah perhtuga, ada hal meark yag perlu amat,

Lebih terperinci

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar

Lebih terperinci

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas TEKNIK SAMPLING Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uverstas Adalas Defs Suatu cotoh gerombol adalah suatu cotoh acak sederhaa dmaa setap ut pearka cotoh adalah kelompok atau gerombol dar

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling BAB LANDASAN TEORI Kosep Dasar Aalss Regres Aalss regres adalah suatu proses memperkraka secara sstemats tetag apa yag palg mugk terjad dmasa yag aka datag berdasarka formas yag sekarag dmlk agar memperkecl

Lebih terperinci

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( )

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( ) Regres & Korelas Ler Sederhaa 1. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk yag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN // REGRESI LINEAR SEDERHANA DAN KORELASI. Model Regres Lear. Peaksr Kuadrat Terkecl 3. Predks Nla Respos 4. Iferes Utuk Parameter-parameter Regres 5. Kecocoka Model Regres 6. Korelas Utrwe Mukhayar MA

Lebih terperinci

SIFAT-SIFAT LANJUT FUNGSI TERBATAS

SIFAT-SIFAT LANJUT FUNGSI TERBATAS Bulet Ilmah Mat. Stat. da Terapaya (Bmaster) Volume 03, No. 2(204), hal 35 42. SIFAT-SIFAT LANJUT FUNGSI TERBATAS Suhard, Helm, Yudar INTISARI Fugs terbatas merupaka fugs yag memlk batas atas da batas

Lebih terperinci

PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel

PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel Praktkum 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa

Lebih terperinci

PRAKTIKUM 5 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel

PRAKTIKUM 5 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel Praktkum 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa

Lebih terperinci

Bab II Teori Pendukung

Bab II Teori Pendukung Bab II Teor Pedukug.. asar Statstka Utuk keperlua peaksra outstadg clams lablty, pegetahua dalam statstka mead hal yag petg. asar statstka yag dguaka dalam tess atara la :. strbus ormal Sebuah peubah acak

Lebih terperinci

Pendahuluan. Relasi Antar Variabel. Relasi Antar Variabel. Relasi Antar Variabel 4/6/2015. Oleh : Fauzan Amin

Pendahuluan. Relasi Antar Variabel. Relasi Antar Variabel. Relasi Antar Variabel 4/6/2015. Oleh : Fauzan Amin 4/6/015 Oleh : Fauza Am Se, 06 Aprl 015 GDL 11 (07.30-10.50) Pedahulua Aalsa regres dguaka utuk mempelajar da megukur hubuga statstk ag terjad atara dua atau lebh varbel. Dalam regres sederhaa dkaj dua

Lebih terperinci

III BAHAN/OBJEK DAN METODE PENELITIAN. Objek yang digunakan dalam penelitian ini adalah 50 ekor sapi Pasundan

III BAHAN/OBJEK DAN METODE PENELITIAN. Objek yang digunakan dalam penelitian ini adalah 50 ekor sapi Pasundan III BAHAN/OBJEK DAN METODE PENELITIAN 3.1. Baha da Alat Peelta 3.1.1. Baha Peelta Objek yag dguaka dalam peelta adalah 50 ekor sap Pasuda jata da beta dewasa dega umur -3 tahu da tdak butg utuk meghdar

Lebih terperinci

BAB III PERSAMAAN PANAS DIMENSI SATU

BAB III PERSAMAAN PANAS DIMENSI SATU BAB III PERSAMAAN PANAS DIMENSI SAU Pada baga sebelumya, kta telah membahas peerapa metoda Ruge-Kutta orde 4 utuk meyelesaka masalah la awal dar persamaa dferesal basa orde. Pada bab, kta aka melakuka

Lebih terperinci

Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2

Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2 M 81 STTISTIK DSR SEMESTER II 11/1 KK STTISTIK, FMIP IT SOLUSI UJIN TENGH SEMESTER (UTS) Sabtu, 1 Me 1, Pukul 9. 1.4 WI (1 met) Kelas 1. Pegajar: Udjaa S. Pasarbu/Rr. Kura Novta Sar, Kelas. Pegajar: Utrwe

Lebih terperinci

S2 MP Oleh ; N. Setyaningsih

S2 MP Oleh ; N. Setyaningsih S2 MP Oleh ; N. Setyagsh MATERI PERTEMUAN 1-3 (1)Pedahulua pera statstka dalam peelta ; (2)Peyaja data : dalam betuk (a) tabel da (b) dagram; (3) ukura tedes setaral da ukura peympaga (4)dstrbus ormal

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Pedahulua Sebelum membahas megea prosedur peguja hpotess, terlebh dahulu aka djelaska beberapa teor da metode yag meujag utuk mempermudah pembahasa. Adapu teor da metode tersebut

Lebih terperinci

FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani

FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani FMDAM (2) Chartas Fbra Techque for Order Preferece by Smlarty to Ideal Soluto () ddasarka pada kosep dmaa alteratf terplh yag terbak tdak haya memlk jarak terpedek dar solus deal postf, amu juga memlk

Lebih terperinci

( ) ( ) ( ) ( ) ( ) III MODEL. , θ Ω. 1 Pendugaan parameter dengan metode maximum lkelihood estimation dapat diperoleh dari:

( ) ( ) ( ) ( ) ( ) III MODEL. , θ Ω. 1 Pendugaan parameter dengan metode maximum lkelihood estimation dapat diperoleh dari: 5 Mamum Lkelhood Estmato Defs Fugs Lkelhood Msalka X, X,, X adalah eubah acak d dega fugs massa eluag ( ; θ, dega θ dasumska skalar da tdak dketahu, maka rosedur fugs lkelhood daat dtulska sebaga berkut

Lebih terperinci

PENAKSIR RASIO REGRESI YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN DUA KARAKTER TAMBAHAN

PENAKSIR RASIO REGRESI YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN DUA KARAKTER TAMBAHAN PENAKIR RAIO REGREI ANG EFIIEN UNTUK RATA-RATA POPULAI PADA AMPLING AAK EDERHANA MENGGUNAKAN DUA KARAKTER TAMBAHAN R Wuladar *, Rustam Eed, Haposa rat Mahasswa Program tud Matemata Dose Jurusa Matemata

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel BAB I PENDAHULUAN 1.1 Statstka Deskrptf da Statstka Iferesal Dewasa d berbaga bdag lmu da kehdupa utuk memaham/megetahu sesuatu dperluka dat Sebaga cotoh utuk megetahu berapa bayak rakyat Idoesa yag memerluka

Lebih terperinci

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP Msal dguaka kode ler C[, k, d] dega matrks pembagu G da matrks cek partas H. Sebuah blok formas x = x 1 x 2 x k, x = 0 atau 1, yag aka dkrm terlebh

Lebih terperinci

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real.

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real. BAB 5 BARIAN DAN DERET KOMPLEK ecara eses, pembahasa tetag barsa da deret komlpeks sama dega barsa da deret real. 5. Barsa Barsa merupaka sebuah fugs dega doma berupa hmpua blaga asl N. ebuah barsa kompleks

Lebih terperinci

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Tgg tekaa [m] UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 11 Desember 017 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 50%] Sebuah PDAM melakuka pegukura

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakag Masalah Regres merupaka suatu metode statstka yag dguaka utuk meyeldk pola hubuga atara dua atau lebh varabel.betuk atau pola hubuga varabelvarabel tersebut dapat ddetfkas

Lebih terperinci

ANALISIS KORELASI DAN REGRESI (LINEAR)

ANALISIS KORELASI DAN REGRESI (LINEAR) ANALISIS KORELASI DAN REGRESI (LINEAR) Hubuga atara dua kejada dapat dyataka dega hubuga dua varabel Apabla dua varabel da mempuya hubuga, maka la varabel yag sudah dketahu dapat dperguaka utuk memperkraka/meaksr.

Lebih terperinci

REGRESI NONPARAMETRIK KERNEL ADJUSTED. Novita Eka Chandra Universitas Islam Darul Ulum Lamongan

REGRESI NONPARAMETRIK KERNEL ADJUSTED. Novita Eka Chandra Universitas Islam Darul Ulum Lamongan JMP : Volume 7 Nomor, Ju 05, hal. - 0 REGRESI NONPARAMETRIK KERNEL ADJUSTED Novta Eka Chadra Uverstas Islam Darul Ulum Lamoga ovtaekachadra@gmal.com Sr Haryatm da Zulaela Jurusa Matematka FMIPA UGM ABSTRACT.

Lebih terperinci

POLIGON TERBUKA TERIKAT SEMPURNA

POLIGON TERBUKA TERIKAT SEMPURNA MODUL KULIAH ILMU UKUR TANAH POLIGON TERBUKA TERIKAT SEMPURNA Pegerta : peetua azmuth awal da akhr, peetuat kesalaha peutup sudut,koreks sudut, kesalaha lear da koreks lear kearah sumbu X da Y, Peetua

Lebih terperinci

Pengajar: Dr. Agus M Soleh

Pengajar: Dr. Agus M Soleh Pegajar: Dr. Agus M Soleh Surve percobaa populato sample hmpua semua objek ag mejad mat pegambla kesmpula hmpua baga dar populas melakuka pegamata terhadap seluruh populas sergkal tdak mugk dlakuka ketka

Lebih terperinci

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teoremateorema

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teoremateorema II. LANDAAN TEORI Pada bab II aka dbahas pegerta-pegerta (defs) da teoremateorema ag medukug utuk pembahasa pada bab IV. Pegerta (defs) da teorema tersebut dtulska sebaga berkut.. Teorema Proeks Teorema

Lebih terperinci

KONSISTENSI KOEFISIEN DETERMINASI SEBAGAI UKURAN KESESUAIAN MODEL PADA REGRESI ROBUST

KONSISTENSI KOEFISIEN DETERMINASI SEBAGAI UKURAN KESESUAIAN MODEL PADA REGRESI ROBUST KONSISTENSI KOEFISIEN DETERINASI SEBAGAI UKURAN KESESUAIAN ODEL PADA REGRESI ROBUST Harm Sugart (harm@ut.ac.d) Ad egawar Jurusa Statstka FIPA Uverstas Terbuka ABSTRACT I statstcs, the coeffcet of determato

Lebih terperinci

Analisis Korelasi dan Regresi

Analisis Korelasi dan Regresi Aalss Korelas da Regres Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uad LOGO www.themegaller.com LOGO Data varat Data dega dua varael Terhadap satu pegamata dlakuka pegukurapegamata terhadap varael

Lebih terperinci

BAB 2 LANDASAN TEORI. yang akan terjadi pada masa yang akan datang dengan waktu yang relative lama.

BAB 2 LANDASAN TEORI. yang akan terjadi pada masa yang akan datang dengan waktu yang relative lama. BAB 2 LANDASAN TEORI 2.1 Pegerta Peramala Peramala ( forecastg ) adalah kegata memperkraka atau mempredkska apa yag aka terjad pada masa yag aka datag dega waktu yag relatve lama. Sedagka ramala adalah

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: ANALISIS REGRESI LINEAR BERGANDA DENGAN SATU VARIABEL BONEKA (DUMMY VARIABLE)

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: ANALISIS REGRESI LINEAR BERGANDA DENGAN SATU VARIABEL BONEKA (DUMMY VARIABLE) Jural Matematka Mur da Terapa Vol. 4 No. esember : 4 - ANALISIS REGRESI LINEAR BERGANA ENGAN SATU VARIABEL BONEKA (UMMY VARIABLE Tat Krsawardha Nur Salam da ew Aggra Program Stud Matematka Uverstas Lambug

Lebih terperinci

REGRESI LINEAR SEDERHANA

REGRESI LINEAR SEDERHANA REGRESI LINEAR SEDERHANA MODUL Dra. Sr Pagest, S.U. PENDAHULUAN A alss regres merupaka aalss statstk yag mempelajar ubuga atara dua varabel atau leb. Dalam aalss regres lear dasumska berlakuya betuk ubuga

Lebih terperinci

3. METODOLOGI PENELITIAN

3. METODOLOGI PENELITIAN 3. METODOLOGI PENELITIAN 3.1 Waktu da Tempat Peelta dlakuka mula taggal 13 Me sampa dega 19 Agustus 007d perara Teluk Lasogko, Kabupate Buto, Sulawes Teggara. Lokas dplh dega pertmbaga bahwa perara merupaka

Lebih terperinci

BAB II LANDASAN TEORI. digunakan dengan mengabaikan asumsi-asumsi yang melandasi penggunaan metode

BAB II LANDASAN TEORI. digunakan dengan mengabaikan asumsi-asumsi yang melandasi penggunaan metode BAB II ANDASAN TEORI. Regres Noparametrk Metode statstka oparametrk merupaka metode statstka ag dapat dguaka dega megabaka asums-asums ag meladas pegguaa metode statstk parametrk. Terutama ag berkata dega

Lebih terperinci

WAKTU PERGANTIAN ALAT BERAT JENIS WHEEL LOADER DENGAN METODE LEAST COST

WAKTU PERGANTIAN ALAT BERAT JENIS WHEEL LOADER DENGAN METODE LEAST COST Koferes Nasoal Tekk Spl 3 (KoNTekS 3) Jakarta, 6 7 Me 009 WAKTU PERGANTIAN ALAT BERAT JENIS WHEEL LOADER DENGAN METODE LEAST COST Maksum Taubrata Program Stud Tekk Spl, Uverstas Krste Maraatha Badug Jl.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA. Peahulua Dalam bab aka membahas megea teor-teor tetag statstka oparametrk, korelas parsal tau Keall a korelas parsal meurut Ebuh GU a Oeka ICA.. Statstka Noparametrk Istlah oparametrk

Lebih terperinci

3 Departemen Statistika FMIPA IPB

3 Departemen Statistika FMIPA IPB Supleme Respos Pertemua ANALISIS DATA KATEGORIK (STK51) Departeme Statstka FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referes Waktu U potess Tga Cotoh atau Lebh U Kruskal-Walls (aalss ragam satu-arah berdasarka

Lebih terperinci

BAB II TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan,

BAB II TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan, BAB II TINJAUAN TEORITIS.1 Kosep Dasar Statstka Statstk merupaka cara cara tertetu yag dguaka dalam megumpulka, meyusu atau megatur, meyajka, megaalsa da member terpretas terhadap sekumpula data, sehgga

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan,

BAB 2 TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan, BAB TINJAUAN TEORITIS 1 Kosep Dasar Statstka Statstk merupaka cara cara tertetu yag dguaka dalam megumpulka, meyusu atau megatur, meyajka, megaalsa da member terpretas terhadap sekumpula data, sehgga kumpula

Lebih terperinci

PROSEDUR ESTIMASI PARAMETER MODEL REGRESI MENGGUNAKAN RESAMPLING BOOTSTRAP DAN JACKKNIFE

PROSEDUR ESTIMASI PARAMETER MODEL REGRESI MENGGUNAKAN RESAMPLING BOOTSTRAP DAN JACKKNIFE PROSEDUR ESTIMASI PARAMETER MODEL REGRESI MENGGUNAKAN RESAMPLING BOOTSTRAP DAN JACKKNIFE ESTIMATION OF PARAMETER REGRESION MODEL USING BOOTSTRAP AND JACKKNIFE Hed (Staf Pegajar UP MKU Poltekk Neger Badug)

Lebih terperinci

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis STATISTIK Ukura Gejala Pusat Ukura Letak Ukura Smpaga, Dspers da Varas Mome, Kemrga, da Kurtoss Notas Varabel dyataka dega huruf besar Nla dar varabel dyataka dega huruf kecl basaya dtuls Tmes New Roma

Lebih terperinci

BAB 2 LANDASAN TEORITIS. yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama.

BAB 2 LANDASAN TEORITIS. yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama. BAB 2 LANDASAN TEORITIS 2.1 Pegerta Peramala Peramala ( forecastg ) adalah kegata memperkraka atau mempredkska apa yag aka terjad pada masa yag aka datag dega waktu yag relatf lama. Sedagka ramala adalah

Lebih terperinci

UKURAN GEJALA PUSAT DAN UKURAN LETAK

UKURAN GEJALA PUSAT DAN UKURAN LETAK UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu

Lebih terperinci

Uji Statistika yangb digunakan dikaitan dengan jenis data

Uji Statistika yangb digunakan dikaitan dengan jenis data Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas

Lebih terperinci

2.2.3 Ukuran Dispersi

2.2.3 Ukuran Dispersi 3 Ukura Dspers Yag aka dbahas ds adalah smpaga baku da varas karea dua ukura dspers yag palg serg dguaka Hubuga atara smpaga baku dega varas adalah Varas = Kuadrat dar Smpaga baku otas yag umum dguaka

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB METODE PENELTAN 3.1 Tempat da Waktu Peelta Peelta dlaksaaka d areal/wlaah koses huta PT. Sarmeto Parakata Tmber, Kalmata Tegah pada bula Aprl sampa dega Me 007. 3. Baha da Alat Baha ag dguaka utuk

Lebih terperinci

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI BB 6 PRINSIP INKLUSI DN EKSKLUSI Pada baga aka ddskuska topk berkutya yatu eumeras yag damaka Prsp Iklus da Eksklus. Kosep dalam bab merupaka perluasa de dalam Dagram Ve beserta oepras rsa da gabuga, amu

Lebih terperinci

PENAKSIR RASIO UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS PADA SAMPLING GANDA

PENAKSIR RASIO UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS PADA SAMPLING GANDA PEAKSIR RASIO UTUK RATA-RATA POPULASI MEGGUAKA KOEFISIE VARIASI DA KOEFISIE KURTOSIS PADA SAMPLIG GADA Heru Agriato *, Arisma Ada, Firdaus Mahasiswa Program S Matematika Dose Jurusa Matematika Fakultas

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. regresi berkenaan dengan studi ketergantungan antara dua atau lebih variabel yaitu

BAB 2 TINJAUAN TEORITIS. regresi berkenaan dengan studi ketergantungan antara dua atau lebih variabel yaitu BAB TINJAUAN TEORITIS. Pegerta Aalsa Regres Istlah regres pertama kal dperkealka oleh Fracs Galto. Meurutya, aalss regres berkeaa dega stud ketergatuga atara dua atau lebh varabel yatu varabel yag meeragka

Lebih terperinci

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER TUGAS ATA KULIAH TEORI RING LANJUT ODUL NOETHER Da Aresta Yuwagsh (/364/PPA/03489) Sebelumya, telah dketahu bahwa sebaga rg dega eleme satua memeuh sfat rata ak utuk deal-deal d. Apabla dpadag sebaga modul,

Lebih terperinci

II. TINJAUAN PUSTAKA. variabel. Dalam regresi sederhana dikaji dua variabel, sedangkan dalam regresi

II. TINJAUAN PUSTAKA. variabel. Dalam regresi sederhana dikaji dua variabel, sedangkan dalam regresi 3 II. TINJAUAN PUSTAKA. Aalss Regres Aalss regres merupaka salah satu metode statstka ag dguaka utuk mempelajar da megukur huuga statstk ag terjad atara dua atau leh varael. Dalam regres sederhaa dkaj

Lebih terperinci

ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL

ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL Prosdg Semar Nasoal Peelta, Peddka da Peerapa MIPA, Fakultas MIPA, Uverstas Neger Yogyakarta, 4 Me ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL Ksmat Jurusa Peddka

Lebih terperinci

Volume 1, Nomor 2, Desember 2007

Volume 1, Nomor 2, Desember 2007 Volume, Nomor, Desember 007 Barekeg, Desember 007. hal.-7 Vol.. No. ESTIMASI PARAMETER DISTRIBUSI EKPONENSIAL PADA LOKASI TERBATAS (Estmatg Parameter Dstrbuto Expoetal At Fte Locato MOZART W TALAKUA, JEFRI

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai dasar-dasar teori yang akan

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai dasar-dasar teori yang akan BAB II LANDASAN TEORI Pada bab aka dbahas megea dasar-dasar teor ag aka dguaka dalam eulsa skrs, atu megea data hrark, model regres -level, model logstk, estmas arameter model logstk, uj sgfkas arameter

Lebih terperinci

Prosiding SNaPP2011 Sains, Teknologi, dan Kesehatan. 1 Joko Riyono. (Kampus A Jl.Kiyai Tapa No.1,Jakarta11440)

Prosiding SNaPP2011 Sains, Teknologi, dan Kesehatan. 1 Joko Riyono. (Kampus A Jl.Kiyai Tapa No.1,Jakarta11440) Prosdg NaPP as, Tekolog, da Kesehata IN:89-58 MODIFIKAI TATITIK UJI-t PADA TET INFERENIA MEAN MEREDUKI PENGARUH KEAIMETRIKAN POPULAI MENGGUNAKAN EKPANI CORNIH-FIHER Joko Ryoo taf.pegajar Fakultas Tekolog

Lebih terperinci

REGRESI LINIER SEDERHANA

REGRESI LINIER SEDERHANA MODUL REGRESI LINIER SEDERHANA Dsusu oleh : I MADE YULIARA Jurusa Fska Fakultas Matematka Da Ilmu Pegetahua Alam Uverstas Udayaa Tahu 016 Kata Pegatar Puj syukur saya ucapka ke hadapa Tuha Yag Maha Kuasa

Lebih terperinci

BAB III UKURAN PEMUSATAN DATA

BAB III UKURAN PEMUSATAN DATA BAB III UKURAN PEMUSATAN DATA A. Ukura Gejala Pusat Ukura pemusata adalah suatu ukura yag meujukka d maa suatu data memusat atau suatu kumpula pegamata memusat (megelompok). Ukura pemusata data adalah

Lebih terperinci