I PENDAHULUAN II LANDASAN TEORI

Ukuran: px
Mulai penontonan dengan halaman:

Download "I PENDAHULUAN II LANDASAN TEORI"

Transkripsi

1 I PENDAHULUAN 11 Latar Belakag Peelta yag dlakuka oleh Va der Pol pada sebuah tabug trode tertutup, yatu sebuah alat yag dguaka utuk megedalka arus lstrk dalam suatu srkut pada trasmtter da recever meghaslka suatu perlaku peyelesaa yag uk da berbeda perlaku peyelesaa persamaa dferesal lear Va der Pol megusulka model yag dkaj dalam peelta berupa persamaa dferesal tak lear yag selajutya dsebut persamaa Va der Pol Dalam peeltaya tersebut, Va der Pol memberka kotrbus pada pegembaga metode matematka, khususya pada masalah persamaa dferesal Dalam hal, a berkotrbus pada teor kestabla peyelesaa persamaa dferesal Peelta Va der pol tersebut memberka motvas bag Cartwrght da Lttlewood utuk megkaj kestabla persama Va der Pol khususya yag memuat gaya luar [Cartwrght 1945] Persamaa va der Pol hgga sekarag mash dkaj oleh beberapa peelt, khususya pada masalah perturbas da relaksas oslas Persamaa juga djadka model pada beberapa feomea fska, bolog da sesmology [Guckehemer ] Aka tetap masalah bfurkas dar sstem persamaa mash sagat sedkt kajaya Dalam karya lmah, persamaa va der Pol aka dyataka dalam suatu sstem persamaa dferesal orde satu utuk megklasfkas bfurkas Hopf dar orbt perodk dalam sstem yag telah tereduks Reduks ke dalam sstem persamaa dferesal yag dlakuka ddasarka pada alur yag terdapat dalam paper [Guckehemer ] 1 Tujua Peulsa Tujua dar peulsa karya lmah adalah megkaj persamaaa Va der Pol yag memuat gaya luar cara meyataka persamaa tersebut ke dalam suatu persamaa dferesal orde satu Persamaa yag dhaslka aka dguaka utuk megklasfkas bfurkas Hopf yag memberka orbt perodk dalam sstem yag telah tereduks tersebut 1 Sstematka Peulsa Pada bab pertama djelaska latar belakag da tujua dar peulsa karya lmah Bab dua bers ladasa teor yag mejad kosep dasar dalam peyusua pembahasa Pada bab tga aka dbahas persamaa Va der Pol da mereduks persamaa tersebut mejad suatu sstem persamaa dferesal orde satu Sela tu, pada bab juga aka daalss bfurkas Hopf megguaka persamaa yag telah tereduks Smpula dar karya lmah aka dbahas pada bab empat II LANDASAN TEORI Persamaa va der Pol adalah suatu persamaa dferesal tak lear yag dapat ddekat betuk sstem persamaa dferesal lear Teor sstem persamaa dferesal lear da kestablaya dsarka dar buku [Ato 1995], [Farlow 1994], [Szdarovszky & Bahll 1998], [Tu 1994] da [Verhulst 199] Sebelum membahas teor sstem persamaa dferesal lear, maka berkut aka dbahas kosep lmt cycle Pejelasa tetag lmt cycle terdapat dalam buku [Strogatz 1994] Lmt cycle adalah suatu betuk trayektor tertutup da tersolas Pada umumya utuk meggambarka lmt cycle, sstem persamaa dferesal ulska sebaga persamaa dferesal dalam koordat kutub Jka semua lgkuga trayektor medekat lmt cycle maka lmt cycle dsebut lmt cycle stabl (lhat gambar 1) Pada keadaa sebalkya lmt cycle dsebut lmt cycle tak stabl (lhat gambar ) Sedagka pada kasus tertetu lmt cycle dsebut lmt cycle setegah stabl (lhat gambar ) Gambar 1 Lmt cycle stabl

2 Gambar Lmt cycle tak stabl Gambar Lmt cycle setegah stabl Eksstes lmt cycle djam oleh Teorema Leard berkut: Teorema Leard Tjau persamaa Leard berkut d d + f ( ) + g( ) = () Persamaa () dapat dyataka sebaga sstem persamaa berkut = y (4) y = g () f() y Jka fugs f da g memeuh kods: 1) f da g terturuka da kotu, ) g ( ) = g( ), utuk setap ) g( ) > utuk > 4) f ( ) = f ( ), utuk setap 5) Fugs gajl F( ) f ( u) du =, bela ol utuk = a, egatf utuk < < a, Fa= ( ), postf da tak turu utuk > a, da F( ) utuk, maka sstem persamaa (4) memlk peyelesaa tuggal da mempuya lmt cycle stabl Bukt secara legkap dapat dlhat dalam [Perko 1991] Msalka dberka suatu sstem persamaa dferesal orde satu sebaga berkut d = = f (, y), (5) dy = y = g(, y) Jka fugs f da g kotu berla real da dyataka dalam da y saja serta tdak bergatug pada waktu, maka sstem persamaa (5) dsebut sstem persamaa dferesal madr Sstem persamaa va der Pol salah satu cotoh sstem persamaa dferesal madr Selajutya aka dbahas kestabla suatu ttk dar suatu sstem damk Msalka dberka sstem persamaa dferesal (SPD) berkut d f( ), = = R (6) Ttk dsebut ttk tetap jka f( ) = Ttk tetap dsebut juga ttk krts ttk kesembaga Selajutya, msalka ttk adalah ttk tetap SPD madr (6) da () t adalah solus yag memeuh kods awal () = da Ttk dkataka ttk tetap stabl, jka terdapat ε >, yag memeuh sfat berkut: utuk setap ε 1, < ε1 < ε, terdapat ε > sedemka sehgga jka < ε maka () t < ε1, utuk setap t > t Sebalkya ttk dkataka ttk tetap tdak stabl, jka terdapat ε >, yag memeuh sfat berkut: utuk setap ε >, < ε < ε, sedemka sehgga, jka < ε maka () t < ε, utuk setap t > t Utuk megaalss kestabla ttk tetap dar sstem persamaa dferesal tak lear, dapat dlakuka peleara pada sstem persamaa dferesalya Msalka dberka SPD taklear sebaga berkut =f() (7) f: U R, U R Dega megguaka uraa Taylor dar f d ttk tetap, maka persamaa (6) dapat uls sebaga berkut = A +ϕ( ) (8) Persamaa tersebut merupaka SPD taklear A adalah matrks Jacob,

3 A = Df = ( ) Df ( ) = f1 f1 1 = f f 1 a11 a1 = a1 a = da ϕ ( ) suku berorde tgg yag bersfat lm ϕ( ) = Selajutya A pada persamaa (8) dsebut peleara dar sstem taklear persamaa (7) da ddapatka betuk = A (9) Utuk sstem yag berada dalam bdag R, dperoleh = f( ) = A +ϕ( ) 1 = f1( ) = a1+ b + ϕ1( 1, ) = f( ) = c1+ d + ϕ( 1, ) dmaa f1 f1 a = = a11, b = = a1 1 f f c = = a1, d = = a 1 ϕ1( 1, ) ϕ( 1, ) da lm = lm = r r r r r = 1 Nla ϕ 1 da ϕ kecl sekal, sehgga dapat dabaka Persamaa (1) dsebut persamaa karakterstk Nla ege yag dperoleh dar hasl peleara tersebut dapat dguaka utuk megaalss kestabla d sektar ttk tetap yag dperoleh, yag kemuda dapat dgambarka orbtya Msalka dberka matrks A berukura sebaga berkut a b A = c d Persamaa karakterstkya berbetuk a λ b det = c d λ λ τλ+ = τ = trace( A ) = a + d da = det( A ) = ad bc Sehgga dperoleh la ege dar A adalah τ ± τ 4 λ = Aalss kestabla ttk tetap dlakuka utuk setap la ege yag dperoleh Dalam tulsa aka dperlhatka 6 kasus sebaga berkut: 1 Jka <, la ege mempuya akar real yag yag berbeda tada, maka ttk tetap bersfat ttk pelaa (saddle pot) (lhat Gambar 4) Selajutya, msalka A adalah matrks, maka suatu vektor takol d dalam R dsebut vektor ege dar A, jka utuk suatu skalar λ, yag dsebut la ege dar A, berlaku: A = λ (1) Vektor dsebut vektor ege yag bersesuaa la ege λ Utuk mecar al ege dar matrks A yag berukura, maka persamaa (1) dapat ulska sebaga berkut: (A λi) = (11) I matrks dettas Persamaa (1) mempuya solus tak ol jka da haya jka det (A λi) = (1) Gambar 4 Ttk Pelaa (saddle pot) Jka >, τ > da memeuh kods τ 4 >, berart kedua la ege mempuya la yag sama, maka ttk tetap merupaka smpul tak sejat (odes) tak stabl (lhat Gambar 5) Jka τ < maka ttk tetap merupaka odes stabl (lhat Gambar 6) Gambar 5 Smpul tak sejat tak stabl

4 4 Gambar 6 Smpul tak sejat stabl Jka >, τ > da memeuh kods τ 4 <, berart la egeya merupaka comple cojugate, maka ttk tetap bersfat spral tak stabl (lhat Gambar 7) Jka τ < maka ttk tetap bersfat spral stabl (lhat Gambar 8) 5 Jkaτ 4 =, τ > da ada satu vektor ege bebas lear, maka ttk tetap bersfat degeerate ode tak stabl Jka τ <, maka ttk tetap bersfat degeerate ode stabl (lhat Gambar 11) 6 Jka τ =, la ege merupaka majer mur, maka ttk tetap bersfat ceter yag selalu stabl (lhat Gambar 1) Gambar 11 Degeerate Gambar 7 Spral takstabl Gambar 1 Ceter Gambar 8 Spral stabl 4 Jkaτ 4 =, τ >, da ada vektor ege bebas lear, maka bersfat smpul sejat (star ode) tak stabl (lhat Gambar 9) Jka τ <, maka ttk tetap bersfat smpul sejat stabl (lhat Gambar 1) Gambar 9 Smpul sejat tak stabl Gambar 1 Smpul sejat stabl Berdasarka uraa d atas dapat dsmpulka bahwa kestabla ttk tetap mempuya prlaku sebaga berkut: 1 Stabl, jka a Setap la ege real adalah egatf ( λ < utuk setap ) b Setap kompoe la ege kompleks baga realya lebh kecl sama ol, ( ( ) Re λ utuk setap ) Tak stabl, jka a Setap la ege real adalah postf ( λ > utuk setap ) b Setap kompoe la ege kompleks baga realya lebh besar dar ol, ( Re( λ ) > utuk setap ) Sadel, jka Perkala dua buah la ege real sembarag adalah egatf ( λλ j < utuk da j sembarag) Dalam karya lmah juga aka dlakuka aalss utuk Bfurkas Hopf Pejelasa megea Bfurkas Hopf terdapat dalam buku [Borell 1998] Msalka dberka suatu sstem : = α( c) + β( c) y+ P(, y, c) (1) y = β c + α c y+ Q, y, c ( ) ( ) ( )

5 5 P da Q setdakya merupaka orde kedua dalam da y da terturuka dua kal secara kotu dalam, y da c Fugs α ( c) da β ( c) adalah fugs yag kotu da terturuka pada c Nla ege utuk matrks Jacob dar sstem persamaa (1) adalah α( c) ± β( c) Selajutya, perhatka Teorema Bfurkas Hopf berkut Teorema Bfurkas Hopf Msalka α ( ) =, α ( ) > da β ( ), dmaa sstem persamaa (1) stabl asmtotk d ttk awal utuk c =, maka ttk awal tdak stabl da meghaslka lmt cycle yag besarya k( c ), k ( ) = da k( c ) fugs kosta da ak utuk setap c yag cukup kecl dmaa c medekat ol dar kr Perode dar cycle medekat la π β utuk c yag kecl Teorema d atas dperkuat teorema berkut : Msalka A operator lear pada ruag vektor dmes dua λ = α ± β, merupaka la ege dar A, maka terdapat matrks R sehgga R α β αi βj β α + 1 J 1 Pejelasa da bukt teorema d atas dapat dlhat pada [Tu 1994] III PEMBAHASAN 1 Model Tjau persamaa Va der Pol berkut + μ ( 1) + = (14) μ 1 Berkut aka dperlhatka bahwa persamaa (14) memlk lmt cycle yag stabl berdasarka Teorema Leard Utuk tu, dmsalka f = μ 1 da g ( ) = ( ) ( ) Prems dar Teorema Leard terpeuh, sebab: 1) Fugs f ( ) da g ( ) terturuka da kotu, ) g ( ) = g( ), utuk setap ) f ( ) = f ( ) = μ ( 1, ) utuk setap 4) g( ) > utuk > 5) F( ) = f ( u) du = μ ( u 1) μ = Fugs F( ) berupa fugs gajl da mempuya tepat satu akar postf, yatu a = Selajutya F( ) berla egatf utuk < <, berla postf da tak turu utuk >, da F( ), bla Dega demka persamaa Va der Pol (14) mempuya peyelesaa tuggal da lmt cycle stabl Selajutya perhatka betuk + μ ( 1) Tulska betuk d atas sebaga d + μ( 1) = ( + μf( ) ) (15) F ( ) = μ (16) Persamaa (15) dapat ulska dalam betuk + μ ( 1) = w (17) w= + μf( ) (18) Jka dmsalka w= μ y, maka dar persamaa (18) dperoleh = w μf( ) = μ ( y F( ) ) = y (19) μ Selajutya guaka pegskalaa waktu berkut t = τ μ maka dperoleh

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real.

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real. BAB 5 BARIAN DAN DERET KOMPLEK ecara eses, pembahasa tetag barsa da deret komlpeks sama dega barsa da deret real. 5. Barsa Barsa merupaka sebuah fugs dega doma berupa hmpua blaga asl N. ebuah barsa kompleks

Lebih terperinci

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka

Lebih terperinci

BAB III PERSAMAAN PANAS DIMENSI SATU

BAB III PERSAMAAN PANAS DIMENSI SATU BAB III PERSAMAAN PANAS DIMENSI SAU Pada baga sebelumya, kta telah membahas peerapa metoda Ruge-Kutta orde 4 utuk meyelesaka masalah la awal dar persamaa dferesal basa orde. Pada bab, kta aka melakuka

Lebih terperinci

NORM VEKTOR DAN NORM MATRIKS

NORM VEKTOR DAN NORM MATRIKS NORM VEKTOR DN NORM MTRIK umaag Muhtar Gozal UNIVERIT PENDIDIKN INDONEI. Pedahulua Jka kta membcaraka topk ruag vektor maka cotoh sederhaa yag dapat kta ambl adalah ruag Eucld R. D ruag kta medefska pajag

Lebih terperinci

BAB II LANDASAN TEORI. merepresentasikan dan menjelaskan permasalahan pada dunia nyata ke dalam. pernyataan matematis (Widowati & Sutimin, 2007 : 1).

BAB II LANDASAN TEORI. merepresentasikan dan menjelaskan permasalahan pada dunia nyata ke dalam. pernyataan matematis (Widowati & Sutimin, 2007 : 1). BAB II LANDASAN EORI.. Model Matematka Model Matematka merupaka represetas matematka yag dhaslka dar pemodela Matematka. Pemodela Matematka merupaka suatu proses merepresetaska da mejelaska permasalaha

Lebih terperinci

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Ruag Baach Sumaag Muhtar Gozal UNIVERSITAS PENDIDIKAN INDONESIA Satu kose etg d kulah Aalss ugsoal adalah teor ruag Baach. Pada baga aka drevu defs, cotoh-cotoh, serta sfat-sfat etg ruag Baach. Kta aka

Lebih terperinci

SIFAT-SIFAT LANJUT FUNGSI TERBATAS

SIFAT-SIFAT LANJUT FUNGSI TERBATAS Bulet Ilmah Mat. Stat. da Terapaya (Bmaster) Volume 03, No. 2(204), hal 35 42. SIFAT-SIFAT LANJUT FUNGSI TERBATAS Suhard, Helm, Yudar INTISARI Fugs terbatas merupaka fugs yag memlk batas atas da batas

Lebih terperinci

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP Msal dguaka kode ler C[, k, d] dega matrks pembagu G da matrks cek partas H. Sebuah blok formas x = x 1 x 2 x k, x = 0 atau 1, yag aka dkrm terlebh

Lebih terperinci

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat.

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat. KALKULUS LANJUT Pertemua ke-4 Rey Ra Marlaa, S.S.,M.Stat. Plot Mater Notas Jumlah & Sgma Itegral Tetu Jumlah Rema Pedahulua Luas Notas Jumlah & Sgma Purcell, et all. (page 226,2003): Sebuah fugs yag daerah

Lebih terperinci

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teoremateorema

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teoremateorema II. LANDAAN TEORI Pada bab II aka dbahas pegerta-pegerta (defs) da teoremateorema ag medukug utuk pembahasa pada bab IV. Pegerta (defs) da teorema tersebut dtulska sebaga berkut.. Teorema Proeks Teorema

Lebih terperinci

I adalah himpunan kotak terbatas dan tertutup yang berisi lebih dari satu

I adalah himpunan kotak terbatas dan tertutup yang berisi lebih dari satu METODE FUNGS QUAS-FED SATU ARAMETER UNTUK MENYEESAKAN MASAAH ROGRAM NTEGER TAK NEAR Ra Hardyat (M4) ABSTRAK Dalam kehdupa sehar-har serg djumpa masalah optmas yag membutuhka hasl teger Masalah tersebut

Lebih terperinci

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah BAB III INEGRAL RIEMANN-SIELJES. Pedahulua Pada Bab, telah dsggug bahwa ukura meghtug merupaka salah satu pedekata utuk membetuk proses ttk. Berkata dega masalah perhtuga, ada hal meark yag perlu amat,

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel BAB I PENDAHULUAN 1.1 Statstka Deskrptf da Statstka Iferesal Dewasa d berbaga bdag lmu da kehdupa utuk memaham/megetahu sesuatu dperluka dat Sebaga cotoh utuk megetahu berapa bayak rakyat Idoesa yag memerluka

Lebih terperinci

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI BB 6 PRINSIP INKLUSI DN EKSKLUSI Pada baga aka ddskuska topk berkutya yatu eumeras yag damaka Prsp Iklus da Eksklus. Kosep dalam bab merupaka perluasa de dalam Dagram Ve beserta oepras rsa da gabuga, amu

Lebih terperinci

MASALAH NORM MINIMUM PADA RUANG HILBERT DAN APLIKASINYA

MASALAH NORM MINIMUM PADA RUANG HILBERT DAN APLIKASINYA Masalah Norm Mmum (Karat) MASALAH NORM MINIMUM PADA RUANG HILBERT DAN APLIKASINYA Karat da Dhorva Urwatul Wutsqa Jurusa Peddka Matematka FMIPA Uverstas Neger Yogakarta Abstract I ths paper, wll be dscussed

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab aka mejelaska megea ladasa teor yag dpaka oleh peuls dalam peelta. Bab dbag mejad beberapa baga, yag masg masg aka mejelaska Prcpal Compoet Aalyss (PCA), Egeface, Klusterg K-Meas,

Lebih terperinci

III PEMBAHASAN. Karena vektor-vektor kolom X adalah bebas linear, maka L(ε) mempunyai n vektor eigen yang bebas linear. (Terbukti)

III PEMBAHASAN. Karena vektor-vektor kolom X adalah bebas linear, maka L(ε) mempunyai n vektor eigen yang bebas linear. (Terbukti) Karea vektor-vektor kolom X adalah bebas lear maka mempuya vektor ege yag bebas lear. erbukt eorema 9 Jka... adalah la ege dar maka... adalah la ege dar. BUK : salka... adalah la ege dar yag bersesuaa

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN MATRIKS TERREDUKSI REGULER DALAM ALJABAR MAX-PLUS INTERVAL

NILAI EIGEN DAN VEKTOR EIGEN MATRIKS TERREDUKSI REGULER DALAM ALJABAR MAX-PLUS INTERVAL NILAI EIGEN DAN VEKTOR EIGEN MATRIKS TERREDUKSI REGULER DALAM ALJABAR MAX-PLUS INTERVAL A-12 Sswato 1, Ar Suparwato 2, M Ady Rudhto 3 1 Mahasswa S3 Matematka FMIPA UGM da Staff Pegajar FMIPA UNS Surakarta,

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu. BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska

Lebih terperinci

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua

Lebih terperinci

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres

Lebih terperinci

FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani

FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani FMDAM (2) Chartas Fbra Techque for Order Preferece by Smlarty to Ideal Soluto () ddasarka pada kosep dmaa alteratf terplh yag terbak tdak haya memlk jarak terpedek dar solus deal postf, amu juga memlk

Lebih terperinci

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 11-19, Aprl 004, ISSN : 1410-8518 TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM Sudaro Jurusa Matematka FMIPA UNDIP Abstrak Sstem yag dbetuk

Lebih terperinci

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER TUGAS ATA KULIAH TEORI RING LANJUT ODUL NOETHER Da Aresta Yuwagsh (/364/PPA/03489) Sebelumya, telah dketahu bahwa sebaga rg dega eleme satua memeuh sfat rata ak utuk deal-deal d. Apabla dpadag sebaga modul,

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

( ) ( ) ( ) ( ) ( ) III MODEL. , θ Ω. 1 Pendugaan parameter dengan metode maximum lkelihood estimation dapat diperoleh dari:

( ) ( ) ( ) ( ) ( ) III MODEL. , θ Ω. 1 Pendugaan parameter dengan metode maximum lkelihood estimation dapat diperoleh dari: 5 Mamum Lkelhood Estmato Defs Fugs Lkelhood Msalka X, X,, X adalah eubah acak d dega fugs massa eluag ( ; θ, dega θ dasumska skalar da tdak dketahu, maka rosedur fugs lkelhood daat dtulska sebaga berkut

Lebih terperinci

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas:

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas: ANALISIS REGRESI Pedahulua Aalss regres berkata dega stud megea ketergatuga satu peubah (peubah terkat) terhadap satu atau lebh peubah laya (peubah pejelas). Jka Y dumpamaka sebaga peubah terkat da X1,X,...,X

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam proses penelitian untuk menganalisis aproksimasi fungsi dengan metode

II. TINJAUAN PUSTAKA. Dalam proses penelitian untuk menganalisis aproksimasi fungsi dengan metode II. TINJAUAN PUSTAKA Dalam proses peelta utuk megaalss aproksmas fugs dega metode mmum orm pada ruag hlbert C[ab] (Stud kasus: fugs rasoal) peuls megguaka defs teorema da kosep dasar sebaga berkut:.. Aproksmas

Lebih terperinci

ALGORITMA MENENTUKAN HIMPUNAN TERBESAR DARI SUATU MATRIKS INTERVAL DALAM ALJABAR MAX-PLUS

ALGORITMA MENENTUKAN HIMPUNAN TERBESAR DARI SUATU MATRIKS INTERVAL DALAM ALJABAR MAX-PLUS LGORITM MENENTUKN HIMPUNN TERBESR DRI SUTU MTRIKS INTERVL DLM LJBR MX-PLUS Rata Novtasar Program Stud Matematka FMIP UNDIP JlProfSoedarto SH Semarag 575 bstract Ths research dscussed about how to obtaed

Lebih terperinci

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI MINGGU KE-0 HUBUNGAN ANTAR KONVERGENSI Hubuga atar koverges Hrark atar koverges dyataka dalam teorema berkut. Teorema Msalka X da X, X, X 3,... adalah varabel radom yag ddefska pada ruag probabltas yag

Lebih terperinci

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL 3. Pegerta Masalah regres vers dega betuk lear dapat djumpa dalam berbaga bdag kehdupa, dataraya dalam bdag ekoom, kesehata, fska, kma

Lebih terperinci

ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF

ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF KELOMPOK A I GUSTI BAGUS HADI WIDHINUGRAHA (0860500) NI PUTU SINTYA DEWI (0860507) LUH GEDE PUTRI SUARDANI (0860508) I PUTU INDRA MAHENDRA PRIYADI (0860500)

Lebih terperinci

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl

Lebih terperinci

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari teori gangguan bebas waktu yang mencakup:

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari teori gangguan bebas waktu yang mencakup: PENDAULUAN D dalam modul Ada aka mempelajar teor gaggua bebas waktu yag mecakup: teor gaggua tak degeeras bebas waktu, teor gaggua degeeras bebas waktu, da efek Stark. Oleh karea tu, sebelum mempelajar

Lebih terperinci

BAB 5. ANALISIS REGRESI DAN KORELASI

BAB 5. ANALISIS REGRESI DAN KORELASI BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh

Lebih terperinci

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan Aalsa Numerk Baha Matrkulas PENDAHULUAN Metode umerk merupaka suatu tekk atau cara utuk megaalsa da meyelesaka masalah masalah d dalam bdag rekayasa tekk da sa dega megguaka operas perhtuga matematk Masalah-masalah

Lebih terperinci

BAB III ISI. x 2. 2πσ

BAB III ISI. x 2. 2πσ BAB III ISI 4. Keadata Normal Multvarat da Sfat-sfatya Keadata ormal multvarat meruaka geeralsas dar keadata ormal uvarat utuk dmes. f ( x) [( x )/ ] / = e x π x = ( x )( ) ( x ). < < (-) (-) Betuk (-)

Lebih terperinci

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis STATISTIK Ukura Gejala Pusat Ukura Letak Ukura Smpaga, Dspers da Varas Mome, Kemrga, da Kurtoss Notas Varabel dyataka dega huruf besar Nla dar varabel dyataka dega huruf kecl basaya dtuls Tmes New Roma

Lebih terperinci

Orbit Fraktal Himpunan Julia

Orbit Fraktal Himpunan Julia Vol. 3, No., 6-7, Jauar 7 Orbt Fraktal Hmpua Jula Ad Kresa Jaya, Nswar Alasa Abstrak Makalah membahas kumpula ttk-ttk yag berada dalam daerah hmpua Jula d ruag kompleks da memperlhatka sebuah algortma

Lebih terperinci

MATEMATIKA INTEGRAL RIEMANN

MATEMATIKA INTEGRAL RIEMANN MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN Ses NGAN INTEGRAL RIEMANN A. NOTASI SIGMA a. Defs Notas Sgma Sgma (Σ) adalah otas matematka megguaka smbol yag mewakl pejumlaha da beberapa suku yag memlk

Lebih terperinci

UKURAN GEJALA PUSAT DAN UKURAN LETAK

UKURAN GEJALA PUSAT DAN UKURAN LETAK UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu

Lebih terperinci

; θ ) dengan parameter θ,

; θ ) dengan parameter θ, Vol. 4. No. 3, 5-59, Desember 00, ISSN : 40-858 APLIKASI METODE BESARAN PIVOTAL DALAM PENENTUAN SELANG KEYAKINAN TAKSIRAN PARAMETER POPULASI. Agus Rusgyoo Jurusa Matematka FMIPA UNDIP Abstraks Dberka populas

Lebih terperinci

POLIGON TERBUKA TERIKAT SEMPURNA

POLIGON TERBUKA TERIKAT SEMPURNA MODUL KULIAH ILMU UKUR TANAH POLIGON TERBUKA TERIKAT SEMPURNA Pegerta : peetua azmuth awal da akhr, peetuat kesalaha peutup sudut,koreks sudut, kesalaha lear da koreks lear kearah sumbu X da Y, Peetua

Lebih terperinci

Notasi Sigma. Fadjar Shadiq, M.App.Sc &

Notasi Sigma. Fadjar Shadiq, M.App.Sc & Notas Sgma Fadjar Shadq, M.App.Sc (fadjar_pg@yahoo.com & www.fadjarpg.wordpress.com Notas sgma memag jarag djumpa dalam kehdupa sehar-har, tetap otas tersebut aka bayak djumpa pada baga matematka yag la,

Lebih terperinci

PELABELAN GRACEFUL PADA DIGRAF LINTASAN DAN DIGRAF BIPARTIT LENGKAP

PELABELAN GRACEFUL PADA DIGRAF LINTASAN DAN DIGRAF BIPARTIT LENGKAP PELABELAN GRACEFUL PADA DIGRAF LINTASAN DAN DIGRAF BIPARTIT LENGKAP Lusa Tr Lstyowat Krstaa Waya M Fatekurohma Jurusa Matematka FMIPA Uerstas Jember e-mal: krstaa_waya@yahoocom da m_fatkur@yahoocom Abstract:

Lebih terperinci

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES * PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka

Lebih terperinci

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran Kurkulum 013/006 matematka K e l a s XI STATISTIKA: UKURAN PEMUSATAN Tujua Pembelajara Setelah mempelajar mater, kamu dharapka memlk kemampua berkut. 1. Dapat meetuka rata-rata data tuggal da data berkelompok..

Lebih terperinci

On A Generalized Köthe-Toeplitz Duals

On A Generalized Köthe-Toeplitz Duals JMP : Volume 4 Nomor, Ju 202, hal. 3-39 O A Geeralzed Köthe-Toepltz Duals Sumardoo, Supama 2, da Soepara Darmawaa 3 PPPPTK Matematka, smrd2007@gmal.com 2 Mathematcs Departmet, Gadah Mada Uverst, supama@ugm.ac.d

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling BAB LANDASAN TEORI Kosep Dasar Aalss Regres Aalss regres adalah suatu proses memperkraka secara sstemats tetag apa yag palg mugk terjad dmasa yag aka datag berdasarka formas yag sekarag dmlk agar memperkecl

Lebih terperinci

TEOREMA TITIK TETAP BANACH. Skripsi. Diajukan untuk Memenuhi Salah satu Syarat. Memperoleh Gelar Sarjana Matematika. Program Studi Matematika

TEOREMA TITIK TETAP BANACH. Skripsi. Diajukan untuk Memenuhi Salah satu Syarat. Memperoleh Gelar Sarjana Matematika. Program Studi Matematika TEOREMA TITIK TETAP BANACH Skrps Dajuka utuk Memeuh Salah satu Syarat Memperoleh Gelar Sarjaa Matematka Program Stud Matematka Oleh: Wdaryata Ctra Nursata NIM : 348 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA

Lebih terperinci

S2 MP Oleh ; N. Setyaningsih

S2 MP Oleh ; N. Setyaningsih S2 MP Oleh ; N. Setyagsh MATERI PERTEMUAN 1-3 (1)Pedahulua pera statstka dalam peelta ; (2)Peyaja data : dalam betuk (a) tabel da (b) dagram; (3) ukura tedes setaral da ukura peympaga (4)dstrbus ormal

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Dalam pemodela program ler, semua parameter yag dguaka dalam model dasumska dapat dketahu secara past. Parameter-parameter terdr dar koefse batasa ( ) a, la kuattas batasa

Lebih terperinci

Penelitian Operasional II Teori Permainan TEORI PERMAINAN

Penelitian Operasional II Teori Permainan TEORI PERMAINAN Peelta Operasoal II Teor Permaa 7 2 TEORI PERMAINAN 2 Pegatar 2 Krtera Tekk Permaa : () Terdapat persaga kepetga datara pelaku (2) Setap pema memlk stateg, bak terbatas maupu tak terbatas (3) Far Game

Lebih terperinci

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas TEKNIK SAMPLING Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uverstas Adalas Defs Suatu cotoh gerombol adalah suatu cotoh acak sederhaa dmaa setap ut pearka cotoh adalah kelompok atau gerombol dar

Lebih terperinci

Selesaikan persamaan kuadrat ini dengan bentuk kuadrat lengkap, diperoleh

Selesaikan persamaan kuadrat ini dengan bentuk kuadrat lengkap, diperoleh Blaga Kompleks Feomea blaga kompleks arlah dua buah blaga ag jumlaha da haslkala juga Msalka blaga ag dcar adalah da w, dega kods + w = da w = Dar kods + w = dperoleh w = Gatka ke w =, dperoleh ( ) =,

Lebih terperinci

PELABELAN GRACEFUL SATU MODULO w PADA BEBERAPA GRAF EULER

PELABELAN GRACEFUL SATU MODULO w PADA BEBERAPA GRAF EULER PELABELAN GRACEFUL SATU MODULO PADA BEBERAPA GRAF EULER Isa 1, Luca Ratasar, R. Heru Tjahjaa 3 1,,3 Jurusa Matematka, Fakultas Sas da Matematka, Uverstas Dpoegoro Jl. Prof. H. Soedarto, S.H. Tembalag,

Lebih terperinci

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar

Lebih terperinci

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN // REGRESI LINEAR SEDERHANA DAN KORELASI. Model Regres Lear. Peaksr Kuadrat Terkecl 3. Predks Nla Respos 4. Iferes Utuk Parameter-parameter Regres 5. Kecocoka Model Regres 6. Korelas Utrwe Mukhayar MA

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Eka Mer Krst ), Arsma Ada ), Sgt Sugarto ) ekamer_tross@ymal.com ) Mahasswa Program S Matematka FMIPA-UR

Lebih terperinci

XI. ANALISIS REGRESI KORELASI

XI. ANALISIS REGRESI KORELASI I ANALISIS REGRESI KORELASI Aalss regres mempelajar betuk hubuga atara satu atau lebh peubah bebas dega satu peubah tak bebas dalam peelta peubah bebas basaya peubah yag dtetuka oelh peelt secara bebas

Lebih terperinci

8. MENGANALISIS HASIL EVALUASI

8. MENGANALISIS HASIL EVALUASI 8. MENGANALISIS HASIL EVALUASI Tujua : Mampu megaalsa tgkat kesukara hasl evaluas utuk megkatka hasl proses pembelajara Kegata megaals hasl evaluas merupaka upaya utuk memperbak programprogram pembelajara

Lebih terperinci

INTEGRAL LEBESGUE PADA FUNGSI TERBATAS SKRIPSI

INTEGRAL LEBESGUE PADA FUNGSI TERBATAS SKRIPSI INTGRAL LBSGU PADA FUNGSI TRBATAS SKRIPSI Dajuka Kepada Fakultas Matematka da Ilmu Pegetahua Alam Uverstas Neger Yogyakarta utuk memeuh sebaga persyarata gua memperoleh gelar Sarjaa Sas Dsusu Oleh : Fauzah

Lebih terperinci

Regresi Linier Sederhana Definisi Pengaruh

Regresi Linier Sederhana Definisi Pengaruh Regres Ler Sederhaa Dah Idra Baga Bostatstka da Kepeduduka Fakultas Kesehata Masyarakat Uverstas Arlagga Defs Pegaruh Jka terdapat varabel, msalka da yag data-dataya dplot sepert gambar dbawah 3 Defs Pegaruh

Lebih terperinci

BAB II LANDASAN TEORI. penulisan skripsi yaitu mengenai data panel, beberapa bentuk dan sifat

BAB II LANDASAN TEORI. penulisan skripsi yaitu mengenai data panel, beberapa bentuk dan sifat BAB II LANDASAN TEORI Pada Bab II aka dbahas dasar-dasar teor yag dguaka dalam peulsa skrps yatu megea data pael, beberapa betuk da sfat matrks, matrks parts, betuk ler da betuk kuadratk beserta ekspektasya,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,

Lebih terperinci

Bab II Teori Pendukung

Bab II Teori Pendukung Bab II Teor Pedukug.. asar Statstka Utuk keperlua peaksra outstadg clams lablty, pegetahua dalam statstka mead hal yag petg. asar statstka yag dguaka dalam tess atara la :. strbus ormal Sebuah peubah acak

Lebih terperinci

4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data

4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data //203 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas Ukura

Lebih terperinci

Edge Anti-Magic Total Labeling dari

Edge Anti-Magic Total Labeling dari Edge At-Magc Total Labelg dar Charul Imro da Suhud Wahyud Jurusa Matematka Isttut Tekolog Sepuluh Nopember Surabaya mro-ts@matematka.ts.ac.d, suhud@matematka.ts.ac.d C Abstract We wll fd edge at-magc total

Lebih terperinci

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS C. Pembelajara 3 1. Slabus N o STANDA R KOMPE TENSI KOMPE TENSI DASAR INDIKATOR MATERI TUGAS BUKTI BELAJAR KON TEN INDIKA TOR WAK TU SUM BER BELA JAR Meerap ka atura kosep statstka dalam pemecah a masalah

Lebih terperinci

PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD

PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Mayag Novhta Sar *, Bustam, Sgt Sugarto Mahasswa Program Stud S Matematka FMIPA Uverstas Rau Dose Fakultas

Lebih terperinci

X a, TINJAUAN PUSTAKA

X a, TINJAUAN PUSTAKA PENELITIAN SEBELUMNYA Statstka Deskrptf TINJAUAN PUSTAKA TINJAUAN STATISTIKA Uj Idepedes Uj depedes dguak utuk megetahu adaya hubuga atara dua varabel (Agrest, 1990). H 0 : tdak ada hubuga atara varabel

Lebih terperinci

Penyelesaian Sistem Persamaan Linier Kompleks Dengan Invers Matriks Menggunakan Metode Faddev (Contoh Kasus: SPL Kompleks dan Hermit)

Penyelesaian Sistem Persamaan Linier Kompleks Dengan Invers Matriks Menggunakan Metode Faddev (Contoh Kasus: SPL Kompleks dan Hermit) Jural Sas Matematka da Statstka, Vol., No. I, Jauar ISSN - Peyelesaa Sstem Persamaa Ler Kompleks Dega Ivers Matrks Megguaka Metode Faddev Cotoh Kasus: SPL Kompleks da Hermt F. rya da Tka Rzka, Jurusa Matematka,

Lebih terperinci

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2 INTERVAL KEPERCAAAN UNTUK PERBEDAAN KOEFIIEN VARIAI DARI DITRIBUI LOGNORMAL I. Pebrya * Bustam. ugarto Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu Pegetahua Alam Uverstas

Lebih terperinci

Bab II Teori Dasar. Data spasial adalah data yang memuat informasi lokasi. Misalkan z( ), i = 1,

Bab II Teori Dasar. Data spasial adalah data yang memuat informasi lokasi. Misalkan z( ), i = 1, Bab II Teor Dasar II. Estmas Spasal Data spasal adalah data yag memuat formas lokas. Msalka z, =, s,,, s D, adalah data observas peubah acak d lokas atau koordat yag dyataka dega vektor s. Vektor koordat

Lebih terperinci

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi STATISTIKA A. Des Umum. Pegerta statstk Statstk adalah kumpula akta yag berbetuk agka da dsusu dalam datar atau tabel yag meggambarka suatu persoala. Cotoh: statstk kurs dolar Amerka, statstk pertumbuha

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Defes Aalss Korelas da Regres a Aalss Korelas adalah metode statstka yag dguaka utuk meetuka kuatya atau derajat huuga lear atara dua varael atau leh. Semak yata huuga ler gars lurus,

Lebih terperinci

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi.

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi. Mea utuk Data Tuggal Des. Jka suatu sampel berukura dega aggota x1, x, x3,, x, maka mea sampel ddesska : 1... N 1 Mea utuk Data Kelompok Des Mea dar data yag dkelompoka adalah : x x 1 1 1 dega : x = ttk

Lebih terperinci

3 Departemen Statistika FMIPA IPB

3 Departemen Statistika FMIPA IPB Supleme Respos Pertemua ANALISIS DATA KATEGORIK (STK51) Departeme Statstka FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referes Waktu U potess Tga Cotoh atau Lebh U Kruskal-Walls (aalss ragam satu-arah berdasarka

Lebih terperinci

PELABELAN HARMONIS GANJIL PADA GRAF KINCIR ANGIN BELANDA DAN GABUNGAN GRAF KINCIR ANGIN BELANDA

PELABELAN HARMONIS GANJIL PADA GRAF KINCIR ANGIN BELANDA DAN GABUNGAN GRAF KINCIR ANGIN BELANDA PELABELAN HARMONIS GANJIL PADA GRAF KINIR ANGIN BELANDA DAN GABUNGAN GRAF KINIR ANGIN BELANDA Fery Frmasah ), Kk Aryat Sugeg ) Abstrak : Gra G V G, EG dega V G adalah hmpua smpul da G hmpua busur dsebut

Lebih terperinci

BAB III UKURAN PEMUSATAN DATA

BAB III UKURAN PEMUSATAN DATA BAB III UKURAN PEMUSATAN DATA A. Ukura Gejala Pusat Ukura pemusata adalah suatu ukura yag meujukka d maa suatu data memusat atau suatu kumpula pegamata memusat (megelompok). Ukura pemusata data adalah

Lebih terperinci

Extra 4 Pengantar Teori Modul

Extra 4 Pengantar Teori Modul Extra 4 Pegatar Teor odul Apabla selama dkealka suatu kosep aljabar megea ruag vektor, maka modul merupaka perumuma dar ruag vektor. Pada modul, syarat skalar dperumum mejad eleme pada suatu rg da buka

Lebih terperinci

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel BAB LANDASAN TEORI.1 Pegerta Regres Regres dalam statstka adalah salah satu metode utuk meetuka tgkat pegaruh suatu varabel terhadap varabel yag la. Varabel yag pertama dsebut dega bermacam-macam stlah:

Lebih terperinci

Pendahuluan. Relasi Antar Variabel. Relasi Antar Variabel. Relasi Antar Variabel 4/6/2015. Oleh : Fauzan Amin

Pendahuluan. Relasi Antar Variabel. Relasi Antar Variabel. Relasi Antar Variabel 4/6/2015. Oleh : Fauzan Amin 4/6/015 Oleh : Fauza Am Se, 06 Aprl 015 GDL 11 (07.30-10.50) Pedahulua Aalsa regres dguaka utuk mempelajar da megukur hubuga statstk ag terjad atara dua atau lebh varbel. Dalam regres sederhaa dkaj dua

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL Hesty ala, Arsma Ada, Bustam hestyfala@ymalcom Mahasswa Program S Matematka MIPA-UR Dose Matematka MIPA-UR

Lebih terperinci

UKURAN PEMUSATAN & PENYEBARAN

UKURAN PEMUSATAN & PENYEBARAN UKURAN PEMUSATAN & PENYEBARAN RATA - RATA UKURAN PEMUSATAN MEDIAN MODUS Rata rata htug (mea) Merupaka hasl bag dar sejumlah skr dega bayakya respde Utuk Data Tdak Berkelmpk x Dmaa : = la samapa x = la

Lebih terperinci

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teorema-teorema

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teorema-teorema II. LANDASAN TEORI Pada bab II aka dbahas pegerta-pegerta (defs) da teorea-teorea ag edukug utuk pebahasa pada bab IV. Pegerta (defs) da teorea tersebut dtulska sebaga berkut... Teorea Proeks Teorea proeks

Lebih terperinci

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB Pearka Cotoh Gerombol (Cluster Samplg) Departeme Statstka FMIPA IPB Radom samplg (Revew) Smple radom samplg Stratfed radom samplg Rato, regresso, ad dfferece estmato Systematc radom samplg Cluster radom

Lebih terperinci

2.2.3 Ukuran Dispersi

2.2.3 Ukuran Dispersi 3 Ukura Dspers Yag aka dbahas ds adalah smpaga baku da varas karea dua ukura dspers yag palg serg dguaka Hubuga atara smpaga baku dega varas adalah Varas = Kuadrat dar Smpaga baku otas yag umum dguaka

Lebih terperinci

Uji Modifikasi Peringkat Bertanda Wilcoxon Untuk Masalah Dua Sampel Berpasangan 1 Wili Solidayah 2 Siti Sunendiari 3 Lisnur Wachidah

Uji Modifikasi Peringkat Bertanda Wilcoxon Untuk Masalah Dua Sampel Berpasangan 1 Wili Solidayah 2 Siti Sunendiari 3 Lisnur Wachidah Prosdg Statstka ISSN 40-45 Uj Modfkas Pergkat Bertada Wlcoxo Utuk Masalah Dua Sampel Berpasaga 1 Wl Soldayah St Suedar 3 Lsur Wachdah 1, Statstka, Fakultas MIPA, Uverstas Islam Badug, Jl. Tamasar No. 1

Lebih terperinci

ANALISIS STABILITAS PADA MODEL EPIDEMIK MULTI GRUP DENGAN LAJU PENULARAN TAK LINEAR

ANALISIS STABILITAS PADA MODEL EPIDEMIK MULTI GRUP DENGAN LAJU PENULARAN TAK LINEAR ANAL TABLTA PADA MODEL EPDEMK MULT GRUP DENGAN LAJU PENULARAN TAK LNEAR Nama : Dy Tr War NRP : 748 Jurusa : Matematka FMPA T Dose Pembmbg : Drs. M. etjo Warko, M. Drs. uhud Wahyud,M. Abstrak Dalam suatu

Lebih terperinci

REPRESENTASI BILANGAN FIBONACCI DALAM BENTUK KOMBINATORIAL

REPRESENTASI BILANGAN FIBONACCI DALAM BENTUK KOMBINATORIAL REPRESENTASI BILANGAN FIBONACCI DALAM BENTUK KOMBINATORIAL Rzky Maulaa Nugraha Tekk Iformatka Isttut Tekolog Badug Blok Sumurwed I RT/RW 4/, Haurgeuls, Idramayu, 4564 e-mal: laa_cfre@yahoo.com ABSTRAK

Lebih terperinci

Uji Statistika yangb digunakan dikaitan dengan jenis data

Uji Statistika yangb digunakan dikaitan dengan jenis data Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas

Lebih terperinci

BAB II KAJIAN PUSTAKA. Aljabar Max-Plus adalah himpunan { } himpunan semua bilangan real yang dilengkapi dengan operasi

BAB II KAJIAN PUSTAKA. Aljabar Max-Plus adalah himpunan { } himpunan semua bilangan real yang dilengkapi dengan operasi BAB II KAJIAN PUSTAKA A. Aljabar Max-Plus 1. Pegerta Aljabar Max-Plus Aljabar Max-Plus adalah hmpua { } dega hmpua semua blaga real yag dlegkap dega operas maksmum, dotaska dega da operas pejumlaha yag

Lebih terperinci

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut 3/9/202 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas

Lebih terperinci

BAB III PEMBENTUKAN SKEMA PEMBAGIAN RAHASIA

BAB III PEMBENTUKAN SKEMA PEMBAGIAN RAHASIA BAB III PEMBENTUKAN SKEMA PEMBAGIAN RAHASIA 3. Pegkodea Matrks Ketetaggaa Matrks ketetaggaa A adaah matrks smetr, sehgga, dega memh semua eeme pada dagoa utama da eeme-eeme dbawah dagoa utama, maka aka

Lebih terperinci

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( )

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( ) Regres & Korelas Ler Sederhaa 1. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk yag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. regresi berkenaan dengan studi ketergantungan antara dua atau lebih variabel yaitu

BAB 2 TINJAUAN TEORITIS. regresi berkenaan dengan studi ketergantungan antara dua atau lebih variabel yaitu BAB TINJAUAN TEORITIS. Pegerta Aalsa Regres Istlah regres pertama kal dperkealka oleh Fracs Galto. Meurutya, aalss regres berkeaa dega stud ketergatuga atara dua atau lebh varabel yatu varabel yag meeragka

Lebih terperinci

Penarikan Contoh Acak Sederhana (Simple Random Sampling)

Penarikan Contoh Acak Sederhana (Simple Random Sampling) Pearka Cotoh Acak Sederhaa (Smple Radom Samplg) Defs Jka sebuah cotoh berukura dambl dar suatu populas sedemka rupa sehgga setap cotoh berukura ag mugk memlk peluag sama utuk terambl, maka prosedur tu

Lebih terperinci