I PENDAHULUAN 1.1 Latar Belakang dan Perumusan Masalah

Ukuran: px
Mulai penontonan dengan halaman:

Download "I PENDAHULUAN 1.1 Latar Belakang dan Perumusan Masalah"

Transkripsi

1 I PENDAHULUAN 1.1 Latar Belakang dan Perumusan Masalah Penelusuran tentang fenomena belalang merupakan bahasan yang baik untuk dipelajari karena belalang dikenal suka berkelompok dan berpindah. Dalam kelompok, gerakan internal individu-individu tidak sepenuhnya dipahami. Ketika berpindah terjadi pertukaran tempat yang kontinu di antara belalang yang berada di tanah dan belalang yang terbang. Beberapa model perilaku kelompok belalang disusun oleh Edelstein-Keshet et al. (1998) dengan tujuan memahami bagaimana kepaduan kelompok dapat dipertahankan dalam populasi yang besar (diatas 10 9 individu) pada jarak yang jauh (di atas ribuan mil) dan dalam periode waktu yang lama (di atas satu minggu). Untuk merefleksikan hal tersebut, Edelstein-Keshet L (1988) menggunakan variasi spasial (ruang) dasar. Variasi spasial dasar tersebut membahas tentang pengaruh gerakan, sebaran, dan kekompakan kelompok. Pada umumnya, beberapa populasi tersebar dengan tidak memperhatikan variasi lingkungan, kepadatan populasi dan gerakan dari belalang. Pada tingkat populasi yang besar (kelompok), hal tersebut mempengaruhi kekompakan kelompok dalam melakukan perpindahan. Beberapa populasi yang bergabung dalam kelompok mempunyai ukuran awal yang tidak sama. Dalam beberapa kasus tundaan atau periodik, dapat mempunyai ukuran awal yang sama. Ketika ukuran awalnya sama, setiap populasi bergerak menyerupai gerakan populasi yang besar seiring berjalannya waktu. Pada penelitian ini, diasumsikan bahwa ukuran sebaran masing-masing populasi sama, populasi bergerak dengan laju jarak yang konstan, dan tidak ada ukuran panjang populasi yang lebih kecil dari jarak tempuh yang ditentukan. Hal ini menyebabkan laju perubahan ukuran populasi belalang analog dengan kecepatan atau laju perubahan lokasi belalang. Setelah dilakukan pentranslasian dari peubah spasial populasi ke ukuran peubah kelompok, dilakukan penghitungan akumulasi kelompok untuk menunjukkan besar rataan dan ragamnya (Edelstein- Keshet L 1988). Gerakan populasi belalang dapat digunakan untuk merepresentasikan keseimbangan individu yang dinyatakan dengan turunan parsial. Ini dilakukan

2 dengan dua tahap. Pertama, pembuatan argumen sederhana dalam satu dimensi. Kedua, menunjukkan beberapa fenomena dengan memasukkan konveksi, difusi, dan tarikan karena adanya gerakan dari individu. Agar lebih sederhana, turunan persamaan difusi menggunakan hukum Ficks dengan pendekatan yang didasarkan pada model gerakan acak sehingga model direpresentasikan ke dalam Persamaan Diferensial Parsial (PDP). Kemudian dilakukan peralihan koordinat pada model ini, yaitu koordinat PDP ke dalam koordinat Persamaan Diferensial Biasa (PDB) untuk mengurangi kesulitan pencarian solusi yang kompleks. Sehingga diperoleh dua tipe solusi, yaitu solusi di sekitar titik tetap dan solusi gelombang berjalan (travelling wave). Pada dasarnya kelompok mengarah ke solusi travelling band (pulse). Beberapa model biologi banyak yang gagal untuk menghasilkan perilaku ideal kecuali dibuat asumsi-asumsi yang tidak biasa dan tidak realistis. Kegagalan ini disebabkan karena kesulitan menemukan model yang serupa dengan fenomena perpindahan dan kesulitan melakukan pendekatan kelompok untuk mengurangi masalah ini. Oleh karena itu, perlu pengkajian ulang penerapan difusi pada model dan penentuan solusi numerik agar diperoleh pendeskripsian yang lebih baik. 1. Tujuan Penelitian Berdasarkan latar belakang dan perumusan masalah di atas, maka tujuan penelitian ini adalah: 1 Mengkaji penerapan model difusi pada perpindahan belalang. Menentukan solusi numerik.

3 II LANDASAN TEORI.1 Persamaan Keseimbangan Edelstein-Keshet L (1988) menyatakan bahwa persamaan keseimbangan adalah dasar dalam sebaran spasial. Dideskripsikan bahwa F (, t ) kepadatan belalang pada posisi yang masuk ke dalam kelompok, adalah dan waktu t, J adalah banyaknya belalang adalah panjang perubahan kepadatan, dan adalah banyaknya belalang masuk dan keluar dari kelompok (source-sink). Berdasarkan pendeskripsian ini, persamaan keseimbangan dapat dinyatakan sebagai F (, t ) J (, t ) J (, t ) t (, t ). (.1) Bila pada persamaan (.1) diambil limit 0, maka diperoleh persamaan keseimbangan satu dimensi berikut F (, t ) J (, t ) = t (, t ). (.) Tanda min pada J (, t ) menyatakan bahwa rumus beda hingga dalam persamaan (.1) mempunyai tanda yang berlawanan dengan tanda pada definisi turunannya.. Konveksi Menurut Edelstein-Keshet L (1988), gerakan belalang dalam kelompok dipengaruhi oleh kecepatan angin dan kepadatan kelompok. Jika w adalah kecepatan angin, maka banyaknya belalang yang masuk ke dalam kelompok adalah J Fw, (.3) Jika persamaan (.3) disubstitusikan ke persamaan (.), maka diperoleh persamaan perpindahan (transport) satu dimensi sebagai berikut: F (, t ) t F (, t ) w (, t ). (.4)

4 4 Kokasih PB (006) menuliskan persamaan konveksi difusi penyebaran F yang disebabkan oleh koefisien difusi (D) bergantung pada konveksi karena bergeraknya populasi dengan kecepatan (U), sebagai berikut: F D F U F. t (.5).3 Matematika Difusi Difusi adalah fenomena dari populasi yang menyebar secara keseluruhan menurut gerakan acak tiap individu. (Okubo A 1980).4 Hukum Ficks Menurut hukum Ficks, jumlah perpindahan populasi di posisi dalam satu unit area terhadap satu unit waktu, yakni fluks J (, t ) kepadatan populasi. Selanjutnya, didefinisikan bahwa adalah proporsi gradien J (, t ) D F, dengan F adalah kepadatan populasi dan D adalah laju penyebaran atau koefisien difusi. Tanda negatif menunjukkan bahwa difusi terjadi dari kepadatan tinggi menuju kepadatan rendah. Penggunaan hukum Ficks ada dalam persamaan difusi berikut: F ( J (, t ) / ) F D t (Okubo A 1980). (.6).5 Persamaan Difusi Kelompok Belalang Model matematika untuk sebaran spasial populasi dari belalang seperti pola kepadatan kelompok tidak dapat didasarkan pada gerakan acak sederhana. Dalam hal ini harus dimasukkan mekanisme pergerakan populasi belalang yang melawan aksi difusi. Jadi fluks populasi melalui bidang yang tegak lurus dengan sumbu yang berisi dua komponen, yakni acak dan tak acak. Jika proses difusi diasumsikan sebagai komponen acak dan proses adveksi sebagai komponen tak acak, maka fluks dapat di formulasikan F D sebagai

5 5 proses difusi dan uf sebagai proses adveksi. Dalam hal ini, D menyatakan koefisien difusi dan u menyatakan kecepatan rata-rata individu yang melewati bidang. Pergerakan acak populasi terjadi dari kepadatan tinggi ke kepadatan rendah, sedangkan pergerakan tak acak terjadi dalam arah kecepatan rata-rata. Secara umum D dan u mempengaruhi kekompakan kelompok. Hal ini tergantung pada kepadatan populasi. Total fluks dapat dituliskan J us D F. (.7) (Okubo A 1980).6 Pola Penyebaran Belalang Individu dalam populasi ada yang keluar masuk dalam kelompok ketika kelompok tersebut bergerak. Adanya individu yang keluar masuk dalam kelompok membentuk suatu pola sebaran tertentu. Dengan mengacu pada hukum Ficks tentang perbedaan kedifusian dan ragam dari dua populasi, Okubo A (1980) menyatakan bentuk pola penyebaran tiap populasi sebagai berikut: A l1 ep[ ( / a) ], a ep[ ( / ) ], b (.8) B l b (.9) dalam hal ini, b a..7 Tarikan (Attraction) dan Tolakan (Repulsion) Dalam persamaan (.8) dan (.9), simbol l menyatakan tarikan dan l 1 menyatakan tolakan. Bentuk keseimbangan akibat adanya dua sumber (tarikan dan tolakan) yang berlawanan arah diberikan Okubo A (1980) sebagai berikut: L l l, (.10) 1.8 Gelombang Berjalan (GB) GB merupakan solusi Persamaan Diferensial Parsial (PDP) dengan pola gelombang tetap dan kecepatan konstan. Mengenai GB, Edelstein-Keshet L

6 (1988) menyatakan bahwa f (, t ) disebut GB jika fungsi tersebut 6 mempertahankan bentuk gelombang pada laju konstan c ketika gelombang bergerak ke kanan. Pengamat bergerak dengan kecepatan sama dan searah dengan gerakan gelombang sehingga terlihat bentuk gelombang yang tidak berubah. Hubungan antara fungsi gelombang yang bergerak ke kanan f (, t ) dengan fungsi pengamat yang bergerak F ( z ) adalah: F ( z ) f (, t ), dengan syarat z ct, (.11) F ( z ) adalah fungsi dari peubah tunggal, yaitu jarak sepanjang gelombang dari beberapa titik tetap yang dipilih menuju z 0. Dengan aturan rantai diferensiasi, persamaan (.11) dapat diubah ke dalam bentuk berikut: F F z F z z F F z F c t z t z,. (.1) Sehingga diperoleh bentuk Persamaan Diferensial Biasa (PDB) dari suatu sistem PDP, yang dapat diketahui eksistensi dan sifat yang dimiliki solusi GB..8.1 Persamaan Fisher Mengenai eksistensi dan sifat yang dimiliki solusi GB, Edelstein-Keshet L (1988) mengutip Fisher (1937) mengamati gerakan acak dari populasi individu pada suatu daerah tertentu. Ia memisalkan F sebagai proporsi populasi individu yang bergerak acak, S 1 F sebagai proporsi populasi individu pada saat awal, sebagai koefisien konstan proporsi populasi, dan D sebagai koefisien difusi. Laju perubahan F bentuk persamaan berikut: pada suatu lokasi tertentu dapat dinyatakan ke dalam F t F D F 1 F. (.13) Persamaan (.13) untuk mendeskripsikan populasi yang berhubungan dengan masalah logistik dan penyebaran acak. Persamaan (.13) mempunyai solusi yang variatif bergantung pada syarat batas yang diberikan. Dengan

7 7 peralihan koordinat z ct dan perubahan bentuk persamaan menjadi PDB, maka solusi GB dapat dicari dengan lebih mudah. Pada penelitian ini, diasumsikan bahwa domain gelombang berada pada daerah yang tak terbatas. Gelombang penyebaran individu dalam kelompok yang dideskripsikan pada persamaan (.13) diharapkan sesuai realitas biologis. Untuk menemukan solusi sistem PDP berdimensi kecil dapat digunakan analisis bidang fase..8. Penondimensionalan Dalam suatu sistem PDP, bentuk peubah-peubah ada yang berdimensi tak sama. Oleh karena itu, peubah-peubah tersebut perlu diekspresikan sama agar solusi mudah diperoleh. Menurut Edelstein-Keshet L (1988), pengekspresian peubah dapat dilakukan dengan cara berikut: Kuantitas ukuran = Skalar pengali Unit yang berdimensi.8.3 Proses Pelinearan Untuk menentukan solusi tertutup steady state (solusi yang didekati oleh pelinearan) dari sistem PDP, Edelstein-Keshet L. (1988) memisalkan PDB sebagai berikut: dx dy F ( X, Y ), G ( X, Y ), (.14) (.15) di mana F dan G adalah fungsi tak linear. Diasumsikan bahwa X dan Y adalah solusi steady state, yang memenuhi memenuhi F ( X, Y ) G ( X, Y ) 0. (.16) Solusi tertutup steady state yang sering disebut gangguan (pertubation) X ( t ) X ( t ), (.17) Y ( t ) Y y ( t ). (.18)

8 8 Setelah disubtitusi ke persamaan (.14) dan (.15), diperoleh d ( X ) F ( X, Y y ), d ( Y y ) G ( X, Y y ). (.19) (.0) Sisi kiri diperluas dan dibentuk turunannya oleh definisi dx 0 dan dy 0. Sisi kanan diperluas oleh F dan G dalam deret Taylor pada titik ( X, Y ). Sehingga diperoleh d dy F ( X, Y ) F ( X, Y ) F ( X, Y ) y y y bentuk orde,,, dan yang lain, G ( X, Y ) G ( X, Y ) G ( X, Y ) y y y bentuk orde,,, dan yang lain, y y (.1) (.) di mana F ( X, Y ) adalah F yang dievaluasi pada ( X, Y ). Untuk F, G, G, dievaluasi dengan cara yang sama. y y Oleh definisi F ( X, Y ) G ( X, Y ) 0 diperoleh d dy a a y, 11 1 a a y, 1 (.3) (.4) dalam bentuk matriks A a a F F 11 1 a a G G 1 y ( X, Y ) y. (.5) Bentuk ini adalah bentuk matriks Jacobian dari sistem persamaan (.14) dan (.15). Untuk menentukan kestabilannya dengan cara melihat solusi persamaan (.3) dan (.4).

9 .8.4 Orbit Ketika suatu sistem PDP berdimensi kecil, maka solusi sistem tersebut dapat dicari dengan menggunakan pendekatan analisis bidang fase. Pendekatan analisis bidang fase merupakan teknik untuk mencari solusi dari sistem PDB yang luas cakupan solusinya. Oleh karena itu, untuk mempermudah mencari solusi dari sistem tersebut perlu dilakukan pembatasan pada GB yang diberikan. Batas gelombang ini merupakan batas trayektori untuk sistem persamaan pada ruang fase yang berdimensi tinggi. Edelstein-Keshet L (1988) menyatakan bahwa orbit trayektori heteroklinik merupakan cerminan batas gelombang yang menghubungkan dua titik tetap. B atas trayektori yang lain adalah: i Orbit homoklinik (trayektori yang meninggalkan sebuah titik sadel ketika tak stabil dan kembali ke titik sadel ketika stabil) akan menghasilkan gelombang asimtotik yang mendekati nilai z. ii Suatu cycle atau orbit periodik yang mencerminkan osilasi penyebaran melimpah pada ruang..9 Momen Sebaran Belalang berikut: Dougherty RD (1990) mendefinisikan nilai awal momen sebaran sebagai i Untuk beberapa bilangan bulat tak negatif k, peubah acak X adalah: 9 maka nilai awal momen dari ' k k E X. (.6) ii Jika X kontinu, maka ' k k k E X f / d. (.7) iii Jika ' 0 1, dengan jumlah keseluruhan peluang adalah satu dan E X ' 1, maka nilai awal momen kedua adalah: ' E X f / d. (.8)

10 10 Edelstein-Keshet et al. (1998), menuliskan hal tersebut ke dalam bentuk berikut ini: i i F ( t ) F (, t ) d, (.9) i 1 ii V ( t ) X F (, t ) d, N dalam hal ini, F merupakan ukuran sebaran. V (.30) adalah ragam, N adalah jumlah total individu dan X adalah pusat massa (kepadatan tertinggi) kelompok..10 Konvolusi Fungsi Menurut Riley et al. (006), selain dipengaruhi penyebaran populasi, laju kepadatan populasi juga dipengaruhi kecepatan kelompok. Kecepatan kelompok ini merupakan sebaran yang diamati, yakni dengan memisalkan F ( ') sebagai fungsi yang akan diukur, K ( y ) sebagai fungsi resolusi yang digunakan sebagai alat ukur, dan v ( ) hasil penghitungan sebaran yang diamati. Fungsi resolusi tidak memberikan nilai keluaran yang benar, maka dimungkinkan bahwa nilai keluaran y 0 akan diganti oleh nilai di antara y dan y dy dan dinyatakan dengan K ( y ) dy. Simbol ',, dan y adalah peubah berukuran sama (panjang atau sudut), tetapi mempunyai perbedaan peran. Diasumsikan bahwa F ( ') d ' bergerak menuju ke interval dz, yaitu ke K ( ') d, karena adanya resolusi '. Kombinasi yang mungkin ada adalah bahwa interval d ' akan meningkat dalam interval d, yaitu menuju K ( ') F ( ') d '. Penambahan kontribusi dari semua nilai ' mengarah ke dalam range menuju d, sehingga diperoleh bentuk bentuk v ( ) K ( ') F ( ') d '. (.31) Bentuk ini disebut konvolusi dari fungsi F dan K, yang sering ditulis dalam v K * F. (.3) Menurut Borrelli RL & Coleman CS (1998), bentuk perkalian konvolusi dapat digunakan untuk menemukan respon pada sistem dinamik untuk kecepatan yang terjadi secara mendadak pada amplitudo yang luas dan durasi yang pendek.

11 11.11 Fungsi Kernel Dalam penelitian ini, untuk fungsi resolusi menggunakan bentuk kernel ganjil karena adanya trayektori homoklinik. Edelstein-Keshet et al. (1998) memberikan definisi fungsi resolusi dalam konvolusi dengan bentuk kernel ganjil sebagai berikut: A B K a b a b ep[ ( / ) ] ep[ ( / ) ], (.33) dalam hal ini, A adalah repulsion (tolakan), B adalah attraction (tarikan), a adalah jarak tolakan dan b adalah jarak tarikan. Dalam pembahasan selanjutnya kernel ganjil dalam penelitian ini disebut kernel saja.

MODEL MATEMATIKA PERPINDAHAN KELOMPOK BELALANG DENGAN METODE GELOMBANG BERJALAN NURUDIN MAHMUD

MODEL MATEMATIKA PERPINDAHAN KELOMPOK BELALANG DENGAN METODE GELOMBANG BERJALAN NURUDIN MAHMUD MODEL MATEMATIKA PERPINDAHAN KELOMPOK BELALANG DENGAN METODE GELOMBANG BERJALAN NURUDIN MAHMUD SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 008 PERNYATAAN MENGENAI TESIS DAN SUMBER INORMASI Dengan

Lebih terperinci

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai. I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Dalam kehidupan, polusi yang ada di sungai disebabkan oleh limbah dari pabrikpabrik dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk

Lebih terperinci

MODEL MATEMATIKA PERPINDAHAN KELOMPOK BELALANG DENGAN METODE GELOMBANG BERJALAN NURUDIN MAHMUD

MODEL MATEMATIKA PERPINDAHAN KELOMPOK BELALANG DENGAN METODE GELOMBANG BERJALAN NURUDIN MAHMUD MODEL MATEMATIKA PERPINDAHAN KELOMPOK BELALANG DENGAN METODE GELOMBANG BERJALAN NURUDIN MAHMUD SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2008 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI Dengan

Lebih terperinci

DAFTAR PUSTAKA. Borrelli RL, Coleman CS Differential Equations: A Modelling Respective. New York: John Wiley & Sons, Inc.

DAFTAR PUSTAKA. Borrelli RL, Coleman CS Differential Equations: A Modelling Respective. New York: John Wiley & Sons, Inc. DATAR PUSTAKA Borrelli RL, Coleman CS. 1998. Differential Equations: A Modelling Respective. ew York: John Wiley & Sons, Inc. Dougherty RD. 1990. Probability and Statistics for Engeneering, Computing,

Lebih terperinci

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan BAB II KAJIAN TEORI Pada bab ini akan dibahas beberapa hal yang digunakan sebagai landasan pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK 4. Sebaran Asimtotik,, Teorema 4. (Sebaran Normal Asimtotik,, ) Misalkan fungsi intensitas seperti (3.2) dan terintegralkan lokal. Jika kernel K adalah

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Banyak sekali masalah terapan dalam ilmu teknik, ilmu fisika, biologi, dan lain-lain yang telah dirumuskan dengan model matematika dalam bentuk pesamaan

Lebih terperinci

Bab 3 MODEL DAN ANALISIS MATEMATIKA

Bab 3 MODEL DAN ANALISIS MATEMATIKA Bab 3 MODEL DAN ANALISIS MATEMATIKA Pada bab ini akan dimodelkan permasalahan penyebaran virus flu burung yang bergantung pada ruang dan waktu. Pada bab ini akan dibahas pula analisis dari model hingga

Lebih terperinci

Bab 2 TEORI DASAR. 2.1 Model Aliran Panas

Bab 2 TEORI DASAR. 2.1 Model Aliran Panas Bab 2 TEORI DASAR 2.1 Model Aliran Panas Perpindahan panas adalah energi yang dipindahkan karena adanya perbedaan temperatur. Terdapat tiga cara atau metode bagiamana panas dipindahkan: Konduksi Konduksi

Lebih terperinci

II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Definisi 1 [Sistem Persamaan Diferensial Linear (SPDL)]

II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Definisi 1 [Sistem Persamaan Diferensial Linear (SPDL)] II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Definisi 1 [Sistem Persamaan Diferensial Linear (SPDL)] Suatu sistem persamaan diferensial dinyatakan sebagai berikut: A adalah matriks koefisien konstan

Lebih terperinci

BAB 4 MODEL DINAMIKA NEURON FITZHUGH-NAGUMO

BAB 4 MODEL DINAMIKA NEURON FITZHUGH-NAGUMO BAB 4 MODEL DINAMIKA NEURON FITZHUGH-NAGUMO 4.1 Model Dinamika Neuron Fitzhugh-Nagumo Dalam papernya pada tahun 1961, Fitzhugh mengusulkan untuk menerangkan model Hodgkin-Huxley menjadi lebih umum, yang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Aljabar Linear Definisi 2.1.1 Matriks Matriks A adalah susunan persegi panjang yang terdiri dari skalar-skalar yang biasanya dinyatakan dalam bentuk berikut: [ ] Definisi 2.1.2

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI 1 I PENDAHULUAN 1.1 Latar Belakang Dewasa ini pemodelan matematika telah berkembang seiring perkembangan matematika sebagai alat analisis berbagai masalah nyata. Dalam pengajaran mata kuliah pemodelan

Lebih terperinci

Sistem Hasil Kali Persamaan Diferensial Otonomus pada Bidang

Sistem Hasil Kali Persamaan Diferensial Otonomus pada Bidang Sistem Hasil Kali Persamaan Diferensial Otonomus pada Bidang SKRIPSI Diajukan Kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan Guna

Lebih terperinci

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta BAB II LANDASAN TEORI Pada bab ini akan diuraikan beberapa teori-teori yang digunakan sebagai acuan dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta teorema-teorema

Lebih terperinci

II LANDASAN TEORI. dengan, 1,2,3,, menyatakan koefisien deret pangkat dan menyatakan titik pusatnya.

II LANDASAN TEORI. dengan, 1,2,3,, menyatakan koefisien deret pangkat dan menyatakan titik pusatnya. 2 II LANDASAN TEORI Pada bagian ini akan dibahas teoriteori yang mendukung karya tulis ini. Teoriteori tersebut meliputi persamaan diferensial penurunan persamaan KdV yang disarikan dari (Ihsanudin, 2008;

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

BIFURKASI HOPF PADA SISTEM PREDATOR PREY DENGAN FUNGSI RESPON TIPE II

BIFURKASI HOPF PADA SISTEM PREDATOR PREY DENGAN FUNGSI RESPON TIPE II BIFURKASI HOPF PADA SISTEM PREDATOR PREY DENGAN FUNGSI RESPON TIPE II SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan

Lebih terperinci

Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb

Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Sesi XII Differensial e-mail : zacoeb@ub.ac.id www.zacoeb.lecture.ub.ac.id Hp. 081233978339 PENDAHULUAN Persamaan diferensial

Lebih terperinci

1. PENDAHULUAN, PROBLEM HIDRAULIKA SEDERHANA UNTUK APLIKASI METODE ELEMEN HINGGA

1. PENDAHULUAN, PROBLEM HIDRAULIKA SEDERHANA UNTUK APLIKASI METODE ELEMEN HINGGA 1. PENDAHULUAN, PROBLEM HIDRAULIKA SEDERHANA UNTUK APLIKASI METODE ELEMEN HINGGA 1.1. Pengantar Problem sederhana yang dapat mengantarkan pembaca kepada pemahaman Metode Elemen Hingga untuk problem hidraulika

Lebih terperinci

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi

Lebih terperinci

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang beberapa teori dasar yang digunakan sebagai landasan pembahasan pada bab III. Beberapa teori dasar yang dibahas, diantaranya teori umum tentang persamaan

Lebih terperinci

DERET FOURIER DAN APLIKASINYA DALAM FISIKA

DERET FOURIER DAN APLIKASINYA DALAM FISIKA Matakuliah: Fisika Matematika DERET FOURIER DAN APLIKASINYA DALAM FISIKA Di S U S U N Oleh : Kelompok VI DEWI RATNA PERTIWI SITEPU (8176175004) RIFKA ANNISA GIRSANG (8176175014) PENDIDIKAN FISIKA REGULER

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Sistem dinamik merupakan formalisasi Matematika untuk menggambarkan konsep-konsep ilmiah dari proses deterministik yang bergantung terhadap waktu (Kuznetsov,

Lebih terperinci

II. LANDASAN TEORI. Definisi 1 (Sistem Persamaan Diferensial Biasa Linear) Definisi 2 (Sistem Persamaan Diferensial Biasa Taklinear)

II. LANDASAN TEORI. Definisi 1 (Sistem Persamaan Diferensial Biasa Linear) Definisi 2 (Sistem Persamaan Diferensial Biasa Taklinear) 3 II. LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Biasa Definisi 1 (Sistem Persamaan Diferensial Biasa Linear) Misalkan suatu sistem persamaan diferensial biasa dinyatakan sebagai = + ; =, R (1) dengan

Lebih terperinci

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik BAB II LANDASAN TEORI Pada bab ini, akan dijelaskan landasan teori yang akan digunakan dalam bab selanjutnya sebagai bahan acuan yang mendukung dan memperkuat tujuan penelitian. Landasan teori yang dimaksud

Lebih terperinci

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 29 BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 4.1 Perumusan Penduga Misalkan adalah proses Poisson nonhomogen

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Pengertian dari persamaan diferensial biasa (PDB) yaitu suatu

BAB II TINJAUAN PUSTAKA. Pengertian dari persamaan diferensial biasa (PDB) yaitu suatu 5 BAB II TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Biasa Pengertian dari persamaan diferensial biasa (PDB) yaitu suatu persamaan yang melibatkan turunan pertama atau lebih dari suatu fungsi yang telah

Lebih terperinci

Bab 1 : Skalar dan Vektor

Bab 1 : Skalar dan Vektor Bab 1 : Skalar dan Vektor 1.1 Skalar dan Vektor Istilah skalar mengacu pada kuantitas yang nilainya dapat diwakili oleh bilangan real tunggal (positif atau negatif). x, y dan z kita gunakan dalam aljabar

Lebih terperinci

Sidang Tugas Akhir - Juli 2013

Sidang Tugas Akhir - Juli 2013 Sidang Tugas Akhir - Juli 2013 STUDI PERBANDINGAN PERPINDAHAN PANAS MENGGUNAKAN METODE BEDA HINGGA DAN CRANK-NICHOLSON COMPARATIVE STUDY OF HEAT TRANSFER USING FINITE DIFFERENCE AND CRANK-NICHOLSON METHOD

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Asap atau polutan yang dibuang melalui cerobong asap pabrik akan menyebar atau berdispersi di udara, kemudian bergerak terbawa angin sampai mengenai pemukiman penduduk yang berada

Lebih terperinci

BAB II LANDASAN TEORI. pada bab pembahasan. Materi-materi yang akan dibahas yaitu pemodelan

BAB II LANDASAN TEORI. pada bab pembahasan. Materi-materi yang akan dibahas yaitu pemodelan BAB II LANDASAN TEORI Pada bab ini akan dijelaskan mengenai landasan teori yang akan digunakan pada bab pembahasan. Materi-materi yang akan dibahas yaitu pemodelan matematika, teorema Taylor, nilai eigen,

Lebih terperinci

Bab II Teori Pendukung

Bab II Teori Pendukung Bab II Teori Pendukung II.1 Sistem Autonomous Tinjau sistem persamaan differensial berikut, = dy = f(x, y), g(x, y), (2.1) dengan asumsi f dan g adalah fungsi kontinu yang mempunyai turunan yang kontinu

Lebih terperinci

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan.

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas mengenai dasar teori untuk menganalisis simulasi kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. 2.1 Persamaan Diferensial Biasa

Lebih terperinci

Kuliah 07 Persamaan Diferensial Ordinari Problem Kondisi Batas (PDOPKB)

Kuliah 07 Persamaan Diferensial Ordinari Problem Kondisi Batas (PDOPKB) Kuliah 07 Persamaan Diferensial Ordinari Problem Kondisi Batas (PDOPKB) Persamaan diferensial satu variabel bebas (ordinari) orde dua disebut juga sebagai Problem Kondisi Batas. Hal ini disebabkan persamaan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan

BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan BAB I PENDAHULUAN Pada Bab I akan dibahas latar belakang dan permasalahan penulisan tesis. Berdasarkan latar belakang, akan disusun tujuan dan manfaat dari penulisan tesis. Selain itu, literatur-literatur

Lebih terperinci

Gelombang sferis (bola) dan Radiasi suara

Gelombang sferis (bola) dan Radiasi suara Chapter 5 Gelombang sferis (bola) dan Radiasi suara Gelombang dasar lain datang jika jarak dari beberapa titik dari titik tertentu dianggap sebagai koordinat relevan yang bergantung pada variabel akustik.

Lebih terperinci

Bab II Fungsi Kompleks

Bab II Fungsi Kompleks Bab II Fungsi Kompleks Variabel kompleks z secara fisik ditentukan oleh dua variabel lain, yakni bagian realnya x dan bagian imajinernya y, sehingga dituliskan z z(x,y). Oleh sebab itu fungsi variabel

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Konsep Dasar dan Pembentukan (Differential : Basic Concepts and Establishment ) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan

Lebih terperinci

LANDASAN TEORI. Model ini memiliki nilai kesetimbangan positif pada saat koordinat berada di titik

LANDASAN TEORI. Model ini memiliki nilai kesetimbangan positif pada saat koordinat berada di titik LANDASAN TEORI Model Mangsa Pemangsa Lotka Volterra Bagian ini membahas model mangsa pemangsa klasik Lotka Volterra. Model Lotka Volterra menggambarkan laju perubahan populasi dua spesies yang saling berinteraksi.

Lebih terperinci

Persamaan Diferensial Parsial CNH3C3

Persamaan Diferensial Parsial CNH3C3 Persamaan Diferensial Parsial CNH3C3 Week 4: Separasi Variabel untuk Persamaan Panas Orde Satu Tim Ilmu Komputasi Coordinator contact: Dr. Putu Harry Gunawan phgunawan@telkomuniversity.ac.id 1 Persamaan

Lebih terperinci

BAB IV HITUNG DIFERENSIAL

BAB IV HITUNG DIFERENSIAL BAB IV HITUNG DIFERENSIAL (Pertemuan ke 5 s/d 8) PENDAHULUAN Diskripsi singkat Pada bab ini dibahas tentang derivatif macam-macam fungsi, yaitu fungsi aljabar, fungsi trigonometri, fungsi logaritma, fungsi

Lebih terperinci

MODEL LOGISTIK DENGAN DIFUSI PADA PERTUMBUHAN SEL TUMOR EHRLICH ASCITIES. Hendi Nirwansah 1 dan Widowati 2

MODEL LOGISTIK DENGAN DIFUSI PADA PERTUMBUHAN SEL TUMOR EHRLICH ASCITIES. Hendi Nirwansah 1 dan Widowati 2 MODEL LOGISTIK DEGA DIFUSI PADA PERTUMBUHA SEL TUMOR EHRLICH ASCITIES Hendi irwansah 1 dan Widowati 1, Jurusan Matematika FMIPA Universitas Diponegoro Jl. Prof. H. Soedarto, SH Tembalang Semarang 5075

Lebih terperinci

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL Pendahuluan Persamaan diferensial adalah persamaan yang memuat diferensial Kita akan membahas tentang Persamaan Diferensial Biasa yaitu

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Transformasi Laplace Salah satu cara untuk menganalisis gejala peralihan (transien) adalah menggunakan transformasi Laplace, yaitu pengubahan suatu fungsi waktu f(t) menjadi

Lebih terperinci

PDP linear orde 2 Agus Yodi Gunawan

PDP linear orde 2 Agus Yodi Gunawan PDP linear orde 2 Agus Yodi Gunawan Pada bagian ini akan dipelajari tiga jenis persamaan diferensial parsial (PDP) linear orde dua yang biasa dijumpai pada masalah-masalah dunia nyata, yaitu persamaan

Lebih terperinci

Pengantar Oseanografi V

Pengantar Oseanografi V Pengantar Oseanografi V Hidro : cairan Dinamik : gerakan Hidrodinamika : studi tentang mekanika fluida yang secara teoritis berdasarkan konsep massa elemen fluida or ilmu yg berhubungan dengan gerak liquid

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial Orde Satu Jurusan Matematika FMIPA-Unud Senin, 18 Desember 2017 Orde Satu Daftar Isi 1 Pendahuluan 2 Orde Satu Apakah Itu? Solusi Pemisahan Variabel Masalah Gerak 3 4 Orde Satu Pendahuluan Dalam subbab

Lebih terperinci

1.1 Latar Belakang dan Identifikasi Masalah

1.1 Latar Belakang dan Identifikasi Masalah BAB I PENDAHULUAN Seiring dengan pertumbuhan kebutuhan dan intensifikasi penggunaan air, masalah kualitas air menjadi faktor yang penting dalam pengembangan sumberdaya air di berbagai belahan bumi. Walaupun

Lebih terperinci

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Parsial Persamaan yang mengandung satu atau lebih turunan parsial suatu fungsi (yang diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan diferensial

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI. Sistem Pendulum Terbalik Dalam penelitian ini diperhatikan sistem pendulum terbalik seperti pada Gambar di mana sebuah pendulum terbalik dimuat dalam motor yang bisa digerakkan.

Lebih terperinci

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga JURNAL SAINS DAN SENI ITS Vol. 4, No.2, (2015) 2337-3520 (2301-928X Print) A-13 Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga Vimala Rachmawati dan Kamiran Jurusan

Lebih terperinci

DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG

DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG h Bab 3 DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG 3.1 Persamaan Gelombang untuk Dasar Sinusoidal Dasar laut berbentuk sinusoidal adalah salah satu bentuk dasar laut tak rata yang berupa fungsi sinus

Lebih terperinci

(T.8) SEBARAN ATIMTOTIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

(T.8) SEBARAN ATIMTOTIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT (T.8) SEBARAN ATIMTOTIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT Ro fah Nur Rachmawati Universitas Bina Nusantara Jl. K.H. Syahdan No. 9 Palmerah Jakarta Barat 11480 rrachmawati@binus.edu

Lebih terperinci

Persamaan Diferensial Biasa

Persamaan Diferensial Biasa Persamaan Diferensial Biasa Titik Tetap dan Sistem Linear Toni Bakhtiar Departemen Matematika IPB Oktober 2012 Toni Bakhtiar (m@thipb) PDB Oktober 2012 1 / 31 Titik Tetap SPD Mandiri dan Titik Tetap Tinjau

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Dalam bab ini dibahas tentang dasar-dasar teori yang digunakan untuk mengetahui kecepatan perambatan panas pada proses pasteurisasi pengalengan susu. Dasar-dasar teori tersebut meliputi

Lebih terperinci

Simulasi Model Mangsa Pemangsa Di Wilayah yang Dilindungi untuk Kasus Pemangsa Tergantung Sebagian pada Mangsa

Simulasi Model Mangsa Pemangsa Di Wilayah yang Dilindungi untuk Kasus Pemangsa Tergantung Sebagian pada Mangsa Simulasi Model Mangsa Pemangsa Di Wilayah yang Dilindungi untuk asus Pemangsa Tergantung Sebagian pada Mangsa Ipah Junaedi 1, a), Diny Zulkarnaen 2, b) 3, c), dan Siti Julaeha 1, 2, 3 Jurusan Matematika,

Lebih terperinci

1 BAB 4 ANALISIS DAN BAHASAN

1 BAB 4 ANALISIS DAN BAHASAN 1 BAB 4 ANALISIS DAN BAHASAN Pada bab ini akan dibahas pengaruh dasar laut tak rata terhadap perambatan gelombang permukaan secara analitik. Pengaruh dasar tak rata ini akan ditinjau melalui simpangan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Perpindahan Kalor Kalor adalah energi yang diterima oleh benda sehingga suhu benda atau wujudnya berubah. Ukuran jumlah kalor dinyatakan dalam satuan joule (J). Kalor disebut

Lebih terperinci

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS 2.1 Konsep Dasar Perpindahan Panas Perpindahan panas dapat terjadi karena adanya beda temperatur antara dua bagian benda. Panas akan mengalir dari

Lebih terperinci

II LANDASAN TEORI. Besaran merupakan frekuensi sudut, merupakan amplitudo, merupakan konstanta fase, dan, merupakan konstanta sembarang.

II LANDASAN TEORI. Besaran merupakan frekuensi sudut, merupakan amplitudo, merupakan konstanta fase, dan, merupakan konstanta sembarang. 2 II LANDASAN TEORI Pada bagian ini akan dibahas teori-teori yang digunakan dalam penyusunan karya ilmiah ini. Teori-teori tersebut meliputi osilasi harmonik sederhana yang disarikan dari [Halliday,1987],

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial merupakan persamaan yang didalamnya terdapat beberapa derivatif. Persamaan diferensial menyatakan hubungan antara derivatif dari satu variabel

Lebih terperinci

MASALAH SYARAT BATAS (MSB)

MASALAH SYARAT BATAS (MSB) Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo PENDAHULUAN MODEL KABEL MENGGANTUNG DEFINISI MSB Persamaan diferensial (PD) dikatakan berdimensi 1 jika domainnya berupa himpunan bagian pada R 1.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan diferensial Persamaan diferensial adalah suatu persamaan yang di dalamnya terdapat turunan-turunan. Jika terdapat variabel bebas tunggal, turunannya merupakan

Lebih terperinci

APLIKASI TURUNAN ALJABAR. Tujuan Pembelajaran. ) kemudian menyentuh bukit kedua pada titik B(x 2

APLIKASI TURUNAN ALJABAR. Tujuan Pembelajaran. ) kemudian menyentuh bukit kedua pada titik B(x 2 Kurikulum 3/6 matematika K e l a s XI APLIKASI TURUNAN ALJABAR Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Dapat menerapkan aturan turunan aljabar untuk

Lebih terperinci

Perpindahan Panas. Perpindahan Panas Secara Konduksi MODUL PERKULIAHAN. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh 02

Perpindahan Panas. Perpindahan Panas Secara Konduksi MODUL PERKULIAHAN. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh 02 MODUL PERKULIAHAN Perpindahan Panas Secara Konduksi Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh Teknik Teknik Mesin 02 13029 Abstract Salah satu mekanisme perpindahan panas adalah perpindahan

Lebih terperinci

GERAK LURUS Kedudukan

GERAK LURUS Kedudukan GERAK LURUS Gerak merupakan perubahan posisi (kedudukan) suatu benda terhadap sebuah acuan tertentu. Perubahan letak benda dilihat dengan membandingkan letak benda tersebut terhadap suatu titik yang diangggap

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH KALKULUS LANJUT A (S1 / TEKNIK INFORMATIKA ) KODE / SKS KD

SATUAN ACARA PERKULIAHAN MATA KULIAH KALKULUS LANJUT A (S1 / TEKNIK INFORMATIKA ) KODE / SKS KD SATUAN ACARA PERKULIAHAN MATA KULIAH KALKULUS LANJUT A (S1 / TEKNIK INFORMATIKA ) KODE / SKS KD-045315 Mingg u Ke Pokok Bahasan dan TIU Sub-pokok Bahasan dan Sasaran Belajar Cara Pengajaran Media Tugas

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN BAB 3 METODOLOGI PENELITIAN 3.1 Diagram Alir Penelitian Berikut adalah diagram alir penelitian konduksi pada arah radial dari pembangkit energy berbentuk silinder. Gambar 3.1 diagram alir penelitian konduksi

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema BAB II LANDASAN TEORI Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema yang akan menjadi landasan untuk pembahasan pada bab III nanti, di antaranya model matematika penyebaran penyakit,

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. HASIL PENELITIAN 1. Hasil Pengembangan Produk Penelitian ini merupakan penelitian pengembangan yang bertujuan untuk mengembangkan produk berupa Skema Pencapaian

Lebih terperinci

BAB 2 PDB Linier Order Satu 2

BAB 2 PDB Linier Order Satu 2 BAB Konsep Dasar BAB 2 PDB Linier Order Satu 2 BAB 3 Aplikasi PDB Order Satu 3 BAB 4 PDB Linier Order Dua 4 BAB 5 Aplikasi PDB Order Dua 5 BAB 6 Sistem PDB 6 BAB 7 PDB Nonlinier dan Kesetimbangan Dalam

Lebih terperinci

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A PENGANTAR MATEMATIKA TEKNIK 1 By : Suthami A MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK Matematika sebagai ilmu dasar yang digunakan sebagai alat pemecahan masalah di bidang keteknikan

Lebih terperinci

BAB II LANDASAN TEORI. A. Tinjauan Pustaka. 1. Vektor

BAB II LANDASAN TEORI. A. Tinjauan Pustaka. 1. Vektor BAB II LANDASAN TEORI A. Tinjauan Pustaka 1. Vektor Ada beberapa besaran fisis yang cukup hanya dinyatakan dengan suatu angka dan satuan yang menyatakan besarnya saja. Ada juga besaran fisis yang tidak

Lebih terperinci

IV HASIL DAN PEMBAHASAN

IV HASIL DAN PEMBAHASAN IV HASIL DAN PEMBAHASAN 4.1 Penentuan Titik Tetap Analisis titik tetap pada sistem persamaan diferensial sering digunakan untuk menentukan suatu solusi yang tidak berubah menurut waktu, yaitu pada saat

Lebih terperinci

DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L)

DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L) DERET FOURIER Bila f adalah fungsi periodic yang berperioda p, maka f adalah fungsi periodic. Berperiode n, dimana n adalah bilangan asli positif (+). Untuk setiap bilangan asli positif fungsi yang didefinisikan

Lebih terperinci

BAB II TEORI TERKAIT

BAB II TEORI TERKAIT II. TEORI TERKAIT BAB II TEORI TERKAIT 2.1 Pemodelan Penjalaran dan Transformasi Gelombang 2.1.1 Persamaan Pengatur Berkenaan dengan persamaan dasar yang digunakan model MIKE, baik deskripsi dari suku-suku

Lebih terperinci

BAB II KAJIAN TEORI. dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan

BAB II KAJIAN TEORI. dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan BAB II KAJIAN TEORI Pada bab ini akan dibahas mengenai nilai eigen dan vektor eigen, sistem dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan sistem dinamik, kriteria Routh-Hurwitz,

Lebih terperinci

BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut.

BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut. BAB III PEMBAHASAN Pada bab ini akan dibahas tentang penurunan model persamaan gelombang satu dimensi. Setelah itu akan ditentukan persamaan gelombang satu dimensi dengan menggunakan penyelesaian analitik

Lebih terperinci

6.6 Rantai Markov Kontinu pada State Berhingga

6.6 Rantai Markov Kontinu pada State Berhingga 6.6 Rantai Markov Kontinu pada State Berhingga Markov chain kontinu 0 adalah proses markov pada state 0, 1, 2,.... Diasumsikan bahwa probabilitas transisi adalah stasioner, pada persamaan, (6.53) Pada

Lebih terperinci

BAB 3 DINAMIKA STRUKTUR

BAB 3 DINAMIKA STRUKTUR BAB 3 DINAMIKA STRUKTUR Gerakan dari struktur terapung akan dipengaruhi oleh keadaan sekitarnya, dimana terdapat gaya gaya luar yang bekerja pada struktur dan akan menimbulkan gerakan pada struktur. Untuk

Lebih terperinci

KONSEP DASAR PERSAMAAN DIFERENSIAL

KONSEP DASAR PERSAMAAN DIFERENSIAL KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu fungsi (dasar). Sebagai

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN Pada Bab I Pendahuluan ini dijelaskan mengenai latar belakang yang mendasari penelitian yang kemudian dirumuskan dalam rumusan masalah. Berdasarkan latar belakang dan rumusan masalah

Lebih terperinci

Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial

Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial Ikhsan Maulidi Jurusan Matematika,Universitas Syiah Kuala, ikhsanmaulidi@rocketmail.com Abstract Artikel ini membahas tentang salah satu

Lebih terperinci

Integral lipat dua BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA. gambar 5.1 Luasan di bawah permukaan

Integral lipat dua BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA. gambar 5.1 Luasan di bawah permukaan BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA gambar 5.1 Luasan di bawah permukaan 61 Pada Matematika Dasar I telah dipelajari integral tertentu b f ( x) dx yang dapat didefinisikan, apabila f

Lebih terperinci

STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA

STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA Oleh : Farda Nur Pristiana 1208 100 059 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH

Lebih terperinci

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR DIFERENSIASI VEKTOR Materi pokok pertemuan ke 5 : 1. Turunan biasa fungsi vektor URAIAN MATERI Fungsi Vektor Jika sembarang nilai skalar t dikaitkan dengan suatu vektor, maka bisa dinyatakan sebagai fungsi

Lebih terperinci

III PEMBAHASAN. untuk setiap di dan untuk setiap, dengan. (Peressini et al. 1988)

III PEMBAHASAN. untuk setiap di dan untuk setiap, dengan. (Peressini et al. 1988) 4 untuk setiap di dan untuk setiap (Peressini et al 1988) Definisi 22 Teorema Deret Taylor Nilai hampiran f di x untuk fungsi di a (atau sekitar a atau berpusat di a) didefinisikan (Stewart 1999) 24 Kontrol

Lebih terperinci

III. HASIL DAN PEMBAHASAN

III. HASIL DAN PEMBAHASAN III. HASIL DAN PEMBAHASAN 3.1 Perumusan Masalah Misalkan adalah proses Poisson nonhomogen pada interval dengan fungsi intensitas yang tidak diketahui. Fungsi intensitas diasumsikan terintegralkan lokal

Lebih terperinci

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA. Definisi Gelombang dan klasifikasinya. Gelombang adalah suatu gangguan menjalar dalam suatu medium ataupun tanpa medium. Dalam klasifikasinya gelombang terbagi menjadi yaitu :. Gelombang

Lebih terperinci

FUNGSI, SISTEM PERSAMAAN LINIER DAN MENGGAMBAR GRAFIK

FUNGSI, SISTEM PERSAMAAN LINIER DAN MENGGAMBAR GRAFIK FUNGSI, SISTEM PERSAMAAN LINIER DAN MENGGAMBAR GRAFIK TUGAS MATEMATIKA EKONOMI DISUSUN OLEH : DENY PRASETYA 01212074 IAN ANUGERAH 01212035 M. UMAR A 01212016 ARON GARDIKA 01212140 SAIFUL RAHMAN 01212020

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Potensial Coulomb untuk Partikel yang Bergerak Dalam bab ini, akan dikemukakan teori-teori yang mendukung penyelesaian pembahasan pengaruh koreksi relativistik potensial Coulomb

Lebih terperinci

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( )

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( ) II. TINJAUAN PUSTAKA 2.1 Definisi Turunan Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada sebarang bilangan c adalah asalkan limit ini ada. Jika limit ini memang ada, maka dikatakan

Lebih terperinci

Teori Relativitas. Mirza Satriawan. December 7, Fluida Ideal dalam Relativitas Khusus. M. Satriawan Teori Relativitas

Teori Relativitas. Mirza Satriawan. December 7, Fluida Ideal dalam Relativitas Khusus. M. Satriawan Teori Relativitas Teori Relativitas Mirza Satriawan December 7, 2010 Fluida Ideal dalam Relativitas Khusus Quiz 1 Tuliskan perumusan kelestarian jumlah partikel dengan memakai vektor-4 fluks jumlah partikel. 2 Tuliskan

Lebih terperinci

Kelompok Mata Kuliah : MKU Program Studi/Program : Teknik Tenaga Elektrik/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T.

Kelompok Mata Kuliah : MKU Program Studi/Program : Teknik Tenaga Elektrik/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T. DESKRIPSI MATA KULIAH TK-... Matematika Dasar: S1, 3 SKS, Semester I Mata kuliah ini merupakan kuliah dasar. Selesai mengikuti perkuliahan ini mahasiswa diharapkan mampu memahami konsep-konsep matematika

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral ii Darpublic BAB Fungsi Linier.. Fungsi Tetapan Fungsi tetapan bernilai tetap untuk rentang nilai x dari sampai +. Kita tuliskan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Panas merupakan suatu bentuk energi yang ada di alam. Panas juga merupakan suatu energi yang sangat mudah berpindah (transfer). Transfer panas disebabkan oleh adanya

Lebih terperinci

Persamaan Diferensial Parsial Umum Orde Pertama

Persamaan Diferensial Parsial Umum Orde Pertama Persamaan Diferensial Parsial Umum Orde Pertama Persamaan diferensial parsial umum orde pertama untuk fungsi memiliki bentuk: di mana dan. Dalam hal ini dipandang sebagai fungsi dari lima argumen. Di sini

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS)

RENCANA PEMBELAJARAN SEMESTER (RPS) RENCANA PEMBELAJARAN SEMESTER (RPS) MUG1B4 KALKULUS 2 Disusun oleh: Jondri, M.Si. PROGRAM STUDI S1 TEKNIK INFORMATIKA FAKULTAS INFORMATIKA TELKOM UNIVERSITY LEMBAR PENGESAHAN Rencana Semester (RPS) ini

Lebih terperinci