BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan"

Transkripsi

1 BAB I PENDAHULUAN Pada Bab I akan dibahas latar belakang dan permasalahan penulisan tesis. Berdasarkan latar belakang, akan disusun tujuan dan manfaat dari penulisan tesis. Selain itu, literatur-literatur yang mendasari tesis ini akan diuraikan secara sistematis dalam tinjauan pustaka. Dalam metodelogi penelitian, akan diuraikan langkah-langkah yang akan ditempuh untuk menyelesaikan permasalahan. Uraian garis besar isi dari tiap Bab terdapat pada sistematika penulisan Latar Belakang dan Permasalahan Perubahan suhu merupakan salah satu masalah yang sering dijumpai dalam kehidupan nyata. Perubahan suhu suatu sistem disebabkan oleh perubahan energi internal sistem tersebut karena terjadi perpindahan energi antara sistem dan lingkungannya. Energi yang dipindahkan antara sistem dan lingkungannya karena perbedaan suhu diantara keduanya dinamakan panas (Halliday et al., 2010). Perpindahan panas dapat dilakukan melalui tiga cara, yaitu konduksi, konveksi, dan radiasi. Perpindahan panas secara konduksi merupakan perpindahan panas tanpa disertai pergerakan partikel penyusunnya. Beberapa penelitian yang berhubungan dengan perpindahan panas konduksi, yaitu perpindahan panas konduksi pada proses pemanasan laser dibahas oleh Yilbas and Shuja (1997), perpindahan panas konduksi pada plat datar serta efek panas yang dihasilkan dikaji oleh Mamun et al. (2008), dan perilaku perpindahan panas konduksi pada sistem plat dingin yang digunakan untuk avionik (peralatan elektronik penerbangan) diteliti oleh Chun- Xin and Chao-Bin (1995). Permasalahan perpindahan panas secara konduksi dapat dimodelkan secara matematika dalam bentuk persamaan diferensial. Persamaan diferensial tersebut dikenal sebagai persamaan konduksi panas. Solusi dari persamaan konduksi panas adalah fungsi suhu yang bergantung variabel ruang dan waktu. 1

2 2 Persamaan diferensial dapat diselesaikan secara analitik dan numerik. Permasalahan yang timbul adalah persamaan diferensial sulit diselesaikan secara analitik. Oleh karena itu, solusi analitik dari persamaan diferensial akan didekati dengan metode numerik. Metode beda hingga adalah metode numerik yang sering digunakan untuk menyelesaikan persamaan diferensial. Livne and Glasner (1985) beralasan bahwa metode beda hingga merupakan metode yang akurat. Hogarth et al. (1990) menggunakan metode beda hingga untuk menyelesaikan persamaan transport dengan syarat batas dan syarat awal fungsi yang diskontinu. Dai and Nassar (2002) juga menggunakan metode beda hingga untuk menyelesaikan persamaan transport panas tiga dimensi. Metode beda hingga menghasilkan skema eksplisit, tetapi terdapat metode beda hingga yang menghasilkan skema implisit yaitu metode beda hingga kompak. Skema pada metode beda hingga kompak merupakan skema implisit yang memberikan akurasi tinggi daripada skema eksplisit pada metode beda hingga (Shukla and Zhong, 2005). Tesis ini mengkaji ulang paper yang ditulis oleh Han and Dai (2013). Permasalahan yang akan dibahas dalam tesis ini adalah sebagai berikut. 1) Memodelkan persamaan konduksi panas 1-dimensi dengan suhu berubah terhadap waktu dan terdapat sumber panas. 2) Membentuk skema pendekatan untuk turunan tingkat dua terhadap variabel ruang pada persamaan konduksi panas 1-dimensi dengan metode beda hingga kompak. 3) Membentuk skema pendekatan dari persamaan konduksi panas satu dimensi dengan metode Crank-Nicolson, metode tersebut digunakan untuk menentukan solusi pendekatan dari persamaan konduksi panas 1-dimensi. Selanjutnya, akan ditentukan kestabilan dan penyelesaian dari skema tersebut. 4) Menyusun algoritma pemrograman dan implementasi program dengan menggunakan software Matlab untuk mendapatkan solusi pendekatan dari persamaan konduksi panas 1-dimensi. 5) Mengaplikasikan ekstrapolasi Richardson untuk mendapatkan solusi pendekatan terhadap variabel waktu yang akurat.

3 Tujuan dan Manfaat Penelitian Tujuan dari penelitian ini adalah sebagai berikut. 1) Mendapatkan bentuk skema beda hingga kompak untuk turunan tingkat dua terhadap variabel ruang pada persamaan konduksi panas 1-dimensi. 2) Mendapatkan skema pendekatan dari persamaan konduksi panas 1-dimensi dengan metode Crank-Nicolson dan kestabilannya. 3) Mengetahui aplikasi dari ekstrapolasi Richardson pada solusi pendekatan persamaan konduksi panas 1-dimensi. Manfaat yang dapat diperoleh dari penelitian ini adalah metode beda hingga kompak dapat menjadi alternatif untuk menyelesaikan aplikasi dari persamaan konduksi panas 1-dimensi dengan tingkat akurasi lebih tinggi daripada metode beda hingga Tinjauan Pustaka Panas merupakan energi yang dipindahkan antara sistem dan lingkungannya karena terjadi perbedaan suhu diantara keduanya (Halliday et al., 2010). Jika terdapat perbedaan suhu pada sistem, maka terjadi perpindahan energi dari sistem yang bersuhu tinggi ke sistem yang bersuhu rendah (Holman, 2010). Perpindahan panas merupakan permasalahan dalam kehidupan sehari-hari yang dapat dimodelkan dalam bentuk persamaan matematika. Pemodelan matematika umumnya berbentuk persamaan diferensial yang disertai dengan syarat awal dan syarat batas. Perpindahan panas secara konduksi dapat dimodelkan dalam persamaan konduksi panas. Persamaan konduksi panas merupakan persamaan diferensial parsial linear orde dua dengan tipe parabolik. Konsep-konsep dasar tentang persamaan diferensial parsial diberikan oleh Ross (1984), sedangkan konsep tentang syarat awal dan syarat batas diberikan oleh Bradie (2006) serta Humi and Miller (1992). Masalah konduksi panas dengan syarat batas Dirichlet dan Neumann sering ditemui di berbagai masalah aplikasi teknik (Han and Dai, 2013). Riley et al. (2006) serta Arfken and Weber (2005)

4 4 menyatakan bahwa syarat batas yang sesuai dengan persamaan diferensial parabolik adalah Dirichlet dan Neumann. Nilai turunan suatu fungsi dapat didekati secara numerik dengan metode beda hingga (Humi and Miller, 1992). Skema pendekatan dari metode beda hingga dapat diperoleh dari 2 cara, yaitu deret Taylor dan koefisien tak tentu. Skema beda hingga yang diperoleh dengan deret Taylor terdapat dalam Humi and Miller (1992). Skema beda hingga yang diperoleh dengan koefisien tak tentu terdapat dalam Moin (2010). Pendekatan nilai turunan suatu fungsi tidak hanya dapat ditentukan dengan skema beda hingga yang berbentuk skema eksplisit, tetapi juga dapat ditentukan dengan skema beda hingga yang berbentuk skema implisit. Skema beda hingga dengan bentuk skema implisit disebut skema pendekatan Padé. Menurut Moin (2010), skema pendekatan Padé merupakan skema implisit karena untuk menentukan nilai turunan fungsi, tidak hanya digunakan nilai fungsi pada grid point tertentu, tetapi juga digunakan nilai turunan fungsi pada grid point tertentu tersebut. Skema pendekatan Padé dikatakan kompak karena memerlukan informasi dari titik di persekitaran i, misal titik i 1 dan i 1. Seperti pada Moin (2010), Shah et al. (2010) juga menyatakan untuk menentukan turunan dengan menggunakan beda hingga kompak dilakukan secara implisit dalam arti bahwa nilai turunan di grid point tertentu dihitung tidak hanya dari nilai fungsi tetapi juga dari nilai-nilai turunan di grid point sekitarnya. Jika dipandang dengan orde sama, maka skema beda hingga kompak memanfaatkan grid point yang lebih kecil daripada skema beda hingga tidak kompak. Skema beda hingga tidak kompak merupakan skema beda hingga yang berbentuk skema eksplisit. Beberapa metode yang digunakan untuk menyelesaikan persamaan konduksi panas secara numerik, yaitu metode eksplisit, metode implisit, metode Crank-Nicolson. Teori tentang metode-metode tersebut terdapat dalam Morton and Mayer (2005), Humi and Miller (1992), serta Bradie (2006). Metode-metode tersebut merupakan penyederhanaan dari masalah syarat batas suatu persamaan diferensial ke sistem persamaan linear (Humi and Miller, 1992).

5 5 Dalam tesis ini, metode Crank-Nicolson digunakan untuk menentukan solusi numerik dari persamaan konduksi panas 1-dimensi, karena terhadap variabel waktu, metode Crank-Nicolson mempunyai orde lebih tinggi dibandingkan metode eksplisit dan implisit. Ekstrapolasi Richardson digunakan untuk mendapatkan solusi pendekatan terhadap variabel waktu yang akurat. Teori tentang ekstrapolasi Richardson diberikan oleh Joyce (1971) dan Shapiro (2008). Selain itu, dalam tesis ini juga diperhatikan adanya fenomena Gibbs. Teori tentang fenomena Gibbs diberikan oleh Humi and Miller (1992). Analisis kestabilan skema pendekatan persamaan konduksi panas 1-dimensi yang diperoleh dari metode Crank-Nicolson akan dibahas dalam Tesis ini. Teori pendukung untuk membuktikan kestabilan metode numerik diberikan oleh Morton and Mayer (2005) Atkinson (1989) dan Isaacson and Keller (1966). Tesis ini mengkaji ulang paper yang ditulis oleh Han and Dai (2013). Kontribusi penyusun dalam tesis ini adalah melengkapi bukti-bukti teorema dan lemma yang ada dalam paper, menyusun algoritma pemrograman serta mengimplementasikan program dalam software Matlab dan menambah contoh persamaan konduksi panas 1-dimensi dengan sumber panas yang diambil dari Zhao et al. (2006) Metodologi Penelitian Metode penelitian yang digunakan dalam tesis ini adalah studi literatur dari beberapa buku dan paper terkait. Penulis mempelajari konsep dasar tentang perpindahan panas, pemodelan perpindahan panas secara konduksi dengan asumsi suhu berubah terhadap waktu dan terdapat sumber panas. Penulis mempelajari konsep dasar skema beda hingga yang diperoleh dengan deret Taylor ataupun yang diperoleh dengan menggunakan koefisien tak tentu. Penulis juga mempelajari konsep dasar skema pendekatan Padé yang diperoleh dengan menggunakan koefisien tak tentu. Dalam tesis ini, yang dimaksud dengan skema beda hingga kompak adalah skema pendekatan Padé. Langkah awal yang dilakukan untuk menyelesaikan persamaan konduksi panas 1-dimensi secara numerik adalah membentuk grid point dari domain

6 6 persamaan konduksi panas satu dimensi yang disertai syarat awal dan syarat batas. Dalam tesis ini, hanya digunakan syarat batas Dirichlet dan Neumann. Pendekatan turunan tingkat dua terhadap variabel ruang pada persamaan konduksi panas 1dimensi akan ditentukan dengan membentuk skema beda hingga kompak. Skema pendekatan persamaan konduksi panas 1-dimensi akan ditentukan dengan metode Crank-Nicolson. Skema pendekatan yang diperoleh, diselidiki kestabilannya. Ekstrapolasi Richardson digunakan untuk mendapatkan solusi pendekatan terhadap variabel waktu yang akurat. Algoritma pemrograman disusun sesuai dengan skema pendekatan persamaan konduksi panas 1-dimensi dan diimplementasikan dalam program dalam software Matlab Sistematika Penulisan Penulisan tesis ini terdiri dari 4 Bab, yaitu Bab I Pendahuluan, Bab II Landasan Teori, Bab III Skema Beda Hingga Kompak Orde Tinggi untuk Persamaan Konduksi Panas 1-Dimensi, dan Bab IV Penutup. Bab I PENDAHULUAN memuat latar belakang dan permasalahan, tujuan dan manfaat penelitian, tinjauan pustaka, metode penelitian, dan sistematika penulisan. Bab II LANDASAN TEORI memuat teori tentang persamaan diferensial, syarat awal dan syarat batas, diferensiasi numerik, skema pendekatan persamaan panas dengan metode beda hingga, ekstrapolasi Richardson, fenomena Gibbs, spectral radius, serta analisis kestabilan. Bab III SKEMA BEDA HINGGA KOMPAK ORDE TINGGI UNTUK PERSAMAAN KONDUKSI PANAS 1-DIMENSI memuat skema pendekatan Padé, persamaan konduksi panas, skema beda hingga kompak untuk persamaan konduksi panas 1-dimensi, skema pendekatan untuk persamaan konduksi panas 1dimensi dengan metode Crank-Nicolson serta kestabilannya, ekstrapolasi Richardson untuk skema pendekatan persamaan konduksi panas 1-dimensi, dan contoh numerik persamaan konduksi panas 1-dimensi. Bab IV PENUTUP terdiri dari kesimpulan dan saran yang dapat diambil dari penulisan tesis.

BAB I PENDAHULUAN. tesis ini. Selain itu, literatur-literatur yang mendasari tesis ini akan diuraikan

BAB I PENDAHULUAN. tesis ini. Selain itu, literatur-literatur yang mendasari tesis ini akan diuraikan 1 BAB I PENDAHULUAN Pada Bab I akan dibahas latar belakang dan permasalahan penulisan tesis ini. Berdasarkan latar belakang, akan disusun tujuan dan manfaat dari penulisan tesis ini. Selain itu, literatur-literatur

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam kehidupan sehari-hari banyak permasalahan yang muncul di lingkungan sekitar. Hal tersebut yang memicu kreatifitas berpikir manusia untuk menyelesaikan

Lebih terperinci

Sidang Tugas Akhir - Juli 2013

Sidang Tugas Akhir - Juli 2013 Sidang Tugas Akhir - Juli 2013 STUDI PERBANDINGAN PERPINDAHAN PANAS MENGGUNAKAN METODE BEDA HINGGA DAN CRANK-NICHOLSON COMPARATIVE STUDY OF HEAT TRANSFER USING FINITE DIFFERENCE AND CRANK-NICHOLSON METHOD

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan salah satu cabang ilmu pengetahuan yang memiliki banyak manfaat, diantaranya sebagai salah satu ilmu bantu yang sangat penting dalam kehidupan

Lebih terperinci

BAB I PENDAHULUAN. perkembangan bakteri, sedangkan dalam bidang teknik yaitu pemodelan

BAB I PENDAHULUAN. perkembangan bakteri, sedangkan dalam bidang teknik yaitu pemodelan BAB I PENDAHULUAN A. Latar Belakang Masalah Persamaan Diferensial merupakan salah satu topik dalam matematika yang cukup menarik untuk dikaji lebih lanjut. Hal itu karena banyak permasalahan kehidupan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Pembahasan tentang persamaan diferensial parsial terus berkembang baik secara teori maupun aplikasi. Dalam pemodelan matematika pada permasalahan di bidang

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Hal ini karena, matematika banyak diterapkan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Persamaan diferensial adalah persamaan yang memuat derivatif dari satu atau lebih variabel tak bebas terhadap satu atau lebih variabel bebas. Persamaan diferensial

Lebih terperinci

BAB I PENDAHULUAN. pedoman untuk menyelesaikan permasalahan sehari-hari dan juga untuk

BAB I PENDAHULUAN. pedoman untuk menyelesaikan permasalahan sehari-hari dan juga untuk BAB I PENDAHULUAN A. Latar Belakang Masalah Matematika merupakan salah satu ilmu pengetahuan yang sering menjadi pedoman untuk menyelesaikan permasalahan sehari-hari dan juga untuk menunjang perkembangan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan salah satu ilmu pengetahuan yang sudah lama dipelajari dan berkembang pesat. Perkembangan ilmu matematika tidak terlepas dari perkembangan

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang

BAB 1 PENDAHULUAN 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Suhu merupakan salah satu dimensi pengukuran. Nilai dari suhu dapat diukur pada suatu lingkungan dan suhu mengalami kenaikan dan penurunan karena adanya perambatan

Lebih terperinci

BAB I PENDAHULUAN. perpindahan energi yang mungkin terjadi antara material atau benda sebagai akibat

BAB I PENDAHULUAN. perpindahan energi yang mungkin terjadi antara material atau benda sebagai akibat BAB I PENDAHULUAN A. LATAR BELAKANG Ilmu termodinamika merupakan ilmu yang berupaya untuk memprediksi perpindahan energi yang mungkin terjadi antara material atau benda sebagai akibat dari perbedaan suhu

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Aryati dkk.(2003) menyatakan bahwa persamaan diferensial adalah formulasi matematis dari masalah di berbagai bidang kehidupan. Persamaan diferensial sering

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam kehidupan sehari-hari banyak permasalahan yang muncul di lingkungan sekitar. Hal tersebut dapat dikembangkan melalui pemodelan matematika. Sehingga dengan

Lebih terperinci

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai. I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Dalam kehidupan, polusi yang ada di sungai disebabkan oleh limbah dari pabrikpabrik dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE)

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE) Bab 2 Landasan Teori Dalam bab ini akan dibahas mengenai Persamaan Air Dangkal dan dasar-dasar teori mengenai metode beda hingga untuk menghampiri solusi dari persamaan diferensial parsial. 2.1 Persamaan

Lebih terperinci

BAB I PENDAHULUAN. digunakan untuk masalah-masalah dalam kehidupan sehari-hari, diantaranya

BAB I PENDAHULUAN. digunakan untuk masalah-masalah dalam kehidupan sehari-hari, diantaranya BAB I PENDAHULUAN A. Latar Belakang Masalah Persamaan Diferensial merupakan ilmu matematika yang dapat digunakan untuk masalah-masalah dalam kehidupan sehari-hari, diantaranya dalam ilmu kesehatan yaitu

Lebih terperinci

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang beberapa teori dasar yang digunakan sebagai landasan pembahasan pada bab III. Beberapa teori dasar yang dibahas, diantaranya teori umum tentang persamaan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Umum Perpindahan panas adalah perpindahan energi yang terjadi pada benda atau material yang bersuhu tinggi ke benda atau material yang bersuhu rendah, hingga tercapainya kesetimbangan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Solusi multivalued dapat muncul dalam masalah-masalah fisika. Masalahmasalah yang memerlukan perhitungan solusi multivalued antara lain masalah gelombang dispersi,

Lebih terperinci

STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA

STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA Oleh : Farda Nur Pristiana 1208 100 059 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika adalah salah satu ilmu pengetahuan yang mempunyai peranan sangat besar dalam kehidupan nyata. Salah satu bagian dari matematika adalah persamaan

Lebih terperinci

METODE BEDA HINGGA PADA KESTABILAN PERSAMA- AN DIFUSI KOMPLEKS DIMENSI SATU

METODE BEDA HINGGA PADA KESTABILAN PERSAMA- AN DIFUSI KOMPLEKS DIMENSI SATU PROSIDING ISSN: 50-656 METODE BEDA HINGGA PADA KESTABILAN PERSAMA- AN DIFUSI KOMPLEKS DIMENSI SATU Danar Ardian Pramana, M.Sc 1) 1) DIV TeknikInformatikaPoliteknikHarapanBersama danar_ardian@ymail.com

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Hal ini karena, matematika banyak diterapkan

Lebih terperinci

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan BAB II KAJIAN TEORI Pada bab ini akan dibahas beberapa hal yang digunakan sebagai landasan pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Dalam bab ini dibahas tentang dasar-dasar teori yang digunakan untuk mengetahui kecepatan perambatan panas pada proses pasteurisasi pengalengan susu. Dasar-dasar teori tersebut meliputi

Lebih terperinci

Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit

Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit Vol. 11, No. 2, 105-114, Januari 2015 Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit Rezki Setiawan Bachrun *,Khaeruddin **,Andi Galsan Mahie *** Abstrak

Lebih terperinci

Perbandingan Skema Numerik Metode Finite Difference dan Spectral

Perbandingan Skema Numerik Metode Finite Difference dan Spectral Jurnal Ilmiah Teknologi dan Informasia ASIA (JITIKA) Vol.10, No.2, Agustus 2016 ISSN: 0852-730X Perbandingan Skema Numerik Metode Finite Difference dan Spectral Lukman Hakim 1, Azwar Riza Habibi 2 STMIK

Lebih terperinci

1.1 Latar Belakang dan Identifikasi Masalah

1.1 Latar Belakang dan Identifikasi Masalah BAB I PENDAHULUAN Seiring dengan pertumbuhan kebutuhan dan intensifikasi penggunaan air, masalah kualitas air menjadi faktor yang penting dalam pengembangan sumberdaya air di berbagai belahan bumi. Walaupun

Lebih terperinci

SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON

SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON Viska Noviantri Mathematics & Statistics Department, School of Computer Science, Binus University Jl. K.H. Syahdan No. 9,

Lebih terperinci

APLIKASI METODE BEDA HINGGA SKEMA EKSPLISIT PADA PERSAMAAN KONDUKSI PANAS

APLIKASI METODE BEDA HINGGA SKEMA EKSPLISIT PADA PERSAMAAN KONDUKSI PANAS Sulistyono, Metode Beda Hingga Skema Eksplisit 4 APLIKASI METODE BEDA HINGGA SKEMA EKSPLISIT PADA PERSAMAAN KONDUKSI PANAS Bambang Agus Sulistyono Program Studi Pendidikan Matematika FKIP UNP Kediri bb7agus@gmail.com

Lebih terperinci

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga JURNAL SAINS DAN SENI ITS Vol. 4, No.2, (2015) 2337-3520 (2301-928X Print) A-13 Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga Vimala Rachmawati dan Kamiran Jurusan

Lebih terperinci

BAB 1 PENDAHULUAN. pemanasan tersebut akan timbul suatu masalah apabila daerah yang dipanaskan

BAB 1 PENDAHULUAN. pemanasan tersebut akan timbul suatu masalah apabila daerah yang dipanaskan BAB 1 PENDAHULUAN 1.1 Latar Belakang Penggunaan laser dalam bidang kedokteran sudah mulai sering dipakai, misalnya untuk terapi kanker kulit yaitu dengan memanaskannya. Akan tetapi dalam pemanasan tersebut

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Integral merupakan salah satu dari dua operasi utama dalam kalkulus. Jauh sebelum integral diperkenalkan, para matematikawan telah lebih dulu mengembangkan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Di antara beberapa disiplin ilmu, fisika

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial adalah suatu persamaan diantara derivatif-derivatif yang dispesifikasikan pada suatu fungsi yang tidak diketahui nilainya dan diketahui jumlah

Lebih terperinci

I PENDAHULUAN 1.1 Latar Belakang dan Perumusan Masalah

I PENDAHULUAN 1.1 Latar Belakang dan Perumusan Masalah I PENDAHULUAN 1.1 Latar Belakang dan Perumusan Masalah Penelusuran tentang fenomena belalang merupakan bahasan yang baik untuk dipelajari karena belalang dikenal suka berkelompok dan berpindah. Dalam kelompok,

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN BAB 3 METODOLOGI PENELITIAN 3.1 Diagram Alir Penelitian Berikut adalah diagram alir penelitian konduksi pada arah radial dari pembangkit energy berbentuk silinder. Gambar 3.1 diagram alir penelitian konduksi

Lebih terperinci

II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Definisi 1 [Sistem Persamaan Diferensial Linear (SPDL)]

II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Definisi 1 [Sistem Persamaan Diferensial Linear (SPDL)] II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Definisi 1 [Sistem Persamaan Diferensial Linear (SPDL)] Suatu sistem persamaan diferensial dinyatakan sebagai berikut: A adalah matriks koefisien konstan

Lebih terperinci

Solusi Persamaan Laplace Menggunakan Metode Crank-Nicholson. (The Solution of Laplace Equation Using Crank-Nicholson Method)

Solusi Persamaan Laplace Menggunakan Metode Crank-Nicholson. (The Solution of Laplace Equation Using Crank-Nicholson Method) Prosiding Seminar Nasional Matematika, Universitas Jember, 19 November 2014 320 Persamaan Laplace Menggunakan Metode Crank-Nicholson (The Solution of Laplace Equation Using Crank-Nicholson Method) Titis

Lebih terperinci

PDP linear orde 2 Agus Yodi Gunawan

PDP linear orde 2 Agus Yodi Gunawan PDP linear orde 2 Agus Yodi Gunawan Pada bagian ini akan dipelajari tiga jenis persamaan diferensial parsial (PDP) linear orde dua yang biasa dijumpai pada masalah-masalah dunia nyata, yaitu persamaan

Lebih terperinci

III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan

III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan 6, 1 (2.52) Berdasarkan persamaan (2.52), maka untuk 0 1 masing-masing memberikan persamaan berikut:, 0,0, 0, 1,1, 1. Sehingga menurut persamaan (2.51) persamaan (2.52) diperoleh bahwa fungsi, 0, 1 masing-masing

Lebih terperinci

BAB I PENDAHULUAN. Akibatnya model matematika sistem dinamik mengandung derivative biasa

BAB I PENDAHULUAN. Akibatnya model matematika sistem dinamik mengandung derivative biasa 1 BAB I PENDAHULUAN 1.1 Latar Belakang Ilmu Pengetahuan memberikan landasan teori bagi perkembangan teknologi, salah satunya adalah matematika. Cabang matematika modern yang mempunyai cakupan wilayah penelitian

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Persamaan Diferensial Parsial (PDP) digunakan oleh Newton dan para ilmuwan pada abad ketujuhbelas untuk mendeskripsikan tentang hukum-hukum dasar pada fisika.

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pada metode numerik, dikenal suatu metode untuk menaksir atau mencari solusi pendekatan nilai eksak dari suatu ordinat y n+1 dengan diketahui nilai dari y n,

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Energi panas merupakan salah satu wujud energi yang masuk ke dalam kategori energi kinetis dalam dunia fisika. Ketika suatu benda terbilang panas, benda tersebut mengandung

Lebih terperinci

BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut.

BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut. BAB III PEMBAHASAN Pada bab ini akan dibahas tentang penurunan model persamaan gelombang satu dimensi. Setelah itu akan ditentukan persamaan gelombang satu dimensi dengan menggunakan penyelesaian analitik

Lebih terperinci

BAB 4 ANALISIS DAN BAHASAN

BAB 4 ANALISIS DAN BAHASAN BAB 4 ANALISIS DAN BAHASAN 4.1 Model LWR Pada skripsi ini, model yang akan digunakan untuk memodelkan kepadatan lalu lintas secara makroskopik adalah model LWR yang dikembangkan oleh Lighthill dan William

Lebih terperinci

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Parsial Persamaan yang mengandung satu atau lebih turunan parsial suatu fungsi (yang diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan diferensial

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan

BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan BAB I PENDAHULUAN Pada bab ini akan dijelaskan mengenai latar belakang permasalahan, tujuan penulisan, tinjauan pustaka, metode penelitian, dan sistematika penulisan. 1.1. Latar Belakang Permasalahan Dalam

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perekonomian jaman sekarang berkembang sangat pesat. Hal ini dapat dilihat pada persaingan antar perusahaan yang semakin ketat, khususnya perusahaan yang bergerak di

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Teknologi perangkat mikro berkembang sangat pesat seiring meningkatnya teknologi mikrofabrikasi. Aplikasi perangkat mikro diantaranya ialah pada microelectro-mechanical

Lebih terperinci

TINJAUAN MATA KULIAH... Kegiatan Belajar 2: PD Variabel Terpisah dan PD Homogen Latihan Rangkuman Tes Formatif

TINJAUAN MATA KULIAH... Kegiatan Belajar 2: PD Variabel Terpisah dan PD Homogen Latihan Rangkuman Tes Formatif iii Daftar Isi TINJAUAN MATA KULIAH... xiii MODUL 1: PERSAMAAN DIFERENSIAL ORDE SATU 1.1 Pengertian PD Orde Satu dan Solusinya... 1.2 Latihan... 1.7 Rangkuman... 1.9 Tes Formatif 1..... 1.10 PD Variabel

Lebih terperinci

ANALISIS KESTABILAN HELICOVERPA ARMIGERA

ANALISIS KESTABILAN HELICOVERPA ARMIGERA ANALISIS KESTABILAN HELICOVERPA ARMIGERA (HAMA PENGGEREK BUAH) DAN PAEDERUS FUSCIPES SP (TOMCAT) DENGAN MODEL MANGSA-PEMANGSA DAN RESPON FUNGSIONAL MICHAELIS MENTEN DENGAN METODE BEDA HINGGA MAJU SKRIPSI

Lebih terperinci

EFEK DISKRITASI METODE GALERKIN SEMI DISKRET TERHADAP AKURASI DARI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI

EFEK DISKRITASI METODE GALERKIN SEMI DISKRET TERHADAP AKURASI DARI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI JURNAL MATEMATIKA DAN KOMPUTER EFEK DISKRITASI METODE GALERKIN SEMI DISKRET TERHADAP AKURASI DARI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI Kushartantya dan Awalina Kurniastuti Jurusan Matematika

Lebih terperinci

II. TINJAUAN PUSTAKA Nutrient Film Technique (NFT) 2.2. Greenhouse

II. TINJAUAN PUSTAKA Nutrient Film Technique (NFT) 2.2. Greenhouse II. TINJAUAN PUSTAKA 2.1. Nutrient Film Technique (NFT) Nutrient film technique (NFT) merupakan salah satu tipe spesial dalam hidroponik yang dikembangkan pertama kali oleh Dr. A.J Cooper di Glasshouse

Lebih terperinci

Persamaan Diferensial Parsial CNH3C3

Persamaan Diferensial Parsial CNH3C3 Persamaan Diferensial Parsial CNH3C3 Week 11-12: Finite Dierence Method for PDE Wave Eqs Tim Ilmu Komputasi Coordinator contact: Dr. Putu Harry Gunawan phgunawan@telkomuniversity.ac.id 1 Masalah Gelombang

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan salah satu bidang ilmu yang sangat berperan dalam kehidupan sehari-hari. Banyak permasalahan dalam kehidupan sehari-hari yang akan lebih

Lebih terperinci

PAM 252 Metode Numerik Bab 5 Turunan Numerik

PAM 252 Metode Numerik Bab 5 Turunan Numerik Pendahuluan PAM 252 Metode Numerik Bab 5 Turunan Numerik Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Turunan Numerik Permasalahan

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA 6 II. TINJAUAN PUSTAKA Dalam bab ini diberikan beberapa definisi dan istilah yang digunakan dalam penelitian ini. Definisi 2.1 (Turunan) Turunan merupakan pengukuran terhadap bagaimana fungsi berubah.

Lebih terperinci

SIMULASI NUMERIK POLA DISTRIBUSI SUHU PADA PLAT LOGAM DENGAN METODE BEDA HINGGA

SIMULASI NUMERIK POLA DISTRIBUSI SUHU PADA PLAT LOGAM DENGAN METODE BEDA HINGGA SIMULASI NUMERIK POLA DISTRIBUSI SUHU PADA PLAT LOGAM DENGAN METODE BEDA HINGGA SKRIPSI oleh RO SIL QOHHAR L W NIM 080210192046 PROGRAM STUDI PENDIDIKAN FISIKA JURUSAN PENDIDIKAN MIPA FAKULTAS KEGURUAN

Lebih terperinci

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Air merupakan kebutuhan penting bagi pertumbuhan tanaman. Namun, pada saat musim kemarau tiba atau di daerah dengan intensitas hujan rendah, ketersediaan air

Lebih terperinci

PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV

PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 415-422 PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV Iyut Riani, Nilamsari

Lebih terperinci

Pengaruh Karakteristik Logam Dalam Elemen Pemanas Terhadap Waktu Pengeringan Kayu

Pengaruh Karakteristik Logam Dalam Elemen Pemanas Terhadap Waktu Pengeringan Kayu Pengaruh Karakteristik Logam Dalam Elemen Pemanas Terhadap Waktu Pengeringan Kayu Oleh : Alifinanda Firca Ardini 1209100064 Pembimbing: Drs.Lukman Hanafi, M.Sc Abstrak Indonesia merupakan negara penghasil

Lebih terperinci

BAB II LANDASAN TEORI. Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan

BAB II LANDASAN TEORI. Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan BAB II LANDASAN TEORI Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan teorema-teorema yang akan menjadi landasan untuk pembahasan pada Bab III nanti, diantaranya: fungsi komposisi,

Lebih terperinci

PENYELESAIAN PERSAMAAN POISSON 2D DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN CONJUGATE GRADIENT

PENYELESAIAN PERSAMAAN POISSON 2D DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN CONJUGATE GRADIENT Teknikom : Vol. No. (27) E-ISSN : 2598-2958 PENYELESAIAN PERSAMAAN POISSON 2D DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN CONJUGATE GRADIENT Dewi Erla Mahmudah, Muhammad Zidny Naf an 2 STMIK Widya Utama,

Lebih terperinci

SOLUSI ANALITIK MASALAH KONDUKSI PANAS PADA TABUNG

SOLUSI ANALITIK MASALAH KONDUKSI PANAS PADA TABUNG Jurnal LOG!K@, Jilid 6, No. 1, 2016, Hal. 11-22 ISSN 1978 8568 SOLUSI ANALITIK MASALAH KONDUKSI PANAS PADA TABUNG Afo Rakaiwa dan Suma inna Program Studi Matematika, Fakultas Sains dan Teknologi, Universitas

Lebih terperinci

ANALISIS DAN SIMULASI DISTRIBUSI TEMPERATUR RUANGAN BERDASARKAN BENTUK ATAP MENGGUNAKAN FINITE DIFFERENCE METHOD BERBASIS PYTHON

ANALISIS DAN SIMULASI DISTRIBUSI TEMPERATUR RUANGAN BERDASARKAN BENTUK ATAP MENGGUNAKAN FINITE DIFFERENCE METHOD BERBASIS PYTHON ANALISIS DAN SIMULASI DISTRIBUSI TEMPERATUR RUANGAN BERDASARKAN BENTUK ATAP MENGGUNAKAN FINITE DIFFERENCE METHOD BERBASIS PYTHON Denny Pratama, Viska Noviantri, Alexander Agung S.G. Matematika dan Teknik

Lebih terperinci

Bab 2 TEORI DASAR. 2.1 Model Aliran Panas

Bab 2 TEORI DASAR. 2.1 Model Aliran Panas Bab 2 TEORI DASAR 2.1 Model Aliran Panas Perpindahan panas adalah energi yang dipindahkan karena adanya perbedaan temperatur. Terdapat tiga cara atau metode bagiamana panas dipindahkan: Konduksi Konduksi

Lebih terperinci

Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient

Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient Teknikom : Vol. No. (27) ISSN : 2598-2958 (online) Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient Dewi Erla Mahmudah, Muhammad Zidny Naf an 2 STMIK Widya

Lebih terperinci

BAB I PENDAHULUAN. terbagi dalam berberapa tingkatan, gelombang pada atmosfir yang berotasi

BAB I PENDAHULUAN. terbagi dalam berberapa tingkatan, gelombang pada atmosfir yang berotasi BAB I PENDAHULUAN 1.1. Latar Belakang. Fenomena gelombang Korteweg de Vries (KdV) merupakan suatu gejala yang penting untuk dipelajari, karena mempunyai pengaruh terhadap studi rekayasa yang terkait dengan

Lebih terperinci

Simulasi Konduktivitas Panas pada Balok dengan Metode Beda Hingga The Simulation of Thermal Conductivity on Shaped Beam with Finite Difference Method

Simulasi Konduktivitas Panas pada Balok dengan Metode Beda Hingga The Simulation of Thermal Conductivity on Shaped Beam with Finite Difference Method Prosiding Matematika ISSN: 2460-6464 Simulasi Konduktivitas Panas pada Balok dengan Metode Beda Hingga The Simulation of Thermal Conductivity on Shaped Beam with Finite Difference Method 1 Maulana Yusri

Lebih terperinci

KAJIAN DISKRETISASI DENGAN METODE GALERKIN SEMI DISKRET TERHADAP EFISIENSI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI

KAJIAN DISKRETISASI DENGAN METODE GALERKIN SEMI DISKRET TERHADAP EFISIENSI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI KAJIAN DISKRETISASI DENGAN METODE GALERKIN SEMI DISKRET TERHADAP EFISIENSI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI Suhartono dan Solikhin Zaki Jurusan Matematika FMIPA UNDIP Abstrak Penelitian

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan

BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan Black dan Scholes (1973) mempublikasikan jurnal yang berjudul Pricing of Option and Corporate Liabilities yang berisi tentang perhitungan rumus harga

Lebih terperinci

ANALISIS PENGARUH PERPINDAHAN PANAS TERHADAP KARAKTERISTIK LAPISAN BATAS PADA PELAT DATAR

ANALISIS PENGARUH PERPINDAHAN PANAS TERHADAP KARAKTERISTIK LAPISAN BATAS PADA PELAT DATAR ANALISIS PENGARUH PERPINDAHAN PANAS TERHADAP KARAKTERISTIK LAPISAN BATAS PADA PELAT DATAR Oleh: 1) Umrowati, 2) Prof. DR. Basuki Widodo, M.Sc, 3) Drs. Kamiran, M.Si Jurusan Matematika Fakultas Matematika

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial berperan penting dalam kehidupan, sebab banyak permasalahan pada dunia nyata dapat dimodelkan dengan bentuk persamaan diferensial. Ada dua jenis

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Penelitian

BAB I PENDAHULUAN. 1.1 Latar Belakang Penelitian BAB I PENDAHULUAN 1.1 Latar Belakang Penelitian Alam semesta memiliki beragam fenomena dan kejadian alam yang sebagian besar masih menjadi misteri bagi umat manusia. Secara garis besar, ilmu fisika bermaksud

Lebih terperinci

SOLUSI PERSAMAAN LAPLACE MENGGUNAKAN METODE CRANK-NICHOLSON SKRIPSI

SOLUSI PERSAMAAN LAPLACE MENGGUNAKAN METODE CRANK-NICHOLSON SKRIPSI SOLUSI PERSAMAAN LAPLACE MENGGUNAKAN METODE CRANK-NICHOLSON SKRIPSI Oleh Titis Miranti NIM 101810101012 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS JEMBER 2014 HALAMAN

Lebih terperinci

TINJAUAN KASUS PERSAMAAN PANAS DIMENSI SATU SECARA ANALITIK

TINJAUAN KASUS PERSAMAAN PANAS DIMENSI SATU SECARA ANALITIK TINJAUAN KASUS PERSAMAAN PANAS DIMENSI SATU SECARA ANALITIK ANALYTICALLY REVIEW ON ONE-DIMENSIONAL HEAT EQUATION Oleh: Ahmadi 1), Hartono 2), Nikenasih Binatari 3) Program Studi Matematika, Jurusan Pendidikan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar belakang

BAB I PENDAHULUAN 1.1 Latar belakang BAB I PENDAHULUAN Pada bab pendahuluan dijelaskan mengenai latar belakang yang mendasari penelitian ini yang kemudian dirumuskan dalam rumusan masalah. Berdasarkan latar belakang dan rumusan masalah yang

Lebih terperinci

BAB III PERSAMAAN DIFUSI, PERSAMAAN KONVEKSI DIFUSI, DAN METODE PEMISAHAN VARIABEL

BAB III PERSAMAAN DIFUSI, PERSAMAAN KONVEKSI DIFUSI, DAN METODE PEMISAHAN VARIABEL BAB III PERSAMAAN DIFUSI, PERSAMAAN KONVEKSI DIFUSI, DAN METODE PEMISAHAN VARIABEL Dalam menyelesaikan persamaan pada tugas akhir ini terdapat beberapa teori dasar yang digunakan. Oleh karena itu, pada

Lebih terperinci

Pemodelan Distribusi Suhu pada Tanur Carbolite STF 15/180/301 dengan Metode Elemen Hingga

Pemodelan Distribusi Suhu pada Tanur Carbolite STF 15/180/301 dengan Metode Elemen Hingga Pemodelan Distribusi Suhu pada Tanur Carbolite STF 15/180/301 dengan Metode Elemen Hingga Wafha Fardiah 1), Joko Sampurno 1), Irfana Diah Faryuni 1), Apriansyah 1) 1) Program Studi Fisika Fakultas Matematika

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Dasar Persamaan Diferensial Parsial Suatu persamaan yang meliputi turunan fungsi dari satu atau lebih variabel terikat terhadap satu atau lebih variabel bebas disebut persamaan

Lebih terperinci

Model Kerusakan Inventori dan Backlog Parsial

Model Kerusakan Inventori dan Backlog Parsial SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2015 T - 25 Model Kerusakan Inventori dan Backlog Parsial Mukti Nur Handayani FMIPA, Universitas Gadjah Mada mukti.nurhandayani@yahoo.com Abstrak

Lebih terperinci

PENENTUAN LAJU DISTRIBUSI SUHU DAN ENERGI PANAS PADA SEBUAH BALOK BESI MENGGUNAKAN PENDEKATAN DIFFUSION EQUATION DENGAN DEFINITE ELEMENT METHOD

PENENTUAN LAJU DISTRIBUSI SUHU DAN ENERGI PANAS PADA SEBUAH BALOK BESI MENGGUNAKAN PENDEKATAN DIFFUSION EQUATION DENGAN DEFINITE ELEMENT METHOD PENENTUAN LAJU DISTRIBUSI SUHU DAN ENERGI PANAS PADA SEBUAH BALOK BESI MENGGUNAKAN PENDEKATAN DIFFUSION EQUATION DENGAN DEFINITE ELEMENT METHOD SKRIPSI Oleh: Ido Hilka Zirahya NIM. 090210102056 PROGRAM

Lebih terperinci

ANALISIS PERPINDAHAN KALOR YANG TERJADI PADA RECTANGULAR DUCT DENGAN ANSYS 11 SP1 DAN PERHITUNGAN METODE NUMERIK

ANALISIS PERPINDAHAN KALOR YANG TERJADI PADA RECTANGULAR DUCT DENGAN ANSYS 11 SP1 DAN PERHITUNGAN METODE NUMERIK TUGAS AKHIR ANALISIS PERPINDAHAN KALOR YANG TERJADI PADA RECTANGULAR DUCT DENGAN ANSYS 11 SP1 DAN PERHITUNGAN METODE NUMERIK Disusun: FATHAN ROSIDI NIM : D 200 030 126 JURUSAN TEKNIK MESIN FAKULTAS TEKNIK

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial biasa (ordinary differential equations (ODEs)) merupakan salah satu alat matematis untuk memodelkan dinamika sistem dalam berbagai bidang ilmu

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika selaku ilmu menalar logis tumbuh berkembang secara mandiri, akan tetapi banyak diterapkan dalam ilmu-ilmu lain. Persamaan integral merupakan salah

Lebih terperinci

I. PENDAHULUAN. kemajuan. Salah satunya adalah cabang ilmu matematika yang sampai saat ini

I. PENDAHULUAN. kemajuan. Salah satunya adalah cabang ilmu matematika yang sampai saat ini 1 I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Perkembangan ilmu pengetahuan dan teknologi sampai saat ini terus mengalami kemajuan. Salah satunya adalah cabang ilmu matematika yang sampai saat ini mengalami

Lebih terperinci

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta BAB II LANDASAN TEORI Pada bab ini akan diuraikan beberapa teori-teori yang digunakan sebagai acuan dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta teorema-teorema

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Pemodelan matematika merupakan bidang matematika yang berusaha untuk merepresentasikan dan menjelaskan masalah dunia nyata dalam pernyataan matematik. Representasi

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pemodelan difusi dan sebaran temperatur pada geometri menjadi hal yang penting dalam berbagai bidang, seperti bidang fisika, kimia maupun kedokteran. Persamaan

Lebih terperinci

BAB I PENDAHULUAN ( )

BAB I PENDAHULUAN ( ) BAB I PENDAHULUAN 1.1. Latar Belakang Persamaan diferensial merupakan persamaan yang melibatkan turunan dari satu atau lebih variabel tak bebas terhadap satu atau lebih variabel bebas dan dituliskan dengan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Banyak ditemukan masalah nyata di alam ini yang dapat dibuat model matematikanya. Persamaan integral merupakan salah satu model matematika yang banyak digunakan

Lebih terperinci

BAB I PENDAHULUAN. Tahap-tahap memecahkan masalah dengan metode numeric : 1. Pemodelan 2. Penyederhanaan model 3.

BAB I PENDAHULUAN. Tahap-tahap memecahkan masalah dengan metode numeric : 1. Pemodelan 2. Penyederhanaan model 3. BAB I PENDAHULUAN Tujuan Pembelajaran: Mengetahui apa yang dimaksud dengan metode numerik. Mengetahui kenapa metode numerik perlu dipelajari. Mengetahui langkah-langkah penyelesaian persoalan numerik.

Lebih terperinci

METODE BEDA HINGGA DALAM PENENTUAN DISTRIBUSI TEKANAN, ENTALPI DAN TEMPERATUR RESERVOIR PANAS BUMI FASA TUNGGAL

METODE BEDA HINGGA DALAM PENENTUAN DISTRIBUSI TEKANAN, ENTALPI DAN TEMPERATUR RESERVOIR PANAS BUMI FASA TUNGGAL METODE BEDA HINGGA DALAM PENENTUAN DISTRIBUSI TEKANAN, ENTALPI DAN TEMPERATUR RESERVOIR PANAS BUMI FASA TUNGGAL TUGAS AKHIR Diajukan untuk melengkapi persyaratan dalam menyelesaikan tahap sarjana pada

Lebih terperinci

Metode elemen batas untuk menyelesaikan masalah perpindahan panas

Metode elemen batas untuk menyelesaikan masalah perpindahan panas Metode elemen batas untuk menyelesaikan masalah perpindahan panas Imam Solekhudin 1 Jurusan Matematika FMIPA UGM Yogyakarta, imams@ugm.ac.id Abstrak. Permasalahan perpindahan panas keadaan stasioner dimodelkan

Lebih terperinci

Penentuan Distribusi Suhu pada Permukaan Geometri Tak Tentu Menggunakan Metode Random Walk Balduyanus Yosep Godja a), Andi Ihwan a)*, Apriansyah b)

Penentuan Distribusi Suhu pada Permukaan Geometri Tak Tentu Menggunakan Metode Random Walk Balduyanus Yosep Godja a), Andi Ihwan a)*, Apriansyah b) POSITRON, Vol. VI, No. 1 (1), Hal. 17 - ISSN : 1-9 Penentuan Distribusi Suhu pada Permukaan Geometri Tak Tentu Menggunakan Metode Random Walk Balduanus Yosep Godja a), Andi Ihwan a)*, Apriansah b) a Jurusan

Lebih terperinci

ANALISA NUMERIK DISTRIBUSI PANAS TAK TUNAK PADA HEATSINK MENGGUNAKAN METODA FINITE DIFFERENT

ANALISA NUMERIK DISTRIBUSI PANAS TAK TUNAK PADA HEATSINK MENGGUNAKAN METODA FINITE DIFFERENT PILLAR OF PHYSICS, Vol. 4. November 2014, 81-88 ANALISA NUMERIK DISTRIBUSI PANAS TAK TUNAK PADA HEATSINK MENGGUNAKAN METODA FINITE DIFFERENT Fahendri *), Festiyed **), dan Hidayati **) *) Mahasiswa Fisika,

Lebih terperinci