BAB 4 MODEL DINAMIKA NEURON FITZHUGH-NAGUMO

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 4 MODEL DINAMIKA NEURON FITZHUGH-NAGUMO"

Transkripsi

1 BAB 4 MODEL DINAMIKA NEURON FITZHUGH-NAGUMO 4.1 Model Dinamika Neuron Fitzhugh-Nagumo Dalam papernya pada tahun 1961, Fitzhugh mengusulkan untuk menerangkan model Hodgkin-Huxley menjadi lebih umum, yang di dalamnya terdapat eksitasi dan osilasi. Pendekatan serupapun telah dilakukan secara terpisah oleh Nagumo (196), sehingga model itu disebut persamaan Fitzhugh- Nagumo. Untuk menghindari kesalahan persepsi, maka harus ditegaskan bahwa tujuan utama model ini tidak untuk menggambarkan kandungan kuantitatif secara akurat dari impuls axon, variabel dari persamaan tersebut memiliki apa yang disebut ketidaktelitian dan hubungan relasi tidak berhubungan secara eksak dari fakta fisiologi atau hanya perkiraan saja. Juga, sistem ini menjadi lebih sederhana. Dimana, kita bisa menunjukkan interaksi singkat antara variabel yang menunjukkan sebuah eksitasi dan osilasi (impuls berulang). Persamaan Fitzhugh (persamaan tak berdimensi), dv v 1 v 3 w I dt 3 dw ( v a bw) dt (5) Dimana v menggambarkan rangsangan pada sistem dan diidentifikasi dengan tegangan (potensial membran pada oxon), w adalah variabel recovery (kembali ke keadaan awal) yang menggambarkan kombinasi gaya untuk kembali pada keadaan dimana membran axon istirahat, dan I merupakan arus listrik sebagai stimulus untuk membuat eksitasi (arus input). dalam fisiologi, impuls dapat berupa fungsi bertahap atau pulsa periodik (Mishra D et al 006).

2 1 4. Teori Dasar Sistem Dinamika 4..1 Sistem Dinamika dan Deterministik Dinamika berhubungan dengan perubahan perilaku sistem terhadap waktu. Sistem dinamika dapat bersifat konservatif atau disipatif. Sistem yang konservatif memiliki energi yang konstan terhadap waktu, sedangkan sistem yang disipatif kehilangan energi terhadap waktu. Salah satu sistem yang konservatif adalah bandul sederhana. Pada bandul sederhana gesekan udara diabaikan sehingga energi potensial dan kinetik sistem konstan untuk setiap waktu. Sebaliknya jika gesekan udara diperhitungkan, ada energi dalam sistem yang terus menerus berkurang terhadap waktu dalam bentuk energi panas atau gesekan maka sistem ini bersifat disipatif (Guckenheimer J& Holmes P 1983). Sebuah sistem yang perilakunya dimasa depan ( atau dimasa lalu ) dapat diperkirakan bila kondisi awalnya diketahui adalah sistem yang deterministik. Setiap sistem mekanik klasik adalah deterministik. Contohnya pada hukum gerak Newton, jika posisi dan momentum pada suatu waktu dapat ditentukan maka perilaku sistem dapat ditentukan untuk waktu-waktu lainnya. Sedangkan sistem non-deterministik menggunakan konsep probabilitas untuk menggambarkan perilakunya terhadap waktu. Molekul gas dalam termodinamika, teori kinetik gas, gerak brown, dan kuantum merupakan contoh sistem probabilistik (Guckenheimer J & Holmes P 1983). 4.. Persamaan Differensial Orde Pertama Sistem persamaan differensial orde pertama interaksi dua persamaan differensial terkopel (Hirsch MW et al 004) dapat dinyatakan sebagai: dx dt dy dt f ( x, y) 1 f ( x, y) (6)

3 f 1 dan,f adalah fungsi kontinu bernilai real dari x dan y, dengan laju perubahan x dan y sendiri dan tidak mengandung t di dalamnya. Sistem persamaan differensial disebut sebagai sistem persamaan differensial mandiri (Autonomous) Titik Kritis (critical point) Analisis sistem persamaan differensial sistem dua persmaan terkopel sering digunakan untuk menentukan solusi yang tidak berubah terhadap waktu * (Hirsch MW et al 004), yaitu untuk tiap dx / dt 0, dy / dt 0. Titik kritis ( x *, y ) dari sistem dapat diperoleh dengan menentukan dx / dt 0, dy / dt 0 (7) 4..4 Konstruksi Matrik Jacobi Dengan melakukan pelinieran pada persamaan interaksi dua persamaan terkopel maka diperoleh matriks Jacobi (Hirsch MW et al 004) berikut : f 1 f 1 x 1 x J i (8) f f x 1 x 4..5 Vektor Eigen dan Nilai Eigen Diberikan matrik dengan koefisien konstan J berukuran homogen berikut: Suatu vektor tak nol x dalam ruang untuk suatu skalar berlaku: Nilai skalar dinamakan nilai eigen dari J. x Jx, x( 0) x0 (9) n n dan SPD n disebut vektor eigen dari J jika Jx x (30)

4 3 Untuk mencari nilai eigen dari matrik J maka persamaan (30) dapat ditulis kembali sebagai: ( J I ) x 0 (31) Dengan I matrik diagonal satuan. Persamaan (31) mempunyai solusi tak nol jika dan hanya jika p( ) det( J I ) J I 0 (3) Persamaan (3) disebut persamaan karakteristik dari matrik Jacobi (Hirsch MW et al 004) Orbit Kestabilan Berdasarkan uraian di atas maka kestabilan titik kritis memiliki tiga kondisi (Hirsch MW et al 004), yaitu Stabil, jika : a. tiap nilai eigen real adalah negatif ( 0 untuk semua i ) b. tiap komponen nilai eigen kompleks adalah lebih kecil atau sama dengan nol, Re ( ) 0 untuk setiap i. i i Tak Stabil, jika : a. tiap nilai eigen real adalah positif ( 0 untuk semua i ) b. tiap komponen nilai eigen kompleks adalah lebih besar dari nol, Re( ) 0 untuk semua i. i i Saddle, jika : Perkalian dua buah nilai eigen real sembarang adalah negatif ( i j ) 0 untuk sembarang i dan j. Titik saddle ini bersifat tak stabil.

5 4 (a) (b) (c) (d) (e) (f) Gambar 8. Orbit kestabilan disekitar titik kritis; (a) spiral stabil, (b) spiral tak stabil, (c) titik saddle, (d) center, (e) titik stabil dan (f) titik tak stabil (Hirsch MW et al 004) 4..7 Bifurkasi Hopf Bifurkasi secara sederhana dapat diartikan sebagai suatu perubahan karakteristik orbit kestabilan disuatu titik kritis yang biasanya ditandai dengan kehadiran suatu limit cycle. Sebagai contoh sederhana terjadinya bifurkasi pada persamaan van der Pol berupa persamaan diferensial pada R (Hirsch MW et al 004). dx y x dt dx x dt 3 x (33) Dengan parameter berada pada interval [-1, 1]. Dengan menggunakan Linierisasi diperoleh nilai eigen berikut : 1 4 (34) Kemudian dari nilai eigen tersebut dapat diamati sebuah bifurkasi pada titik kritisnya ketika parameter divariasikan sebagai berikut :

6 5 Gambar 9. Bifurkasi pada persamaan van der Pol ketika parameter divariasikan (Hirsch MW et al 004) 4.3 Penentuan Titik Kritis Model Fitzhugh-Nagumo Untuk memperoleh letak titik kritis dapat ditentukan melalui analisis nullcline dari tiap persamaan Fitzhugh-Nagumo,yaitu sebagai berikut, v nullcline terjadi pada saat w 0, sehingga diperoleh; 1 w v v 3 3 I w nullclline terjadi pada saat v 0, sehingga diperoleh; (35) v a w (36) b Dari persamaan (35) dan (36) di peroleh persamaan kubik sebagai berikut, 1 a v 3 v 1 I 0 (37) 3 b Dari persamaan (37) dapat diperoleh tiap titik kritis untuk setiap arus eksternal yang diberikan (Izhikevich EM 007).

7 6 4.4 Matrik Jacobian Model Fitzhugh-Nagumo Dengan mensubstitusikan persamaan (5) kedalam persamaan Jacobi (8) diperoleh matriks Jacobi untuk model Fitzhugh-Nagumo sebagai, J 1 v 1 b (38) 4.5 Nilai Eigen dan Syarat Kestabilan Model Fitzhugh-Nagumo Dari persamaan (3) diperoleh persamaan karakteristik untuk persamaan Fitzhugh-Nagumo : ( 1 v ˆ b) ( b bvˆ ) 0 (39) sebagai Sehingga nilai eigen dari persamaan karakteristik tersebut dapat ditulis 1, (1 vˆ b) (1 vˆ b) 4( b bvˆ ) Maka kondisi stabil dari ruang fase akan diperoleh jika memenuhi ketentuan, 1 vˆ b bvˆ b 0 0 (40) (41) 4.6 Analisis Kestabilan Titik Kritis Model Fitzhugh-Nagumo Melalui perhitungan numerik menggunakan software Maple 11, dengan mensubstitusikan parameter ke dalam persamaan (5) dapat diperoleh nilai eigen dari tiap parameter yang divariasikan dan melalui simulasi Matlab 7.01 diperoleh grafik ruang fase dan Dinamika dari tiap parameter yang digunakan pada persamaan Fitzhugh Nagumo. Melalui analisis kestabilan dari nilai eigennya kita dapat menentukan jenis kestabilan yang terjadi di sekitar titik kritisnya dan parameter kritis terjadinya bifurkasi pada titik kritisnya (Hirsch MW et al 004; Izhikevich EM 007). Dalam penelitian ini yang akan divariasikan adalah

8 7 besarnya arus eksternal yang diberikan I dan parameter tetap yaitu a = 0.7, b = 0.8, = Dengan menggunakan software maple 11 diperoleh hasil numerik sebagai berikut : Tabel 1. Analisis numerik kestabilan titik kritis model Fitzhugh-Nagumo No Variasi I eks Titik kritis Nilai eigen kestabilan , i Spiral stabil , i Spiral stabil , i Limit cycle , i Spiral tak stabil , i Spiral tak stabil , i Spiral stabil , i Spiral stabil , i Spiral stabil , i Spiral stabil , , Stabil node Kasus Arus Stimulus I = 0 Melalui simulasi numerik menggunakan software Matlab 7.01, dengan mensubstitusikan nilai parameter ke persamaan (5) dapat diperoleh grafik hubungan antara v dan w serta Dinamika v, w terhadap waktu t. (a) (b) Gambar 10. Sistem Dinamika membran model Fitzhugh-Nagumo saat I = 0 ; (a) bidang fase antara v dan w bersifat spiral stabil (b) Dinamika v, w terhadap waktu t.

9 8 Dari perhitungan numerik pada tabel 1 diketahui bahwa ketika arus yang eksternal yang diberikan I = 0 maka menghasilkan nilai eigen berupa nilai kompleks dengan bagian real bernilai negatif menunjukkan bahwa titik kritis tersebut bersifat spiral stabil artinya berapapun kondisi awal yang diberikan maka trayektorinya akan menuju titik kritis tersebut membentuk spiral. Namun, jika dilihat pada grafik Dinamikanya terhadap waktu maka pada saat I = 0 tidak tejadi osilasi karena potensial aksi dan potensial recovery langsung menuju kestabilan yaitu pada saat neuron berada pada fase istirahat. Gambar 10 model Fitzhugh- Nagumo menunjukkan suatu kemiripan secara kualitatif dengan gambar 3 pada model Hodgkin-Huxley Kasus Arus Stimulus I = 0.33 Melalui simulasi numerik menggunakan software Matlab 7.01, dengan mensubstitusikan nilai parameter ke persamaan (5) dapat diperoleh grafik hubungan antara v dan w serta Dinamika v, w terhadap waktu t. Gambar 11 memperlihatkan suatu kodisi bidang fase bersifat stable limit cycle. Jika dilihat dari nilai eigennya dari tabel 1. menunjukkan ketika arus eksternal yang diberikan I = 0.33 maka akan menghasilkan titik kritis yang memiliki nilai eigen kompleks dengan bagian real mendekati nol sehingga terbentuk trayektori yang bergerak mengelilingi titik kritisnya dengan lintasan tertutup. Pada gambar 11(b) dan 11(c) terlihat terjadinya osilasi potensial aksi v dan potensial recovery w menuju kestabilan. Gambar 11 dari model Fitzhugh- Nagumo memiliki kesamaan secara kulitatif dengan gambar 5 dari model Hodgkin-Huxley. Dari gambar terlihat potensial aksi berbeda fase dengan potensial recovery secara periodik.

10 9 (a) (b) (c) (d) Gambar 11. Sistem Dinamika membran model Fitzhugh-Nagumo saat I = 0.33 ; (a) bidang fase antara v dan w bersifat stabil limit cycle, (b) Dinamika v, w terhadap waktu t = 100 (c) Dinamika v, w terhadap waktu t = 100 dan (d) grafik 3D v,w terhadap t Melalui analisis bifurkasi Hopf (Hirsch MW et al 004; Medvedev GS, Yoo Y 007), pada parameter I = 0.33 merupakan parameter kritis terjadinya transisi dari orbit spiral stabil menjadi orbit trayektori limit cycle dan ketika parameter I dinaikan menjadi I = 0.5 mulai terjadi transisi dari stabil limit cycle menjadi spiral tak stabil sebagaimana terlihat dalam tabel Kasus Arus Stimulus I = 1.5 Melalui simulasi numerik menggunakan software Matlab 7.01, dengan mensubstitusikan nilai parameter ke persamaan (5) dapat diperoleh grafik hubungan antara v dan w serta Dinamika v, w terhadap waktu t. Gambar 1 memperlihatkan suatu kodisi bidang fase bersifat spiral tak stabil. Jika dilihat dari nilai eigennya dari tabel 1. menunjukkan ketika arus eksternal yang diberikan I = 1.5 maka akan menghasilkan titik kritis yang memiliki nilai eigen kompleks dengan bagian real bernilai positif sehingga

11 30 terbentuk trayektori yang bergerak menjauhi tertutup sehingga sifat titik kritisnya merupakan spiral tidak stabil. titik kritisnya dengan lintasan (a) (b) Gambar 1. Sistem Dinamika membran model Fitzhugh-Nagumo saat I = 1.5 ; (a) bidang fase antara v dan w bersifat spiral tak stabil (b) Dinamika v, w terhadap waktu t. Dari gambar 11 (c) dan 1 (b) memperlihatkan fenomena osilasi pada potensial aksi yang frekuensinya bertambah besar seiring dengan bertambah besarnya arus eksternal yang melewati membran, hal ini sejalan dengan hasil yang didapat pada model Hodgkin-Huxley. Melalui analisis bifurkasi Hopf (Hirsch MW et al 004; Medvedev GS, Yoo Y 007), pada parameter I = 0.5 merupakan parameter kritis terjadinya transisi dari orbit spiral tak stabil menjadi orbit trayektori spiral stabil menuju keadaan istirahat Kasus Arus Stimulus I = 1.43 Melalui simulasi numerik menggunakan software Matlab 7.01, dengan mensubstitusikan nilai parameter ke persamaan (5) dapat diperoleh grafik hubungan antara v dan w serta Dinamika v, w terhadap waktu t. Gambar 13 berikut memperlihatkan suatu kodisi bidang fase bersifat spiral stabil. Jika dilihat dari nilai eigennya dari tabel 1. menunjukkan ketika arus eksternal yang diberikan I = 1.43 maka akan menghasilkan titik kritis yang memiliki nilai eigen kompleks dengan bagian real bernilai negatif sehingga terbentuk trayektori yang bergerak mendekati titik kritisnya dengan lintasan tertutup sehingga sifat titik kritisnya merupakan spiral stabil. Pada gambar 13(b) mulai memperlihatkan fenomena berkurangnya osilasi akibat adanya ateunasi

12 31 dimana berapapun arus diperbesar tidak akan mempengaruhi potensial aksi yang bergerak menuju kestabilan pada keadaan istirahat. (a) (b) Gambar 13. Sistem Dinamika membran model Fitzhugh-Nagumo saat I = 1.43 ; (a) bidang fase antara v dan w bersifat spiral stabil (b) Dinamika v, w terhadap waktu t Kasus Arus Stimulus I = 1.45 Melalui simulasi numerik menggunakan software Matlab 7.01, dengan mensubstitusikan nilai parameter ke persamaan (5) dapat diperoleh grafik hubungan antara v dan w serta Dinamika v, w terhadap waktu t. (a) (b) Gambar 14. Sistem Dinamika membran model Fitzhugh-Nagumo saat I = 1.45 (a) bidang fase antara v dan w bersifat spiral stabil (b) Dinamika v, w terhadap waktu t. Gambar 14 memperlihatkan suatu kodisi bidang fase bersifat spiral stabil. Jika dilihat dari nilai eigennya dari tabel 1. menunjukkan ketika arus eksternal yang diberikan I = 1.45 maka akan menghasilkan titik kritis yang memiliki nilai eigen kompleks dengan bagian real bernilai negatif sehingga terbentuk trayektori

13 3 yang bergerak mendekati titik kritisnya dengan lintasan tertutup sehingga sifat titik kritisnya merupakan spiral stabil. Pada gambar 14 (b) mulai memperlihatkan fenomena berkurangnya osilasi akibat adanya ateunasi dimana berapapun arus diperbesar tidak akan mempengaruhi potensial aksi yang bergerak menuju kestabilan pada keadaan istirahat. Pada konsisi ini penambahan arus eksternal hanya akan menambah kecepatan potensial membran menuju stabil pada keadaan istirahat Kasus Arus Stimulus I = Melalui simulasi numerik menggunakan software Matlab 7.01, dengan mensubstitusikan nilai parameter ke persamaan (5) dapat diperoleh grafik hubungan antara v dan w serta Dinamika v, w terhadap waktu t. (a) (b) Gambar 15. Sistem Dinamika membran model Fitzhugh-Nagumo saat I = ; (a) bidang fase antara v dan w bersifat stabil node (b) Dinamika v, w terhadap waktu t. Gambar 15 memperlihatkan suatu kodisi bidang fase bersifat stabil asimtotik. Jika dilihat dari nilai eigennya dari tabel 1. menunjukkan ketika arus eksternal yang diberikan I = maka akan menghasilkan titik kritis yang memiliki nilai eigen real bernilai negatif sehingga terbentuk trayektori yang bergerak mendekati titik kritisnya tanpa osilasi. Keadaan ini memperlihatkan bahwa potensial membran sudah stabil sehingga arus yang diperbesar tidak lagi berpengaruh. Melalui analisis bifurkasi Hopf (Hirsch MW et al 004; Medvedev GS, Yoo Y 007), pada parameter I =.0 merupakan parameter kritis terjadinya

14 33 transisi dari orbit spiral stabil menjadi orbit trayektori stabil node menuju keadaan istirahat yang sudah tidak dipengaruhi lagi oleh perubahan oleh arus eksternal.

BAB 3 ANALISIS DAN SIMULASI MODEL HODGKIN-HUXLEY

BAB 3 ANALISIS DAN SIMULASI MODEL HODGKIN-HUXLEY BAB 3 ANALISIS DAN SIMULASI MODEL HODGKIN-HUXLEY 3.1 Analisis Dinaika Model Hodgkin Huxley Persaaan Hodgkin-Huxley berisi epat persaaan ODE terkopel dengan derajat nonlinear yang tinggi dan sangat sulit

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Banyak sekali masalah terapan dalam ilmu teknik, ilmu fisika, biologi, dan lain-lain yang telah dirumuskan dengan model matematika dalam bentuk pesamaan

Lebih terperinci

PEMODELAN DAN SIMULASI SISTEM DINAMIKA PROPAGASI POTENSIAL AKSI TERSTIMULASI ARUS EKSTERNAL SERTA SINKRONISASI CHAOTIK JARINGAN SYARAF MADA SANJAYA WS

PEMODELAN DAN SIMULASI SISTEM DINAMIKA PROPAGASI POTENSIAL AKSI TERSTIMULASI ARUS EKSTERNAL SERTA SINKRONISASI CHAOTIK JARINGAN SYARAF MADA SANJAYA WS PEMODELAN DAN SIMULASI SISTEM DINAMIKA PROPAGASI POTENSIAL AKSI TERSTIMULASI ARUS EKSTERNAL SERTA SINKRONISASI CHAOTIK JARINGAN SYARAF MADA SANJAYA WS SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR

Lebih terperinci

BAB II LANDASAN TEORI. pada bab pembahasan. Materi-materi yang akan dibahas yaitu pemodelan

BAB II LANDASAN TEORI. pada bab pembahasan. Materi-materi yang akan dibahas yaitu pemodelan BAB II LANDASAN TEORI Pada bab ini akan dijelaskan mengenai landasan teori yang akan digunakan pada bab pembahasan. Materi-materi yang akan dibahas yaitu pemodelan matematika, teorema Taylor, nilai eigen,

Lebih terperinci

LAPORAN PENELITIAN KOMPETITIF TAHUN ANGGARAN 2017

LAPORAN PENELITIAN KOMPETITIF TAHUN ANGGARAN 2017 LAPORAN PENELITIAN KOMPETITIF TAHUN ANGGARAN 017 ANALISIS DINAMIK MODEL FITZHUGH-NAGUMO PADA PENJALARAN IMPULS SEL SARAF MENGGUNAKAN TRANSFORMASI LIENARD Nomor DIPA : DIPA BLU: DIPA-05.04..4381/016 Tanggal

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Aljabar Linear Definisi 2.1.1 Matriks Matriks A adalah susunan persegi panjang yang terdiri dari skalar-skalar yang biasanya dinyatakan dalam bentuk berikut: [ ] Definisi 2.1.2

Lebih terperinci

III. BAHAN DAN METODE

III. BAHAN DAN METODE III. BAHAN DAN METODE 3.1 Tempat dan Waktu Penelitian Penelitian dilakukan di Laboratorium Fisika Teori dan Komputasi, Departemen Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian

Lebih terperinci

Created By Aristastory.Wordpress.com BAB I PENDAHULUAN. Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk

Created By Aristastory.Wordpress.com BAB I PENDAHULUAN. Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk BAB I PENDAHULUAN 1.1 Latar Belakang Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk memeriksa kelakuan sistem dinamik kompleks, biasanya dengan menggunakan persamaan diferensial

Lebih terperinci

BIFURKASI HOPF PADA SISTEM PREDATOR PREY DENGAN FUNGSI RESPON TIPE II

BIFURKASI HOPF PADA SISTEM PREDATOR PREY DENGAN FUNGSI RESPON TIPE II BIFURKASI HOPF PADA SISTEM PREDATOR PREY DENGAN FUNGSI RESPON TIPE II SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 7 BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa poin tentang sistem dinamik, kestabilan sistem dinamik, serta konsep bifurkasi. A. Sistem Dinamik Secara umum Sistem dinamik didefinisikan

Lebih terperinci

BAB IV ANALISIS DINAMIK MODEL SUBTHALAMIK NUKLEUS. Pada model matematika yang dibangun di Bab III, diperoleh 5 persamaan diferensial,

BAB IV ANALISIS DINAMIK MODEL SUBTHALAMIK NUKLEUS. Pada model matematika yang dibangun di Bab III, diperoleh 5 persamaan diferensial, BAB IV ANALISIS DINAMIK MODEL SUBTHALAMIK NUKLEUS Pada model matematika yang dibangun di Bab III, diperoleh 5 persamaan diferensial, yang dapat disederhanakan sebagai berikut : d ( v ) = f 1( vnhrcai,,,,

Lebih terperinci

BIFURKASI HOPF PADA MODEL SILKUS BISNIS KALDOR-KALECKI TANPA WAKTU TUNDA

BIFURKASI HOPF PADA MODEL SILKUS BISNIS KALDOR-KALECKI TANPA WAKTU TUNDA BIFURKASI HOPF PADA MODEL SILKUS BISNIS KALDOR-KALECKI TANPA WAKTU TUNDA NURRACHMAWATI 1) DAN A. KUSNANTO 2) 1) Mahasiswa Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini akan dibahas tinjauan pustaka yang akan digunakan untuk tesis ini, yang selanjutnya akan di perlukan pada Bab 3. Tinjauan pustaka yang dibahas adalah mengenai yang mendukung

Lebih terperinci

Persamaan Diferensial Biasa

Persamaan Diferensial Biasa Persamaan Diferensial Biasa Titik Tetap dan Sistem Linear Toni Bakhtiar Departemen Matematika IPB Oktober 2012 Toni Bakhtiar (m@thipb) PDB Oktober 2012 1 / 31 Titik Tetap SPD Mandiri dan Titik Tetap Tinjau

Lebih terperinci

II. LANDASAN TEORI. Definisi 1 (Sistem Persamaan Diferensial Biasa Linear) Definisi 2 (Sistem Persamaan Diferensial Biasa Taklinear)

II. LANDASAN TEORI. Definisi 1 (Sistem Persamaan Diferensial Biasa Linear) Definisi 2 (Sistem Persamaan Diferensial Biasa Taklinear) 3 II. LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Biasa Definisi 1 (Sistem Persamaan Diferensial Biasa Linear) Misalkan suatu sistem persamaan diferensial biasa dinyatakan sebagai = + ; =, R (1) dengan

Lebih terperinci

Karena v merupakan vektor bukan nol, maka A Iλ = 0. Dengan kata lain, Persamaan (2.2) dapat dipenuhi jika dan hanya jika,

Karena v merupakan vektor bukan nol, maka A Iλ = 0. Dengan kata lain, Persamaan (2.2) dapat dipenuhi jika dan hanya jika, BAB II KAJIAN TEORI Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema dari nilai eigen, vektor eigen, dan diagonalisasi, sistem persamaan differensial, model predator prey lotka-voltera,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 1.3 Perumusan Masalah. 1.4 Hipotesis. 1.5 Keluaran. 2.2 Fisiologi Sel Saraf. 2.1 Morfologi Sel Saraf

BAB II TINJAUAN PUSTAKA. 1.3 Perumusan Masalah. 1.4 Hipotesis. 1.5 Keluaran. 2.2 Fisiologi Sel Saraf. 2.1 Morfologi Sel Saraf 3 Perumusan Masalah a Bagaimanakah pengaruh perubahan input berupa arus I searah sebagai sumber rangsangan terhadap penjalaran impuls didalam sel saraf dari persamaan Hindmarsh-Rose? b Bagaimanakah persamaan

Lebih terperinci

BAB II KAJIAN TEORI. dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan

BAB II KAJIAN TEORI. dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan BAB II KAJIAN TEORI Pada bab ini akan dibahas mengenai nilai eigen dan vektor eigen, sistem dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan sistem dinamik, kriteria Routh-Hurwitz,

Lebih terperinci

BAB 2 PDB Linier Order Satu 2

BAB 2 PDB Linier Order Satu 2 BAB Konsep Dasar BAB 2 PDB Linier Order Satu 2 BAB 3 Aplikasi PDB Order Satu 3 BAB 4 PDB Linier Order Dua 4 BAB 5 Aplikasi PDB Order Dua 5 BAB 6 Sistem PDB 6 BAB 7 PDB Nonlinier dan Kesetimbangan Dalam

Lebih terperinci

Sistem Hasil Kali Persamaan Diferensial Otonomus pada Bidang

Sistem Hasil Kali Persamaan Diferensial Otonomus pada Bidang Sistem Hasil Kali Persamaan Diferensial Otonomus pada Bidang SKRIPSI Diajukan Kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan Guna

Lebih terperinci

IV PEMBAHASAN. ,, dan, dengan menggunakan bantuan software Mathematica ( ) ( ) ( ) ( ) ( ) ( )

IV PEMBAHASAN. ,, dan, dengan menggunakan bantuan software Mathematica ( ) ( ) ( ) ( ) ( ) ( ) IV PEMBAHASAN 4.1 Analisis Model HSC Tanpa Terapi 4.1.1 Penentuan Titik Tetap Model HSC Tanpa Terapi Titik tetap dari persamaan (3.1) (3.3) akan diperoleh dengan menetapkan,, dan, dengan menggunakan bantuan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Chemostat atau disebut juga bioreaktor adalah suatu alat laboratorium (fermentor) untuk budidaya mikroorganisme[18]. Alat tersebut disusun sedemikian rupa

Lebih terperinci

I PENDAHULUAN 1.1 Latar Belakang dan Perumusan Masalah

I PENDAHULUAN 1.1 Latar Belakang dan Perumusan Masalah I PENDAHULUAN 1.1 Latar Belakang dan Perumusan Masalah Penelusuran tentang fenomena belalang merupakan bahasan yang baik untuk dipelajari karena belalang dikenal suka berkelompok dan berpindah. Dalam kelompok,

Lebih terperinci

II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Definisi 1 [Sistem Persamaan Diferensial Linear (SPDL)]

II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Definisi 1 [Sistem Persamaan Diferensial Linear (SPDL)] II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Definisi 1 [Sistem Persamaan Diferensial Linear (SPDL)] Suatu sistem persamaan diferensial dinyatakan sebagai berikut: A adalah matriks koefisien konstan

Lebih terperinci

Bab II Teori Pendukung

Bab II Teori Pendukung Bab II Teori Pendukung II.1 Sistem Autonomous Tinjau sistem persamaan differensial berikut, = dy = f(x, y), g(x, y), (2.1) dengan asumsi f dan g adalah fungsi kontinu yang mempunyai turunan yang kontinu

Lebih terperinci

Bab III Model Awal Kecanduan Terhadap Rokok

Bab III Model Awal Kecanduan Terhadap Rokok Bab III Model Awal Kecanduan Terhadap Rokok III.1 Pembentukan Model Model kecanduan terhadap rokok dibentuk menggunakan model dasar dalam epidemiologi yaitu model SIR (Susceptible, Infective, Removed)

Lebih terperinci

BIFURKASI HOPF PADA MODIFIKASI MODEL PREDATOR-PREY LESLIE GOWER DENGAN FUNGSI RESPON HOLLING TIPE II

BIFURKASI HOPF PADA MODIFIKASI MODEL PREDATOR-PREY LESLIE GOWER DENGAN FUNGSI RESPON HOLLING TIPE II BIFURKASI HOPF PADA MODIFIKASI MODEL PREDATOR-PREY LESLIE GOWER DENGAN FUNGSI RESPON HOLLING TIPE II skripsi disajikan sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Program Studi Matematika

Lebih terperinci

PERAN PENTING LAJU PERUBAHAN KALOR PADA MODEL DINAMIK UNSUR UNSUR UTAMA IKLIM

PERAN PENTING LAJU PERUBAHAN KALOR PADA MODEL DINAMIK UNSUR UNSUR UTAMA IKLIM PERAN PENTING LAJU PERUBAHAN KALOR PADA MODEL DINAMIK UNSUR UNSUR UTAMA IKLIM A.I. Jaya 1 1 Jurusan Matematika FMIPA UNTAD Kampus BumiTadulakoTondo Palu Abstrak Model dinamik interkasi unsur unsure utama

Lebih terperinci

SISTEM FLUTTER PADA SAYAP PESAWAT TERBANG

SISTEM FLUTTER PADA SAYAP PESAWAT TERBANG SISTEM FLUTTER PADA SAYAP PESAWAT TERBANG SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan guna Memperoleh Gelar Sarjana

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN Pada Bab I Pendahuluan ini dijelaskan mengenai latar belakang yang mendasari penelitian yang kemudian dirumuskan dalam rumusan masalah. Berdasarkan latar belakang dan rumusan masalah

Lebih terperinci

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta BAB II LANDASAN TEORI Pada bab ini akan diuraikan beberapa teori-teori yang digunakan sebagai acuan dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta teorema-teorema

Lebih terperinci

BAB I PENDAHULUAN. disebut dengan sistem dinamik kontinu dan sistem dinamik yang. menggunakan waktu diskrit disebut dengan sistem dinamik diskrit.

BAB I PENDAHULUAN. disebut dengan sistem dinamik kontinu dan sistem dinamik yang. menggunakan waktu diskrit disebut dengan sistem dinamik diskrit. BAB I PENDAHULUAN A. Latar Belakang Masalah Sistem dinamik dapat dipandang sebagai suatu sistem yang bergantung terhadap waktu. Sistem dinamik yang menggunakan waktu kontinu disebut dengan sistem dinamik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan diferensial Persamaan diferensial adalah suatu persamaan yang di dalamnya terdapat turunan-turunan. Jika terdapat variabel bebas tunggal, turunannya merupakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Pengertian dari persamaan diferensial biasa (PDB) yaitu suatu

BAB II TINJAUAN PUSTAKA. Pengertian dari persamaan diferensial biasa (PDB) yaitu suatu 5 BAB II TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Biasa Pengertian dari persamaan diferensial biasa (PDB) yaitu suatu persamaan yang melibatkan turunan pertama atau lebih dari suatu fungsi yang telah

Lebih terperinci

LANDASAN TEORI. Model ini memiliki nilai kesetimbangan positif pada saat koordinat berada di titik

LANDASAN TEORI. Model ini memiliki nilai kesetimbangan positif pada saat koordinat berada di titik LANDASAN TEORI Model Mangsa Pemangsa Lotka Volterra Bagian ini membahas model mangsa pemangsa klasik Lotka Volterra. Model Lotka Volterra menggambarkan laju perubahan populasi dua spesies yang saling berinteraksi.

Lebih terperinci

BAB IV OSILATOR HARMONIS

BAB IV OSILATOR HARMONIS Tinjauan Secara Mekanika Klasik BAB IV OSILATOR HARMONIS Osilator harmonis terjadi manakala sebuah partikel ditarik oleh gaya yang besarnya sebanding dengan perpindahan posisi partikel tersebut. F () =

Lebih terperinci

IV. HASIL DAN PEMBAHASAN. 4.1 Asumsi yang digunakan dalam sistem mangsa-pemangsa. Dimisalkan suatu habitat dimana spesies mangsa dan pemangsa hidup

IV. HASIL DAN PEMBAHASAN. 4.1 Asumsi yang digunakan dalam sistem mangsa-pemangsa. Dimisalkan suatu habitat dimana spesies mangsa dan pemangsa hidup IV. HASIL DAN PEMBAHASAN 4.1 Asumsi yang digunakan dalam sistem mangsa-pemangsa Dimisalkan suatu habitat dimana spesies mangsa dan pemangsa hidup berdampingan. Diasumsikan habitat ini dibagi menjadi dua

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Sistem dinamik merupakan formalisasi Matematika untuk menggambarkan konsep-konsep ilmiah dari proses deterministik yang bergantung terhadap waktu (Kuznetsov,

Lebih terperinci

DINAMIKA ORDE PERTAMA SISTEM NONLINIER TERKOPEL DENGAN RELASI PREDASI, MUTUAL, DAN SIKLIK (Tinjauan Kasus Mangsa-Pemangsa pada Sistem Ekologi)

DINAMIKA ORDE PERTAMA SISTEM NONLINIER TERKOPEL DENGAN RELASI PREDASI, MUTUAL, DAN SIKLIK (Tinjauan Kasus Mangsa-Pemangsa pada Sistem Ekologi) DINAMIKA ORDE PERTAMA SISTEM NONLINIER TERKOPEL DENGAN RELASI PREDASI, MUTUAL, DAN SIKLIK (Tinjauan Kasus Mangsa-Pemangsa pada Sistem Ekologi) Oleh: MADA SANJAYA WS G740308 DEPARTEMEN FISIKA FAKULTAS MATEMATIKA

Lebih terperinci

BAB IV PEMBAHASAN. 4.1 Analisis Kestabilan Model Matematika AIDS dengan Transmisi. atau Ibu menyusui yang positif terinfeksi HIV ke anaknya.

BAB IV PEMBAHASAN. 4.1 Analisis Kestabilan Model Matematika AIDS dengan Transmisi. atau Ibu menyusui yang positif terinfeksi HIV ke anaknya. BAB IV PEMBAHASAN Pada bab ini dilakukan analisis model penyebaran penyakit AIDS dengan adanya transmisi vertikal pada AIDS. Dari model matematika tersebut ditentukan titik setimbang dan kemudian dianalisis

Lebih terperinci

BAB III APLIKASI METODE EULER PADA KAJIAN TENTANG GERAK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1.

BAB III APLIKASI METODE EULER PADA KAJIAN TENTANG GERAK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. BAB III APLIKASI METODE EULER PADA KAJIAN TENTANG GERAK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menentukan solusi persamaan gerak jatuh bebas berdasarkan pendekatan

Lebih terperinci

DESKRIPSI PENGARUH PARAMETER TERHADAP KESTABILAN PERILAKU SISTEM BANDUL GANDA SEDERHANA

DESKRIPSI PENGARUH PARAMETER TERHADAP KESTABILAN PERILAKU SISTEM BANDUL GANDA SEDERHANA DESKRIPSI PENGARUH PARAMETER TERHADAP KESTABILAN PERILAKU SISTEM BANDUL GANDA SEDERHANA Thoufina Kurniyati Mahasiswa Jurusan Matematika Fakultas Sains dan Teknologi UIN Maulana Malik Ibrahim Malang E-mail:

Lebih terperinci

IV HASIL DAN PEMBAHASAN

IV HASIL DAN PEMBAHASAN IV HASIL DAN PEMBAHASAN 4.1 Penentuan Titik Tetap Analisis titik tetap pada sistem persamaan diferensial sering digunakan untuk menentukan suatu solusi yang tidak berubah menurut waktu, yaitu pada saat

Lebih terperinci

T 23 Center Manifold Dari Sistem Persamaan Diferensial Biasa Nonlinear Yang Titik Ekuilibriumnya Mengalami Bifurkasi Contoh Kasus Untuk Bifurkasi Hopf

T 23 Center Manifold Dari Sistem Persamaan Diferensial Biasa Nonlinear Yang Titik Ekuilibriumnya Mengalami Bifurkasi Contoh Kasus Untuk Bifurkasi Hopf T 23 Center Manifold Dari Sistem Persamaan Diferensial Biasa Nonlinear Yang Titik Ekuilibriumnya Mengalami Bifurkasi Contoh Kasus Untuk Bifurkasi Hopf Rubono Setiawan Prodi Pendidikan Matematika, F.KIP

Lebih terperinci

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi

Lebih terperinci

Penerapan Metode Multiple Scales untuk Masalah Galloping pada DuaSpans Kabel Transmisi

Penerapan Metode Multiple Scales untuk Masalah Galloping pada DuaSpans Kabel Transmisi Penerapan Metode Multiple Scales untuk Masalah Galloping pada DuaSpans Kabel Transmisi Eristia Arfi 1 1 Prodi Matematika terapan Fakultas Sains dan Teknologi Universitas Islam Negeri Sultan Syarif Kasim

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN 5 terkopel. Analisis yang dilakukan pada sistem terkopel ini dilakukan hanya pada model dengan arus AC bergantung waktu saja. Pada sistem terkopel ini akan dibahas propagasi sistem kompleks saat terisolasi

Lebih terperinci

BAB III PEMBAHASAN. Ebola. Setelah model terbentuk, akan dilanjutkan dengan analisa bifurkasi pada

BAB III PEMBAHASAN. Ebola. Setelah model terbentuk, akan dilanjutkan dengan analisa bifurkasi pada BAB III PEMBAHASAN Pada bab ini akan dibentuk model matematika dari penyebaran penyakit virus Ebola. Setelah model terbentuk, akan dilanjutkan dengan analisa bifurkasi pada parameter laju transmisi. A.

Lebih terperinci

Penerapan Teknik Serangga Steril Dengan Model Logistik. Dalam Pemberantasan Nyamuk Aedes Aegypti. Nida Sri Utami

Penerapan Teknik Serangga Steril Dengan Model Logistik. Dalam Pemberantasan Nyamuk Aedes Aegypti. Nida Sri Utami Penerapan Teknik Serangga Steril Dengan Model Logistik Dalam Pemberantasan Nyamuk Aedes Aegypti Nida Sri Utami Program Studi Pendidikan Matematika FKIP UMS Lina Aryati Jurusan Matematika FMIPA UGM ABSTRAK

Lebih terperinci

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL Pendahuluan Persamaan diferensial adalah persamaan yang memuat diferensial Kita akan membahas tentang Persamaan Diferensial Biasa yaitu

Lebih terperinci

ANALISIS KESTABILAN MODEL PERSAMAAN GERAK KINCIR AIR

ANALISIS KESTABILAN MODEL PERSAMAAN GERAK KINCIR AIR ANALISIS KESABILAN MODEL PERSAMAAN GERAK KINCIR AIR Ayu Fita Purwaningsih Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam,Universitas Negeri Surabaya ayuhapip@yahoo.com Dr.Abadi, M.Sc

Lebih terperinci

I. Sistem Persamaan Diferensial Linier Orde 1 (Review)

I. Sistem Persamaan Diferensial Linier Orde 1 (Review) I. Sistem Persamaan Diferensial Linier Orde (Review) November 0 () I. Sistem Persamaan Diferensial Linier Orde (Review) November 0 / 6 Teori Umum Bentuk umum sistem persamaan diferensial linier orde satu

Lebih terperinci

RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) SEMESTER GANJIL 2012/2013

RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) SEMESTER GANJIL 2012/2013 RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) SEMESTER GANJIL 2012/2013 Mata Kuliah : Fisika Dasar/Fisika Pertanian Kode / SKS : PAE 112 / 3 (2 Teori + 1 Praktikum) Status : Wajib Mata Kuliah

Lebih terperinci

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data A. Model Matematika BAB II KAJIAN TEORI Pemodelan matematika adalah proses representasi dan penjelasan dari permasalahan dunia real yang dinyatakan dalam pernyataan matematika (Widowati dan Sutimin, 2007:

Lebih terperinci

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan.

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas mengenai dasar teori untuk menganalisis simulasi kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. 2.1 Persamaan Diferensial Biasa

Lebih terperinci

BIFURKASI SADDLE-NODE PADA SISTEM INTERAKSI NONLINEAR SEPASANG OSILATOR TANPA PERTURBASI

BIFURKASI SADDLE-NODE PADA SISTEM INTERAKSI NONLINEAR SEPASANG OSILATOR TANPA PERTURBASI BIFURKASI SADDLE-NODE PADA SISTEM INTERAKSI NONLINEAR SEPASANG OSILATOR TANPA PERTURBASI Yolpin Durahim 1 Novianita Achmad Hasan S. Panigoro Diterima: xx xxxx 20xx, Disetujui: xx xxxx 20xx o Abstrak Dalam

Lebih terperinci

SP FISDAS I. acuan ) , skalar, arah ( ) searah dengan

SP FISDAS I. acuan ) , skalar, arah ( ) searah dengan SP FISDAS I Perihal : Matriks, pengulturan, dimensi, dan sebagainya. Bisa baca sendiri di tippler..!! KINEMATIKA : Gerak benda tanpa diketahui penyebabnya ( cabang dari ilmu mekanika ) DINAMIKA : Pengaruh

Lebih terperinci

Konsep Usaha dan Energi

Konsep Usaha dan Energi 1/18 FISIKA DASAR (TEKNIK SISPIL) USAHA DAN ENERGI Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id Konsep Usaha dan Energi Disamping perumusan hukum newton,

Lebih terperinci

PENYELESAIAN NUMERIK DAN ANALISA KESTABILAN PADA MODEL EPIDEMIK SEIR DENGAN PENULARAN PADA PERIODE LATEN

PENYELESAIAN NUMERIK DAN ANALISA KESTABILAN PADA MODEL EPIDEMIK SEIR DENGAN PENULARAN PADA PERIODE LATEN PENYELESAIAN NUMERIK DAN ANALISA KESTABILAN PADA MODEL EPIDEMIK SEIR DENGAN PENULARAN PADA PERIODE LATEN Oleh: Labibah Rochmatika (12 09 100 088) Dosen Pembimbing: Drs. M. Setijo Winarko M.Si Drs. Lukman

Lebih terperinci

BAB II KAJIAN TEORI. Persamaan diferensial sangat penting dalam pemodelan matematika khususnya

BAB II KAJIAN TEORI. Persamaan diferensial sangat penting dalam pemodelan matematika khususnya BAB II KAJIAN TEORI 2.1 Persamaan Diferensial Persamaan diferensial sangat penting dalam pemodelan matematika khususnya untuk pemodelan yang membutuhkan solusi dari sebuah permasalahan. Pemodelan matematika

Lebih terperinci

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik BAB II LANDASAN TEORI Pada bab ini, akan dijelaskan landasan teori yang akan digunakan dalam bab selanjutnya sebagai bahan acuan yang mendukung dan memperkuat tujuan penelitian. Landasan teori yang dimaksud

Lebih terperinci

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A PENGANTAR MATEMATIKA TEKNIK 1 By : Suthami A MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK Matematika sebagai ilmu dasar yang digunakan sebagai alat pemecahan masalah di bidang keteknikan

Lebih terperinci

BAB II KAJIAN TEORI. digunakan pada bab pembahasan. Teori-teori ini digunakan sebagai bahan acuan

BAB II KAJIAN TEORI. digunakan pada bab pembahasan. Teori-teori ini digunakan sebagai bahan acuan BAB II KAJIAN TEORI Pada bab ini akan dijelaskan mengenai landasan teori yang akan digunakan pada bab pembahasan. Teori-teori ini digunakan sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini dibahas mengenai tinjauan pustaka yang digunakan dalam penelitian ini, khususnya yang diperlukan dalam Bab 3. Teori yang dibahas adalah teori yang mendukung pembentukan

Lebih terperinci

BIFURKASI PADA MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN WAKTU TUNDA DAN LAJU PENULARAN BILINEAR SKRIPSI

BIFURKASI PADA MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN WAKTU TUNDA DAN LAJU PENULARAN BILINEAR SKRIPSI BIFURKASI PADA MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN WAKTU TUNDA DAN LAJU PENULARAN BILINEAR SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta

Lebih terperinci

Penentuan Bifurkasi Hopf Pada Predator Prey

Penentuan Bifurkasi Hopf Pada Predator Prey J. Math. and Its Appl. ISSN: 9-65X Vol., No., Nov 5, 5 Penentuan Bifurkasi Hopf Pada Predator Prey Dian Savitri Jurusan Teknik Sipil, Fakultas Teknik Universitas Negeri Surabaya d savitri@yahoo.com Abstrak

Lebih terperinci

Treefy Education Pelatihan OSN Online Nasional Jl Mangga III, Sidoarjo, Jawa WhatsApp:

Treefy Education Pelatihan OSN Online Nasional Jl Mangga III, Sidoarjo, Jawa  WhatsApp: Treefy Education PEMBAHASAN LATIHAN 1 1.a) Bayangkan bola berada di puncak pipa. Ketika diberikan sedikit dorongan, bola akan bergerak dan menabrak tanah dengan kecepatan. Gerakan tersebut merupakan proses

Lebih terperinci

IDENTIFIKASI TITIK TITIK BIFURKASI DARI MODEL TRANSMISI PENYAKIT MENULAR

IDENTIFIKASI TITIK TITIK BIFURKASI DARI MODEL TRANSMISI PENYAKIT MENULAR IDENTIFIKASI TITIK TITIK BIFURKASI DARI MODEL TRANSMISI PENYAKIT MENULAR R. Ratianingsih Jurusan Matematika FMIPA UNTAD Kampus Bumi Tadulako Tondo Palu Abstrak Penelitian ini bertujuan untuk mendapatkan

Lebih terperinci

IV PEMBAHASAN. jika λ 1 < 0 dan λ 2 > 0, maka titik bersifat sadel. Nilai ( ) mengakibatkan. 4.1 Model SIR

IV PEMBAHASAN. jika λ 1 < 0 dan λ 2 > 0, maka titik bersifat sadel. Nilai ( ) mengakibatkan. 4.1 Model SIR 9 IV PEMBAHASAN 4.1 Model SIR 4.1.1 Titik Tetap Untuk mendapatkan titik tetap diperoleh dari dua persamaan singular an ) sehingga dari persamaan 2) diperoleh : - si + s = 0 9) si + )i = 0 didapat titik

Lebih terperinci

IV HASIL DAN PEMBAHASAN

IV HASIL DAN PEMBAHASAN 4. Penentuan Titik Tetap I HAIL DAN PEMBAHAAN Analisis titik tetap pada sistem persamaan diferensial sering digunakan untuk menentukan suatu solusi yang tidak berubah terhadap waktu (solusi konstan). Titik

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial merupakan persamaan yang didalamnya terdapat beberapa derivatif. Persamaan diferensial menyatakan hubungan antara derivatif dari satu variabel

Lebih terperinci

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU Sistem persamaan linear orde/ tingkat satu memiliki bentuk standard : = = = = = = = = = + + + + + + + + + + Diasumsikan koefisien = dan fungsi adalah menerus

Lebih terperinci

MODEL LOGISTIK DENGAN DIFUSI PADA PERTUMBUHAN SEL TUMOR EHRLICH ASCITIES. Hendi Nirwansah 1 dan Widowati 2

MODEL LOGISTIK DENGAN DIFUSI PADA PERTUMBUHAN SEL TUMOR EHRLICH ASCITIES. Hendi Nirwansah 1 dan Widowati 2 MODEL LOGISTIK DEGA DIFUSI PADA PERTUMBUHA SEL TUMOR EHRLICH ASCITIES Hendi irwansah 1 dan Widowati 1, Jurusan Matematika FMIPA Universitas Diponegoro Jl. Prof. H. Soedarto, SH Tembalang Semarang 5075

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan diferensial Persamaan diferensial merupakan persamaan yang melibatkan turunanturunan dari fungsi yang tidak diketahui (Waluya, 2006). Contoh 2.1 : Diberikan persamaan

Lebih terperinci

1.1 Latar Belakang dan Identifikasi Masalah

1.1 Latar Belakang dan Identifikasi Masalah BAB I PENDAHULUAN Seiring dengan pertumbuhan kebutuhan dan intensifikasi penggunaan air, masalah kualitas air menjadi faktor yang penting dalam pengembangan sumberdaya air di berbagai belahan bumi. Walaupun

Lebih terperinci

SISTEM DINAMIK KONTINU LINEAR. Oleh: 1. Meirdania Fitri T 2. Siti Khairun Nisa 3. Grahani Ayu Deca F. 4. Fira Fitriah 5.

SISTEM DINAMIK KONTINU LINEAR. Oleh: 1. Meirdania Fitri T 2. Siti Khairun Nisa 3. Grahani Ayu Deca F. 4. Fira Fitriah 5. SISTEM DINAMIK KONTINU LINEAR Oleh: 1. Meirdania Fitri T 2. Siti Khairun Nisa 3. Grahani Ayu Deca F. 4. Fira Fitriah 5. Lisa Risfana Sari Sistem Dinamik D Sistem dinamik adalah sistem yang dapat diketahui

Lebih terperinci

BIFURKASI HOPF MODEL MANGSA-PEMANGSA DENGAN WAKTU TUNDA NI NYOMAN SURYANI

BIFURKASI HOPF MODEL MANGSA-PEMANGSA DENGAN WAKTU TUNDA NI NYOMAN SURYANI BIFURKASI HOPF MODEL MANGSA-PEMANGSA DENGAN WAKTU TUNDA NI NYOMAN SURYANI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2014 PERNYATAAN MENGENAI SKRIPSI

Lebih terperinci

Gaya merupakan besaran yang menentukan sistem gerak benda berdasarkan Hukum Newton. Beberapa fenomena sistem gerak benda jika dianalisis menggunakan

Gaya merupakan besaran yang menentukan sistem gerak benda berdasarkan Hukum Newton. Beberapa fenomena sistem gerak benda jika dianalisis menggunakan Gaya merupakan besaran yang menentukan sistem gerak benda berdasarkan Hukum Newton. Beberapa fenomena sistem gerak benda jika dianalisis menggunakan konsep gaya menjadi lebih rumit, alternatifnya menggunakan

Lebih terperinci

BAB 4 MODEL RUANG KEADAAN (STATE SPACE)

BAB 4 MODEL RUANG KEADAAN (STATE SPACE) BAB 4 MODEL RUANG KEADAAN (STATE SPACE) KOMPETENSI Kemampuan untuk menjelaskan pengertian tentang state space, menentukan nisbah alih hubungannya dengan persamaan ruang keadaan dan Mengembangkan analisis

Lebih terperinci

ENERGI POTENSIAL. dapat dimunculkan dan diubah sepenuhnya menjadi tenaga kinetik. Tenaga

ENERGI POTENSIAL. dapat dimunculkan dan diubah sepenuhnya menjadi tenaga kinetik. Tenaga ENERGI POTENSIAL 1. Pendahuluan Energi potensial merupakan suatu bentuk energi yang tersimpan, yang dapat dimunculkan dan diubah sepenuhnya menjadi tenaga kinetik. Tenaga potensial tidak dapat dikaitkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Transformasi Laplace Salah satu cara untuk menganalisis gejala peralihan (transien) adalah menggunakan transformasi Laplace, yaitu pengubahan suatu fungsi waktu f(t) menjadi

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema BAB II LANDASAN TEORI Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema yang akan menjadi landasan untuk pembahasan pada bab III nanti, di antaranya model matematika penyebaran penyakit,

Lebih terperinci

Bab 16. Model Pemangsa-Mangsa

Bab 16. Model Pemangsa-Mangsa Bab 16. Model Pemangsa-Mangsa Pada Bab ini akan dipelajari model matematis dari masalah dua spesies hidup dalam habitat yang sama, yang dalam hal ini keduanya berinteraksi dalam hubungan pemangsa dan mangsa.

Lebih terperinci

BAB III MODEL KAPLAN. 3.1 Model Kaplan

BAB III MODEL KAPLAN. 3.1 Model Kaplan BAB III MODEL KAPLAN Pada bab ini akan dipaparkan model Kaplan secara terperinci sebelum memodifikasinya menjadi model yang lebih realistis pada bab selanjutnya. Kaplan memberikan suatu model deterministik

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 5 BAB 2 TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Persamaan diferensial adalah suatu hubungan yang terdapat antara suatu variabel independen, suatu variabel dependen, dan satu atau lebih turunan dari

Lebih terperinci

Suatu sistem persamaan diferensial dinyatakan sebagai berikut : Misalkan suatu sistem persamaan diferensial (SPD) dinyatakan sebagai

Suatu sistem persamaan diferensial dinyatakan sebagai berikut : Misalkan suatu sistem persamaan diferensial (SPD) dinyatakan sebagai 11. TINJAUAN PUSTAKA 2.1 Sistem Persamaan Diferensial Definisi 1 [ Sistem Persamaan Diferensial Linear (SPDL) ] Jika suatu sistem persamaan diferensial dinyatakan sebagai berikut : x=ax+b,x(0)=x0,x~%"

Lebih terperinci

ANALISIS MODEL DENYUT JANTUNG DENGAN MENGGUNAKAN TEORI BIFURKASI

ANALISIS MODEL DENYUT JANTUNG DENGAN MENGGUNAKAN TEORI BIFURKASI ANALISIS MODEL DENYUT JANTUNG DENGAN MENGGUNAKAN TEORI BIFURKASI Herlina D. Tendean ), Hanna A. Parhusip ), Bambang Susanto ) ) Mahasiswa Program Studi Matematika FSM UKSW ) Dosen Program Studi Matematika

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Influenza atau lebih dikenal dengan flu, merupakan salah satu penyakit yang menyerang pernafasan manusia. Penyakit ini disebabkan oleh virus influenza yang

Lebih terperinci

Momentum Linier. Hoga saragih. hogasaragih.wordpress.com

Momentum Linier. Hoga saragih. hogasaragih.wordpress.com Momentum Linier Hoga saragih 1. Momentum dan Hubungannya dengan Gaya Momentum linier dari sebuah benda didefinisikan sebagai hasil kali massa dan kecepatannya Momentum dinyatakan dengan simbol P P=mv m

Lebih terperinci

ANALISIS DINAMIK MODEL PREDATOR-PREY PADA POPULASI ECENG GONDOK DENGAN ADANYA IKAN GRASS CARP DAN PEMANENAN

ANALISIS DINAMIK MODEL PREDATOR-PREY PADA POPULASI ECENG GONDOK DENGAN ADANYA IKAN GRASS CARP DAN PEMANENAN ANALISIS DINAMIK MODEL PREDATOR-PREY PADA POPULASI ECENG GONDOK DENGAN ADANYA IKAN GRASS CARP DAN PEMANENAN Skripsi disusun sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Program Studi

Lebih terperinci

1.2 Tujuan Penelitian 1.3 Perumusan Masalah 1.4 Hipotesis II. TINJAUAN PUSTAKA 2.1 Saraf Neurofisiologi

1.2 Tujuan Penelitian 1.3 Perumusan Masalah 1.4 Hipotesis II. TINJAUAN PUSTAKA 2.1 Saraf Neurofisiologi 2 Pada penelitian ini, digunakan model yang telah di pubikasikan oleh Cathy Morris dan Harold Lecar (1981) (ML Model). 24 Model ini diturunkan dari hasil eksperimen mengenai sifat listrik dari serat otot

Lebih terperinci

MODEL PERTUMBUHAN EKONOMI MANKIW ROMER WEIL DENGAN PENGARUH PERAN PEMERINTAH TERHADAP PENDAPATAN

MODEL PERTUMBUHAN EKONOMI MANKIW ROMER WEIL DENGAN PENGARUH PERAN PEMERINTAH TERHADAP PENDAPATAN MODEL PERTUMBUHAN EKONOMI MANKIW ROMER WEIL DENGAN PENGARUH PERAN PEMERINTAH TERHADAP PENDAPATAN Desi Oktaviani, Kartono 2, Farikhin 3,2,3 Departemen Matematika, Fakultas Sains dan Matematika, Universitas

Lebih terperinci

Tujuan Pembelajaran :

Tujuan Pembelajaran : Tujuan Pembelajaran : 1. Menunjukan bentuk-bentuk energi dan contohnya dalam kehidupan sehari-hari. Mengaplikasikan konsep energi dan perubahannya dalam kehidupan sehari-hari 3. Merancang percobaan sederhana

Lebih terperinci

( t) TINJAUAN PUSTAKA. x dengan nilai fungsi dari: x

( t) TINJAUAN PUSTAKA. x dengan nilai fungsi dari: x Berawal dari apa yang telah disampaikan sebelumnya, pada skripsi kali ini akan dipelajari bagaimana perilaku trayektori solusi soliton sistem optik periodik melalui pendekatan analisis sistem dinamik yang

Lebih terperinci

Penyelesaian Penempatan Kutub Umpan Balik Keluaran dengan Matriks Pseudo Invers

Penyelesaian Penempatan Kutub Umpan Balik Keluaran dengan Matriks Pseudo Invers Penyelesaian Penempatan Kutub Umpan Balik Keluaran dengan Matriks Pseudo Invers Agung Wicaksono, J2A605006, Jurusan Matematika, FSM UNDIP, Semarang, 2012 Abstrak: Metode matriks pseudo invers merupakan

Lebih terperinci

Simulasi Model Mangsa Pemangsa Di Wilayah yang Dilindungi untuk Kasus Pemangsa Tergantung Sebagian pada Mangsa

Simulasi Model Mangsa Pemangsa Di Wilayah yang Dilindungi untuk Kasus Pemangsa Tergantung Sebagian pada Mangsa Simulasi Model Mangsa Pemangsa Di Wilayah yang Dilindungi untuk asus Pemangsa Tergantung Sebagian pada Mangsa Ipah Junaedi 1, a), Diny Zulkarnaen 2, b) 3, c), dan Siti Julaeha 1, 2, 3 Jurusan Matematika,

Lebih terperinci

Karakteristik Gerak Harmonik Sederhana

Karakteristik Gerak Harmonik Sederhana Pertemuan GEARAN HARMONIK Kelas XI IPA Karakteristik Gerak Harmonik Sederhana Rasdiana Riang, (5B0809), Pendidikan Fisika PPS UNM Makassar 06 Beberapa parameter yang menentukan karaktersitik getaran: Amplitudo

Lebih terperinci

II. TINJAUAN PUSTAKA. nyata (fenomena-fenomena alam) ke dalam bagian-bagian matematika yang. disebut dunia matematika (mathematical world).

II. TINJAUAN PUSTAKA. nyata (fenomena-fenomena alam) ke dalam bagian-bagian matematika yang. disebut dunia matematika (mathematical world). 5 II. TINJAUAN PUSTAKA 2.1. Pemodelan Matematika Definisi pemodelan matematika : Pemodelan matematika adalah suatu deskripsi dari beberapa perilaku dunia nyata (fenomena-fenomena alam) ke dalam bagian-bagian

Lebih terperinci

MODEL EPIDEMIK SIR UNTUK PENYAKIT YANG MENULAR SECARA HORIZONTAL DAN VERTIKAL

MODEL EPIDEMIK SIR UNTUK PENYAKIT YANG MENULAR SECARA HORIZONTAL DAN VERTIKAL MODEL EPIDEMIK SIR UNTUK PENYAKIT YANG MENULAR SECARA HORIZONTAL DAN VERTIKAL ILMIYATI SARI 1, HENGKI TASMAN 2 1 Pusat Studi Komputasi Matematika, Universitas Gunadarma, ilmiyati@staff.gunadarma.ac.id

Lebih terperinci

Hendra Gunawan. 25 April 2014

Hendra Gunawan. 25 April 2014 MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 5 April 014 Kuliah yang Lalu 15.11 Persamaan Diferensial Linear Orde, Homogen 15. Persamaan Diferensial Linear Orde, Tak Homogen 15.3 Penggunaan Persamaan

Lebih terperinci