Persamaan Diferensial Parsial CNH3C3

Ukuran: px
Mulai penontonan dengan halaman:

Download "Persamaan Diferensial Parsial CNH3C3"

Transkripsi

1 Persamaan Diferensial Parsial CNH3C3 Week 4: Separasi Variabel untuk Persamaan Panas Orde Satu Tim Ilmu Komputasi Coordinator contact: Dr. Putu Harry Gunawan

2 1 Persamaan Panas 1D 2 Separasi Variabel 3 Contoh 4 Latihan 5 Perhatian!

3 Persamaan Panas 1D Persamaan panas Sebuah batang besi tipis dengan panjang L dipanaskan dengan api di bagian tengah besi sedangkan ujung kiri dan kanan besi dipertahankan dalam suhu dingin yakni 0 0 C (lihat Gambar di bawah ini).

4 Persamaan Panas 1D Persamaan panas Sebuah batang besi tipis dengan panjang L dipanaskan dengan api di bagian tengah besi sedangkan ujung kiri dan kanan besi dipertahankan dalam suhu dingin yakni 0 0 C (lihat Gambar di bawah ini). Sehingga nantinya dapat diamati bahwa besarnya temperatur di daerah tengah besi akan lebih besar dibandingkan dengan daerah lainnya.

5 Persamaan Panas 1D Persamaan panas Sebuah batang besi tipis dengan panjang L dipanaskan dengan api di bagian tengah besi sedangkan ujung kiri dan kanan besi dipertahankan dalam suhu dingin yakni 0 0 C (lihat Gambar di bawah ini). Sehingga nantinya dapat diamati bahwa besarnya temperatur di daerah tengah besi akan lebih besar dibandingkan dengan daerah lainnya. Selanjutnya, pada waktu tertentu atau waktu akhir pengamatan, api dipadamkan dan pengamatan dilanjutkan dengan mengukur penyebaran panas dari tengah ke bagian lainnya selama proses pendinginan.

6 Persamaan Panas 1D Persamaan panas Asumsikan sebuah batang besi memiliki panjang L = 1 m, maka formulasi matematika dari penyebaran panas dalam sebuah domain Ω = [0 : 1] adalah sebagai berikut

7 Persamaan Panas 1D Persamaan panas Asumsikan sebuah batang besi memiliki panjang L = 1 m, maka formulasi matematika dari penyebaran panas dalam sebuah domain Ω = [0 : 1] adalah sebagai berikut u(x, t) = µ 2 u(x, t) + Q(x), t x 2 t > 0, x (0, 1) (1.1) u(0, x) = f (x, ) x [0, 1] (1.2) u(x, t) = g(x), t 0, x {0, 1} (1.3)

8 Persamaan Panas 1D Persamaan panas Asumsikan sebuah batang besi memiliki panjang L = 1 m, maka formulasi matematika dari penyebaran panas dalam sebuah domain Ω = [0 : 1] adalah sebagai berikut u(x, t) = µ 2 u(x, t) + Q(x), t x 2 t > 0, x (0, 1) (1.1) u(0, x) = f (x, ) x [0, 1] (1.2) u(x, t) = g(x), t 0, x {0, 1} (1.3) dengan u(x, t) merupakan temperatur,

9 Persamaan Panas 1D Persamaan panas Asumsikan sebuah batang besi memiliki panjang L = 1 m, maka formulasi matematika dari penyebaran panas dalam sebuah domain Ω = [0 : 1] adalah sebagai berikut u(x, t) = µ 2 u(x, t) + Q(x), t x 2 t > 0, x (0, 1) (1.1) u(0, x) = f (x, ) x [0, 1] (1.2) u(x, t) = g(x), t 0, x {0, 1} (1.3) dengan u(x, t) merupakan temperatur, Q(x) sumber dalam (internal source),

10 Persamaan Panas 1D Persamaan panas Asumsikan sebuah batang besi memiliki panjang L = 1 m, maka formulasi matematika dari penyebaran panas dalam sebuah domain Ω = [0 : 1] adalah sebagai berikut u(x, t) = µ 2 u(x, t) + Q(x), t x 2 t > 0, x (0, 1) (1.1) u(0, x) = f (x, ) x [0, 1] (1.2) u(x, t) = g(x), t 0, x {0, 1} (1.3) dengan u(x, t) merupakan temperatur, Q(x) sumber dalam (internal source), f (x) distribusi awal panas,

11 Persamaan Panas 1D Persamaan panas Asumsikan sebuah batang besi memiliki panjang L = 1 m, maka formulasi matematika dari penyebaran panas dalam sebuah domain Ω = [0 : 1] adalah sebagai berikut u(x, t) = µ 2 u(x, t) + Q(x), t x 2 t > 0, x (0, 1) (1.1) u(0, x) = f (x, ) x [0, 1] (1.2) u(x, t) = g(x), t 0, x {0, 1} (1.3) dengan u(x, t) merupakan temperatur, Q(x) sumber dalam (internal source), f (x) distribusi awal panas, g(x) fungsi batas (boundary),

12 Persamaan Panas 1D Persamaan panas Asumsikan sebuah batang besi memiliki panjang L = 1 m, maka formulasi matematika dari penyebaran panas dalam sebuah domain Ω = [0 : 1] adalah sebagai berikut u(x, t) = µ 2 u(x, t) + Q(x), t x 2 t > 0, x (0, 1) (1.1) u(0, x) = f (x, ) x [0, 1] (1.2) u(x, t) = g(x), t 0, x {0, 1} (1.3) dengan u(x, t) merupakan temperatur, Q(x) sumber dalam (internal source), f (x) distribusi awal panas, g(x) fungsi batas (boundary), µ koesien difusi,

13 Persamaan Panas 1D Persamaan panas Asumsikan sebuah batang besi memiliki panjang L = 1 m, maka formulasi matematika dari penyebaran panas dalam sebuah domain Ω = [0 : 1] adalah sebagai berikut u(x, t) = µ 2 u(x, t) + Q(x), t x 2 t > 0, x (0, 1) (1.1) u(0, x) = f (x, ) x [0, 1] (1.2) u(x, t) = g(x), t 0, x {0, 1} (1.3) dengan u(x, t) merupakan temperatur, Q(x) sumber dalam (internal source), f (x) distribusi awal panas, g(x) fungsi batas (boundary), µ koesien difusi, x and t menyatakan ruang dan waktu berurutan.

14 Persamaan Panas 1D Persamaan Panas Untuk menyederhanakan persamaan diatas (Q(x) = 0), maka kita dapat menulis ulang persamaan ( ) menjadi: u u t µ 2, x 2 x (0, 1), t > 0 (1.4) u(x, 0) = f (x), x [0, 1] (1.5) u(0, t) = 0, u(1, t) = 0. t 0 (1.6)

15 Persamaan Panas Persamaan Panas 1D

16 Separasi variabel Solusi separasi adalah solusi dari persamaan ( ) dalam bentuk u(x, t) = X (x)t (t). (2.1) Penting bahwa variabel bebas dinotasikan dengan huruf kecil sedangkan fungsi dengan huruf kapital. Tujuan pertama kita adalah mencari kemungkinan solusi separasi sebanyak mungkin.

17 Separasi variabel Substitusikan persamaan ke dalam didapat u(x, t) = X (x)t (t). (2.2) u = u t µ 2 x 2 (2.3)

18 Separasi variabel Substitusikan persamaan ke dalam u(x, t) = X (x)t (t). (2.2) u = u t µ 2 x 2 (2.3) didapat X (x)t (t) = µx (x)t (t),

19 Separasi variabel Selanjutnya kita bagi dengan µx (x)t (t), didapat T (t) µt (t) = X (x) X (x). (2.4)

20 Separasi variabel Selanjutnya kita bagi dengan µx (x)t (t), didapat T (t) µt (t) = X (x) X (x). (2.4) Dapat kita lihat bahwa persamaan di sebelah kiri semuanya bergantung pada t dan sebaliknya di sebelah kanan semua bergantung pada x.

21 Separasi variabel Selanjutnya kita bagi dengan µx (x)t (t), didapat T (t) µt (t) = X (x) X (x). (2.4) Dapat kita lihat bahwa persamaan di sebelah kiri semuanya bergantung pada t dan sebaliknya di sebelah kanan semua bergantung pada x. Bagaimana mungkin fungsi yang bergantung pada waktu, sama dengan fungsi yang bergantung pada spasial?

22 Separasi variabel Selanjutnya kita bagi dengan µx (x)t (t), didapat T (t) µt (t) = X (x) X (x). (2.4) Dapat kita lihat bahwa persamaan di sebelah kiri semuanya bergantung pada t dan sebaliknya di sebelah kanan semua bergantung pada x. Bagaimana mungkin fungsi yang bergantung pada waktu, sama dengan fungsi yang bergantung pada spasial? Jika variabel x dan t merupakan sembarang variabel bebas, maka x tidak dapat menjadi fungsi dari t dan sebaliknya.

23 Separasi variabel Maka dari itu, kita perlu mengklaim bahwa kedua sisi (2.4) haruslah sama dengan suatu konstanta yang sama, yakni T (t) µt (t) = λ = X (x) X (x), (2.5) dengan λ adalah sembarang bilangan konstan yang disebut dengan konstanta separasi (the separation constant).

24 Separasi variabel Maka dari itu, kita perlu mengklaim bahwa kedua sisi (2.4) haruslah sama dengan suatu konstanta yang sama, yakni T (t) µt (t) = λ = X (x) X (x), (2.5) dengan λ adalah sembarang bilangan konstan yang disebut dengan konstanta separasi (the separation constant). Tanda negatif diberikan untuk mempermudah dalam pencarian solusi, kita akan bahas selanjutnya mengapa tanda minus ini berguna.

25 Separasi variabel Dari (2.5), kita mendapatkan dua buah persamaan diferensial biasa (PDB): X (x) + λx (x) = 0, (2.6) T (t) + λµt (t) = 0. (2.7) Tugas sekarang adalah mencari solusi dari PDB di atas!

26 Separasi variabel Solusi PDB persamaan (2.6) cara I Misalkan λ = β 2, dengan β > 0 sehingga memiliki solusi, X (x) + λx (x) = 0, (2.8)

27 Separasi variabel Solusi PDB persamaan (2.6) cara I Misalkan λ = β 2, dengan β > 0 sehingga X (x) + λx (x) = 0, (2.8) memiliki solusi, X (x) = A cos(βx) + B sin(βx). (2.9)

28 Separasi variabel Solusi PDB persamaan (2.6) cara I X (x) = A cos(βx) + B sin(βx). (2.10) Akan tetapi dengan melakukan substitusi kondisi batas (nilai = 0) ke rumus (2.10) didapat:

29 Separasi variabel Solusi PDB persamaan (2.6) cara I X (x) = A cos(βx) + B sin(βx). (2.10) Akan tetapi dengan melakukan substitusi kondisi batas (nilai = 0) ke rumus (2.10) didapat: 0 = X (0) = A dan 0 = X (L) = B sin(βl).

30 Separasi variabel Solusi PDB persamaan (2.6) cara I X (x) = A cos(βx) + B sin(βx). (2.10) Akan tetapi dengan melakukan substitusi kondisi batas (nilai = 0) ke rumus (2.10) didapat: 0 = X (0) = A dan 0 = X (L) = B sin(βl). Tentu saja kita tidak mengharapkan nilai A = B = 0 karena tidak akan menarik, sehingga yang diharapkan adalah sin(βl) = 0.

31 Separasi variabel Solusi PDB persamaan (2.6) cara I X (x) = A cos(βx) + B sin(βx). (2.10) Akan tetapi dengan melakukan substitusi kondisi batas (nilai = 0) ke rumus (2.10) didapat: 0 = X (0) = A dan 0 = X (L) = B sin(βl). Tentu saja kita tidak mengharapkan nilai A = B = 0 karena tidak akan menarik, sehingga yang diharapkan adalah sin(βl) = 0. Jadi dapat dilakukan dengan mengubah akar fungsi sinusoidal βl = kπ, untuk k = 1, 2,. Sehingga didapat ( ) kπ 2 λ k = β 2 =, dan Xk(x) = sin L ( kπx L ). (2.11)

32 Separasi variabel Solusi PDB persamaan (2.6) cara II Seperti dijelaskan sebelumnya, kita menggunakan tanda minus pada λ pada persamaan (2.5) untuk mempermudah solusi dan menetapkan bahwa konstanta yang dipilih adalah konstanta positif λ > 0, jadi persamaan (2.6) dapat dibentuk menjadi X (x) = λx (x), LX = λx. Sehingga fungsi X (x) merupakan fungsi eigen, yang memiliki solusi ( ) kπ 2 λ k =, dan Xk(x) = sin L ( kπx L ). (2.12) (Masalah nilai eigen dapat di review kembali pada matakuliah PDB/PDA)

33 Masalah Nilai Eigen (Review) Lema 1.1 Lema Nilai dan fungsi eigen dari masalah u (x) = f (x), x (0, L), u(0) = u(l) = 0 (2.13) diberikan sebagai berikut ( ) kπ 2 λ k = dan uk(x) = sin L ( kπx L ) k = 1, 2,, (2.14) Proof. Bukti dari lema ini dapat ditemukan di buku Tveito, et al. untuk lebih lengkapnya.

34 Separasi variabel Solusi PDB persamaan (2.7) Solusi PDB, T (t) + λµt (t) = 0, berupa

35 Separasi variabel Solusi PDB persamaan (2.7) Solusi PDB, berupa T (t) + λµt (t) = 0, T (t) = Ae λµt, dan dapat dibentuk menjadi T k (t) = A k e λ kµt = A k e ( kπ L ) 2 µt for k = 1, 2,, (2.15) dengan A k adalah sembarang konstan.

36 Separasi variabel Solusi umum PDP panas Pada akhirnya, terdapat tak hingga banyaknya solusi separasi untuk persamaan panas ( ),

37 Separasi variabel Solusi umum PDP panas Pada akhirnya, terdapat tak hingga banyaknya solusi separasi untuk persamaan panas ( ), u k (x, t) = A k e ( ( ) kπ ) 2 kπx µt L sin for k = 1, 2,. (2.16) L

38 Separasi variabel Solusi umum PDP panas Selain itu akumulasi dari banyaknya berhingga solusi N juga merupakan sebuah solusi yakni,

39 Separasi variabel Solusi umum PDP panas Selain itu akumulasi dari banyaknya berhingga solusi N juga merupakan sebuah solusi yakni, u(x, t) = N A k e ( kπ ) 2 µt L sin k=1 ( kπx L ), (2.17)

40 Separasi variabel Solusi umum PDP panas Selain itu akumulasi dari banyaknya berhingga solusi N juga merupakan sebuah solusi yakni, u(x, t) = N A k e ( kπ ) 2 µt L sin k=1 ( kπx L ), (2.17) dengan asumsi bahwa fungsi awal ( f merupakan kombinasi linear ) kπx berhingga dari fungsi eigen {sin L }, f (x) = N A k sin k=1 ( kπx L ). (2.18)

41 Contoh Contoh separasi variabel Contoh Andaikan kita memiliki masalah difusi sebagai berikut, maka solusinya adalah u = u t µ 2, x (0, 1), t > 0 (3.1) x 2 u(0, t) = 0, u(1, t) = 0. t 0 (3.2) u(x, 0) = 3 sin(πx) + 5 sin(4πx), x [0, 1] (3.3)

42 Contoh Contoh separasi variabel Contoh Andaikan kita memiliki masalah difusi sebagai berikut, maka solusinya adalah u = u t µ 2, x (0, 1), t > 0 (3.1) x 2 u(0, t) = 0, u(1, t) = 0. t 0 (3.2) u(x, 0) = 3 sin(πx) + 5 sin(4πx), x [0, 1] (3.3) u(x, t) = 3e π2t sin(πx) + 5e 16π2t sin(4πx). (3.4)

43 Contoh Contoh separasi variabel Solusi diatas dapat digambarkan sebagai fungsi x pada gambar di bawah ini, pada saat t = 0, 0.01 dan 0.1. Figure : Solusi dari persamaan panas dengan f (x) = 3 sin(πx) + 5 sin(4πx) untuk t = 0, 0.01 dan 0.1.

44 Latihan Latihan separasi variabel Latihan Selesaikan masalah difusi sebagai berikut, u = u t µ 2, x (0, L), t > 0 (4.1) x 2 u(0, t) = 0, u(l, t) = 0. t 0 (4.2) u(x, 0) = f (x), x [0, L] (4.3) 1. f (x) = ( ) πx 6 sin L 2. f (x) = 12 sin ( 9πx L ) ( 7 sin 4πx ) L

45 Perhatian! Perhatian! Solusi umum PDP panas Solusi umum persamaan panas, u(x, t) = N A k e ( kπ ) 2 µt L sin k=1 ( kπx L ), (5.1) hanya untuk fungsi awal ( f, merupakan kombinasi linear berhingga ) kπx dari fungsi eigen {sin L }, f (x) = N A k sin k=1 ( kπx L ). (5.2)

46 Perhatian! Perhatian! Solusi umum PDP panas Bagaimana jika fungsi awal f, merupakan ( bukan kombinasi linear ) kπx berhingga dari fungsi eigen {sin L }?

47 Perhatian! Perhatian! Solusi umum PDP panas Bagaimana jika fungsi awal f, merupakan ( bukan kombinasi linear ) kπx berhingga dari fungsi eigen {sin L }? Misalkan diberikan fungsi awal berupa konstanta f (x) = 1. (5.3)

48 Perhatian! Perhatian! Solusi umum PDP panas Untuk mengatasi hal ini, diperlukan jumlah tak hingga kombinasi linier dari kondisi awal, yakni f (x) = A k sin k=1 ( kπx L ) = 1 (5.4) dengan membuat N menuju tak hingga, dan kita dapatkan solusi umumnya ( kπx ( kπx u(x, t) = A k e )2t L sin L k=1 ). (5.5) Pada pertemuan berikutnya, akan dijelaskan bagaimana mencari A k (yaitu koesien Fourier) yang dapat dihitung dari fungsi f (x), yakni fungsi yang bukan merupakan kombinasi linier fungsi sinusoidal.

49 End of presentation!

Persamaan Diferensial Parsial CNH3C3

Persamaan Diferensial Parsial CNH3C3 Persamaan Diferensial Parsial CNH3C3 Tim Ilmu Komputasi Week 6: Separasi Variabel untuk Persamaan Gelombang Orde dua dan Koesien Fourier Coordinator contact: Dr. Putu Harry Gunawan phgunawan@telkomuniversity.ac.id

Lebih terperinci

Persamaan Diferensial Parsial CNH3C3

Persamaan Diferensial Parsial CNH3C3 Persamaan Diferensial Parsial CNH3C3 Week 5: Separasi Variabel untuk Persamaan Panas Orde Satu - Tim Ilmu Komputasi Coordinator contact: Dr. Putu Harry Gunawan phgunawan@telkomuniversity.ac.id 1 Review

Lebih terperinci

Persamaan Diferensial Parsial CNH3C3

Persamaan Diferensial Parsial CNH3C3 Persamaan Diferensial Parsial CNH3C3 Week 10: Finite Dierence Method for PDE Heat Eqs Tim Ilmu Komputasi Coordinator contact: Dr. Putu Harry Gunawan phgunawan@telkomuniversity.ac.id 1 Masalah Persamaan

Lebih terperinci

Persamaan Diferensial Parsial CNH3C3

Persamaan Diferensial Parsial CNH3C3 Persamaan Diferensial Parsial CNH3C3 Week 11-12: Finite Dierence Method for PDE Wave Eqs Tim Ilmu Komputasi Coordinator contact: Dr. Putu Harry Gunawan phgunawan@telkomuniversity.ac.id 1 Masalah Gelombang

Lebih terperinci

Soal Ujian 2 Persamaan Differensial Parsial

Soal Ujian 2 Persamaan Differensial Parsial Soal Uian 2 Persamaan Differensial Parsial M. Jamhuri April 15, 2013 1 Buktikan bahwa ux,t) = πˆ 1 x e θ2 dθ merupakan solusi persamaan difusi u t = u xx untuk setiap x R,t > 0. Untuk x 0 tunukkan bahwa

Lebih terperinci

Persamaan Diferensial Parsial CNH3C3

Persamaan Diferensial Parsial CNH3C3 Persamaan Diferensial Parsial CNH3C3 Week 3: Pengantar, konsep dasar dan klasikasi PDP Tim Ilmu Komputasi Coordinator contact: Dr. Putu Harry Gunawan phgunawan@telkomuniversity.ac.id 1 Kontrak kuliah 2

Lebih terperinci

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan BAB II KAJIAN TEORI Pada bab ini akan dibahas beberapa hal yang digunakan sebagai landasan pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

PDP linear orde 2 Agus Yodi Gunawan

PDP linear orde 2 Agus Yodi Gunawan PDP linear orde 2 Agus Yodi Gunawan Pada bagian ini akan dipelajari tiga jenis persamaan diferensial parsial (PDP) linear orde dua yang biasa dijumpai pada masalah-masalah dunia nyata, yaitu persamaan

Lebih terperinci

METODE PEMISAH VARIABEL: PERSAMAAN LAPLACE

METODE PEMISAH VARIABEL: PERSAMAAN LAPLACE METODE PEMISAH VARIABEL: PERSAMAAN LAPLACE M. Jamhuri April 1, 2013 Salah satu metode untuk menyelesaikan persamaan Laplace adalah dengan metode pemisahan variabel. Misalkan diberikan persamaan laplace

Lebih terperinci

PERSAMAAN DIFERENSIAL LINIER NON HOMOGEN

PERSAMAAN DIFERENSIAL LINIER NON HOMOGEN LINIER NON HOMOGEN Contoh PD linier non homogen orde 2. Bentuk umum persamaan PD Linier Non Homogen Orde 2, adalah sebagai berikut : y + f(x) y + g(x) y = r(x) ( 2-35) Solusi umum y(x) akan didapatkan

Lebih terperinci

KONSEP DASAR PERSAMAAN DIFERENSIAL

KONSEP DASAR PERSAMAAN DIFERENSIAL KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu fungsi (dasar). Sebagai

Lebih terperinci

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang beberapa teori dasar yang digunakan sebagai landasan pembahasan pada bab III. Beberapa teori dasar yang dibahas, diantaranya teori umum tentang persamaan

Lebih terperinci

MASALAH SYARAT BATAS (MSB)

MASALAH SYARAT BATAS (MSB) Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo PENDAHULUAN MODEL KABEL MENGGANTUNG DEFINISI MSB Persamaan diferensial (PD) dikatakan berdimensi 1 jika domainnya berupa himpunan bagian pada R 1.

Lebih terperinci

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu

Lebih terperinci

BAB VIII PERSAMAAN DIFERENSIAL PARSIAL

BAB VIII PERSAMAAN DIFERENSIAL PARSIAL BAB VIII PERSAMAAN DIFERENSIAL PARSIAL 1. Pendahuluan : Pemodelan Arus Panas Satu Dimensi Y Bahan penyekat (insulator) A Batang 0 L X Z Misalkan bila ada batang yang dapat menghantarkan panas. Batang tersebut

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Linier Homogen Tk. 2 (Differential: Linier Homogen Orde 2) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya PD linier homogen orde 2 Bentuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Perpindahan Kalor Kalor adalah energi yang diterima oleh benda sehingga suhu benda atau wujudnya berubah. Ukuran jumlah kalor dinyatakan dalam satuan joule (J). Kalor disebut

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Konsep Dasar dan Pembentukan (Differential : Basic Concepts and Establishment ) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan

Lebih terperinci

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data A. Model Matematika BAB II KAJIAN TEORI Pemodelan matematika adalah proses representasi dan penjelasan dari permasalahan dunia real yang dinyatakan dalam pernyataan matematika (Widowati dan Sutimin, 2007:

Lebih terperinci

PERSAMAAN DIFFERENSIAL LINIER

PERSAMAAN DIFFERENSIAL LINIER PERSAMAAN DIFFERENSIAL LINIER Persamaan Differensial Linier Pengertian : Suatu persamaan differensial orde satu dikatakan linier jika persamaan tersebut dapat dituliskan sbb: y + p x y = r(x) (1) linier

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang ingkasan Kalkulus 2, Untuk dipakai di ITB 1 Integral Lipat Dua Atas Daerah Persegipanjang Perhatikan fungsi z = f(x, y) pada = {(x, y) : a x b, c y d} Bentuk partisi P atas daerah berupa n buah persegipanjang

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Tujuan Instruksional: Mampu memahami definisi Persamaan Diferensial Mampu memahami klasifikasi Persamaan Diferensial Mampu memahami bentuk bentuk solusi Persamaan

Lebih terperinci

Diterbitkan secara mandiri melalui Nulisbuku.com

Diterbitkan secara mandiri melalui Nulisbuku.com PENGANTAR PERSAMAAN DIFERENSIAL PARSIAL UNTUK SAINS DAN TEKNIK Komputasi Metode Beda Hingga untuk Tipe Parabolik dan Hiperbolik Menggunakan FreeMat/MATLAB Dr. Putu Harry Gunawan 26 Diterbitkan secara mandiri

Lebih terperinci

Design and Analysis of Algorithm

Design and Analysis of Algorithm Design and Analysis of Algorithm Week 3: Notasi Asymptotic dan Kelas Dasar Efisiensi Dr. Putu Harry Gunawan 1 1 Department of Computational Science School of Computing Telkom University Dr. Putu Harry

Lebih terperinci

BAB II KAJIAN TEORI. dalam penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema,

BAB II KAJIAN TEORI. dalam penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang beberapa hal yang menjadi landasan dalam penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

I PENDAHULUAN 1.1 Latar Belakang dan Perumusan Masalah

I PENDAHULUAN 1.1 Latar Belakang dan Perumusan Masalah I PENDAHULUAN 1.1 Latar Belakang dan Perumusan Masalah Penelusuran tentang fenomena belalang merupakan bahasan yang baik untuk dipelajari karena belalang dikenal suka berkelompok dan berpindah. Dalam kelompok,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan.

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas mengenai dasar teori untuk menganalisis simulasi kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. 2.1 Persamaan Diferensial Biasa

Lebih terperinci

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai. I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Dalam kehidupan, polusi yang ada di sungai disebabkan oleh limbah dari pabrikpabrik dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk

Lebih terperinci

BAB III KONDUKSI ALIRAN STEDI - DIMENSI BANYAK

BAB III KONDUKSI ALIRAN STEDI - DIMENSI BANYAK BAB III KONDUKSI ALIRAN SEDI - DIMENSI BANYAK Untuk aliran stedi tanpa pembangkitan panas, persamaan Laplacenya adalah: + y 0 (6-) Aliran kalor pada arah dan y bisa dihitung dengan persamaan Fourier: q

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL BIASA

BAB II PERSAMAAN DIFERENSIAL BIASA BAB II PERSAMAAN DIFERENSIAL BIASA Tujuan Pembelajaran Umum: 1 Mahasiswa mampu memahami konsep dasar persamaan diferensial 2 Mahasiswa mampu menggunakan konsep dasar persamaan diferensial untuk menyelesaikan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Transformasi Laplace Salah satu cara untuk menganalisis gejala peralihan (transien) adalah menggunakan transformasi Laplace, yaitu pengubahan suatu fungsi waktu f(t) menjadi

Lebih terperinci

PARTIKEL DALAM SUATU KOTAK SATU DIMENSI

PARTIKEL DALAM SUATU KOTAK SATU DIMENSI PARTIKEL DALAM SUATU KOTAK SATU DIMENSI Atom terdiri dari inti atom yang dikelilingi oleh elektron-elektron, di mana elektron valensinya bebas bergerak di antara pusat-pusat ion. Elektron valensi geraknya

Lebih terperinci

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL Pendahuluan Persamaan diferensial adalah persamaan yang memuat diferensial Kita akan membahas tentang Persamaan Diferensial Biasa yaitu

Lebih terperinci

Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb

Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Sesi XII Differensial e-mail : zacoeb@ub.ac.id www.zacoeb.lecture.ub.ac.id Hp. 081233978339 PENDAHULUAN Persamaan diferensial

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Banyak sekali masalah terapan dalam ilmu teknik, ilmu fisika, biologi, dan lain-lain yang telah dirumuskan dengan model matematika dalam bentuk pesamaan

Lebih terperinci

Persamaan Diferensial Biasa

Persamaan Diferensial Biasa Persamaan Diferensial Biasa Pendahuluan, Persamaan Diferensial Orde-1 Toni Bakhtiar Departemen Matematika IPB September 2012 Toni Bakhtiar (m@thipb) PDB September 2012 1 / 37 Pendahuluan Konsep Dasar Beberapa

Lebih terperinci

SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON

SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON Viska Noviantri Mathematics & Statistics Department, School of Computer Science, Binus University Jl. K.H. Syahdan No. 9,

Lebih terperinci

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( )

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( ) II. TINJAUAN PUSTAKA 2.1 Definisi Turunan Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada sebarang bilangan c adalah asalkan limit ini ada. Jika limit ini memang ada, maka dikatakan

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE)

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE) Bab 2 Landasan Teori Dalam bab ini akan dibahas mengenai Persamaan Air Dangkal dan dasar-dasar teori mengenai metode beda hingga untuk menghampiri solusi dari persamaan diferensial parsial. 2.1 Persamaan

Lebih terperinci

Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial

Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial Ikhsan Maulidi Jurusan Matematika,Universitas Syiah Kuala, ikhsanmaulidi@rocketmail.com Abstract Artikel ini membahas tentang salah satu

Lebih terperinci

I. Sistem Persamaan Diferensial Linier Orde 1 (Review)

I. Sistem Persamaan Diferensial Linier Orde 1 (Review) I. Sistem Persamaan Diferensial Linier Orde (Review) November 0 () I. Sistem Persamaan Diferensial Linier Orde (Review) November 0 / 6 Teori Umum Bentuk umum sistem persamaan diferensial linier orde satu

Lebih terperinci

Persamaan Difusi. Penurunan, Solusi Analitik, Solusi Numerik (Beda Hingga, RBF) M. Jamhuri. April 7, UIN Malang. M. Jamhuri Persamaan Difusi

Persamaan Difusi. Penurunan, Solusi Analitik, Solusi Numerik (Beda Hingga, RBF) M. Jamhuri. April 7, UIN Malang. M. Jamhuri Persamaan Difusi Persamaan Difusi Penurunan, Solusi Analitik, Solusi Numerik (Beda Hingga, RBF) M Jamhuri UIN Malang April 7, 2013 Penurunan Persamaan Difusi Misalkan u(x, t) menyatakan konsentrasi dari zat pada posisi

Lebih terperinci

Bab 2 TEORI DASAR. 2.1 Model Aliran Panas

Bab 2 TEORI DASAR. 2.1 Model Aliran Panas Bab 2 TEORI DASAR 2.1 Model Aliran Panas Perpindahan panas adalah energi yang dipindahkan karena adanya perbedaan temperatur. Terdapat tiga cara atau metode bagiamana panas dipindahkan: Konduksi Konduksi

Lebih terperinci

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU Sistem persamaan linear orde/ tingkat satu memiliki bentuk standard : = = = = = = = = = + + + + + + + + + + Diasumsikan koefisien = dan fungsi adalah menerus

Lebih terperinci

13. Aplikasi Transformasi Fourier

13. Aplikasi Transformasi Fourier 13. plikasi ransformasi Fourier Misal adalah operator linear pada fungsi yang terdefinisi pada R dengan sifat: jika [f(x] = g(x, maka [f(x + s] = g(x + s untuk setiap s R. Maka, fungsi f(x = e ax (a C

Lebih terperinci

matematika PEMINATAN Kelas X SISTEM PERTIDAKSAMAAN LINEAR DAN KUADRAT K13 A. Pertidaksamaan Linear B. Daerah Pertidaksamaan Linear

matematika PEMINATAN Kelas X SISTEM PERTIDAKSAMAAN LINEAR DAN KUADRAT K13 A. Pertidaksamaan Linear B. Daerah Pertidaksamaan Linear K13 Kelas matematika PEMINATAN SISTEM PERTIDAKSAMAAN LINEAR DAN KUADRAT Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi pertidaksamaan

Lebih terperinci

PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D

PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D Keadaan Stasioner Pada pembahasan sebelumnya mengenai fungsi gelombang, telah dijelaskan bahwa potensial dalam persamaan

Lebih terperinci

BAB 2 PERSAMAAN DIFFERENSIAL BIASA

BAB 2 PERSAMAAN DIFFERENSIAL BIASA BAB 2 BIASA 2.1. KONSEP DASAR Persamaan Diferensial (PD) Biasa adalah persamaan yang mengandung satu atau beberapa penurunan y (varibel terikat) terhadap x (variabel bebas) yang tidak spesifik dan ditentukan

Lebih terperinci

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA K1 Kelas X matematika PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami bentuk-bentuk persamaan

Lebih terperinci

BAB III PERSAMAAN DIFUSI, PERSAMAAN KONVEKSI DIFUSI, DAN METODE PEMISAHAN VARIABEL

BAB III PERSAMAAN DIFUSI, PERSAMAAN KONVEKSI DIFUSI, DAN METODE PEMISAHAN VARIABEL BAB III PERSAMAAN DIFUSI, PERSAMAAN KONVEKSI DIFUSI, DAN METODE PEMISAHAN VARIABEL Dalam menyelesaikan persamaan pada tugas akhir ini terdapat beberapa teori dasar yang digunakan. Oleh karena itu, pada

Lebih terperinci

MATERI PERKULIAHAN. Gambar 1. Potensial tangga

MATERI PERKULIAHAN. Gambar 1. Potensial tangga MATERI PERKULIAHAN 3. Potensial Tangga Tinjau suatu partikel bermassa m, bergerak dari kiri ke kanan pada suatu daerah dengan potensial berbentuk tangga, seperti pada Gambar 1. Pada daerah < potensialnya

Lebih terperinci

NOISE TERMS PADA SOLUSI DERET DEKOMPOSISI ADOMIAN DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL PARSIAL ABSTRACT

NOISE TERMS PADA SOLUSI DERET DEKOMPOSISI ADOMIAN DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL PARSIAL ABSTRACT NOISE TERMS PADA SOLUSI DERET DEKOMPOSISI ADOMIAN DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL PARSIAL Heni Kusnani 1, Leli Deswita, Zulkarnain 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika

Lebih terperinci

TINJAUAN KASUS PERSAMAAN PANAS DIMENSI SATU SECARA ANALITIK

TINJAUAN KASUS PERSAMAAN PANAS DIMENSI SATU SECARA ANALITIK TINJAUAN KASUS PERSAMAAN PANAS DIMENSI SATU SECARA ANALITIK ANALYTICALLY REVIEW ON ONE-DIMENSIONAL HEAT EQUATION Oleh: Ahmadi 1), Hartono 2), Nikenasih Binatari 3) Program Studi Matematika, Jurusan Pendidikan

Lebih terperinci

Kalkulus Diferensial week 09. W. Rofianto, ST, MSi

Kalkulus Diferensial week 09. W. Rofianto, ST, MSi Kalkulus Diferensial week 09 W. Rofianto, ST, MSi Tingkat Perubahan Rata-rata Jakarta Km 0 jam Bandung Km 140 Kecepatan rata-rata s t 140Km jam 70Km / jam Konsep Diferensiasi Bentuk y/ disebut difference

Lebih terperinci

BAB I PERSAMAAN DIFERENSIAL BIASA ORDE SATU

BAB I PERSAMAAN DIFERENSIAL BIASA ORDE SATU BAB I PERSAMAAN DIFERENSIAL BIASA ORDE SATU Definisi: Persamaan diferensial adalah suatu hubungan yang terdapat antara suatu variabel independen x, suatu variabel dependen y, dan satu atau lebih turunan

Lebih terperinci

PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE

PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE Viska Noviantri Mathematics & Statistics Department, School of Computer Science, Binus University Jln. K.H. Syahdan No. 9, Palmerah,

Lebih terperinci

BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Persamaan linear tingkat tinggi menarik untuk dibahas dengan 2 alasan :

BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Persamaan linear tingkat tinggi menarik untuk dibahas dengan 2 alasan : BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Bentuk Persamaan Linear Tingkat Tinggi : ( ) Diasumsikan adalah kontinu (menerus) pada interval I. Persamaan linear tingkat tinggi

Lebih terperinci

Department of Mathematics FMIPAUNS

Department of Mathematics FMIPAUNS Lecture 2: Metode Operator A. Metode Operator untuk Sistem Linear dengan Koefisien Konstan Pada bagian ini akan dibicarakan cara menentukan penyelesaian sistem persamaan diferensial linear dengan menggunakan

Lebih terperinci

II. TINJAUAN PUSTAKA ( ) ( ) ( ) Asalkan limit ini ada dan bukan atau. Jika limit ini memang ada, dikatakan ( ) ( ) ( ) ( )

II. TINJAUAN PUSTAKA ( ) ( ) ( ) Asalkan limit ini ada dan bukan atau. Jika limit ini memang ada, dikatakan ( ) ( ) ( ) ( ) II. TINJAUAN PUSTAKA 2.1 Definisi Turunan Turunan sebuah fungsi f adalah fungsi lain (dibaca f aksen ) yang nilainya pada sebarang bilangan c adalah Asalkan limit ini ada dan bukan. Jika limit ini memang

Lebih terperinci

Kuliah 07 Persamaan Diferensial Ordinari Problem Kondisi Batas (PDOPKB)

Kuliah 07 Persamaan Diferensial Ordinari Problem Kondisi Batas (PDOPKB) Kuliah 07 Persamaan Diferensial Ordinari Problem Kondisi Batas (PDOPKB) Persamaan diferensial satu variabel bebas (ordinari) orde dua disebut juga sebagai Problem Kondisi Batas. Hal ini disebabkan persamaan

Lebih terperinci

Pengantar Metode Perturbasi Bab 1. Pendahuluan

Pengantar Metode Perturbasi Bab 1. Pendahuluan Pengantar Metode Perturbasi Bab 1. Pendahuluan Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas PAM 454 KAPITA SELEKTA MATEMATIKA TERAPAN II Semester Ganjil 2016/2017 Review Teori Dasar Terkait

Lebih terperinci

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik BAB II LANDASAN TEORI Pada bab ini, akan dijelaskan landasan teori yang akan digunakan dalam bab selanjutnya sebagai bahan acuan yang mendukung dan memperkuat tujuan penelitian. Landasan teori yang dimaksud

Lebih terperinci

Sidang Tugas Akhir - Juli 2013

Sidang Tugas Akhir - Juli 2013 Sidang Tugas Akhir - Juli 2013 STUDI PERBANDINGAN PERPINDAHAN PANAS MENGGUNAKAN METODE BEDA HINGGA DAN CRANK-NICHOLSON COMPARATIVE STUDY OF HEAT TRANSFER USING FINITE DIFFERENCE AND CRANK-NICHOLSON METHOD

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Latar Belakang Historis Fondasi dari integral pertama kali dideklarasikan oleh Cavalieri, seorang ahli matematika berkebangsaan Italia pada tahun 1635. Cavalieri menemukan bahwa

Lebih terperinci

Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui.

Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui. 1 Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui. Jika persamaan diferensial memiliki satu peubah tak bebas maka disebut Persamaan Diferensial

Lebih terperinci

Persamaan Diferensial Parsial Umum Orde Pertama

Persamaan Diferensial Parsial Umum Orde Pertama Persamaan Diferensial Parsial Umum Orde Pertama Persamaan diferensial parsial umum orde pertama untuk fungsi memiliki bentuk: di mana dan. Dalam hal ini dipandang sebagai fungsi dari lima argumen. Di sini

Lebih terperinci

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping

Lebih terperinci

ANALISIS METODE DEKOMPOSISI SUMUDU DAN MODIFIKASINYA DALAM MENENTUKAN PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR

ANALISIS METODE DEKOMPOSISI SUMUDU DAN MODIFIKASINYA DALAM MENENTUKAN PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 05, No. 2 (2016), hal 103-112 ANALISIS METODE DEKOMPOSISI SUMUDU DAN MODIFIKASINYA DALAM MENENTUKAN PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL

Lebih terperinci

DERET FOURIER DAN APLIKASINYA DALAM FISIKA

DERET FOURIER DAN APLIKASINYA DALAM FISIKA Matakuliah: Fisika Matematika DERET FOURIER DAN APLIKASINYA DALAM FISIKA Di S U S U N Oleh : Kelompok VI DEWI RATNA PERTIWI SITEPU (8176175004) RIFKA ANNISA GIRSANG (8176175014) PENDIDIKAN FISIKA REGULER

Lebih terperinci

Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi

Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi JURNAL FOURIER Oktober 2013, Vol. 2, No. 2, 113-123 ISSN 2252-763X Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi Annisa Eki Mulyati dan Sugiyanto Program Studi Matematika Fakultas

Lebih terperinci

SIMULASI NUMERIK PADA ALIRAN AIR TANAH MENGGUNAKAN COLLOCATION FINITE ELEMENT METHOD

SIMULASI NUMERIK PADA ALIRAN AIR TANAH MENGGUNAKAN COLLOCATION FINITE ELEMENT METHOD E-Jurnal Matematika, Vol. 7 (1), Januari 2018, pp.5-10 DOI: https://doi.org/10.24843/mtk.2018.v07.i01.p177 ISSN: 2303-1751 SIMULASI NUMERIK PADA ALIRAN AIR TANAH MENGGUNAKAN COLLOCATION FINITE ELEMENT

Lebih terperinci

FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU ABSTRACT

FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU ABSTRACT FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU Syofia Deswita 1, Syamsudhuha 2, Agusni 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari

BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari BAB III HASIL DAN PEMBAHASAN Pada bab ini akan dibahas penurunan model persamaan panas dimensi satu. Setelah itu akan ditentukan penyelesaian persamaan panas dimensi satu secara analitik dengan metode

Lebih terperinci

1 BAB 4 ANALISIS DAN BAHASAN

1 BAB 4 ANALISIS DAN BAHASAN 1 BAB 4 ANALISIS DAN BAHASAN Pada bab ini akan dibahas pengaruh dasar laut tak rata terhadap perambatan gelombang permukaan secara analitik. Pengaruh dasar tak rata ini akan ditinjau melalui simpangan

Lebih terperinci

perpindahan, kita peroleh persamaan differensial berikut :

perpindahan, kita peroleh persamaan differensial berikut : 1.1 Pengertian Persamaan Differensial Banyak sekali masalah terapan (dalam ilmu teknik, ilmu fisika, biologi, kimia, sosial, dan lain-lain), yang telah dirumuskan dengan model matematika dalam bentuk persamaan

Lebih terperinci

SOLUSI ANALITIK MASALAH KONDUKSI PANAS PADA TABUNG

SOLUSI ANALITIK MASALAH KONDUKSI PANAS PADA TABUNG Jurnal LOG!K@, Jilid 6, No. 1, 2016, Hal. 11-22 ISSN 1978 8568 SOLUSI ANALITIK MASALAH KONDUKSI PANAS PADA TABUNG Afo Rakaiwa dan Suma inna Program Studi Matematika, Fakultas Sains dan Teknologi, Universitas

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Persamaan Diferensial Orde II

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Persamaan Diferensial Orde II Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Persamaan Diferensial Orde II [MA4] PDB Orde II Bentuk umum : y + p(x)y + g(x)y = r(x) p(x), g(x) disebut koefisien jika r(x) = 0, maka Persamaan

Lebih terperinci

Matematika

Matematika Fungsi dan Kekontinuan D3 Analis Kimia FMIPA Universitas Islam Indonesia Ilustrasi 1 Nol mutlak, yaitu temperatur T C di mana semua aktivitas molekular berhenti, dapat didekati namun tidak pernah dapat

Lebih terperinci

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A PENGANTAR MATEMATIKA TEKNIK 1 By : Suthami A MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK Matematika sebagai ilmu dasar yang digunakan sebagai alat pemecahan masalah di bidang keteknikan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 7 BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa poin tentang sistem dinamik, kestabilan sistem dinamik, serta konsep bifurkasi. A. Sistem Dinamik Secara umum Sistem dinamik didefinisikan

Lebih terperinci

Bab II Model Lapisan Fluida Viskos Tipis Akibat Gaya Gravitasi

Bab II Model Lapisan Fluida Viskos Tipis Akibat Gaya Gravitasi Bab II Model Lapisan Fluida Viskos Tipis Akibat Gaya Gravitasi II.1 Gambaran Umum Model Pada bab ini, kita akan merumuskan model matematika dari masalah ketidakstabilan lapisan fluida tipis yang bergerak

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 2 - II

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 2 - II PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE - II.Persamaan Homogen dengan Koefisien Konstan Suatu persamaan linier homogen y + ay + by = 0 (1) mempunyai koefisien a dan b adalah konstan. Persamaan ini mempunyai

Lebih terperinci

Sistem Persamaan Linier dan Matriks

Sistem Persamaan Linier dan Matriks Sistem Persamaan Linier dan Matriks 1.1 Pendahuluan linier: Sebuah garis pada bidang- dapat dinyatakan secara aljabar dengan sebuah persamaan Sebuah persamaan jenis ini disebut persamaan linier dalam dua

Lebih terperinci

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB LANDASAN TEORI Pada bab ini akan dibahas beberapa konsep dasar ang akan digunakan sebagai landasan berpikir seperti beberapa teorema dan definisi ang berkaitan dengan penelitian ini. Dengan begitu

Lebih terperinci

Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika. Persamaan Diferensial Orde II

Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika. Persamaan Diferensial Orde II Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika Persamaan Diferensial Orde II PDB Orde II Bentuk umum : y + p(x)y + g(x)y = r(x) p(x), g(x) disebut koefisien jika r(x) = 0, maka

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Dalam bab ini dibahas tentang dasar-dasar teori yang digunakan untuk mengetahui kecepatan perambatan panas pada proses pasteurisasi pengalengan susu. Dasar-dasar teori tersebut meliputi

Lebih terperinci

TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 2016/2017

TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 2016/2017 A. Pengantar Persamaan Diferensial TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 016/017 1. Tentukan hasil turunan dari fungsi sebagai berikut: a. f() = c e b. f() = c cos k + c sin k c.

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV 101. Limit Fungsi. Pertemuan - 2

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV 101. Limit Fungsi. Pertemuan - 2 Respet, Proessionalism, & Entrepreneurship Mata Kuliah : Kalkulus Kode : CIV 101 SKS : 3 SKS Limit Fungsi Pertemuan - Respet, Proessionalism, & Entrepreneurship Kemampuan Akhir yang Diharapkan Mahasiswa

Lebih terperinci

FUNGSI EVANS, SIFAT-SIFAT DAN APLIKASINYA PADA PELACAKAN NILAI EIGEN DARI MASALAH STURM-LIOUVILLE

FUNGSI EVANS, SIFAT-SIFAT DAN APLIKASINYA PADA PELACAKAN NILAI EIGEN DARI MASALAH STURM-LIOUVILLE Jurnal Matematika UNAND Vol. 4 No. Hal. 23 3 ISSN : 233 29 c Jurusan Matematika FMIPA UNAND FUNGSI EVANS, SIFAT-SIFAT DAN APLIKASINYA PADA PELACAKAN NILAI EIGEN DARI MASALAH STURM-LIOUVILLE HILDA FAHLENA,

Lebih terperinci

Matematika

Matematika Fungsi dan Kekontinuan D3 Analis Kimia FMIPA Universitas Islam Indonesia Ilustrasi 1 Nol mutlak, yaitu temperatur T C di mana semua aktivitas molekular berhenti, dapat didekati namun tidak pernah dapat

Lebih terperinci

Reflektor Gelombang 1 balok

Reflektor Gelombang 1 balok Bab 3 Reflektor Gelombang 1 balok Setelah diperoleh persamaan yang menggambarkan gerak gelombang air setiap saat yaitu SWE, maka pada bab ini akan dielaskan mengenai pengaruh 1 balok terendam sebagai reflektor

Lebih terperinci

II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Definisi 1 [Sistem Persamaan Diferensial Linear (SPDL)]

II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Definisi 1 [Sistem Persamaan Diferensial Linear (SPDL)] II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Definisi 1 [Sistem Persamaan Diferensial Linear (SPDL)] Suatu sistem persamaan diferensial dinyatakan sebagai berikut: A adalah matriks koefisien konstan

Lebih terperinci

BAB 1. KONSEP DASAR. d y ; 3x = d3 y ; y = 3 d y ; x = @u @z 5 6. d y = 7 y x Dalam bahan ajar ini pemba

BAB 1. KONSEP DASAR. d y ; 3x = d3 y ; y = 3 d y ; x =  @u  @z 5 6. d y = 7 y x Dalam bahan ajar ini pemba BAB 1 Konsep Dasar 1.1 Klasikasi Persamaan Difrensial Pada umumnya dikenal dua jenis persamaan difrensial yaitu Persamaan Difrensial Biasa (PDB) dan Persamaan Difrensial Parsial (PDP). Untuk mengetahui

Lebih terperinci

Solusi Penyelesaian Persamaan Laplace dengan Menggunakan Metode Random Walk Gapar 1), Yudha Arman 1), Apriansyah 2)

Solusi Penyelesaian Persamaan Laplace dengan Menggunakan Metode Random Walk Gapar 1), Yudha Arman 1), Apriansyah 2) Solusi Penyelesaian Persamaan Laplace dengan Menggunakan Metode Random Walk Gapar 1), Yudha Arman 1), Apriansyah 2) 1) Program Studi Fisika Jurusan Fisika Universitas Tanjungpura 2)Program Studi Ilmu Kelautan

Lebih terperinci

KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I

KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I 7 INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Memahami konsep dasar integral, teorema-teorema, sifat-sifat, notasi jumlah, fungsi transenden dan teknik-teknik pengintegralan. Materi

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 11, 2007 Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila

Lebih terperinci

SISTEM HUKUM KEKEKALAN LINEAR

SISTEM HUKUM KEKEKALAN LINEAR Bab 3 SISTEM HUKUM KEKEKALAN LINEAR 3.1 Sistem Linear Hiperbolik Sistem linear dalam pengertian Tugas Akhir ini adalah suatu sistem hukum kekekalan dengan bentuk umum, t u + d A α (t) xα u = 0 (3.1.1)

Lebih terperinci

BAB V SISTEM PERSAMAAN DIFERENSIAL

BAB V SISTEM PERSAMAAN DIFERENSIAL BAB V SISTEM PERSAMAAN DIFERENSIAL Kompetensi Mahasiswa dapat 1. Membangun sistem persamaan diferensial dari beberapa persamaan yang bergantung pada satu variabel bebas yang sama. 2. Menentukan selesaian

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam kehidupan sehari-hari banyak permasalahan yang muncul di lingkungan sekitar. Hal tersebut yang memicu kreatifitas berpikir manusia untuk menyelesaikan

Lebih terperinci