II LANDASAN TEORI. dengan, 1,2,3,, menyatakan koefisien deret pangkat dan menyatakan titik pusatnya.

Ukuran: px
Mulai penontonan dengan halaman:

Download "II LANDASAN TEORI. dengan, 1,2,3,, menyatakan koefisien deret pangkat dan menyatakan titik pusatnya."

Transkripsi

1 2 II LANDASAN TEORI Pada bagian ini akan dibahas teoriteori yang mendukung karya tulis ini. Teoriteori tersebut meliputi persamaan diferensial penurunan persamaan KdV yang disarikan dari (Ihsanudin, 2008; Ramayanti, 1999; Ahmad, 2009), konsep deret Taylor dari [Steward, 2003], konsep metode homotopi dari (Liao, 2004). 2.1 Persamaan Diferensial Persamaan diferensial merupakan persamaan yang memuat turunan dari suatu fungsi. Bila fungsi tersebut bergantung pada satu variabel bebas, maka disebut Persamaan Diferensial Biasa (PDB), segkan bila fungsi tersebut memuat lebih dari satu variabel bebas, maka disebut Persamaan Diferensial Parsial (PDP). Bentuk umum PDB linear orde ke-n dengan 0,,, disebut koefisien persamaan diferensial, segkan bila tidak dapat dinyatakan seperti bentuk di atas, maka disebut persamaan diferensial taklinear. Bentuk umum PDP linear orde ke-n,,,,,,,,, 0 dengan, 1,2,, variabel bebas,,,,, turunan-turunan parsial. Seringkali persamaan diferensial dilengkapi dengan nilai awal atau nilai batas. Masalah persamaan diferensial yang dilengkapi dengan suatu nilai awal disebut masalah nilai awal. Segkan masalah persamaan diferensial yang dilengkapi dengan suatu nilai batas disebut masalah nilai batas. 2.2 Uraian Deret Taylor Misalkan fungsi sebarang yang dapat dinyatakan sebagai suatu deret pangkat sebagai (2.1) dengan, 1,2,3,, menyatakan koefisien deret pangkat menyatakan titik pusatnya. Jika fungsi dinyatakan dalam bentuk deret berikut! 1!, (2.2) "! maka deret (2.2) disebut deret Taylor dari fungsi yang berpusat di a. Misalkan fungsi exp (2.3) maka uraian deret taylor dari persamaan (2.3) dapat dinyatakan sebagai! exp (2.4) 2.3 Penurunan Persamaan KdV Dalam menurunkan persamaan dasar fluida ideal, yaitu fluida yang tak mampat (incompressiable) tak kental (inviscid) diperlukan hukum kekekalan massa hukum kekekalan momentum. Hukum kekekalan massa pada suatu sistem dinyatakan secara sederhana sebagai laju perubahan massa dalam elemen luas, yaitu selisih antara massa yang masuk dengan massa yang keluar pada elemen luas tersebut. Misalkan gerak partikel fluida dinyatakan dalam dua dimensi dengan kecepatan partikel dalam arah horizontal vertikal berturut-turut u w. Fluida memiliki rapat massa,, dengan x, z t berturut-turut menyatakan koordinat horizontal, koordinat vertikal waktu. Berdasarkan hukum kekekalan massa diperoleh persamaan kontinuitas berikut : 0 (2.5) 0 (2.6) hukum kekekalan momentum memberikan persamaan Euler

2 3 0 (2.7) 0 (2.8) dengan p g berturut-turut menyatakan tekanan percepatan gravitasi. Berdasarkan asumsi fluida tak berotasi (irrotational), diperoleh aya suatu fungsi skalar Φ yang disebut kecepatan potensial, sehingga Φ Φ,Φ. Jadi, persamaan (2.6) dapat ditulis: Φ Φ 0. Syarat batas untuk gerak partikel fluida syarat batas kinematik syarat batas dinamik. Syarat batas kinematik terjadi karena gerak partikel, segkan syarat batas dinamik terjadi karena aya gayagaya yang bekerja pada fluida. Misalkan, kurva yang membatasi air udara dinyatakan oleh persamaaan permukaan,,, 0, sehingga diperoleh syarat batas kinematik pada permukaan fluida Φ Φ 0 di,, segkan syarat batas kinematik di dasar fluida yang tidak rata ( )) Φ Φ 0 di. Syarat batas dinamik hanya berlaku pada permukaan saja, diturunkan berdasarkan persamaan Euler dengan asumsi fluida tak kental (invicid) tekanan di permukaan sama dengan tekanan udara, misalnya nol. Jadi, syarat batas dinamik Φ Φ Φ 0 di,. Dengan demikian diperoleh persamaan dasar Φ Φ 0 di Ω. (2.9) Φ Φ 0 di. (2.10) Φ 1 2 Φ 1 2 Φ 0 di,. (2.11) Φ Φ 0 di,. (2.12) Penyelesaian persamaan dasar di atas dapat dilakukan dengan metode asimtotik. Dengan metode ini, akan diperoleh suatu persamaan gerak gelombang yang disebut persamaan Korteweg de-vries (KdV). Metode ini merupakan cara penurunan persamaan KdV yang diperkenalkan oleh [Newell, 1978] dengan menskalakan peubah ; Φ ; ;. Jika peubah-peubah tersebut di atas disubstitusikan ke persamaan (2.9), (2.10), (2.11) (2.12), maka Φ Φ 0 di Ω; (2.13) Φ Φ 0 di ; (2.14) Φ 1 2 Φ 1 2 Φ 0 di ; (2.15) Φ Φ 0 di. (2.16) Selanjutnya untuk penyederhanaan, tanda ( )dapat diabaikan. Misalkan penyelesaian persamaan (2.13), (2.14), (2.15) (2.16) berbentuk: Φ,, Φ,, Φ,, Φ.. (2.17) Jika persamaan (2.17) disubstitusikan ke dalam persamaan (2.13), maka Φ Φ Φ 0. (2.18) Koefisien dari memberikan persamaan Φ 0; (2.19) Φ Φ 0; (2.20) Jika persamaan (2.17) disubstitusikan ke persamaan (2.14), maka Φ Φ Φ 0 di. (2.21) Koefisien memberikan persamaan Φ 0 di ; (2.22) Φ 0 di. (2.23)

3 4 Jika persamaan (2.19) diintegralkan terhadap z, maka Φ Φ 0. Karena Φ 0, maka Φ 0,, Sehingga fungsi Φ tidak bergantung pada peubah z. Jadi dapat dimisalkan: Φ,. (2.24) Dari persamaan (2.20) persamaan (2.24) Φ Φ, diintegralkan dari ke z Φ Φ, Karena Φ 0, maka setelah diintegralkan dari ke z Φ. (2.25) Dengan cara yang sama, dimana Οε, diperoleh Φ berbentuk: Φ. (2.26) Jika persamaan (2.24), (2.25) (2.26) disubstitusikan kembali ke persamaan (2.17), maka Φ,,, Ο3. (2.27) Dengan memisalkan pada persamaan (2.27), maka persamaan (2.15) (2.16) berturut-turut memberikan persamaan Ο (2.28) Ο. (2.29) Selanjutnya diperkenalkan peubah dimana, Χ, (2.30) dengan. Misalkan, dalam peubah Χ dinyatakan sebagai,, Χ (2.31) Jika persamaan (2.31) disubstitusikan ke persamaan (2.28) (2.29), maka. (2.32) Kemudian dimisalkan ; (2.33) U h f, (2.34) maka persamaan (2.32) dapat dinyatakan oleh persamaan 6. (2.35) Jika batas bawah berupa dasar yang bervariasi dengan sangat lambat ( kecil), maka dari persamaan (2.35) 6 (2.36) dengan suatu parameter kecil. Dengan demikian, untuk batas bawah berupa dasar yang rata di (h konstan), maka dari persamaan (2.35) 6 0, (2.37) yang merupakan persamaan KdV standar. 2.4 Gelombang Soliter Sebagaimana yang dilakukan oleh [Grimshaw Mitsudera, 1993], peubah

4 5 waktu koordinat horizontal masingmasing dimisalkan sebagai, (2.38), (2.39) dengan C suatu fungsi yang bergantung pada waktu, diinterpretasikan sebagai besaran kecepatan. Dengan menggunakan metode asimtotik, diasumsikan bahwa peubah tak bebas U peubah C memiliki uraian asimtotik sebagai,, (2.40) (2.41) Substitusikan persamaan (2.39) (2.40) ke persamaan (2.37), maka koefisien memberikan persamaan: 6 0. (2.42) Berikut ini akan ditentukan penyelesaian U dari persamaan (2.42) yang diasumsikan berupa gelombang soliter, yaitu gelombang berjalan yang dalam perambatannya mempertahankan bentuk kecepatannya. Jika persamaan (2.42) diintegralkan terhadap, maka 3, (2.43) dengan K konstanta pengintegralan. Misalkan gelombang berjalan yang ditinjau berupa gelombang soliter, dimana simpangan gelombang U semua turunannya menuju 0 di, maka 0, sehingga persamaan (2.44) menjadi: 3 0. (2.44) Jika persamaan (2.44) dikalikan dengan, kemudian diintegralkan terhadap,. (2.45) Karena diasumsikan penyelesaian berupa gelombang soliter, maka 0, sehingga persamaan (2.45) menjadi: atau, (2.46) 2. 2 (2.47) Kemudian kedua ruas pada persamaan (2.47) diintegralkan, , atau 2.5 Metode Homotopi (2.48) 2 2. (2.49) Berikut ini diberikan ilustrasi konsep dasar metode homotopi yang disarikan dari [Jaharuddin, 2008]. Misalkan diberikan persamaan diferensial sebagai 0,Ω (2.50) dengan suatu operator turunan yang taklinear fungsi yang akan ditentukan bergantung pada peubah acak. Selanjutnya didefnisikan pula suatu operator linear yang memenuhi 0, bila 0 (2.51) Sehingga operator dapat dibagi menjadi dua bagian, yaitu yang masingmasing merupakan operator linear taklinear. Jadi, persamaan diferensial (2.50) dapat ditulis: 0. Misalkan pendekatan awal dari penyelesaian persamaan (2.50) 0,1 suatu parameter. Didefinisikan fungsi real, :Ω0,1, suatu fungsi H sebagai, 1

5 6, 1 (2.52) Berdasarkan persamaan (2.52), maka untuk 0 1 masing-masing memberikan persamaan, 0,0, 0, 1,1, 1. Sehingga menurut persamaan (2.51) persamaan (2.52) diperoleh bahwa fungsi, 0, 1 masing-masing merupakan penyelesaian dari persamaan, 0,0 0, 1,1 0. Dengan demikian peningkatan nilai dari 0 ke 1 menyatakan perubahan nilai, dari ke. Dalam topologi, proses ini disebut deformasi. III PEMBAHASAN Pada bagian ini akan dibahas kegunaan metode homotopi untuk penyelesaian suatu masalah taklinear. Metode ini akan digunakan untuk menyelesaikan model yang akan dinyatakan dalam bentuk persamaan KdV. Suatu contoh kasus akan diberikan penyelesaian numeriknya akan dibandingkan berdasarkan orde-orde yang digunakan untuk menjamin validitas metode ini. Metode homotopi yang diterapkan dalam tulisan ini mengikuti pustaka ( Song & Tao, 2008 ). 3.1 Analisis Metode Dalam karya ilmiah ini akan digunakan metode homotopi untuk menyelesaikan masalah nilai awal yang diberikan pada persamaan (2.36). Masalah nilai awal tersebut dapat dinyatakan secara umum dalam bentuk persamaan (2.37). Perluasan dari konsep dasar metode homotopi yang telah diuraikan pada landasan teori memerlukan fungsi, ; yang bergantung pada,, parameter. Tinjau persamaan taklinear, 0, (3.1) dengan suatu operator turunan yang taklinear,, fungsi yang akan ditentukan bergantung pada peubah t. Selanjutnya,, akan diperoleh dari penyelesaian persamaan deformasi orde nol 1, ;,, ;, (3.2) dengan 0,1, ; fungsi yang merupakan pemetaan dari,,, penduga awal dari,, parameter tak nol, operator linear. Jika 0 1, maka dari persamaan (3.2) akan, ; 0,, (3.3), ; 1 0. (3.4) Selanjutnya, karena parameter q bernilai dari 0 sampai 1, maka, ; memetakan dari penduga awal, ke penyelesaian eksak,. Dengan menggunakan teorema Taylor,, ; dapat diuraikan menjadi:, ;,,, dimana, 1, ;!. (3.5) (3.6) Selanjutnya, penurunan m kali persamaan (3.2) terhadap q, dengan 0 dibagi m! akan diperoleh bentuk persamaan orde ke-m,,,, (3.7)

III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan

III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan 6, 1 (2.52) Berdasarkan persamaan (2.52), maka untuk 0 1 masing-masing memberikan persamaan berikut:, 0,0, 0, 1,1, 1. Sehingga menurut persamaan (2.51) persamaan (2.52) diperoleh bahwa fungsi, 0, 1 masing-masing

Lebih terperinci

II LANDASAN TEORI. Misalkan adalah suatu fungsi skalar, maka turunan vektor kecepatan dapat dituliskan sebagai berikut :

II LANDASAN TEORI. Misalkan adalah suatu fungsi skalar, maka turunan vektor kecepatan dapat dituliskan sebagai berikut : 2 II LANDASAN TEORI Pada bagian ini akan dibahas teori-teori yang digunakan dalam menyusun karya ilmiah ini. Teori-teori tersebut meliputi sistem koordinat silinder, aliran fluida pada pipa lurus, persamaan

Lebih terperinci

III PEMBAHASAN. (3.3) disubstitusikan ke dalam sistem koordinat silinder yang ditinjau pada persamaan (2.4), maka diperoleh

III PEMBAHASAN. (3.3) disubstitusikan ke dalam sistem koordinat silinder yang ditinjau pada persamaan (2.4), maka diperoleh III PEMBAHASAN Pada bagian ini akan dibahas penggunaan metode perturbasi homotopi untuk menyelesaikan suatu masalah taklinear. Metode ini digunakan untuk menyelesaikan model Sisko dalam masalah aliran

Lebih terperinci

PENYELESAIAN PERSAMAAN KORTEWEG-DE VRIES ORDE TINGGI DENGAN METODE EKSPANSI RESTY BANGUN PRATIWI

PENYELESAIAN PERSAMAAN KORTEWEG-DE VRIES ORDE TINGGI DENGAN METODE EKSPANSI RESTY BANGUN PRATIWI PENYELESAIAN PERSAMAAN KORTEWEG-DE VRIES ORDE TINGGI DENGAN METODE EKSPANSI RESTY BANGUN PRATIWI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2015

Lebih terperinci

PEMBAHASAN. (29) Dalam (Grosen 1992), kondisi kinematik (19) dan kondisi dinamik (20) dapat dinyatakan dalam sistem Hamiltonian berikut : = (30)

PEMBAHASAN. (29) Dalam (Grosen 1992), kondisi kinematik (19) dan kondisi dinamik (20) dapat dinyatakan dalam sistem Hamiltonian berikut : = (30) 5 η = η di z = η (9) z x x z x x Dalam (Grosen 99) kondisi kinematik (9) kondisi dinamik () dapat dinyatakan dalam sistem Hamiltonian : δ H t = () δη δ H ηt = δ Dengan mengenalkan variabel baru u = x maka

Lebih terperinci

BAB 3 PERAMBATAN GELOMBANG MONOKROMATIK

BAB 3 PERAMBATAN GELOMBANG MONOKROMATIK BAB 3 PERAMBATAN GELOMBANG MONOKROMATIK Dalam bab ini, kita akan mengamati perambatan gelombang pada fluida ideal dengan dasar rata. Perhatikan gambar di bawah ini. Gambar 3.1 Aliran Fluida pada Dasar

Lebih terperinci

BAB II DASAR TEORI. 2.1 Persamaan Kontinuitas dan Persamaan Gerak

BAB II DASAR TEORI. 2.1 Persamaan Kontinuitas dan Persamaan Gerak BAB II DASAR TEORI Ada beberapa teori yang berkaitan dengan konsep-konsep umum mengenai aliran fluida. Beberapa akan dibahas pada bab ini. Diantaranya adalah hukum kekekalan massa dan hukum kekekalan momentum.

Lebih terperinci

BAB III PEMODELAN PERSAMAAN INTEGRAL PADA ALIRAN FLUIDA

BAB III PEMODELAN PERSAMAAN INTEGRAL PADA ALIRAN FLUIDA BAB III PEMODELAN PERSAMAAN INTEGRAL PADA ALIRAN FLUIDA 3.1 Deskripsi Masalah Permasalahan yang dibahas di dalam Tugas Akhir ini adalah mengenai aliran fluida yang mengalir keluar melalui sebuah celah

Lebih terperinci

Tinjauan Aliran Fluida dengan Menggunakan Metode Homotopi

Tinjauan Aliran Fluida dengan Menggunakan Metode Homotopi Tinjauan Aliran Fluida dengan Menggunakan Metode Homotopi Abd. Djabar Mohidin Jurusan Matematika Fakultas MIPA Universitas Negeri Gorontalo Abstrak Dalam makalah ini, akan dibahas tinjauan matematis mengenai

Lebih terperinci

PENGARUH ARUS PADA GERAK GELOMBANG SOLITER INTERNAL STUDI KASUS PADA FLUIDA DUA LAPISAN RIDZAN DJAFRI

PENGARUH ARUS PADA GERAK GELOMBANG SOLITER INTERNAL STUDI KASUS PADA FLUIDA DUA LAPISAN RIDZAN DJAFRI PENGARUH ARUS PADA GERAK GELOMBANG SOLITER INTERNAL STUDI KASUS PADA FLUIDA DUA LAPISAN RIDZAN DJAFRI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI

Lebih terperinci

III PEMBAHASAN. Berdasarkan persamaan (2.15) dan persamaan (2.16), fungsi kontinu dan masing-masing sebagai berikut : dan = 3

III PEMBAHASAN. Berdasarkan persamaan (2.15) dan persamaan (2.16), fungsi kontinu dan masing-masing sebagai berikut : dan = 3 8 III PEMBAHASAN Pada bagian ini akan dibahas penggunaan metode iterasi variasi untuk menyelesaikan suatu persamaan diferensial integral Volterra orde satu yang terdapat pada masalah osilasi berpasangan.

Lebih terperinci

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Parsial Persamaan yang mengandung satu atau lebih turunan parsial suatu fungsi (yang diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan diferensial

Lebih terperinci

PENGGUNAAN METODE PERTURBASI HOMOTOPI UNTUK MENYELESAIKAN PERSAMAAN BURGERS DAN PENERAPANNYA PADA MASALAH ARUS LALU LINTAS CHRISTOPHER DANNY

PENGGUNAAN METODE PERTURBASI HOMOTOPI UNTUK MENYELESAIKAN PERSAMAAN BURGERS DAN PENERAPANNYA PADA MASALAH ARUS LALU LINTAS CHRISTOPHER DANNY PENGGUNAAN METODE PERTURBASI HOMOTOPI UNTUK MENYELESAIKAN PERSAMAAN BURGERS DAN PENERAPANNYA PADA MASALAH ARUS LALU LINTAS CHRISTOPHER DANNY DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai. I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Dalam kehidupan, polusi yang ada di sungai disebabkan oleh limbah dari pabrikpabrik dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk

Lebih terperinci

PENGGUNAAN METODE HOMOTOPI PADA MASALAH PERAMBATAN GELOMBANG INTERFACIAL

PENGGUNAAN METODE HOMOTOPI PADA MASALAH PERAMBATAN GELOMBANG INTERFACIAL PENGGUNAAN METODE HOMOTOPI PADA MASALAH PERAMBATAN GELOMBANG INTERFACIAL JAHARUDDIN Departeen Mateatika Fakultas Mateatika Ilu Pengetahuan Ala Institut Pertanian Bogor Jl Meranti, Kapus IPB Daraga, Bogor

Lebih terperinci

, serta notasi turunan total ρ

, serta notasi turunan total ρ LANDASAN TEORI Lanasan teori ini berasarkan rujukan Jaharuin (4 an Groesen et al (99, berisi penurunan persamaan asar fluia ieal, sarat batas fluia ua lapisan an sistem Hamiltonian Penentuan karakteristik

Lebih terperinci

PENYELESAIAN MASALAH GELOMBANG PERMUKAAN DENGAN MENGGUNAKAN METODE PERTURBASI HOMOTOPI ANGGRAENI PUTRISIA

PENYELESAIAN MASALAH GELOMBANG PERMUKAAN DENGAN MENGGUNAKAN METODE PERTURBASI HOMOTOPI ANGGRAENI PUTRISIA PENYELESAIAN MASALAH GELOMBANG PERMUKAAN DENGAN MENGGUNAKAN METODE PERTURBASI HOMOTOPI ANGGRAENI PUTRISIA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR

Lebih terperinci

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan BAB II KAJIAN TEORI Pada bab ini akan dibahas beberapa hal yang digunakan sebagai landasan pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

LAMPIRAN. Hubungan antara koordinat kartesian dengan koordinat silinder:

LAMPIRAN. Hubungan antara koordinat kartesian dengan koordinat silinder: LAMPIRAN A.TRANSFORMASI KOORDINAT 1. Koordinat silinder Hubungan antara koordinat kartesian dengan koordinat silinder: Vector kedudukan adalah Jadi, kuadrat elemen panjang busur adalah: Maka: Misalkan

Lebih terperinci

BAB II KAJIAN TEORI. homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah ini adalah

BAB II KAJIAN TEORI. homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah ini adalah BAB II KAJIAN TEORI Pada bab ini akan dibahas suatu jenis persamaan differensial parsial tak homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah

Lebih terperinci

II. TINJAUAN PUSTAKA. 2.1 Persamaan Diferensial (Bronson dan Costa, 2007) terhadap satu atau lebih dari variabel-variabel bebas (independent

II. TINJAUAN PUSTAKA. 2.1 Persamaan Diferensial (Bronson dan Costa, 2007) terhadap satu atau lebih dari variabel-variabel bebas (independent 4 II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial (Bronson dan Costa, 2007) Persamaan differensial adalah suatu persamaan yang memuat turunan terhadap satu atau lebih dari variabel-variabel bebas (independent

Lebih terperinci

BAB I PENDAHULUAN. terbagi dalam berberapa tingkatan, gelombang pada atmosfir yang berotasi

BAB I PENDAHULUAN. terbagi dalam berberapa tingkatan, gelombang pada atmosfir yang berotasi BAB I PENDAHULUAN 1.1. Latar Belakang. Fenomena gelombang Korteweg de Vries (KdV) merupakan suatu gejala yang penting untuk dipelajari, karena mempunyai pengaruh terhadap studi rekayasa yang terkait dengan

Lebih terperinci

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang beberapa teori dasar yang digunakan sebagai landasan pembahasan pada bab III. Beberapa teori dasar yang dibahas, diantaranya teori umum tentang persamaan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Banyak sekali masalah terapan dalam ilmu teknik, ilmu fisika, biologi, dan lain-lain yang telah dirumuskan dengan model matematika dalam bentuk pesamaan

Lebih terperinci

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh:

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh: 5 II LANDASAN TEORI 2.1 Keterkontrolan Untuk mengetahui persoalan sistem kontrol mungkin tidak ada, jika sistem yang ditinjau tidak terkontrol. Walaupun sebagian besar sistem terkontrol ada, akan tetapi

Lebih terperinci

1/24 FISIKA DASAR (TEKNIK SIPIL) FLUIDA. menu. Mirza Satriawan. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta

1/24 FISIKA DASAR (TEKNIK SIPIL) FLUIDA. menu. Mirza Satriawan. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta 1/24 FISIKA DASAR (TEKNIK SIPIL) FLUIDA Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id Pendahuluan Dalam bagian ini kita mengkhususkan diri pada materi

Lebih terperinci

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK 4. Sebaran Asimtotik,, Teorema 4. (Sebaran Normal Asimtotik,, ) Misalkan fungsi intensitas seperti (3.2) dan terintegralkan lokal. Jika kernel K adalah

Lebih terperinci

Pengantar Metode Perturbasi Bab 1. Pendahuluan

Pengantar Metode Perturbasi Bab 1. Pendahuluan Pengantar Metode Perturbasi Bab 1. Pendahuluan Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas PAM 454 KAPITA SELEKTA MATEMATIKA TERAPAN II Semester Ganjil 2016/2017 Review Teori Dasar Terkait

Lebih terperinci

PENYELESAIAN MASALAH ROTASI ALIRAN FLUIDA KENTAL VON KARMAN MENGGUNAKAN METODE HOMOTOPI RANDITA GUSTIAN PUTRI

PENYELESAIAN MASALAH ROTASI ALIRAN FLUIDA KENTAL VON KARMAN MENGGUNAKAN METODE HOMOTOPI RANDITA GUSTIAN PUTRI PENYELESAIAN MASALAH ROTASI ALIRAN FLUIDA KENTAL VON KARMAN MENGGUNAKAN METODE HOMOTOPI RANDITA GUSTIAN PUTRI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL BIASA

BAB II PERSAMAAN DIFERENSIAL BIASA BAB II PERSAMAAN DIFERENSIAL BIASA Tujuan Pembelajaran Umum: 1 Mahasiswa mampu memahami konsep dasar persamaan diferensial 2 Mahasiswa mampu menggunakan konsep dasar persamaan diferensial untuk menyelesaikan

Lebih terperinci

PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D

PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D Keadaan Stasioner Pada pembahasan sebelumnya mengenai fungsi gelombang, telah dijelaskan bahwa potensial dalam persamaan

Lebih terperinci

METODE PEMOTONGAN DERET FOURIER UNTUK MENYELESAIKAN PERSAMAAN GERAK GELOMBANG INTERNAL YANG PERIODIK PADA FLUIDA DUA LAPISAN MUHBAHIR

METODE PEMOTONGAN DERET FOURIER UNTUK MENYELESAIKAN PERSAMAAN GERAK GELOMBANG INTERNAL YANG PERIODIK PADA FLUIDA DUA LAPISAN MUHBAHIR METODE PEMOTONGAN DERET FOURIER UNTUK MENYELESAIKAN PERSAMAAN GERAK GELOMBANG INTERNAL YANG PERIODIK PADA FLUIDA DUA LAPISAN MUHBAHIR SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2008 PERNYATAAN

Lebih terperinci

Bab 2 TEORI DASAR. 2.1 Linearisasi Persamaan Air Dangkal

Bab 2 TEORI DASAR. 2.1 Linearisasi Persamaan Air Dangkal Bab 2 TEORI DASAR 2.1 Linearisasi Persamaan Air Dangkal Persamaan air dangkal merupakan persamaan untuk gelombang permukaan air yang dipengaruhi oleh kedalaman air tersebut. Kedalaman air dapat dikatakan

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE)

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE) Bab 2 Landasan Teori Dalam bab ini akan dibahas mengenai Persamaan Air Dangkal dan dasar-dasar teori mengenai metode beda hingga untuk menghampiri solusi dari persamaan diferensial parsial. 2.1 Persamaan

Lebih terperinci

Pemodelan Matematika dan Metode Numerik

Pemodelan Matematika dan Metode Numerik Bab 3 Pemodelan Matematika dan Metode Numerik 3.1 Model Keadaan Tunak Model keadaan tunak hanya tergantung pada jarak saja. Oleh karena itu, distribusi temperatur gas sepanjang pipa sebagai fungsi dari

Lebih terperinci

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK 3. Perumusan Penduga Misalkan N adalah proses Poisson non-homogen pada interval 0, dengan fungsi intensitas yang tidak diketahui. Fungsi intensitas

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI 1 I PENDAHULUAN 1.1 Latar Belakang Dewasa ini pemodelan matematika telah berkembang seiring perkembangan matematika sebagai alat analisis berbagai masalah nyata. Dalam pengajaran mata kuliah pemodelan

Lebih terperinci

Kuliah PD. Gaya yang bekerj a pada suatu massa sama dengan laju perubahan momentum terhadap waktu.

Kuliah PD. Gaya yang bekerj a pada suatu massa sama dengan laju perubahan momentum terhadap waktu. Kuliah PD Pertemuan ke-1: Motivasi: 1. Mekanika A. Hukum Newton ke-: Gaya yang bekerj a pada suatu massa sama dengan laju perubahan momentum terhadap waktu. Misalkan F: gaya, m: massa benda, a: percepatan,

Lebih terperinci

ANALISIS HOMOTOPI DALAM PENYELESAIAN SUATU MASALAH TAKLINEAR

ANALISIS HOMOTOPI DALAM PENYELESAIAN SUATU MASALAH TAKLINEAR ANALISIS HOMOTOPI DALAM PENYELESAIAN SUATU MASALAH TAKLINEAR JAHARUDDIN Departeen Mateatika, Fakultas Mateatika dan Iu Pengetahuan Ala, Institut Pertanian Bogor Jln. Meranti, Kapus IPB Draaga, Bogor 1668,

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG

Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG Pada bab sebelumnya telah dibahas mengenai dasar laut sinusoidal sebagai reflektor gelombang. Persamaan yang digunakan untuk memodelkan masalah dasar

Lebih terperinci

BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut.

BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut. BAB III PEMBAHASAN Pada bab ini akan dibahas tentang penurunan model persamaan gelombang satu dimensi. Setelah itu akan ditentukan persamaan gelombang satu dimensi dengan menggunakan penyelesaian analitik

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal Linier (Linier Shallow Water Equation)

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal Linier (Linier Shallow Water Equation) Bab 2 Landasan Teori Dalam bab ini akan dijelaskan mengenai Persamaan Air Dangkal linier (Linear Shallow Water Equation), metode beda hingga, metode ekspansi asimtotik biasa, dan metode ekspansi asimtotik

Lebih terperinci

PENYELESAIAN MODEL MANGSA PEMANGSA TIGA SPESIES DENGAN METODE HOMOTOPI YULI RAHMAWATI

PENYELESAIAN MODEL MANGSA PEMANGSA TIGA SPESIES DENGAN METODE HOMOTOPI YULI RAHMAWATI PENYELESAIAN MODEL MANGSA PEMANGSA TIGA SPESIES DENGAN METODE HOMOTOPI YULI RAHMAWATI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2014 PERNYATAAN

Lebih terperinci

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi

Lebih terperinci

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik BAB II LANDASAN TEORI Pada bab ini, akan dijelaskan landasan teori yang akan digunakan dalam bab selanjutnya sebagai bahan acuan yang mendukung dan memperkuat tujuan penelitian. Landasan teori yang dimaksud

Lebih terperinci

TINJAUAN PUSTAKA. Jika y = f(x) dengan f(x) adalah suatu fungsi yang terdiferensialkan terhadap

TINJAUAN PUSTAKA. Jika y = f(x) dengan f(x) adalah suatu fungsi yang terdiferensialkan terhadap II. TINJAUAN PUSTAKA 2.1 Diferensial Jika y = f(x) dengan f(x) adalah suatu fungsi yang terdiferensialkan terhadap variabel bebas x, maka dy adalah diferensial dari variabel tak bebas (terikat) y, yang

Lebih terperinci

TINJAUAN MATA KULIAH... Kegiatan Belajar 2: PD Variabel Terpisah dan PD Homogen Latihan Rangkuman Tes Formatif

TINJAUAN MATA KULIAH... Kegiatan Belajar 2: PD Variabel Terpisah dan PD Homogen Latihan Rangkuman Tes Formatif iii Daftar Isi TINJAUAN MATA KULIAH... xiii MODUL 1: PERSAMAAN DIFERENSIAL ORDE SATU 1.1 Pengertian PD Orde Satu dan Solusinya... 1.2 Latihan... 1.7 Rangkuman... 1.9 Tes Formatif 1..... 1.10 PD Variabel

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI. Sistem Pendulum Terbalik Dalam penelitian ini diperhatikan sistem pendulum terbalik seperti pada Gambar di mana sebuah pendulum terbalik dimuat dalam motor yang bisa digerakkan.

Lebih terperinci

PENGGUNAAN METODE ANALISIS HOMOTOPI PADA PENYELESAIAN PERSAMAAN SCHRODINGER-KdV DINI FITRI

PENGGUNAAN METODE ANALISIS HOMOTOPI PADA PENYELESAIAN PERSAMAAN SCHRODINGER-KdV DINI FITRI PENGGUNAAN METODE ANALISIS HOMOTOPI PADA PENYELESAIAN PERSAMAAN SCHRODINGER-KdV DINI FITRI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 015 PERNYATAAN

Lebih terperinci

1 BAB 4 ANALISIS DAN BAHASAN

1 BAB 4 ANALISIS DAN BAHASAN 1 BAB 4 ANALISIS DAN BAHASAN Pada bab ini akan dibahas pengaruh dasar laut tak rata terhadap perambatan gelombang permukaan secara analitik. Pengaruh dasar tak rata ini akan ditinjau melalui simpangan

Lebih terperinci

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 29 BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 4.1 Perumusan Penduga Misalkan adalah proses Poisson nonhomogen

Lebih terperinci

II LANDASAN TEORI. Besaran merupakan frekuensi sudut, merupakan amplitudo, merupakan konstanta fase, dan, merupakan konstanta sembarang.

II LANDASAN TEORI. Besaran merupakan frekuensi sudut, merupakan amplitudo, merupakan konstanta fase, dan, merupakan konstanta sembarang. 2 II LANDASAN TEORI Pada bagian ini akan dibahas teori-teori yang digunakan dalam penyusunan karya ilmiah ini. Teori-teori tersebut meliputi osilasi harmonik sederhana yang disarikan dari [Halliday,1987],

Lebih terperinci

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR A V PERAMATAN GELOMANG OPTIK PADA MEDIUM NONLINIER KERR 5.. Pendahuluan erkas (beam) optik yang merambat pada medium linier mempunyai kecenderungan untuk menyebar karena adanya efek difraksi; lihat Gambar

Lebih terperinci

I PENDAHULUAN 1.1 Latar Belakang dan Perumusan Masalah

I PENDAHULUAN 1.1 Latar Belakang dan Perumusan Masalah I PENDAHULUAN 1.1 Latar Belakang dan Perumusan Masalah Penelusuran tentang fenomena belalang merupakan bahasan yang baik untuk dipelajari karena belalang dikenal suka berkelompok dan berpindah. Dalam kelompok,

Lebih terperinci

K 1. h = 0,75 H. y x. O d K 2

K 1. h = 0,75 H. y x. O d K 2 1. (25 poin) Dari atas sebuah tembok dengan ketinggian H ditembakkan sebuah bola kecil bermassa m (Jari-jari R dapat dianggap jauh lebih kecil daripada H) dengan kecepatan awal horizontal v 0. Dua buah

Lebih terperinci

EKSISTENSI SOLITON PADA PERSAMAAN KORTEWEG-DE VRIES

EKSISTENSI SOLITON PADA PERSAMAAN KORTEWEG-DE VRIES Jurnal Matematika UNND Vol. 3 No. 1 Hal. 9 16 ISSN : 2303 2910 c Jurusan Matematika FMIP UNND EKSISTENSI SOLITON PD PERSMN KORTEWEG-DE VRIES ULI OKTVI, MHDHIVN SYFWN Program Studi Matematika, Fakultas

Lebih terperinci

Bab 5. Migrasi Planet

Bab 5. Migrasi Planet Bab 5 Migrasi Planet Planet-planet raksasa diduga memiliki inti padat yang dibentuk oleh material yang tidak dapat terkondensasi jika terletak sangat dekat dengan bintang utamanya. Karenanya sangatlah

Lebih terperinci

Bab 1. Pendahuluan. 1.1 Latar Belakang Masalah

Bab 1. Pendahuluan. 1.1 Latar Belakang Masalah Bab 1 Pendahuluan 1.1 Latar Belakang Masalah Gelombang air laut merupakan salah satu fenomena alam yang terjadi akibat adanya perbedaan tekanan. Panjang gelombang air laut dapat mencapai ratusan meter

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Pemodelan matematika merupakan bidang matematika yang berusaha untuk merepresentasikan dan menjelaskan masalah dunia nyata dalam pernyataan matematik. Representasi

Lebih terperinci

DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG

DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG h Bab 3 DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG 3.1 Persamaan Gelombang untuk Dasar Sinusoidal Dasar laut berbentuk sinusoidal adalah salah satu bentuk dasar laut tak rata yang berupa fungsi sinus

Lebih terperinci

MATERI PERKULIAHAN. Gambar 1. Potensial tangga

MATERI PERKULIAHAN. Gambar 1. Potensial tangga MATERI PERKULIAHAN 3. Potensial Tangga Tinjau suatu partikel bermassa m, bergerak dari kiri ke kanan pada suatu daerah dengan potensial berbentuk tangga, seperti pada Gambar 1. Pada daerah < potensialnya

Lebih terperinci

II. TINJAUAN PUSTAKA. Masalah taklinear dalam sains dan teknik dituliskan dalam bentuk

II. TINJAUAN PUSTAKA. Masalah taklinear dalam sains dan teknik dituliskan dalam bentuk 4 II. TINJAUAN PUSTAKA 2.1 Definisi Masalah Taklinear (Urroz, 2001) Masalah taklinear dalam sains dan teknik dituliskan dalam bentuk persamaan taklinear. Persamaan tersebut dituliskan dalam bentuk fungsi

Lebih terperinci

PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA

PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA Persamaan Diferensial Biasa 1. PDB Tingkat Satu (PDB) 1.1. Persamaan diferensial 1.2. Metode pemisahan peubah dan PD koefisien fungsi homogen 1.3. Persamaan

Lebih terperinci

PARTIKEL DALAM SUATU KOTAK SATU DIMENSI

PARTIKEL DALAM SUATU KOTAK SATU DIMENSI PARTIKEL DALAM SUATU KOTAK SATU DIMENSI Atom terdiri dari inti atom yang dikelilingi oleh elektron-elektron, di mana elektron valensinya bebas bergerak di antara pusat-pusat ion. Elektron valensi geraknya

Lebih terperinci

Bab 2 LANDASAN TEORI. 2.1 Penurunan Persamaan Air Dangkal

Bab 2 LANDASAN TEORI. 2.1 Penurunan Persamaan Air Dangkal Bab 2 LANDASAN TEORI 2.1 Penurunan Persamaan Air Dangkal Persamaan air dangkal atau Shallow Water Equation (SWE) berlaku untuk fluida homogen yang memiliki massa jenis konstan, inviscid (tidak kental),

Lebih terperinci

PREDIKSI KECEPATAN PHASE GELOMBANG SOLITER TERGANGGU AHMAD HAKIM

PREDIKSI KECEPATAN PHASE GELOMBANG SOLITER TERGANGGU AHMAD HAKIM PREDIKSI KECEPATAN PHASE GELOMBANG SOLITER TERGANGGU AHMAD HAKIM SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 PERYATAAN MENGENAI TESIS DAN SUMBER INFORMASI Dengan ini saya menyatakan bahwa

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Aljabar Linear Definisi 2.1.1 Matriks Matriks A adalah susunan persegi panjang yang terdiri dari skalar-skalar yang biasanya dinyatakan dalam bentuk berikut: [ ] Definisi 2.1.2

Lebih terperinci

TEST KEMAMPUAN DASAR FISIKA

TEST KEMAMPUAN DASAR FISIKA TEST KEMAMPUAN DASAR FISIKA Jawablah pertanyaan-pertanyaan di bawah ini dengan pernyataan BENAR atau SALAH. Jika jawaban anda BENAR, pilihlah alasannya yang cocok dengan jawaban anda. Begitu pula jika

Lebih terperinci

Bab 5 Potensial Skalar. A. Pendahuluan

Bab 5 Potensial Skalar. A. Pendahuluan Bab 5 Potensial Skalar A. Pendahuluan Pada pokok bahasan terdahulu medan listrik merupakan besaran vektor yang memberikan informasi lengkap tentang efek-efek elektrostatik. Secara substansial informasi

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA NONLINIER ORDE DUA DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN LAPLACE

PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA NONLINIER ORDE DUA DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN LAPLACE PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA NONLINIER ORDE DUA DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN LAPLACE TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Sains Pada

Lebih terperinci

BAB II KAJIAN TEORI. dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan

BAB II KAJIAN TEORI. dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan BAB II KAJIAN TEORI Pada bab ini akan dibahas mengenai nilai eigen dan vektor eigen, sistem dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan sistem dinamik, kriteria Routh-Hurwitz,

Lebih terperinci

1. (25 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan

1. (25 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan . (5 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan dengan H). Kecepatan awal horizontal bola adalah v 0 dan

Lebih terperinci

BAB III APLIKASI METODE EULER PADA KAJIAN TENTANG GERAK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1.

BAB III APLIKASI METODE EULER PADA KAJIAN TENTANG GERAK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. BAB III APLIKASI METODE EULER PADA KAJIAN TENTANG GERAK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menentukan solusi persamaan gerak jatuh bebas berdasarkan pendekatan

Lebih terperinci

Treefy Education Pelatihan OSN Online Nasional Jl Mangga III, Sidoarjo, Jawa WhatsApp:

Treefy Education Pelatihan OSN Online Nasional Jl Mangga III, Sidoarjo, Jawa  WhatsApp: Treefy Education PEMBAHASAN LATIHAN 1 1.a) Bayangkan bola berada di puncak pipa. Ketika diberikan sedikit dorongan, bola akan bergerak dan menabrak tanah dengan kecepatan. Gerakan tersebut merupakan proses

Lebih terperinci

Momentum Linier. Hoga saragih. hogasaragih.wordpress.com

Momentum Linier. Hoga saragih. hogasaragih.wordpress.com Momentum Linier Hoga saragih 1. Momentum dan Hubungannya dengan Gaya Momentum linier dari sebuah benda didefinisikan sebagai hasil kali massa dan kecepatannya Momentum dinyatakan dengan simbol P P=mv m

Lebih terperinci

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta BAB II LANDASAN TEORI Pada bab ini akan diuraikan beberapa teori-teori yang digunakan sebagai acuan dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta teorema-teorema

Lebih terperinci

PENGGUNAAN METODE HOMOTOPI UNTUK MENYELESAIKAN MODEL POPULASI VOLTERRA ERNI JUNI ARTI

PENGGUNAAN METODE HOMOTOPI UNTUK MENYELESAIKAN MODEL POPULASI VOLTERRA ERNI JUNI ARTI PENGGUNAAN METODE HOMOTOPI UNTUK MENYELESAIKAN MODEL POPULASI VOLTERRA ERNI JUNI ARTI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2010 ABSTRACT ERNI

Lebih terperinci

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( )

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( ) II. TINJAUAN PUSTAKA 2.1 Definisi Turunan Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada sebarang bilangan c adalah asalkan limit ini ada. Jika limit ini memang ada, maka dikatakan

Lebih terperinci

I. Hukum lintasan : Semua planet bergerak dalarn lintasan berupa elips, dengan matahari pada salah satu titik fokusnya.

I. Hukum lintasan : Semua planet bergerak dalarn lintasan berupa elips, dengan matahari pada salah satu titik fokusnya. RENCANA PEMBELAJARAN 10. POKOK BAHASAN: GAYA SENTRAL Gaya sentral adalah gaya bekerja pada benda, di mana garis kerjanya selalu melalui titik tetap, disebut pusat gaya. Arah gaya sentral mungkin menuju

Lebih terperinci

LANDASAN TEORI. Model ini memiliki nilai kesetimbangan positif pada saat koordinat berada di titik

LANDASAN TEORI. Model ini memiliki nilai kesetimbangan positif pada saat koordinat berada di titik LANDASAN TEORI Model Mangsa Pemangsa Lotka Volterra Bagian ini membahas model mangsa pemangsa klasik Lotka Volterra. Model Lotka Volterra menggambarkan laju perubahan populasi dua spesies yang saling berinteraksi.

Lebih terperinci

BAB II DASAR TEORI. Aliran hele shaw..., Azwar Effendy, FT UI, 2008

BAB II DASAR TEORI. Aliran hele shaw..., Azwar Effendy, FT UI, 2008 BAB II DASAR TEORI 2.1 KLASIFIKASI ALIRAN FLUIDA Secara umum fluida dikenal memiliki kecenderungan untuk bergerak atau mengalir. Sangat sulit untuk mengekang fluida agar tidak bergerak, tegangan geser

Lebih terperinci

Persamaan Diferensial Parsial Umum Orde Pertama

Persamaan Diferensial Parsial Umum Orde Pertama Persamaan Diferensial Parsial Umum Orde Pertama Persamaan diferensial parsial umum orde pertama untuk fungsi memiliki bentuk: di mana dan. Dalam hal ini dipandang sebagai fungsi dari lima argumen. Di sini

Lebih terperinci

PENGGUNAAN METODE PERTURBASI HOMOTOPI PADA PENYELESAIAN PERSAMAAN ALIRAN BUSA CAIR RISA SAWITRI

PENGGUNAAN METODE PERTURBASI HOMOTOPI PADA PENYELESAIAN PERSAMAAN ALIRAN BUSA CAIR RISA SAWITRI PENGGUNAAN METODE PERTURBASI HOMOTOPI PADA PENYELESAIAN PERSAMAAN ALIRAN BUSA CAIR RISA SAWITRI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2014 PERNYATAAN

Lebih terperinci

BAB IV REDUKSI BIAS PADA PENDUGAAN

BAB IV REDUKSI BIAS PADA PENDUGAAN BAB IV REDUKSI BIAS PADA PENDUGAAN 4.1. Asimtotik Orde-2 Berdasarkan hasil simulasi pada Helmers dan Mangku (2007) kasus kernel seragam, aproksimasi asimtotik orde pertama pada ragam dan bias, gagal memprediksikan

Lebih terperinci

1.1 Latar Belakang dan Identifikasi Masalah

1.1 Latar Belakang dan Identifikasi Masalah BAB I PENDAHULUAN Seiring dengan pertumbuhan kebutuhan dan intensifikasi penggunaan air, masalah kualitas air menjadi faktor yang penting dalam pengembangan sumberdaya air di berbagai belahan bumi. Walaupun

Lebih terperinci

PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL LINEAR HOMOGEN DENGAN KOEFISIEN KONSTAN MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON

PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL LINEAR HOMOGEN DENGAN KOEFISIEN KONSTAN MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 03, No. 2 (2014), hal 125 134. PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL LINEAR HOMOGEN DENGAN KOEFISIEN KONSTAN MENGGUNAKAN METODE ADAMS BASHFORTH

Lebih terperinci

EVOLUSI GELOMBANG HARMONIK MELALUI DUA BALOK BERPORI SKRIPSI OLEH ISRAFATUL FURAIDAH NIM

EVOLUSI GELOMBANG HARMONIK MELALUI DUA BALOK BERPORI SKRIPSI OLEH ISRAFATUL FURAIDAH NIM EVOLUSI GELOMBANG HARMONIK MELALUI DUA BALOK BERPORI SKRIPSI OLEH ISRAFATUL FURAIDAH NIM. 10610064 JURUSAN MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG

Lebih terperinci

Department of Mathematics FMIPAUNS

Department of Mathematics FMIPAUNS Lecture 2: Metode Operator A. Metode Operator untuk Sistem Linear dengan Koefisien Konstan Pada bagian ini akan dibicarakan cara menentukan penyelesaian sistem persamaan diferensial linear dengan menggunakan

Lebih terperinci

II. LANDASAN TEORI. Definisi 1 (Sistem Persamaan Diferensial Biasa Linear) Definisi 2 (Sistem Persamaan Diferensial Biasa Taklinear)

II. LANDASAN TEORI. Definisi 1 (Sistem Persamaan Diferensial Biasa Linear) Definisi 2 (Sistem Persamaan Diferensial Biasa Taklinear) 3 II. LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Biasa Definisi 1 (Sistem Persamaan Diferensial Biasa Linear) Misalkan suatu sistem persamaan diferensial biasa dinyatakan sebagai = + ; =, R (1) dengan

Lebih terperinci

PENURUNAN PERSAMAAN SAINT VENANT SECARA GEOMETRIS

PENURUNAN PERSAMAAN SAINT VENANT SECARA GEOMETRIS βeta p-issn: 2085-5893 e-issn: 2541-0458 Vol. 6 No. 2 (Nopember) 2013, Hal. 172-200 βeta2013 PENURUNAN PERSAMAAN SAINT VENANT SECARA GEOMETRIS Ayu Eka Pratiwi 1, Tri Widjajanti 2, Andi Fajeriani Wyrasti

Lebih terperinci

KONSEP DASAR PERSAMAAN DIFERENSIAL

KONSEP DASAR PERSAMAAN DIFERENSIAL KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu fungsi (dasar). Sebagai

Lebih terperinci

MODEL LOGISTIK PENGARUH POHON TERHADAP POPULASI BURUNG

MODEL LOGISTIK PENGARUH POHON TERHADAP POPULASI BURUNG Bab 4 MODEL LOGISTIK PENGARUH POHON TERHADAP POPULASI BURUNG Seperti dijelaskan pada bagian awal, burung sebagai makhluk hidup memerlukan tempat tinggal. Pohon sebagai salah satu tempat alami yang dapat

Lebih terperinci

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL Pendahuluan Persamaan diferensial adalah persamaan yang memuat diferensial Kita akan membahas tentang Persamaan Diferensial Biasa yaitu

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Asap atau polutan yang dibuang melalui cerobong asap pabrik akan menyebar atau berdispersi di udara, kemudian bergerak terbawa angin sampai mengenai pemukiman penduduk yang berada

Lebih terperinci

DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L)

DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L) DERET FOURIER Bila f adalah fungsi periodic yang berperioda p, maka f adalah fungsi periodic. Berperiode n, dimana n adalah bilangan asli positif (+). Untuk setiap bilangan asli positif fungsi yang didefinisikan

Lebih terperinci

BAB 4 BAB 3 HASIL DAN PEMBAHASAN METODE PENELITIAN. 3.2 Peralatan

BAB 4 BAB 3 HASIL DAN PEMBAHASAN METODE PENELITIAN. 3.2 Peralatan 4 3.2 Peralatan..(9) dimana,, dan.(10) substitusi persamaan (10) ke persamaan (9) maka diperoleh persamaan gelombang soliton DNA model PBD...(11) agar persamaan (11) dapat dipecahkan sehingga harus diterapkan

Lebih terperinci

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013 Soal-Jawab Fisika Teori OSN 0 andung, 4 September 0. (7 poin) Dua manik-manik masing-masing bermassa m dan dianggap benda titik terletak di atas lingkaran kawat licin bermassa M dan berjari-jari. Kawat

Lebih terperinci

FORMULASI HAMILTONIAN UNTUK MENGGAMBARKAN GERAK GELOMBANG INTERNAL PADA LAUT DALAM RINA PRASTIWI

FORMULASI HAMILTONIAN UNTUK MENGGAMBARKAN GERAK GELOMBANG INTERNAL PADA LAUT DALAM RINA PRASTIWI FORMULASI HAMILTONIAN UNTUK MENGGAMBARKAN GERAK GELOMBANG INTERNAL PADA LAUT DALAM RINA PRASTIWI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 PERYATAAN MENGENAI TESIS DAN SUMBER INFORMASI Dengan

Lebih terperinci

perpindahan, kita peroleh persamaan differensial berikut :

perpindahan, kita peroleh persamaan differensial berikut : 1.1 Pengertian Persamaan Differensial Banyak sekali masalah terapan (dalam ilmu teknik, ilmu fisika, biologi, kimia, sosial, dan lain-lain), yang telah dirumuskan dengan model matematika dalam bentuk persamaan

Lebih terperinci