PDP linear orde 2 Agus Yodi Gunawan

Ukuran: px
Mulai penontonan dengan halaman:

Download "PDP linear orde 2 Agus Yodi Gunawan"

Transkripsi

1 PDP linear orde 2 Agus Yodi Gunawan Pada bagian ini akan dipelajari tiga jenis persamaan diferensial parsial (PDP) linear orde dua yang biasa dijumpai pada masalah-masalah dunia nyata, yaitu persamaan panas (persamaan difusi), persamaan Laplace, dan persamaan gelombang. Beberapa teknik penyelesaian akan disajikan untuk masing-masing persamaan tersebut, antara lain teknik pemisahan variabel, teknik transformasi integral, dan pengantar metode numerik beda hingga. Prasyarat: Masalah Sturm-Liouville Regular, Deret Fourier. 1 Klasifikasi Bentuk umum PDP linear orde dua diberikan oleh A 2 u x + B 2 u 2 x + C 2 u + D u 2 x + E u + F u = G, (1.1) dimana A, B, C,, G merupakan fungsi konstan atau fungsi yang bergantung pada x dan t, u(x, t) disebut variabel terikat yang merupakan solusi dari PDP, x dan t disebut variabel bebas yang secara berurutan biasanya menyatakan varibel posisi dan variabel waktu. Namun secara umum arti dari variabel-variabel tersebut dapat disesuaikan dengan fenomena fisisnya. Pada (1.1) A, B, dan C diasumsikan tidak semuanya nol. Bentuk (1.1) dapat dituliskan dalam bentuk lain menjadi ) Au xx + Bu xt + Cu tt = R (x, t, u, u x, u t, (1.2) dimana u xx = 2 u/ x 2, u xt = 2 u/ x, dan u tt = 2 u/ 2. Bentuk (1.2) berdasarkan tanda dari diskriman B 2 4AC dapat dikelompokan menjadi Tipe Parabolik, B 2 4AC = 0; Tipe Eliptik, B 2 4AC < 0. Tipe Hiperbolik, B 2 4AC > 0; Dalam tabel berikut diberikan contoh-contoh PDP berserta tipenya; Bentuk Tipe Nama u t = c 2 u xx Parabolik Persamaan panas/persamaan difusi u xx + u yy = 0 Eliptik Persamaan Laplace u tt = c 2 u xx Hiperbolik Persamaan gelombang u xx + xu yy = 0 x < 0: Hiperbolik Persamaan Tricomi x > 0: Eliptik 1 (1.3)

2 2 Persamaan panas 1. Penurunan persamaan. Perhatikan suatu batang homogen dengan rapat massa tetap ρ dan penampang tetap A yang diletakkan pada sumbu x dari titik x = 0 sampai dengan x = L. Batang diasumsikan cukup tipis sedemikian sehingga aliran panas hanya dalam arah sumbu x saja dan tidak ada panas yang hilang sepanjang batang. Misalkan u(x, t) menyatakan suhu penampang batang pada posisi x setiap waktu t dan c menyatakan panas jenis batang (besarnya panas yang diperlukan untuk menaikkan suhu 1 derajat dari sebuah batang yang memiliki 1 satuan massa). Besarnya panas setiap saat yang terjadi diantara penampang batang pada posisi x dan penampang pada posisi x + x adalah Q(t) = x+ x x cρau(s, t)ds. (2.1) Pada saat yang sama, laju aliran panas yang menembus penampang pada posisi x adalah sebanding dengan luas penampang dan gradien suhu pada penampang (Hukum Fourier untuk konduksi panas), yaitu κau x (x, t), (2.2) dimana κ menyatakan konduktifitas panas batang. Tanda negatif pada (2.2) menyatakan bahwa panas mengalir ke arah suhu yang lebih rendah. hal yang sama juga untuk penampang pada posisi x + x: κau x (x + x, t). (2.3) Selisih dari jumlah panas yang masuk pada penampang di x dan jumlah panas yang keluar dari penampang di x+ x harus sama dengan perubahan panas yang terjadi pada segmen x s x + x. Dengan demikian kita peroleh Q = x+ x x cρa [ u(s, t) u(x + x, t) ds = κa x ] u(x, t). (2.4) x Asumsikan bahwa integran dari (2.1) adalah fungsi kontinu terhadap s, kita peroleh dengan menggunakan teorema nilai rata-rata untuk integral, x+ x x cρa u(s, t) u(ξ, t) ds = cρa x, x < ξ < x + x. (2.5) Selanjutnya, (2.4) menjadi [ u(ξ, t) u(x + x, t) cρ x = κ x 2 u(x, t) x ]. (2.6)

3 Dengan membagi kedua ruas (2.6) oleh cρ x kemudian mengambil x 0, kita peroleh persamaan panas satu dimensi (disebut pula persamaan difusi) dengan tetapan difusifitas α 2 = κ/(cρ). Catatan: u t = α 2 u xx, (2.7) Jika terdapat panas tambahan dari luar diberikan pada batang dengan laju f(x, t) per satuan volum per satuan waktu, maka kita harus menambahkan pada turunan terhadap waktu Persamaan (2.4) suku x+ x f(s, t)ds. Selanjutnya, jika proses yang sama dilakukan akan x diperoleh u t = α 2 u xx + F (x, t), (2.8) dengan F (x, t) = f(x, t)/(cρ). Persamaan (2.8) disebut persamaan panas tak homogen. Jika yang terjadi adalah kehilangan panas, maka Persamaan (2.8) masih tetap berlaku dengan menggantikan F (x, t) oleh F (x, t). Jika batang bergerak dalam arah sumbu x positif dengan kecepatan tetap v, maka kita harus menambahkan pada ruas kanan Persamaan (2.4) suku [vcρau(x, t) vcρau(x + x, t)]. Selanjutnya, jika proses yang sama dilakukan akan diperoleh u t = vu x + α 2 u xx, (2.9) Suku vu x disebut suku konveksi sehingga Persamaan (2.9) biasa disebut Persamaan konveksi-difusi. 2. Kondisi batas. Terdapat tiga jenis kondisi batas: Kondisi Dirichlet; pada setiap ujung selang nilai solusi diketahui, sebagai contoh u(0, t) = u 0, u(l, t) = u L. Kondisi Neumann; pada setiap ujung selang nilai dari turunan normal solusi diketahui, sebagai contoh u x (0, t) = u 0, u x (L, t) = u L. Jika kedua ujung batang diisolasi sehingga tidak ada panas yang keluar ataupun masuk, maka kondisi Neumann menjadi u x (0, t) = 0 = u x (L, t). Kondisi Robin; pada setiap ujung selang diketahui nilai dari kombinasi linear dari dua tipe kondisi batas sebelumnya, yaitu u x (0, t) hu(0, t) = A dan u x (L, t)+hu(l, t) = B dengan A, B, dan h konstanta positif. Kondisi ini biasa dipakai untuk menyatakan bahwa di ujung-ujung selang panas diradiasikan. 3

4 Untuk melengkapi persamaan panas, selain kondisi batas di atas perlu ditambahkan kondisi awal, yaitu untuk suatu fungsi g(x) yang diketahui. u(x, 0) = g(x), (2.10) 3. Pemisahan variabel. Teknik penyelesian yang umum dan sangat populer untuk masalah persamaan panas dalam daerah yang terbatas adalah pemisahan variabel. Gagasan dari teknik ini adalah menuliskan solusi u(x, t) menjadi perkalian dua buah fungsi yang masing-masing hanya bergantung pada satu peubah (x saja atau t saja). Berikut prosedur pemisahan variabel untuk menyelesaikan persamaan panas (2.7) dengan kondisi awal (2.10) dan kondisi batas Dirichlet; u(0, t) = 0 = u(l, t): I. Tuliskan u(x, t) = T (t)x(x). II. Substitusikan (I) ke (2.7), diperoleh T (t)x(x) = α 2 T (t)x (x), dimana T (t) menyatakan turunan fungsi T (t) terhadap t dan X (x) menyatakan turunan kedua fungsi X(x) terhadap x. Dalam bentuk lain dapat dituliskan menjadi T (t) α 2 T (t) = X (x) X(x). (2.11) III. Ruas kiri pada Kesamaan (2.11) hanya bergantung pada t sedangkan ruas kanannya hanya bergantung pada x. Kesamaan ini hanya dipenuhi oleh fungsi konstan. Misalkan, T (t) α 2 T (t) = X (x) X(x) = λ, (2.12) dengan λ suatu konstanta yang akan ditentukan kemudian. Tanda negatif dicantumkan untuk kemudahan saja. IV. Dari (2.12), kita peroleh dua persamaan dan T (t) + α 2 λt (t) = 0, (2.13) X (x) + λx(x) = 0, X(0) = 0 = X(L). (2.14) Persamaan (2.14) diselesaikan terlebih dahulu untuk menentukan konstanta λ. Persamaan (2.14) tidak lain merupakan masalah Sturm-Liouville Regular 1, yang dipenuhi oleh tak berhingga nilai eigen λ n yang berpadanan dengan fungsi eigen X n (x). Nilai dan fungsi eigen yang memenuhi (2.14) sangat bergantung pada kondisi batas yang diberikan. 1 Silakan baca catatan saya: Masalah Sturm-Liouville Regular. 4

5 V. Misalkan sudah diperoleh nilai λ n dan X n (x) dari (2.14). Substitusikan nilai λ n pada Persamaan (2.13) sehingga diperoleh dengan solusi umumnya adalah T n (t) + α 2 λ n T n (t) = 0, T n (t) = A n exp( α 2 λ n t). Nilai konstanta A n akan ditentukan dari kondisi awal (2.10). VI. Solusi pada (I) dituliskan kembali menjadi u n (x, t) = T n (t)x n (x). Persamaan panas (2.7) merupakan PDP linear. Oleh karena itu solusi umumnya adalah superposisi dari u n (x, t), yaitu u(x, t) = u n (x, t) = n=0 Untuk t = 0, kita peroleh A n X n (x) exp( α 2 λ n t). (2.15) n=0 u(x, 0) = g(x) = A n X n (x). (2.16) Koefisien A n pada (2.16) tidak lain adalah koefisien Fourier untuk fungsi g(x) dengan fungsi basisnya X n (x). Setelah menentukan koefisien Fourier 2, solusi n=0 dari masalah persamaan panas diberikan oleh (2.15). 4. Teknik transformasi Laplace. Misalkan diberikan masalah berikut: u t = α 2 u xx, a < x < b (2.17) dengan syarat awal u(x, 0) = u 0 (x) dan syarat batas u(a, t) = u 1 (t), u(b, t) = u 2 (t). Misalkan pula transformasi Laplace untuk u(x, t) terhadap variabel t diberikan oleh L[u(x, t)] = U(x, s) = 0 u(x, t)e st dt. (2.18) Dengan menerapkan (2.18) pada (2.17) akan diperoleh persamaan diferensial biasa orde dua U xx (x, s) s α 2 U(x, s) = 1 α 2 u 0(x) (2.19) dengan kondisi batas U(a, s) = U 1 (s), U(b, s) = U 2 (s). Setelah menyelesaikan masalah syarat batas (2.19), u(x, t) dapat diperoleh dengan menghitung invers transformasi 2 Silakan baca catatan saya: Deret Fourier. 5

6 Laplace U(x, s). Secara umum, menghitung invers dari transformsi Laplace memerlukan pengetahuan integral pada fungsi kompleks (di luar ruang lingkup kuliah ini). Pada bahasan kali ini akan ditampilkan contoh-contoh dimana invers transformasi Laplace nya sudah tersedia pada buku-buku yang memuat Tabel transformasi Laplace. Contoh. Persamaan panas pada daerah setengah bidang, x > 0 (diambil dari H.S. Carslaw & J.C. Jaeger, Conduction of heat in solids, Oxford Univ. Press, 1959 ). I. Misalkan temperatur awalnya nol, u(x, 0) = 0, dan syarat awalnya adalah u(0, t) = f(t). Persamaan (2.19) menjadi U xx (x, s) q 2 U(x, s) = 0, dimana q 2 = s/α 2 dan kondisi batas U(0, s) = F (s). Solusi yang mensyaratkan agar solusi terbatas untuk x dipenuhi oleh U(x, s) = F (s)e qx. i. Jika u(0, t) = f(t) = C 0, konstan. Diperoleh U(x, s) = C 0 s e qx. Dari tabel transformasi diperoleh ( ) x u(x, t) = C 0 erfc 2α, t dimana erfc(u) = 1 erf(u) dengan erf(u) = (2/ π) u 0 e y2 dy. Fungsi erf (u) dan erfc (u) masing-masing secara berurutan disebut Error function and Complementary error function. ii. untuk sebarang syarat awal f(t), solusinya diberikan oleh u(x, t) = x t /(4α 2 (t y)) 2α f(t) e x2 dy. π (t y) 3/2 0 II. Misalkan temperatur awalnya nol, u(x, 0) = 0 dan di x = 0 diberikan radiasi panas oleh suatu mediaum dengang temperatur tetap u 0. Kondisi batasnya diberikan oleh u x (0, t) = h(u(0, t) u 0 ), dengan h konstanta positif. Transformasi Laplace untuk syarat batas tersebut diberikan oleh U x (0, s) hu(0, s) = hu 0 s. 6

7 Solusinya diberikan oleh yang bersesuaian dengan ( ) x u(x, t) = u 0 erfc 2α t U(x, s) = hu 0e qx s(q + h), ( ) u 0 e hx+h2 α 2t x erfc 2α t + hα t. 5. Metode beda hingga. Metode beda hingga adalah metode numerik yang memberikan nilai-nilai diskrit pada suatu kordinat (x j, t n ), yang disebut titik grid. Nilainilai numerik ini merupakan suatu nilai hampiran untuk solusi kontinu pada selang (x j x/2, x j + x/2) dan (t n t/2, t n + t/2), dimana x dan t masingmasing merupakan jarak diantara dua titik grid dalam arah sumbu x dan arah sumbu t. Untuk memudahkan penulisan, kita misalkan u(x j, t n ) = u n j. Misalkan kita ingin mencari solusi numerik dari masalah berikut: dengan kondisi awal dan batas: u t = α 2 u xx, (0 < x < L, t > 0); (2.20) u(x, 0) = g(x), u(0, t) = p(t), u(l, t) = q(t). (2.21) Kita bagi selang L menjadi N bagian yang masing-masing panjangnya sama, sehingga x = L/N dan definisikan x j = j x, j = 0, 1, 2,, N. Hal yang sama untuk kordinat t, t n = n t, n = 0, 1, 2,. Tahap pertama dalam metode numerik adalah menghampiri solusi kontinu dengan hampiran beda hingganya. Alat yang akan digunakan adalah hampiran deret Taylor. Misalkan kita fokuskan untuk menghitung deret Taylor u(x, t) terhadap x di titik (x j, t n ), yaitu u n j+1 = u n j + x u n j 1! x + ( x)2 2 u n j 2! x 2 Hal yang sama juga dapat diperoleh untuk + ( x)3 3! 3 u n j x 3 +. (2.22) u n j 1 = u n j x u n j 1! x + ( x)2 2 u n j 2! x 2 Ada beberapa pilihan untuk menghampiri u n j / x: ( x)3 3! dari (2.22): un j x un j+1 u n j ; disebut beda maju. x dari (2.23): un j x un j u n j 1 ; disebut beda mundur. x dari (2.22) dan (2.23): un j x un j+1 u n j 1 ; disebut beda pusat. 2 x 7 3 u n j x 3 +. (2.23)

8 Untuk pendekatan dalam kordinat x, kita selanjutnya akan menggunakan beda pusat. Dengan cara yang sama hampiran beda pusat untuk turunan kedua terhadap x adalah 2 u n j x 2 un j+1 2u n j + u n j 1 ( x) 2 (2.24) Sedangkan untuk turunan pertama terhadap waktu kita akan gunakan beda maju. Dengan pendekatan beda hingga, (2.20) menjadi u n+1 j u n j t = α 2 un j+1 2u n j + u n j 1 ( x) 2 (2.25) atau u n+1 j = ru n j+1 + (1 2r)u n j + ru n j 1, (2.26) dengan r = a 2 t/( x) 2. Bentuk beda hingga (2.26) dikenal dengan bentuk FTCS (Forward Time-Centered Space). Bentuk (2.26) dilengkapi dengan kondisi awal u 0 j = g(x j ) = g(j x) = g j (j = 1, 2,, N 1) dan kondisi batas u n 0 = p(t n ) = p(n t) = p n, u n N = q(t n ) = q(n t) = q n (n = 1, 2, ). 3 Persamaan Laplace 4 Persamaan gelombang 5 Latihan 1. Referensi: D.G. Duffy, Advanced Engineering Mathematics, CRC,

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang beberapa teori dasar yang digunakan sebagai landasan pembahasan pada bab III. Beberapa teori dasar yang dibahas, diantaranya teori umum tentang persamaan

Lebih terperinci

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan BAB II KAJIAN TEORI Pada bab ini akan dibahas beberapa hal yang digunakan sebagai landasan pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari

BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari BAB III HASIL DAN PEMBAHASAN Pada bab ini akan dibahas penurunan model persamaan panas dimensi satu. Setelah itu akan ditentukan penyelesaian persamaan panas dimensi satu secara analitik dengan metode

Lebih terperinci

Sidang Tugas Akhir - Juli 2013

Sidang Tugas Akhir - Juli 2013 Sidang Tugas Akhir - Juli 2013 STUDI PERBANDINGAN PERPINDAHAN PANAS MENGGUNAKAN METODE BEDA HINGGA DAN CRANK-NICHOLSON COMPARATIVE STUDY OF HEAT TRANSFER USING FINITE DIFFERENCE AND CRANK-NICHOLSON METHOD

Lebih terperinci

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai. I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Dalam kehidupan, polusi yang ada di sungai disebabkan oleh limbah dari pabrikpabrik dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk

Lebih terperinci

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Parsial Persamaan yang mengandung satu atau lebih turunan parsial suatu fungsi (yang diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan diferensial

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE)

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE) Bab 2 Landasan Teori Dalam bab ini akan dibahas mengenai Persamaan Air Dangkal dan dasar-dasar teori mengenai metode beda hingga untuk menghampiri solusi dari persamaan diferensial parsial. 2.1 Persamaan

Lebih terperinci

KARAKTERISTIK ALIRAN PANAS DALAM LOGAM PENGHANTAR LISTRIK THE CHARACTERISTICS OF HEAT FLOW IN AN ELECTRICAL METAL CONDUCTOR

KARAKTERISTIK ALIRAN PANAS DALAM LOGAM PENGHANTAR LISTRIK THE CHARACTERISTICS OF HEAT FLOW IN AN ELECTRICAL METAL CONDUCTOR UJIAN TUGAS AKHIR KARAKTERISTIK ALIRAN PANAS DALAM LOGAM PENGHANTAR LISTRIK THE CHARACTERISTICS OF HEAT FLOW IN AN ELECTRICAL METAL CONDUCTOR Diusulkan oleh : Mudmainnah Farah Dita NRP. 1209 100 008 Dosen

Lebih terperinci

TINJAUAN KASUS PERSAMAAN PANAS DIMENSI SATU SECARA ANALITIK

TINJAUAN KASUS PERSAMAAN PANAS DIMENSI SATU SECARA ANALITIK TINJAUAN KASUS PERSAMAAN PANAS DIMENSI SATU SECARA ANALITIK ANALYTICALLY REVIEW ON ONE-DIMENSIONAL HEAT EQUATION Oleh: Ahmadi 1), Hartono 2), Nikenasih Binatari 3) Program Studi Matematika, Jurusan Pendidikan

Lebih terperinci

Persamaan Difusi. Penurunan, Solusi Analitik, Solusi Numerik (Beda Hingga, RBF) M. Jamhuri. April 7, UIN Malang. M. Jamhuri Persamaan Difusi

Persamaan Difusi. Penurunan, Solusi Analitik, Solusi Numerik (Beda Hingga, RBF) M. Jamhuri. April 7, UIN Malang. M. Jamhuri Persamaan Difusi Persamaan Difusi Penurunan, Solusi Analitik, Solusi Numerik (Beda Hingga, RBF) M Jamhuri UIN Malang April 7, 2013 Penurunan Persamaan Difusi Misalkan u(x, t) menyatakan konsentrasi dari zat pada posisi

Lebih terperinci

Persamaan Diferensial Parsial CNH3C3

Persamaan Diferensial Parsial CNH3C3 Persamaan Diferensial Parsial CNH3C3 Week 3: Pengantar, konsep dasar dan klasikasi PDP Tim Ilmu Komputasi Coordinator contact: Dr. Putu Harry Gunawan phgunawan@telkomuniversity.ac.id 1 Kontrak kuliah 2

Lebih terperinci

Solusi Problem Dirichlet pada Daerah Persegi dengan Metode Pemisahan Variabel

Solusi Problem Dirichlet pada Daerah Persegi dengan Metode Pemisahan Variabel Vol.14, No., 180-186, Januari 018 Solusi Problem Dirichlet pada Daerah Persegi Metode Pemisahan Variabel M. Saleh AF Abstrak Dalam keadaan distribusi temperatur setimbang (tidak tergantung pada waktu)

Lebih terperinci

13. Aplikasi Transformasi Fourier

13. Aplikasi Transformasi Fourier 13. plikasi ransformasi Fourier Misal adalah operator linear pada fungsi yang terdefinisi pada R dengan sifat: jika [f(x] = g(x, maka [f(x + s] = g(x + s untuk setiap s R. Maka, fungsi f(x = e ax (a C

Lebih terperinci

BAB II KAJIAN TEORI. dalam penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema,

BAB II KAJIAN TEORI. dalam penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang beberapa hal yang menjadi landasan dalam penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

BAB I PENDAHULUAN. perkembangan bakteri, sedangkan dalam bidang teknik yaitu pemodelan

BAB I PENDAHULUAN. perkembangan bakteri, sedangkan dalam bidang teknik yaitu pemodelan BAB I PENDAHULUAN A. Latar Belakang Masalah Persamaan Diferensial merupakan salah satu topik dalam matematika yang cukup menarik untuk dikaji lebih lanjut. Hal itu karena banyak permasalahan kehidupan

Lebih terperinci

Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi

Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi JURNAL FOURIER Oktober 2013, Vol. 2, No. 2, 113-123 ISSN 2252-763X Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi Annisa Eki Mulyati dan Sugiyanto Program Studi Matematika Fakultas

Lebih terperinci

Bab 2 TEORI DASAR. 2.1 Model Aliran Panas

Bab 2 TEORI DASAR. 2.1 Model Aliran Panas Bab 2 TEORI DASAR 2.1 Model Aliran Panas Perpindahan panas adalah energi yang dipindahkan karena adanya perbedaan temperatur. Terdapat tiga cara atau metode bagiamana panas dipindahkan: Konduksi Konduksi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB LANDASAN TEORI Pada bab ini akan dibahas beberapa konsep dasar ang akan digunakan sebagai landasan berpikir seperti beberapa teorema dan definisi ang berkaitan dengan penelitian ini. Dengan begitu

Lebih terperinci

Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial

Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial Ikhsan Maulidi Jurusan Matematika,Universitas Syiah Kuala, ikhsanmaulidi@rocketmail.com Abstract Artikel ini membahas tentang salah satu

Lebih terperinci

Persamaan Diferensial Parsial CNH3C3

Persamaan Diferensial Parsial CNH3C3 Persamaan Diferensial Parsial CNH3C3 Week 4: Separasi Variabel untuk Persamaan Panas Orde Satu Tim Ilmu Komputasi Coordinator contact: Dr. Putu Harry Gunawan phgunawan@telkomuniversity.ac.id 1 Persamaan

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal Linier (Linier Shallow Water Equation)

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal Linier (Linier Shallow Water Equation) Bab 2 Landasan Teori Dalam bab ini akan dijelaskan mengenai Persamaan Air Dangkal linier (Linear Shallow Water Equation), metode beda hingga, metode ekspansi asimtotik biasa, dan metode ekspansi asimtotik

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam kehidupan sehari-hari banyak permasalahan yang muncul di lingkungan sekitar. Hal tersebut yang memicu kreatifitas berpikir manusia untuk menyelesaikan

Lebih terperinci

Pemodelan Matematika dan Metode Numerik

Pemodelan Matematika dan Metode Numerik Bab 3 Pemodelan Matematika dan Metode Numerik 3.1 Model Keadaan Tunak Model keadaan tunak hanya tergantung pada jarak saja. Oleh karena itu, distribusi temperatur gas sepanjang pipa sebagai fungsi dari

Lebih terperinci

Persamaan Diferensial Parsial CNH3C3

Persamaan Diferensial Parsial CNH3C3 Persamaan Diferensial Parsial CNH3C3 Week 5: Separasi Variabel untuk Persamaan Panas Orde Satu - Tim Ilmu Komputasi Coordinator contact: Dr. Putu Harry Gunawan phgunawan@telkomuniversity.ac.id 1 Review

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Perpindahan Kalor Kalor adalah energi yang diterima oleh benda sehingga suhu benda atau wujudnya berubah. Ukuran jumlah kalor dinyatakan dalam satuan joule (J). Kalor disebut

Lebih terperinci

BAB VIII PERSAMAAN DIFERENSIAL PARSIAL

BAB VIII PERSAMAAN DIFERENSIAL PARSIAL BAB VIII PERSAMAAN DIFERENSIAL PARSIAL 1. Pendahuluan : Pemodelan Arus Panas Satu Dimensi Y Bahan penyekat (insulator) A Batang 0 L X Z Misalkan bila ada batang yang dapat menghantarkan panas. Batang tersebut

Lebih terperinci

PENYELESAIAN PERSAMAAN PANAS DENGAN ANALITIK DAN METODE VOLUME HINGGA HALAMAN JUDUL TUGAS AKHIR SKRIPSI

PENYELESAIAN PERSAMAAN PANAS DENGAN ANALITIK DAN METODE VOLUME HINGGA HALAMAN JUDUL TUGAS AKHIR SKRIPSI PENYELESAIAN PERSAMAAN PANAS DENGAN ANALITIK DAN METODE VOLUME HINGGA HALAMAN JUDUL TUGAS AKHIR SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk

Lebih terperinci

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR Birmansyah 1, Khozin Mu tamar 2, M. Natsir 2 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Transformasi Laplace Salah satu cara untuk menganalisis gejala peralihan (transien) adalah menggunakan transformasi Laplace, yaitu pengubahan suatu fungsi waktu f(t) menjadi

Lebih terperinci

Reflektor Gelombang 1 balok

Reflektor Gelombang 1 balok Bab 3 Reflektor Gelombang 1 balok Setelah diperoleh persamaan yang menggambarkan gerak gelombang air setiap saat yaitu SWE, maka pada bab ini akan dielaskan mengenai pengaruh 1 balok terendam sebagai reflektor

Lebih terperinci

Fourier Analysis & Its Applications in PDEs - Part II

Fourier Analysis & Its Applications in PDEs - Part II Fourier Analysis & Its Applications in PDEs Hendra Gunawan http://personal.fmipa.itb.ac.id/hgunawan/ Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA WIDE 2010 5-6 August

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

Kuliah PD. Gaya yang bekerj a pada suatu massa sama dengan laju perubahan momentum terhadap waktu.

Kuliah PD. Gaya yang bekerj a pada suatu massa sama dengan laju perubahan momentum terhadap waktu. Kuliah PD Pertemuan ke-1: Motivasi: 1. Mekanika A. Hukum Newton ke-: Gaya yang bekerj a pada suatu massa sama dengan laju perubahan momentum terhadap waktu. Misalkan F: gaya, m: massa benda, a: percepatan,

Lebih terperinci

SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON

SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON Viska Noviantri Mathematics & Statistics Department, School of Computer Science, Binus University Jl. K.H. Syahdan No. 9,

Lebih terperinci

APLIKASI METODE BEDA HINGGA SKEMA EKSPLISIT PADA PERSAMAAN KONDUKSI PANAS

APLIKASI METODE BEDA HINGGA SKEMA EKSPLISIT PADA PERSAMAAN KONDUKSI PANAS Sulistyono, Metode Beda Hingga Skema Eksplisit 4 APLIKASI METODE BEDA HINGGA SKEMA EKSPLISIT PADA PERSAMAAN KONDUKSI PANAS Bambang Agus Sulistyono Program Studi Pendidikan Matematika FKIP UNP Kediri bb7agus@gmail.com

Lebih terperinci

Metode Elemen Batas (MEB) untuk Model Konduksi-Konveksi dalam Media Anisotropik

Metode Elemen Batas (MEB) untuk Model Konduksi-Konveksi dalam Media Anisotropik Metode Elemen Batas (MEB) untuk Model Konduksi-Konveksi dalam Media Anisotropik Moh. Ivan Azis September 13, 2011 Daftar Isi 1 Pendahuluan 1 2 Masalah nilai batas 1 3 Persamaan integral batas 2 4 Hasil

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Dasar Persamaan Diferensial Parsial Suatu persamaan yang meliputi turunan fungsi dari satu atau lebih variabel terikat terhadap satu atau lebih variabel bebas disebut persamaan

Lebih terperinci

PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA

PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA Persamaan Diferensial Biasa 1. PDB Tingkat Satu (PDB) 1.1. Persamaan diferensial 1.2. Metode pemisahan peubah dan PD koefisien fungsi homogen 1.3. Persamaan

Lebih terperinci

MASALAH SYARAT BATAS (MSB)

MASALAH SYARAT BATAS (MSB) Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo PENDAHULUAN MODEL KABEL MENGGANTUNG DEFINISI MSB Persamaan diferensial (PD) dikatakan berdimensi 1 jika domainnya berupa himpunan bagian pada R 1.

Lebih terperinci

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A PENGANTAR MATEMATIKA TEKNIK 1 By : Suthami A MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK Matematika sebagai ilmu dasar yang digunakan sebagai alat pemecahan masalah di bidang keteknikan

Lebih terperinci

PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV

PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 415-422 PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV Iyut Riani, Nilamsari

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Dalam bab ini dibahas tentang dasar-dasar teori yang digunakan untuk mengetahui kecepatan perambatan panas pada proses pasteurisasi pengalengan susu. Dasar-dasar teori tersebut meliputi

Lebih terperinci

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu

Lebih terperinci

BAB III PERSAMAAN DIFUSI, PERSAMAAN KONVEKSI DIFUSI, DAN METODE PEMISAHAN VARIABEL

BAB III PERSAMAAN DIFUSI, PERSAMAAN KONVEKSI DIFUSI, DAN METODE PEMISAHAN VARIABEL BAB III PERSAMAAN DIFUSI, PERSAMAAN KONVEKSI DIFUSI, DAN METODE PEMISAHAN VARIABEL Dalam menyelesaikan persamaan pada tugas akhir ini terdapat beberapa teori dasar yang digunakan. Oleh karena itu, pada

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Umum Perpindahan panas adalah perpindahan energi yang terjadi pada benda atau material yang bersuhu tinggi ke benda atau material yang bersuhu rendah, hingga tercapainya kesetimbangan

Lebih terperinci

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +

Lebih terperinci

TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 2016/2017

TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 2016/2017 A. Pengantar Persamaan Diferensial TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 016/017 1. Tentukan hasil turunan dari fungsi sebagai berikut: a. f() = c e b. f() = c cos k + c sin k c.

Lebih terperinci

BAB III KONDUKSI ALIRAN STEDI - DIMENSI BANYAK

BAB III KONDUKSI ALIRAN STEDI - DIMENSI BANYAK BAB III KONDUKSI ALIRAN SEDI - DIMENSI BANYAK Untuk aliran stedi tanpa pembangkitan panas, persamaan Laplacenya adalah: + y 0 (6-) Aliran kalor pada arah dan y bisa dihitung dengan persamaan Fourier: q

Lebih terperinci

7. Transformasi Fourier

7. Transformasi Fourier Pengantar Analisis Fourier dan eori Aproksimasi 33 7. ransformasi Fourier Pada bab sebelumnya kita telah melihat bahwa setiap fungsi f L 1 ([0, 1] L ([0, 1] dapat dinyatakan sebagai deret Fourier f(x =

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL BIASA

BAB II PERSAMAAN DIFERENSIAL BIASA BAB II PERSAMAAN DIFERENSIAL BIASA Tujuan Pembelajaran Umum: 1 Mahasiswa mampu memahami konsep dasar persamaan diferensial 2 Mahasiswa mampu menggunakan konsep dasar persamaan diferensial untuk menyelesaikan

Lebih terperinci

Persamaan Diferensial Parsial CNH3C3

Persamaan Diferensial Parsial CNH3C3 Persamaan Diferensial Parsial CNH3C3 Tim Ilmu Komputasi Week 6: Separasi Variabel untuk Persamaan Gelombang Orde dua dan Koesien Fourier Coordinator contact: Dr. Putu Harry Gunawan phgunawan@telkomuniversity.ac.id

Lebih terperinci

TINJAUAN PUSTAKA. Jika y = f(x) dengan f(x) adalah suatu fungsi yang terdiferensialkan terhadap

TINJAUAN PUSTAKA. Jika y = f(x) dengan f(x) adalah suatu fungsi yang terdiferensialkan terhadap II. TINJAUAN PUSTAKA 2.1 Diferensial Jika y = f(x) dengan f(x) adalah suatu fungsi yang terdiferensialkan terhadap variabel bebas x, maka dy adalah diferensial dari variabel tak bebas (terikat) y, yang

Lebih terperinci

FUNGSI BESSEL. 1. PERSAMAAN DIFERENSIAL BESSEL Fungsi Bessel dibangun sebagai penyelesaian persamaan diferensial.

FUNGSI BESSEL. 1. PERSAMAAN DIFERENSIAL BESSEL Fungsi Bessel dibangun sebagai penyelesaian persamaan diferensial. FUNGSI BESSEL 1. PERSAMAAN DIFERENSIAL BESSEL Fungsi Bessel dibangun sebagai penyelesaian persamaan diferensial. x 2 y ''+xy'+(x 2 - n 2 )y = 0, n ³ 0 (1) yang dinamakan persamaan diferensial Bessel. Penyelesaian

Lebih terperinci

KONSEP DASAR PERSAMAAN DIFERENSIAL

KONSEP DASAR PERSAMAAN DIFERENSIAL KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu fungsi (dasar). Sebagai

Lebih terperinci

digunakan untuk menyelesaikan integral seperti 3

digunakan untuk menyelesaikan integral seperti 3 Bab Teknik Pengintegralan BAB TEKNIK PENGINTEGRALAN Rumus-rumus dasar integral tak tertentu yang diberikan pada bab hanya dapat digunakan untuk mengevaluasi integral dari fungsi sederhana dan tidak dapat

Lebih terperinci

DERET FOURIER DAN APLIKASINYA DALAM FISIKA

DERET FOURIER DAN APLIKASINYA DALAM FISIKA Matakuliah: Fisika Matematika DERET FOURIER DAN APLIKASINYA DALAM FISIKA Di S U S U N Oleh : Kelompok VI DEWI RATNA PERTIWI SITEPU (8176175004) RIFKA ANNISA GIRSANG (8176175014) PENDIDIKAN FISIKA REGULER

Lebih terperinci

Matematika Teknik I. Prasyarat : Kalkulus I, Kalkulus II, Aljabar Vektor & Kompleks

Matematika Teknik I. Prasyarat : Kalkulus I, Kalkulus II, Aljabar Vektor & Kompleks Kode Mata Kuliah : TE 318 SKS : 3 Matematika Teknik I Prasarat : Kalkulus I, Kalkulus II, Aljabar Vektor & Kompleks Tujuan : Mahasiswa memahami permasalahan teknik dalam bentuk PD atau integral, serta

Lebih terperinci

METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI

METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI Yuni Yulida Program Studi Matematika FMIPA Unlam Universitas Lambung Mangkurat Jl. Jend. A. Yani km. 36

Lebih terperinci

FUNGSI EVANS, SIFAT-SIFAT DAN APLIKASINYA PADA PELACAKAN NILAI EIGEN DARI MASALAH STURM-LIOUVILLE

FUNGSI EVANS, SIFAT-SIFAT DAN APLIKASINYA PADA PELACAKAN NILAI EIGEN DARI MASALAH STURM-LIOUVILLE Jurnal Matematika UNAND Vol. 4 No. Hal. 23 3 ISSN : 233 29 c Jurusan Matematika FMIPA UNAND FUNGSI EVANS, SIFAT-SIFAT DAN APLIKASINYA PADA PELACAKAN NILAI EIGEN DARI MASALAH STURM-LIOUVILLE HILDA FAHLENA,

Lebih terperinci

1 Pendahuluan pdp 2. 4 Persamaan Difusi Prinsip Maksimum Fungsi Green Metoda separasi variable, recall...

1 Pendahuluan pdp 2. 4 Persamaan Difusi Prinsip Maksimum Fungsi Green Metoda separasi variable, recall... Contents 1 Pendahuluan pdp 2 2 Persamaan Type Hiperbolik 6 2.1 Persamaan Transport.............................. 6 2.1.1 Metoda karakteristik........................... 7 2.1.2 Koefisien tak konstan..........................

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH KALKULUS LANJUT A (S1 / TEKNIK INFORMATIKA ) KODE / SKS KD

SATUAN ACARA PERKULIAHAN MATA KULIAH KALKULUS LANJUT A (S1 / TEKNIK INFORMATIKA ) KODE / SKS KD SATUAN ACARA PERKULIAHAN MATA KULIAH KALKULUS LANJUT A (S1 / TEKNIK INFORMATIKA ) KODE / SKS KD-045315 Mingg u Ke Pokok Bahasan dan TIU Sub-pokok Bahasan dan Sasaran Belajar Cara Pengajaran Media Tugas

Lebih terperinci

Barisan dan Deret Agus Yodi Gunawan

Barisan dan Deret Agus Yodi Gunawan Barisan dan Deret Agus Yodi Gunawan Barisan. Definisi. Barisan tak hingga adalah suatu fungsi dengan daerah asalnya himpunan bilangan bulat positif dan daerah kawannya himpunan bilangan real. Notasi untuk

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang ingkasan Kalkulus 2, Untuk dipakai di ITB 1 Integral Lipat Dua Atas Daerah Persegipanjang Perhatikan fungsi z = f(x, y) pada = {(x, y) : a x b, c y d} Bentuk partisi P atas daerah berupa n buah persegipanjang

Lebih terperinci

MA1201 KALKULUS 2A Do maths and you see the world

MA1201 KALKULUS 2A Do maths and you see the world Catatan Kuliah MA20 KALKULUS 2A Do maths and you see the world disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 203 Catatan kuliah ini ditulis

Lebih terperinci

Metode Beda Hingga pada Persamaan Gelombang

Metode Beda Hingga pada Persamaan Gelombang Metode Beda Hingga pada Persamaan Gelombang Tulisan ini diadaptasi dari buku PDP yang disusun oleh Dr. Sri Redeki Pudaprasetia M. Jamhuri UIN Malang July 2, 2013 M. Jamhuri UIN Malang Metode Beda Hingga

Lebih terperinci

Bab II Konsep Dasar Metode Elemen Batas

Bab II Konsep Dasar Metode Elemen Batas Bab II Konsep Dasar Metode Elemen Batas II.1 II.1.1 Kalkulus Dasar Teorema Gradien Misal menyatakan domain pada ruang dimensi dua dan menyatakan batas i x + j 2 2 x 2 + 2 2 elanjutnya, penentuan integral

Lebih terperinci

perpindahan, kita peroleh persamaan differensial berikut :

perpindahan, kita peroleh persamaan differensial berikut : 1.1 Pengertian Persamaan Differensial Banyak sekali masalah terapan (dalam ilmu teknik, ilmu fisika, biologi, kimia, sosial, dan lain-lain), yang telah dirumuskan dengan model matematika dalam bentuk persamaan

Lebih terperinci

Karakteristik Aliran Panas dalam Logam Penghantar Listrik

Karakteristik Aliran Panas dalam Logam Penghantar Listrik JURNAL TEKNIK POMITS Vol. 2, No., (23) ISSN: 2337-3539 (23-927 Print) A- Karakteristik Aliran Panas dalam Logam Penghantar Listrik Mudmainnah Farah Dita, dan Basuki Widodo Jurusan Matematika, Fakultas

Lebih terperinci

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( )

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( ) II. TINJAUAN PUSTAKA 2.1 Definisi Turunan Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada sebarang bilangan c adalah asalkan limit ini ada. Jika limit ini memang ada, maka dikatakan

Lebih terperinci

BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut.

BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut. BAB III PEMBAHASAN Pada bab ini akan dibahas tentang penurunan model persamaan gelombang satu dimensi. Setelah itu akan ditentukan persamaan gelombang satu dimensi dengan menggunakan penyelesaian analitik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI. Sistem Pendulum Terbalik Dalam penelitian ini diperhatikan sistem pendulum terbalik seperti pada Gambar di mana sebuah pendulum terbalik dimuat dalam motor yang bisa digerakkan.

Lebih terperinci

PENYELESAIAN MASALAH DIFUSI PANAS PADA SUATU KABEL PANJANG

PENYELESAIAN MASALAH DIFUSI PANAS PADA SUATU KABEL PANJANG PENYELESAIAN MASALAH DIFUSI PANAS PADA SUATU KABEL PANJANG Moh. Alex Maghfur ), Ari Kusumastuti ) ) Mahasiswa Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Maulana Malik Ibrahim Jalan Gajayana

Lebih terperinci

Solusi Analitik Model Perubahan Garis Pantai Menggunakan Transformasi Laplace

Solusi Analitik Model Perubahan Garis Pantai Menggunakan Transformasi Laplace Jurnal Gradien Vol. No.2 Juli 24 : 5-3 Solusi Analitik Model Perubaan Garis Pantai Menggunakan Transformasi Laplace Syarifa Meura Yuni, Icsan Setiawan 2, dan Okvita Maufiza Jurusan Matematika FMIPA Universitas

Lebih terperinci

Persamaan Diferensial Biasa

Persamaan Diferensial Biasa Persamaan Diferensial Biasa Pendahuluan, Persamaan Diferensial Orde-1 Toni Bakhtiar Departemen Matematika IPB September 2012 Toni Bakhtiar (m@thipb) PDB September 2012 1 / 37 Pendahuluan Konsep Dasar Beberapa

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Asap atau polutan yang dibuang melalui cerobong asap pabrik akan menyebar atau berdispersi di udara, kemudian bergerak terbawa angin sampai mengenai pemukiman penduduk yang berada

Lebih terperinci

FUNGSI KHUSUS DALAM BENTUK INTEGRAL

FUNGSI KHUSUS DALAM BENTUK INTEGRAL FUNGSI KHUSUS DALAM BENTUK INTEGRAL FUNGSI FAKTORIAL Definisi n e d n! Buktikan bahwa :!! e d e d e ( ) Terbukti FUNGSI Gamma Definisi ( ) p p e d ; p > Hubungan fungsi Gamma dengan fungsi Faktorial (

Lebih terperinci

Department of Mathematics FMIPAUNS

Department of Mathematics FMIPAUNS Lecture 2: Metode Operator A. Metode Operator untuk Sistem Linear dengan Koefisien Konstan Pada bagian ini akan dibicarakan cara menentukan penyelesaian sistem persamaan diferensial linear dengan menggunakan

Lebih terperinci

Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit

Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit Vol. 11, No. 2, 105-114, Januari 2015 Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit Rezki Setiawan Bachrun *,Khaeruddin **,Andi Galsan Mahie *** Abstrak

Lebih terperinci

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga JURNAL SAINS DAN SENI ITS Vol. 4, No.2, (2015) 2337-3520 (2301-928X Print) A-13 Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga Vimala Rachmawati dan Kamiran Jurusan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan salah satu cabang ilmu pengetahuan yang memiliki banyak manfaat, diantaranya sebagai salah satu ilmu bantu yang sangat penting dalam kehidupan

Lebih terperinci

LAMPIRAN I. Alfabet Yunani

LAMPIRAN I. Alfabet Yunani LAMPIRAN I Alfabet Yunani Alha Α Nu Ν Beta Β Xi Ξ Gamma Γ Omicron Ο Delta Δ Pi Π Esilon Ε Rho Ρ Zeta Ζ Sigma Σ Eta Η Tau Τ Theta Θ Usilon Υ Iota Ι hi Φ, Kaa Κ Chi Χ Lambda Λ Psi Ψ Mu Μ Omega Ω LAMPIRAN

Lebih terperinci

Husna Arifah,M.Sc : Persamaan Bessel: Fungsi-fungsi Besel jenis Pertama

Husna Arifah,M.Sc : Persamaan Bessel: Fungsi-fungsi Besel jenis Pertama Bentuk umum PD Bessel : x 2 y"+xy' +(x 2 υ 2 )y =...() Kita asumsikan bahwa parameter υ dalam () adalah bilangan riil dan tak negatif. Penyelesaian PD mempunyai bentuk : y(x) = x r m = a m x m = a m xm

Lebih terperinci

STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA

STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA Oleh : Farda Nur Pristiana 1208 100 059 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH

Lebih terperinci

Persamaan Diferensial Parsial CNH3C3

Persamaan Diferensial Parsial CNH3C3 Persamaan Diferensial Parsial CNH3C3 Week 11-12: Finite Dierence Method for PDE Wave Eqs Tim Ilmu Komputasi Coordinator contact: Dr. Putu Harry Gunawan phgunawan@telkomuniversity.ac.id 1 Masalah Gelombang

Lebih terperinci

SISTEM HUKUM KEKEKALAN LINEAR

SISTEM HUKUM KEKEKALAN LINEAR Bab 3 SISTEM HUKUM KEKEKALAN LINEAR 3.1 Sistem Linear Hiperbolik Sistem linear dalam pengertian Tugas Akhir ini adalah suatu sistem hukum kekekalan dengan bentuk umum, t u + d A α (t) xα u = 0 (3.1.1)

Lebih terperinci

TINJAUAN KASUS PERSAMAAN GELOMBANG DIMENSI SATU DENGAN BERBAGAI NILAI AWAL DAN SYARAT BATAS

TINJAUAN KASUS PERSAMAAN GELOMBANG DIMENSI SATU DENGAN BERBAGAI NILAI AWAL DAN SYARAT BATAS Tinjauan kasus persamaan... (Agus Supratama) 67 TINJAUAN KASUS PERSAMAAN GELOMBANG DIMENSI SATU DENGAN BERBAGAI NILAI AWAL DAN SYARAT BATAS ANALITICALLY REVIEW WAVE EQUATIONS IN ONE-DIMENSIONAL WITH VARIOUS

Lebih terperinci

Perpindahan Panas. Perpindahan Panas Secara Konduksi MODUL PERKULIAHAN. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh 02

Perpindahan Panas. Perpindahan Panas Secara Konduksi MODUL PERKULIAHAN. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh 02 MODUL PERKULIAHAN Perpindahan Panas Secara Konduksi Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh Teknik Teknik Mesin 02 13029 Abstract Salah satu mekanisme perpindahan panas adalah perpindahan

Lebih terperinci

PROPOSAL TUGAS AKHIR PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN OLEH : IRMA ISLAMIYAH

PROPOSAL TUGAS AKHIR PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN OLEH : IRMA ISLAMIYAH PROPOSAL TUGAS AKHIR PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN OLEH : IRMA ISLAMIYAH 1105 100 056 JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT

Lebih terperinci

NOISE TERMS PADA SOLUSI DERET DEKOMPOSISI ADOMIAN DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL PARSIAL ABSTRACT

NOISE TERMS PADA SOLUSI DERET DEKOMPOSISI ADOMIAN DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL PARSIAL ABSTRACT NOISE TERMS PADA SOLUSI DERET DEKOMPOSISI ADOMIAN DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL PARSIAL Heni Kusnani 1, Leli Deswita, Zulkarnain 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II Pada Bidang Bentuk Vektor dari KALKULUS MULTIVARIABEL II (Minggu ke-9) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Pada Bidang Bentuk Vektor dari 1 Definisi Daerah Sederhana x 2 Pada Bidang

Lebih terperinci

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh:

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh: 5 II LANDASAN TEORI 2.1 Keterkontrolan Untuk mengetahui persoalan sistem kontrol mungkin tidak ada, jika sistem yang ditinjau tidak terkontrol. Walaupun sebagian besar sistem terkontrol ada, akan tetapi

Lebih terperinci

Menentukan Distribusi Temperatur dengan Menggunakan Metode Crank Nicholson

Menentukan Distribusi Temperatur dengan Menggunakan Metode Crank Nicholson Jurnal Penelitian Sains Volume 13 Nomer 2(B) 13204 Menentukan Distribusi Temperatur dengan Menggunakan Metode Crank Nicholson Siti Sailah Jurusan Fisika FMIPA, Universitas Sriwijaya, Sumatera Selatan,

Lebih terperinci

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL Pendahuluan Persamaan diferensial adalah persamaan yang memuat diferensial Kita akan membahas tentang Persamaan Diferensial Biasa yaitu

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN Topik bahasan : Analisis Vektor Tujuan pembelajaran umum : Mahasiswa memahami kalkulus vektor dan dapat menerapkannya dalam bidang rekayasa. Jumlah pertemuan : 3 (tiga ) kali 1, 2 dan 3 1. Mengingat mbali

Lebih terperinci

Pengantar Metode Perturbasi Bab 1. Pendahuluan

Pengantar Metode Perturbasi Bab 1. Pendahuluan Pengantar Metode Perturbasi Bab 1. Pendahuluan Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas PAM 454 KAPITA SELEKTA MATEMATIKA TERAPAN II Semester Ganjil 2016/2017 Review Teori Dasar Terkait

Lebih terperinci

HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL

HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL Dra.Sri Rejeki Dwi Putranti, M.Kes. Fakultas Teknik - Universitaas Yos Soedarso Surabaya Email : riccayusticia@gmail.com Abstrak Hubungan antara Differensial dan

Lebih terperinci

Catatan Kuliah KALKULUS II BAB V. INTEGRAL

Catatan Kuliah KALKULUS II BAB V. INTEGRAL BAB V. INTEGRAL Anti-turunan dan Integral TakTentu Persamaan Diferensial Sederhana Notasi Sigma dan Luas Daerah di Bawah Kurva Integral Tentu Teorema Dasar Kalkulus Sifat-sifat Integral Tentu Lebih Lanjut

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

II LANDASAN TEORI. dengan, 1,2,3,, menyatakan koefisien deret pangkat dan menyatakan titik pusatnya.

II LANDASAN TEORI. dengan, 1,2,3,, menyatakan koefisien deret pangkat dan menyatakan titik pusatnya. 2 II LANDASAN TEORI Pada bagian ini akan dibahas teoriteori yang mendukung karya tulis ini. Teoriteori tersebut meliputi persamaan diferensial penurunan persamaan KdV yang disarikan dari (Ihsanudin, 2008;

Lebih terperinci

BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya

BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya 1 BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya Perhatikan persamaan Schrodinger satu dimensi bebas waktu yaitu: d + V (x) ( x) E( x) m dx d ( x) m + (E V(x) ) ( x) 0 dx (3-1) (-4) Suku-suku

Lebih terperinci